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Abstract

This work deals with the continuous time lot-sizing inventory problem when demand and costs are time-dependent.
We adapt a cost balancing technique developed for the periodic-review version of our problem to the continuous-
review framework. We prove that the solution obtained costsat most twice the cost of an optimal solution. We study
the numerical complexity of the algorithm and generalize the policy to several important extensions while preserving
its performance guarantee of two. Finally, we propose a modified version of our algorithm for the lot-sizing model
with some restricted settings that improves the worst-casebound.

Keywords: Inventory theory, approximation algorithms, continuous-review policy, deterministic model

1. Introduction

The Economic Order Quantity (EOQ) problem deals
with a single location that faces a demand of constant
rateλ. In this model, costs are incured when an order
is placed as well as when units are physically held in
the stock. The goal is to determine a continuous-review
policy of minimal cost. More precisely, placing an or-
der incurs a fixed order costK and a linear order costc
while holding an inventory unit incurs a costh per unit
of time. This problem has been solved for a long time by
Harris (1913) in the early twentieth century and popu-
larized by Wilson (1934). Since then, many extensions
and variations have been studied including production
capacity, backorders, perishability, multi-echelon sys-
tems (see e.g. Zipkin (2000) for a state of the art).

One of the important limitations of the EOQ model
is the assumption of time-independent parameters. In
particular, it assumes a constant demand rateλ, which
is not realistic in numerous practical situations. Many
author relax this assumption and consider a more gen-
eral model with time-varying demand rateλ(t). How-
ever they only solve the problem under very restrictive
assumptions. Resh et al. (1976) consider a time propor-
tional demand rate (λ(t) = αt) with time-independent
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cost parameters. Later, Donaldson (1977) proposes an
optimal policy for a linear demand rate (λ(t) = αt + β)
and Barbosa & Friedman (1978) generalize to power-
form demand rates (λ(t) = αtβ, β > −2). This re-
sult is then extended by Henery (1979) to increasing
log-concave demand patterns and Hariga (1994) who
studies a more general model for any monotonic log-
concave demand rate when shortages are allowed. Fi-
nally, Henery (1990) focuses on non monotonic demand
patterns in the special case of cyclic demands.

These papers use a similar general approach that con-
sists in finding the optimal policy for a fixed num-
ber of orders over the planning horizon, then to deter-
mine the optimal number of orders minimizing the to-
tal cost. This concept has been studied and generalized
by Benkherouf & Gilding (2009), who show that the
the optimal cost over a finite planning horizon is a con-
vex function of the number of orders. However, this
method requires specific properties on the cost func-
tion and therefore the papers mentioned above restrict
their attention to specific demand patterns and time-
independent cost parameters. There is no general tech-
nique to determine an optimal continuous-review policy
for time-varying parameters without the restrictive as-
sumptions discussed above.

As the problem is difficult for more general demand
patterns, the literature proposes several heuristics based
on empirical methods such as the greedy (or myopic)
approach. Silver (1979) introduces a heuristic where
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the length of a replenishment cycle is chosen such that
the average cost is minimized (locally) on the replen-
ishment cycle. This heuristic is inspired from the well
known Silver & Meal (1973) heuristic designed for a
periodic-review setting. Another one, widely used in
practice, consists of averaging the demand rate and ap-
ply the EOQ formula with the average demand to com-
pute the order times. Goyal & Giri (2003) consider an
extension of Silver (1979) with backorders and time-
varying demand rateλ(t), production rateµ(t) and dete-
rioration rateθ(t). They also use a greedy approach, op-
timizing the average cost on each cycle rather than glob-
ally. Many other heuristics and extensions have been
considered in the literature. We refer the reader to Goyal
& Giri (2001) and Bakker et al. (2012) for a review
of deteriorating-inventory models with time-varying de-
mand and to Teng et al. (2007) for some references on
the Economic Production Quantity (EPQ) model with
time-varying demand.

Another important heuristic is to discretize time and
use dynamic programming techniques to solve the cor-
responding periodic-review problem. Indeed, there ex-
ists several polynomial time algorithms that are optimal
for the periodic-review lot-sizing problem. In the dis-
crete time version, the planning horizon is divided into
n periods. In each period a demand occurs and an order
can be placed to replenish the stock. Wagner & Whitin
(1958) present an algorithm of complexityO(n2), while
Aggarwal & Park (1993) propose aO(n) algorithm to
solve this problem using Monge arrays. However, it
is very unlikely that the optimal solution for the dis-
cretized problem matches an optimal policy for the orig-
inal continuous-review version.

More generally, the previous heuristics have an im-
portant drawback: They can perform arbitrarily bad (i.e.
no guarantee of performance has been proven). Even
in the periodic-review setting, Axsäter (1982) shows
that the heuristic of Silver & Meal (1973) can per-
form arbitrarily bad. That is, on some instances, the
cost of the heuristic is arbitrary large compared to the
cost of the optimal policy. Similarly, the EOQ heuris-
tic (that averages the demand and uses the EOQ for-
mula) is also shown to perform arbitrarily bad (see Bi-
tran et al. (1984)), even if the average demand is recal-
culated whenever an order is placed.

In this paper, we aim to derive tractable policies for
the continuous lot-sizing problem with time-varying pa-
rameters that have provable performance guarantees. A
policy is said to have a performance guarantee (or a
worst-case guarantee) ofα if its cost is at mostα times
the cost of an optimal policy. In the periodic-review set-
ting with time-varying demand, Axsäter (1982) shows

that a policy that balances holding and set-up costs in
each replenishment cycle has a performance guarantee
of two. Bitran et al. (1984) extend the results of Axsäter
to the case with time-varying holding costs. Recently,
Van den Heuvel & Wagelmans (2010) have proven that
in fact this worst-case guarantee cannot be improved for
online heuristics, i.e. procedures that use a forward in-
duction mechanism and cannot modify their past order-
ing periods.

In this paper, we apply the ideas of cost balancing
introduced by Bitran et al. (1984) to the continuous-
review problem and prove that the performance guaran-
tee of two remains valid for this problem. We then show
that the ideas developed are quite generic and can be ex-
tended to several important models from the inventory
literature (production rate, deterioration rate, non-linear
holding costs, models with shortages, time-varying or-
der costs) while preserving the performance guarantee.
Similarly to Bitran, our method uses a myopic mecha-
nism to decide whether to place a new order or increase
the quantity ordered in the previous one and hence is
unlikely to achieve a worst-case guarantee lower than
two. However, we introduce at the end of this paper
an alternative procedure that enables us to improve the
performance guarantee to 3/2, with some additional as-
sumptions.

Note that Hariga (1996) applies a similar cost bal-
ancing technique to the time-varying demand model
with shortages and compares its performances to several
other heuristics widely used in practice. Although his
study presents numerical experiments and compare the
performances of the different techniques, it focuses on
time-independent cost parameters. Moreover, the the-
oretical performance and complexity are not discussed
in his paper. Thus, to the best of our knowledge, this
paper is the first to derive algorithms and prove their
guarantee of performance for lot-sizing problems with
time-varying parameters in a continuous-time setting.

The rest of the paper is organized as follows: in§2,
we formally introduce the basic lot-sizing problem and
useful notations to describe the solutions and prove their
guarantee.§3 explains how to adapt the balancing pol-
icy of Bitran et al. (1984) for a continuous-time set-
ting and prove that the resulting policy preserves the
performance guarantee of 2. In§4, we introduce sev-
eral extensions to the lot-sizing model and show how
the balancing algorithm can be modified to solve them.
Finally, we generalize the concept of cost balancing to
present a new policy for the lot-sizing model and prove
its worst-case guarantee is 1.5 in §5.
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2. Assumptions and notations

We consider a single location that faces a continuous
demand with rateλ(t) at timet. We denote byΛ(s, t) =
∫ t

s
λ(u)du the cumulated demand over [s, t]. Holding an

inventory unit at timet incurs a costh(t) per unit of time.
We assume thatλ(·) andh(·) are piece-wise continuous
functions. Placing an order at timet incurs a fixed order
cost (or set-up cost)K(t) and a linear order costc(t).

The inventory level at time 0, before placing the first
order, is denoted byx0. For the majority of the mod-
els presented in this paper, it is dominant to place the
first replenishment at timet0 such thatx(t0) = 0 and
λ(t0) > 0: Hence we will assume w.l.o.g. thatx0 = 0
andλ(0) > 0, unless explicitely said otherwise. In what
follows, apolicy is defined as a set of rules to determine
the ordering times and quantities for each instance of
the problem. The objective is to find a policy minimiz-
ing costs over a finite horizon [0,T] while satisfying all
the demands: In particular, a policy that achieves the
lowest possible cost for any instance of the problem is
said to be optimal.

When the demand rate is constant, the cost parame-
ters are time-independent and the horizon is infinite, this
problem reduces to the EOQ problem and can be solved
analytically (see e.g. Zipkin (2000)). On the contrary,
it is generally hard to solve the problem to optimality
when parameters are time-dependent. The aim of this
paper is to develop approximation algorithms for the
time-varying version of the problem.

Without loss of generality, we assume that the pro-
curement leadtime is null: All demands being determin-
istic, a deterministic positive leadtime simply shifts the
decision earlier in time. We now introduce some use-
ful notations and concepts for the rest of the paper. Let
xp(u) be the inventory level at timeu, under some pol-
icy P and letCp(s, t) be the cost incurred by a policyP
over (s, t]. More precisely,Cp(s, t) includes holding cost
∫ t

s
h(u)xp(u)duand set-up costs over (s, t], excluding the

set-up cost at times, if any. Then, for any sequence
a0 = 0 < a1 < · · · < an+1 = T, the total costCp of pol-
icy P over the whole time horizon can be decomposed
as

Cp = κp0 +Cp(0,T) = κp0 +
n∑

i=0

Cp(ai ,ai+1) (1)

, where κp0 is equal to K(0) if P orders at time 0
and 0 otherwise. Note that since intervals (ai ,ai+1]
partition the time horizon, equation (1) partitions the
cost incurred by any policy according to the sequence
(ai)i=0,...,n+1. In particular, the following proposition
holds:

Proposition 1. Let π be a feasible policy for the
continuous-review problem and let0 = a0 < a1 <

· · · < an < an+1 = T be a sequence of points in time.
Then ifκπ0 ≤ κp0 and Cπ(ai ,ai+1) ≤ αCp(ai ,ai+1) for all
i = 0, . . . ,n and all feasible policy P,π has a worst case
guarantee ofα.

Proof. Summing all the partial costs as in equation (1)
leads toCπ ≤ αCp for any feasible policyP. In partic-
ular, this inequality holds whenP is an optimal policy
and the proof follows.

Given a policyP, a (replenishment) cycle (s, t] is de-
fined as a time interval such that an order is placed at
time s, an order is placed at timet > s and no or-
der is placed inbetween. In particular, if the sequence
(ai)i=0,...,n+1 corresponds to the ordering times of policy
P0 = s0 < s1 < · · · < sn < sn+1 = T is the sequence
of ordering times of policyP, one can decomposeNote
that given Finally, we say that a policy satisfies theZero
Inventory Orderingproperty, or is ZIO, if it orders only
when its inventory level is zero. Note that under a ZIO
policy P, the quantity ordered at the beginning of a cycle
(s, t] is exactlyΛ(s, t), the cumulated demand over the
cycle. Moreover, the inventory level can be easily ex-
pressed in cycle (s, t] as xp(u) = Λ(u, t). Hence the cu-
mulated holding costH(s, t) of a ZIO policy over a cycle
(s, t] can be simply expressed as an integral of holding
cost and demand functions.

H(s, t) =
∫ t

s
h(u)Λ(u, t)du

Note that sinceh(·) and Λ(·, ·) are both nonnegative
piecewise continuous functions,H(s, ·) is a nondecreas-
ing continuous function for alls. We give below a
summary of the notations used through the paper:

λ(t) demand rate at timet
Λ(s, t) cumulated demand over [s, t]
Λ(t) cumulated demand from time 0 tot: Λ[0, t]
h(t) per-unit holding cost at timet
K(t) fixed order cost (or set-up cost) at timet
c(t) linear order cost at timet
x0 inventory level at time 0
T time horizon
xp(u) inventory level at timeu, under policyP
Cp(s, t) cost of policyP over (s, t] (time s excluded)
Cp cost of policyP over [0,T]
HP(s, t) holding cost of policyP over cycle (s, t]
H(s, t) holding cost of a ZIO policy over cycle (s, t]
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3. An approximation algorithm

In this section, we present the central idea of our algo-
rithm. Roughly, the main concept is to balance in each
replenishment cycle the holding costs with the fixed or-
der cost. For ease of understanding, we first make sim-
ilar assumptions as Bitran et al. (1984) who have inves-
tigated a periodic-review version of this problem. More
precisely, we assume that the fixed order cost and the
linear order cost are time-independent, that isK(t) = K
andc(t) = c for all t ∈ [0,T]. These assumptions will be
relaxed in§4. Notice that without loss of generality, we
can assumec = 0 as any policy incurs a linear order cost
of exactlyc (Λ(0,T) − x0) over the planning horizon to
satisfy all the demands. Throughout the remainder of
this section, we restrict our attention to policies that re-
spect the Zero Inventory Ordering (ZIO) property, as it
is dominant for the model we are interested in.

3.1. The balancing policy

The concept of cost balancing is well known in the
inventory literature and can even be found in the clas-
sical EOQ problem, where all parameters are time-
independent. Indeed, it is well known that for this spe-
cial case the optimal policy balances exactly the holding
costs with the order costs. More precisely, the optimal
average costC∗ over an infinite horizon is

C∗ =
√

λKh/2
︸    ︷︷    ︸

Holding costs

+

√

λKh/2
︸    ︷︷    ︸

Fixed order costs

In the time-varying setting, we introduce thebalanc-
ing policy, denoted BL in what follows, which balances
in each cycle the two parts of the cost discussed above.
The BL policy is inspired by the periodic-review policy
proposed by Axs̈ater (1982) and Bitran et al. (1984). In
fact, it is a ZIO policy whose order times are determined
by a forward induction as follows: A first order is placed
at the last moment when the inventory is nonnegative. If
the BL policy places an order at times, the next order
time is then defined as the last timet such that

H(s, t) ≤ K (2)

Recall thatH(s, t) represents the holding cost in-
curred by a ZIO policy over cycle (s, t]. As H(s, ·) is
a nondecreasing continuous function andH(s, s) = 0,
inequality (2) is tight for at least one point in [s,T] if
and only ifH(s,T) ≥ K (see Figure 1). When the latter
condition is not satisfied thens is the last order time of
the BL policy and the quantity ordered ats is Λ(s,T),
such that all the remaining demand is ordered ats. More
precisely, we define the BL policy as follows:

s1 = 0
t

H(s1, t)

K

s2

Figure 1: Computing the next ordering times2 when the current order
is placed at times1 = 0 (K = 1.5, h(t) = ln(t+1)

t+1 , λ(t) = 2 ln(t+1)
(t+1) ).

Definition 1. The BL policy is the ZIO replenishment
policy whose order times s1 < s2 < · · · < sn are given
by Algorithm 1.

Algorithm 1 BL policy
sets1 = 0
setn← 1
while H(sn,T) ≥ K do

sn+1← max{t ≤ T : H(sn, t) = K}
n← n+ 1

end while
return (s1, . . . , sn)

Since the BL policy is ZIO, it is completely defined
by the vector of order times (s1, . . . , sn). By convention
we sets0 = 0 andsn+1 = T. Then fori ≥ 1, the quan-
tity ordered by the BL policy at timesi is exactly the
cumulated demand over [si , si+1], i.e. Λ(si , si+i).

3.2. Performance guarantee of the BL policy

The BL policy is an interesting inventory policy both
for its simplicity and for the quality of the solution ob-
tained. In particular, we show in this section that the
cost of the BL policy is at most twice the cost of an op-
timal policy. We first present a lower bound on the cost
incurred by any policy between two instantss< t:

Lemma 1. For any instants s< t and any feasible pol-
icy P, we have

Cp(s, t) ≥ min{H(s, t),K}

Proof. If policy P places an order on (s, t], clearly
Cp(s, t) ≥ K. Otherwise, the inventory levelxp(s) of
policy P at instants is at leastΛ(s, t) to prevent stockout
on [s, t]. Since no order is placed on (s, t], we have that
for all u ∈ (s, t], xp(u) ≥ Λ(u, t) for u ∈ (s, t] and thus
HP(s, t) =

∫ t

s
h(u)xp(u)du ≥

∫ t

s
h(u)Λ(u, t)du = H(s, t).

The results follows.
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We now use this result to state and prove the follow-
ing theorem on the performance guarantee of the BL
policy:

Theorem 1. For piece-wise continuous functionsλ(·)
and h(·) and constant functions K(·) and c(·), the BL
policy has a worst-case guarantee of two. That is, the
cost incurred by the BL policy is at most twice the cost
of an optimal policy.

Proof. Let P be a feasible policy for the continuous-
review lot-sizing problem considered and lets1, . . . , sn

be the sequence of order times of the BL policy. We
prove that on any time interval (si , si+1], the cost in-
curred by the BL policy is at most twice the cost in-
curred byP.

SinceP is feasible, we clearly haveκb = κp. On the
last interval (sn,T], the cost incurred by BL isH(sn,T),
which is lower thanK by construction. According to
Lemma 1, we have

Cp(sn,T) ≥ min {H(sn,T),K}
= H(sn,T)

= Cbl(sn,T)

Now consider an interval (si , si+1], with 1 ≤ i ≤ n −
1. By construction, the BL policy incurs a holding cost
H(si , si+1) = K and thusCbl(si , si+1) = H(si , si+1)+K =
2K. Due to Lemma 1, any feasible policy pays at least
min{H(si , si+1),K} = K on (si , si+1]. In particular, we
have thatCp(si , si+1) ≥ K and therefore

Cbl(si , si+1) ≤ 2Cp(si , si+1)

for all i = 0, . . . ,n− 1. The theorem then follows from
Proposition 1.

Remark 1. The BL policy is optimal in the case of the
EOQ problem.

Assume thatλ(t) = λ and h(t) = h for all t. In this
case, we haveΛ(s, t) = (t − s)λ and H(s, t) = λh(t −
s)2/2. Solving Equation (2) yields

t − s=

√

2K
λh

The time between orders is precisely the optimal order
interval for the EOQ model (see e.g. Zipkin (2000)),
which proves the optimality of the BL policy.

3.3. Numerical issues and complexity

In this section, we discuss how the order times can be
computed by the balancing algorithm in practice. We

first turn our attention to the issue of computing the next
order timet given the current order times. From the def-
inition of H(s, ·), we have thatH(s, s) = 0 andH(s, ·) is
a nondecreasing continuous function on [s,T]. Hence
there exists at least one solutiont ∈ [s,T] to the equa-
tion H(s, t) = K (unlessH(s,T) < K). However, in
most cases there is no analytical expression oft. One
can then use classical root-finding algorithms, such as
the bissection method, to compute an approximate value
of t. The next ordering momentt′ found by such tech-
niques is such thatt′ ∈ [t − δ, t + δ] for a given preci-
sionδ > 0 and the final complexity depends onδ. For
instance when using the bisection method, each compu-
tation oft′ requiresO(log(T/δ)) evaluations of function
H(s, ·).

For some classes of functionsh(·) andλ(·), like poly-
nomial, exponential, sinusoidal, the integralH(s, t) can
be expressed analytically. Otherwise, one can use clas-
sical numerical methods to evaluate this integral with
some precision error. In what follows, we assume that
H(s, t) can be computed (exactly) in timeO(1) and we
only focus on the complexity of determining the order
timess1, . . . , sn of the BL policy. Notice that the num-
ber of order times of the BL policy, as for an optimal
policy, may be arbitrary large (for instance considering
an exponential holding costh(t) = et). Thus the time
complexity can not be bounded in general with respect
to the instance size. For this reason we consider in what
follows a natural restriction of the problem.

Assume that the demand function and the holding
cost function are both upper bounded on[0,T]. That
is, there existŝλ, ĥ such that for allt ∈ [0,T], λ(t) ≤ λ̂
andh(t) ≤ ĥ. Then the following theorem holds:

Theorem 2. For anyε > 0, the BL policy can be imple-
mented to provide a solution with a performance guar-
antee of(2+ ε) usingO (

Φ logΦ
)

evaluations of H(·, ·),

whereΦ = (1+
1
ε

)
λ̂ĥ
K

T2.

Proof. See Appendix Appendix A.

Remark 2. In practice, H(s, t) is often too complex to
be computed exactly in constant time. However, if one
uses a numerical method to compute H(s, t) with max-
imum errorγ ≥ 0 in timeO( f (γ,T)), this error can be
somehow included in the general errorε of BL. Specif-
ically, the precision for H(·, ·) must satisfyγ < εK
and the total complexity isO (

Φ
′ logΦ′ f (γ,T)

)

, where

Φ
′
=

1+ ε
εK − γ λ̂ĥT2.
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3.4. Bad example

We should be able to present a quick bad example,
where demand rate is null everywhere except on regular
small intervals, and its limit when the length of the in-
tervals tends to zero reach the worst-case guarantee.
I found a simple bad example, just need to write it down
clearly.

4. Extensions

The previous section introduces a cost balancing
technique for a basic continuous lot-sizing model, but
the underlying idea appears to be rather generic. In this
section, we apply this concept to several important ex-
tensions of the lot-sizing problem. Although in most
cases Algorithm 1 cannot be used directly, we adapt
the policy to the specific settings of each extension and
prove that the performance guarantee of two found in§3
remains valid for these more general models.

4.1. Nonlinear holding costs

The analysis used in§3 remains valid for nonlinear
holding costs. In this model, the holding cost incurred
depends on both the time moment and the current inven-
tory on hand. Specifically, we denoteh(x, t) the holding
cost value att for holding x units in stock. The only
(natural) assumption we make is thath(x, t) is nonde-
creasing inx.

Essentially, one only has to check that Lemma 1 re-
mains valid in this context to ensure the approximation
result holds. As before, letH(s, t) be the holding cost
incurred on a cycle (s, t] by a ZIO policy. We have
H(s, t) ≡

∫ t

s
h (Λ(u, t),u) du. Now consider a feasible

policy P that does not order in the time interval (s, t].
The holding costHP(s, t) incurred byP on (s, t] satis-
fies:

HP(s, t) ≡
∫ t

s
h
(

xp(u),u
)

du

=

∫ t

s
h
(

xp(s) − Λ(s,u),u
)

du

≥
∫ t

s
h (Λ(s, t) − Λ(s,u),u) du

=

∫ t

s
h (Λ(u, t),u) du = H(s, t)

where the second equality is due to the fact thatP
does not order in (s, t) and subsequent inequalities come
from the nondecreasing property ofh(·,u). Therefore
Lemma 1 is still valid.

The policy we propose in this case follows exactly
Algorithm 1. This policy satisfies the ZIO property, thus
the same arguments as the ones used in Theorem 1 hold
and the performance guarantee of 2 remains valid in the
general case of nonlinear holding costs.

4.2. Perishable products

Classical inventory models generally assume that one
can store units indefinitely to meet future demands.
However, many products do not satisfy this assumption
in practice, e.g. because they deteriorate or become ob-
solete (see Goyal & Giri (2001) for a recent review on
these models). In this section, we consider a model in
which the inventory on hand at timet deteriorates at rate
θ(t), incurring a per unit deterioration costa(t). In a cy-
cle (s, s′], the inventory levelx(t) satisfies the following
first-order differential equation:

dx(t)
dt
+ θ(t)x(t) = −λ(t), x(s′) = 0

which can be solved easily, see e.g. Goyal & Giri
(2003). Note that even though we only present our re-
sults for the simple inventory model derived from§3,
this equation can also be solved with production rate
µ(t) and backorders (see Goyal & Giri (2003)).

The sum of holding and deterioration costs over a
time interval [s, s′] for a policy P can be expressed as:

HP(s, s′) =
∫ s′

s
[h(t)+a(t)θ(t)]xp(t)dt =

∫ s′

s
h̃(t)xp(t)dt

whereh̃(t) = h(t) + a(t)θ(t). Using this modified hold-
ing cost parameter, we can apply Algorithm 1 as in§3.
The arguments used to prove the performance guaran-
tee of BL remain valid in this more general context and
thus the resulting algorithm is a 2-approximation for the
model with perishable products.

4.3. Finite production rate

The model studied in§3 assumes that replenishments
are instantaneous. We now relax this assumption and
focus on a model where units are produced according to
a time-dependent, piecewise continuous production rate

µ(·). In addition, we denoteµ(s, s′) =
∫ s′

s
µ(z)dz the cu-

mulative production capacity on [s, s′]. If a production
starts at times for q units, all units are available on hand
at times+ t such thatµ(s, t) = q. Each production start
incurs a time-independent fixed costK (the nonspecula-
tive linear production cost is omitted w.l.o.g. as before).
The objective is again to minimize total costs over [0,T]
without stockout.

6



Although classical production models assume that the
production rateµ(t) is larger than the demand rateλ(t),
for all t, we relax this constraint and consider a more
general situation where the only assumption is that the
production capacity is sufficient to satisfy the entire de-
mand without stockout, that isµ(0, t) ≥ Λ(0, t) for all t.

As a consequence, a policyP for the problem is fea-
sible if and only if it can satisfy the demandsΛ(s, t)
on any time interval [s, t], either by producing during
this interval or by using its stock on hand at instant
s. Observe that any policy cannot produce more than
µ(s, t) units during the interval. Thus a sufficient condi-
tion for P to avoid stockouts is that for any timet ≥ s,
xp(s) ≥ Λ(s, t) − µ(s, t).

Property 1. Any feasible policy P satisfies

∀s ∈ [0,T], xp(s) ≥ xmin(s) (3)

with xmin(s) = maxt≥s {Λ(s, t) − µ(s, t)}

When t = s, this condition simply implies that
xp(s) ≥ 0. According to this new definition, we modify
the initial condition and assume w.l.o.g. in this model
thatx0 = xmin(0) andλ(0) > 0.

Note that in the special case whereµ(t) ≥ λ(t) for
all t, we havexmin(s) = 0 for all s and the ZIO prop-
erty remains dominant. However in this more general
production model, it is not necessarily the case. Conse-
quently we focus on policies that order at times only if
their inventory level is equal toxmin(s). In the remainder
of this section, we call such policies MIO (Minimum
Inventory Ordering) policies. In addition to this main
property, the final stock of a MIO policy must be null
(x(T) = 0). MIO policies are clearly dominant for our
problem since for any non MIO policy, one can easily
build a MIO policy with lower cost by delaying orders.
Figure 2 illustrates a MIO policy.

For a MIO policyP, one can easily compute the stock
evolution during a replenishment cycle (s, t]. First,
note that by definition we havexp(s) = xmin(s) and
xp(t) = xmin(t). Due to the continuous production pro-
cess, cycle (s, t] consists now of an active period (s,u]
(when production is on-going) and an idle period (u, t]
(when production is over). The idle period starts at time
u, whereu satisfies the following equation:

xmin(t) = xmin(s) + µ(s,u) − Λ(s, t) (4)

The value of the inventory level over a replenishment
cycle (s, t] is then easy to compute:

xp(z) =

{

xmin(s) + µ(s, z) − Λ(s, z) if z≤ u
xmin(t) + Λ(z, t) otherwise

x(t)

0
t

T

x(t)
xmin(t)

a1 i1 a2 i2

Figure 2: An example of a MIO policy forT = 10,
λ(t) = 2(1− cos(t

2 )), µ(t) = 2.5. Time intervalsa1 anda2 correspond
to production (active) periods whilei1 andi2 are idle periods.

Using equation (4) we can unify the expression ofxp(z)
as follows. Consider an instantz ≤ u. We have
xp(z) =

[

xmin(t) − µ(s,u) + Λ(s, t)
]

+µ(s, z)−Λ(s, z) and
thereforexp(z) = xmin(t) − µ(z,u) + Λ(z, t). Assuming
µ(b,a) = 0 for a < b, we get:

xp(z) = xmin(t) − µ(z,u) + Λ(z, t) ∀z ∈ [s, t] (5)

Let H(s, t) be the holding cost incurred by a MIO pol-
icy over a replenisment cycle (s, t]. Since for any fea-
sible policyP the stock level at any instantz is at least
xmin(z), the holding cost can now be split into two parts,
H(s, t) = H1(s, t) + Hmin(s, t), where:

H1(s, t) ≡
∫ t

s
h(z)(x(z) − xmin(z))dz≥ 0

is thepolicy dependent partof H(s, t) and

Hmin(s, t) ≡
∫ t

s
h(z)xmin(z)du≥ 0

is the independent partof H(s, t). Notice that due to
Equation 3,Hmin(s, t) is incurred by any feasible policy
for the problem we consider.

We now present an extension of the BL policy to this
production model, called PB policy in what follows.
The PB policy balances in each cycle the fixed order
cost K with the policy dependent part of the holding
cost. Formally, the algorithm for the production model
works as follows:
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Algorithm 2 Balancing policy for production models
(PB)

sets1← 0
setn← 1
while H1(sn,T) ≥ K do

sn+1← max{t ≤ T : H1(sn, t) = K}
n← n+ 1

end while
return (s1, . . . , sn)

For i = 1, . . . ,n, the quantity ordered by policy PB at
time si is thenqi = Λ(si , si+1) + xmin(si+1) − xmin(si) and
the following theorem holds:

Theorem 3. The PB policy has a worst-case guarantee
of 2 for the general production model.

Proof. See Appendix Appendix B.

4.4. A model with backlogging

One major constraint in the previous models is that
demand has to be satisfied immediately. However, there
exists more flexible models in which the demand does
not necessarily have to be fulfilled on time. We now
focus on such a model and present an approximation
algorithm based on the same balancing idea as the one
discussed in§3.

In this section, we assume backlogging is allowed.
The model is similar to the one presented in§2, ex-
cept that demand is not necessarily satisfied immedi-
ately anymore. We still assume that the policy incurs
a fixed order costK for each order placed while hold-
ing inventory induces an per-unit holding cost ofh(t) at
time t. On the other hand, unmet demand isbacklogged:
Customers are willing to wait until the stock on hand is
sufficient to fulfill their requirement. Thus backlogged
demand is served with a subsequent order placed later
in time and incurs a per-unit backlogging cost ofb(t) at
time t.

Without loss of generality, we assume the units
are consumed on a first-ordered first consumed basis.
Moreover, we modify the initial conditions and simply
consider thatx0 ≤ 0. The balancing policy for models
with backlogging uses an idea rather similar to the one
used in the basic model: It balances the costs incurred
between two consecutive order times with the fixed or-
der costK. The main difference is that instead of using
only the holding costs, both holding and backlogging
costs are considered. However, the policy decides to
serve or backlog demand in a way that minimizes the
sum of the costs incurred over the cycle. Each cycle
(s, t] is consequently split into two parts: (s,u], during

which inventory is held, and (u, t], when backorders ac-
cumulate.

In the remainder of the section, the balancing policy
for models with backlogging is denoted BB. For a given
policy P, let BP(s, t) be the backlogging cost incurred
by P over (s, t]. In addition, we denoteB(s, t) the back-
logging cost incurred over (s, t] by a policy that does
not order in (s, t) and whose inventory at times is 0.
Formally, the algorithm works as follows:

Algorithm 3 Balancing policy for models with back-
logging (BB)

sets0← 0, s1← max{t ≤ T : B(0, t) = K}
setn← 1
while H(sn,T) > K do

sn+1←max

{

t ≤ T : min
u∈[sn,t]

{H(sn,u) + B(u, t) = K}
}

n← n+ 1
end while
return (s1, . . . , sn)

Given s < t, the algorithm computes the quantity
that minimizes the holding and backlogging costs in-
curred over (s, t]. This quantity has to satisfy all the
backorders ats (before the order occurs) plus the to-
tal demand during the first part of the cycle (when in-
ventory is physically held). Since satisfying the back-
logged units ats does not induce any cost, the algo-
rithm aims to findu∗ ∈ (s, t) such that functionfs,t(u) =
∫ u

s
h(z)Λ(z,u)dz+

∫ t

u
b(z)Λ(u, z)dz is minimized. The

first derivative offs,t(·) is the following expression:

d fs,t(u)
du

=

∫ u

s
h(z)λ(u)dz−

∫ t

u
b(z)λ(u)dz

=

(∫ u

s
h(z)dz−

∫ t

u
b(z)dz

)

λ(u)

As λ(·) is a nonnegative function, it is easy to see that
for s< t, there existsu∗ ∈ (s, t) such that:






d fs,t(u)
du

≤ 0 for all u ∈ (s,u∗]

d fs,t(u)
du

≥ 0 for all u ∈ (u∗, t]

Thereforefs,t(·) is unimodal and reaches its minimum at
u∗ ∈ (s, t) such that:

∫ u∗

s
h(z)dz=

∫ t

u∗
b(z)dz

This property of functionsfs,t(·) is illustrated on Fig-
ure 3.
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0
u

K
H(s1,u) + B(u, t1)

H(s1,u) + B(u, t2)

H(s1,u) + B(u, t3)

u∗1 u∗2 u∗3 t1 t2 t3s1 = 1

Figure 3: Computingu∗ for different values oft (t1 = 5.3, t2 = 6.156,
t3 = 7) when the previous order is placed at times1 = 1 (K(t) = 2,

h(t) = 1, p(t) = 1.5, λ(t) = e
√

t+1

4(t+1)

(

1− 1√
t+1

)

). The next order chosen

by the BB policy iss2 = t2 since the minimum cost incurred over
(s1, t2] is exactly equal toK. Furthermore the quantity ordered ats1
increases the inventory level up toΛ(s1,u∗2).

If s < t are two consecutive order times of the BB
policy, the quantity ordered at times increases the in-
ventory level up toΛ(s,u∗). Note that consequently the
remainingΛ(u∗, t) units are backlogged and served at
time t. Finally if the last order computed by the algo-
rithm is sn < T, the BB policy orders up toΛ(sn,T) at
time sn. Otherwise (sn = T), it orders up to 0 at time
T and satisfies all the demand backlogged in (sn−1, sn].
We now state and prove the following theorem on the
performance guarantee of the balancing algorithm for
models with backlogging:

Theorem 4. The BB policy for continuous lot-sizing
models with backlogging has a worst-case guarantee of
two.

Proof. See Appendix Appendix C.

In practice, one can use classical search algorithms
such as the Fibonacci search technique (see Kiefer
(1953)) to compute the minimumu∗ ∈ (s, t) in
O(log(T/δ)), whereδ is the chosen precision. Thus as-
suming thatλ(·) (resp. h(·), p(·)) is bounded by a con-
stantλ̂ (resp. ĥ, p̂), one can chooseΩ as in§3.3 and
compute the order times inO(Ω(logΩ)2) (using the pre-
cisionδ = T/Ω) while bounding the error in the cost by
a chosen gapε.

4.5. Time-dependent order costs

In §3 we restricted our attention to time-independent
fixed order costs. We now relax this assumption and al-
low for monotonic time-varying fixed order costs and

nonspeculative linear order costs. Specifically, we as-
sume that functionK(t) is continuous in time and either
nonincreasing or nondecreasing witht, while c(·) satis-
fies for allds> 0:

c(s+ ds) ≤ c(s) +
∫ s+ds

s
h(u)du (6)

In other words, given two potential order timess1 < s2

to serve a specific demand att ≥ s2, it is always cheaper
to order ats2, rather than order earlier ats1 and hold the
corresponding units for a longer period. One can notice
that inequality (6) resemble the weel-known assumption
of nonspeculative motivations often encountered in dis-
crete lot-sizing models.

Intuitively, the replenishment rule used by the
policy consists in balancing in each cycle the holding
costs and the linear order costs incurred with the
minimum fixed order cost over this cycle. Due to our
assumption, this minimum fixed order cost is realized
at one of the extremities of the cycle. That is, ifK(·)
is nonincreasing (resp. nondecreasing) the holding
cost H(s, t) + c(s)Λ(s, t) incurred over a cycle (s, t]
is balanced withK(s) (resp. K(t)). The procedure is
then applied in a forward or in a backward manner
depending on the variation ofK(·). Notice that Bitran
et al. (1984) also define a forward and a backward
method for the discrete time problem when ordering
costs are time-independent. In our case, these two
algorithms are defined as follows:

Algorithm 4 Forward balancing policy for nonincreas-
ing order costs

sets1← 0
setn← 1
while c(sn)Λ(sn,T) + H(sn,T) ≥ K(T) do

sn+1←max{t ≤ T : c(sn)Λ(sn, t) + H(sn, t) = K(t)}
n← n+ 1

end while
return (s1, . . . , sn)

Remark 3. When K(·) is nondecreasing and x0 > 0,
placing an order before the initial stock is depleted may
reduce the total cost incurred by the policy. Hence in
this case, we relax the initial condition discussed in§2
and only assume x0 ≥ 0.
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s1 = 0
t

H(s1, t)

K(t)

s2

Figure 4:K(t) = e1− t
2 , h(t) = ln(t+1)

t+1 ,λ(t) = 2 ln(t+1)
(t+1) .

0
t

H(t, s1)

K(t)

s2 s1

Figure 5:K(t) = e1− 6−t
2 , h(t) = ln(t+1)

t+1 ,λ(t) = 2 ln(t+1)
(t+1) .

Algorithm 5 Backward balancing policy for nonde-
creasing order costs

sets0 = T
sett0← max{t ≤ T : Λ(0, t) ≤ x0}
setn← 0
while c(t0)Λ(t0, sn) + H(t0, sn) ≥ K(t0) do

sn+1← min {t ≥ t0 : c(t)Λ(t, sn) + H(t, sn) = K(t)}
n← n+ 1

end while
if sn > t0 then

sn+1← min {0 ≤ t ≤ t0 : c(t)Λ(t0, sn)
+H(t, sn) − H(t, t0) ≤ K(t)}

n← n+ 1
end if
return (sn, . . . , s1)

Figures 4 and 5 show how the forward and backward
algorithms compute the next and the previous order, re-
spectively.

Note that in the case of the backward algorithm, the
order times are computed in a reverse order: 0≤ sn ≤
· · · ≤ s1 ≤ T. Moreover, the ZIO rule is not necessarily
respected for the first order. Letx0 be the initial in-
ventory on hand and lett0 = max{t ≤ T : Λ (0, t) ≤ x0}:
If sn < t0, the quantity ordered at timesn is qn =

Λ(t0, sn−1). All the other orders are of sizeqi =

Λ(si , si−1).

Theorem 5. For time-dependent order costs, the for-

ward (resp. backward) balancing policy has a worst-
case guarantee of two when K(·) is a continuous nonin-
creasing (resp. nondecreasing) function.

Proof. See Appendix Appendix D

5. Improvement of the performance guarantee

In this section, we present a generalization of the bal-
ancing technique used in§3 and use it to improve the
performance guarantee from 2 to 3/2. The idea remains
to balance the costs incurred over a time interval (s, s′]
with order costs but we now consider the possibility to
place additional orders in the interval. We present this
modified algorithm in the simple situation of Section 3,
in which order costs are time-independent and holding
costs are linear.

5.1. A generalized balancing policy

Consider a time interval (s, t] and letk be a positive
integer. We defineGk(s, t) as the minimum cost over
(s, t) incurred by a feasible policy ordering at mostk
times in (s, t).

Note that a policy that minimizes the costGk(s, t) is
ZIO. Thus fork = 0 we haveG0(s, t) = H(s, t) and
clearly, the BL policy incurs on each of its ordering in-
terval (s, s′] a costG0(s, s′).We can generalize Lemma 1
to the following result:

Lemma 2. Let k∈ N, s< t and P a feasible policy. We
have

Cp(s, t) ≥ min{Gk(s, t), (k+ 1)K}

Proof. The proof is immediate due to the definition of
Gk. If policy P places at mostk orders inside the time
interval, thenCp(s, t) ≥ Gk(s, t). OtherwiseCp(s, t) ≥
(k+ 1)K.

For a given positive integerk, we propose the fol-
lowing balancing policy, denoted BLk in the remainder
of this section. Its principle is to balanceGk(s, t) with
(k + 1)K in each of its replenishment cycle (s, t]. That
is, given an instants, the policy computes the largest
instant t ≤ T such thatGk(s, t) ≤ (k + 1)K. Notice
that in this case policy BLk orders at instantss and t
and possibly up tok times in the interval (s, t). We call
main order times the instantss and t, while the other
order times in (s, t) are calledsecondaryorder times.
Although main and secondary orders play the same role
in the final solution, we differentiate these two types of
orders to simplify the definition and the proof of perfor-
mance of the algorithm. Similarly to BL, the first (main)
order of BLk is placed at the last instants1 such that the
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initial inventory x0 can satisfy the demands on [0, s1].
The following result generalizes Theorem 1:

Theorem 6. For K(·) and c(·) constant functions and
h(·) andλ(·) a piece-wise continuous function, the BLk

policy has a worst-case guarantee ofk+2
k+1.

Proof. The proof is very similar to the one of Theo-
rem 1 and only the main arguments are given here. Let
P be a feasible policy and lets1, . . . , sn be the sequence
of the main order times of the BLk policy. First no-
tice that any feasible policyP places an order at time 0
and thereforeκblk0 = K = κp0. Now consider an interval
(si , si+1], with 0 ≤ i ≤ n − 1. By construction, the BLk
policy incurs a costCblk(si , si+1) ≤ Gk(si , si+1) + K =
(k + 2)K in this time interval. Due to Lemma 2, pol-
icy P pays at least min{Gk(si , si+1), (k + 1)K} = (k +
1)K. It results thatCblk(si , si+1) ≤ k+2

k+1Cp(si , si+1).
Then consider the last interval. On [sn,T], we have
Cblk(sn,T) = Gk(sn,T), which is lower thanCp(sn,T)
due to Lemma 2. As a consequence the inequality
Cblk(si , si+1) ≤ k+2

k+1Cp(si , si+1) holds for every interval
(si , si+1] and the proof follows.

5.2. Complexity analysis

Contrarily to the balancing policy presented in§3, the
family of algorithms presented in the previous section
does not fall within the class of myopic policies and en-
ables us to design efficient procedures to solve the prob-
lem introduced in§2. In particular, the resulting perfor-
mance guarantee can be as close as aimed to the cost
of an optimal policy. However the problem of deter-
mining (analytically or numerically) the minimal cost
Gk(s, t) on an interval (s, t) is likely to require a large
computing effort, especially for large values ofk. In
this section, we first discuss the computation ofGk(s, t)
for an arbitraryk. Then, fork = 1, we show that theBL1

policy can be computed inO
(

Φ
(

logΦ
)2
)

with some re-
strictions on the demand and holding cost functions.

Arbitrary k
Whenk secondary orders are placed in interval (s, t)

at timesv1, · · · , vk, the inventory holding cost of a ZIO
policy on interval (s, t) is

f (v1, · · · , vk) =
k∑

i=0

∫ vi+1

vi

h(x)Λ(x, vi+1)dx

wherev0 = s andvk+1 = t.
The problem is then to minimizef with the constraint

that v0 = s ≤ v1 ≤ · · · ≤ vk+1 = T. We have for

1 ≤ i ≤ k

∂ f
∂vi

(v1, · · · , vk) = λ(vi)h(vi−1, vi) − h(vi)Λ(vi , vi+1)

whereh(x, y) =
∫ y

x
h(t)dt.

Hence the optimal secondary order points satisfy the
following equality for 1≤ i ≤ k:

λ(vi)h(vi−1, vi) = h(vi)Λ(vi , vi+1) (7)

Note that this condition is necessary but not sufficient
since there may exist several solutions to Equation (7).
For time-independent holding costh(t) = h, condi-
tion (7) reduces to a simpler condition that was estab-
lished by Barbosa & Friedman (1978): (vi −vi−1)λ(vi) =
Λ(0, vi+1)−Λ(0, vi). However even in this restrictive set-
ting, the problem of solving equation (7) is difficult, ex-
cept for very specific demand functions (linear, power-
form).

k = 1
We now turn our attention to the casek = 1, where the

problem is to find a single optimal intermediary order.
In this case, there is a single variablev1 that we renamev
for ease of understanding. If we assume that the demand
functionλ(·) and the holding cost functionh(·) are once
derivative, we can compute the second derivative off (·):

d2 f
dv2

(v) = λ′(v)h(s, v) + 2λ(v)h(v) − h′(v)Λ(v, t)

As a consequence,f (·) is convex if and only if the
following condition is satisfied:

λ′(v)h(s, v) + 2λ(v)h(v) − h′(v)Λ(v, t) ≥ 0 (8)

Unfortunately, there exists numerous demand func-
tions that do not satisfy inequality (8), even when the
holding cost function is constant (see for example Fig-
ure 6). However, we now exhibit two cases satisfying
inequality (8). Both cases relax some assumptions made
in the existing literature.

Case1: h(·) and λ(·) once derivative, h(·) non-
increasing andλ(·) non-decreasing.
In this case−h′(·) andλ′(·) are positive and the
inequality (8) is trivially satisfied. These as-
sumptions relax the framework used in Resh
et al. (1976), Donaldson (1977) and Henery
(1979) to any increasing demand function.

Case2: h(·) once derivative, non-increasing and
λ(t) = αtβ, withα ≥ 0 andβ ≥ −2.
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s= 0
u

t = 5

λ(u)
Λ(u, t)
fs,t(u) = −uΛ(u, t)

Figure 6: A bad example for functionfs,t(·) with triangular demand,
s= 0, t = 5 andh = 1.

In this case −h′(·) is nonnegative and
h(s, v) ≥ (v − s)h(v). The second derivative of
f (·) then becomes

d2 f (v)
dv2

= αβvβ−1h(s, v) + 2αvβh(v) − h′(v)Λ(v, t)

≥ αh(v)
(

β(v− s)vβ−1
+ 2vβ

)

≥ αh(v)
(

(β + 2)vβ − βsvβ−1
)

Hence forβ ≥ 0 we have

d2 f (v)
dv2

≥ 2αh(v)vβ

and for−2 ≤ β < 0, we have

d2 f (v)
dv2

≥ αh(v)(β + 2)vβ

In both cases,d
2 f (v)
dv2 ≥ 0 and f (·) is convex.

Note that this setting extends the problem stud-
ied in Barbosa & Friedman (1978) to a time-
varying holding cost function.

As a consequence, BL1 provides solutions that are
both computationally tractable and provably close to the
optimal, while relaxing assumptions made in the exist-
ing literature. The following theorem summarizes the
performance guarantee and the complexity of the tech-
nique in practice.

Theorem 7. Assume thatλ(·) and h(·) are bounded,
once derivative and satisfy inequality(8) for all s <
v < t. Then for anyε > 0, the BL1 policy can be
implemented to provide a solution with a performance
guarantee of(3/2+ ε) usingO

(

Φ(logΦ)2
)

, whereΦ is
defined as in 3.3.

Proof. The proof is similar to the one of Theorem 2, ex-
cept that in this case for everyt candidate for the next
order time, the algorithm has to compute the optimal in-
termediary orderv. For s< t, one can use the convexity
of f (·) and apply the bisection method to compute the
optimal secondary orderv∗ in O (T/δ) for a chosen pre-
cision δ. Hence for an abitraryε > 0, one can define
Φ as in§3.3 and choose a precisionδ = T/Φ. The fi-
nal complexity of BL1 for a maximum error ofε is then
O

(

Φ
(

logΦ
)2
)

.

6. Conclusion

The EOQ formula for time-independent lot-size mod-
els has been extensively studied and is now considered
as a classical result in the literature. On the contrary, the
optimal policy for its time-varying extension is still an
open question and the existing research is limited to re-
stricted cases where demand has a specific pattern (i.e.
linear, power form, monotonic log-concave, etc.).

In this paper, we introduce a cost balancing technique
and apply it to continuous-review inventory models
when demands and cost parameters are time-varying.
We prove that the resulting algorithm has a worst-case
guarantee of two for the lot-size problem with time-
varying parameters. In addition, we show that the un-
derlying idea is rather generic and adapt it to many im-
portant extensions, such as perishable products, produc-
tion systems or models with backlog (among others).
For specific demand patterns, we also improve upon the
performance guarantee of two and propose a 1.5 ap-
proximation algorithm for increasing or power form de-
mand. Finally, we show that the complexity of our al-
gorithm depends mainly on the chosen precision for the
approximation ratio. The resulting running time makes
it an interesting practical tool for decision makers.

One natural direction for further research is to exper-
iment the cost balancing technique on numerical exam-
ples and compare its performances with existing opti-
mal policies or heuristics. Furthermore, we believe that
the concept is very generic and can also be applied to
multi-echelon systems under mild restrictions. In par-
ticular, a first step in this direction would be to study
how the algorithm can be extended to series systems.

Appendix A. Proof of Theorem 2

Assume the current order is placed at times ≥ 0 and
that H(s,T) ≥ K. The BL algorithm defines the next
order time ast = max{u ≤ T : H(s,u) ≤ K}. Numeri-
cally, using the bisection method with a precisionδ, the
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next order timet′ is found in [t−δ, t+δ]. We choose the
precisionδ of the bisection method to be:

δ =
K

λ̂ĥT

ε

1+ ε
=

T
Φ

In addition we require that two consecutive order times
are separated at least byδ, that ist′ ≥ s+ δ. Therefore
the BL policy orders at mostT/δ times on the planning
horizon. If the computational time to evaluateH(s, t) is
O(1) for anys≤ t, the final complexity of the BL policy
is thenO (

(T/δ) log(T/δ)
)

= O (

Φ logΦ
)

.
It remains to prove that applying the bisection method

with the precisionδ leads to the expected approximation
factor of 2+ ε. Recall that the next order timet′ found
by the bisection method belongs to[t − δ, t + δ], even
if we imposet′ ≥ s + δ. For conciseness we denote
by ∆H(s, r) the differenceH(s, r + δ) − H(s, r) for any
instantr ≥ s. According to Lemma 1 and using the fact
that H(s, t) = K, we can bound the cost ratio between
BL and any feasible policyP on (s, t′] as follows:

Case1. t′ ∈ [t − δ, t]:

Cbl(s, t′)
Cp(s, t′)

≤ H(s, t′) + K
H(s, t′)

≤ H(s, t − δ) + K
H(s, t − δ)

=
2H(s, t) − (H(s, t) − H(s, t − δ))
H(s, t) − (H(s, t) − H(s, t − δ))

=
2H(s, t) − ∆H(s, t − δ)
H(s, t) − ∆H(s, t − δ)

= 2+
∆H(s, t − δ)

K − ∆H(s, t − δ)

Case2. t′ ∈ ( t, t + δ] :

Cbl(s, t′)
Cp(s, t′)

≤ H(s, t + δ) + K
K

=
2K + (H(s, t + δ) − H(s, t))

K

= 2+
∆H(s, t)

K

We next bound the holding cost∆H(s, r) for any
instantss≤ r ≤ T − δ:

H(s, r + δ) − H(s, r) =
∫ r+δ

s
h(u) (Λ(r + δ) − Λ(u)) du

−
∫ r

s
h(u) (Λ(r) − Λ(u)) du

=

∫ r

s
h(u) (Λ(r + δ) − Λ(r)) du

+

∫ r+δ

r
h(u) (Λ(r + δ) − Λ(u)) du

≤ (Λ(r + δ) − Λ(r))
∫ r+δ

s
h(u)du

≤ (Λ(r + δ) − Λ(r))
∫ T

0
h(u)du

≤ λ̂δĥT

Let α =
λ̂ĥT
K
δ =

ε

1+ ε
. The previous inequality

shows that∆H(s, r) ≤ αK for any instantss, r with s ≤
r ≤ T − δ. Using this upper bound, we obtain in the two
previous cases:

Case1. Sincex 7→ x/(K− x) is clearly a nondecreasing
function ofx on [0,K) we have:

Cbl(s, t′)
Cp(s, t′)

≤ 2+
αK

K − αK
= 2+

α

1− α
= 2+ ε

Case2. We have directly, using thatx/(1 + x) ≤ x for
anyx > 0:

Cbl(s, t′)
Cp(s, t′)

≤ 2+
αK
K
= 2+ α

≤ 2+ ε

Therefore in both cases the performance ratio is
bounded by 2+ε. In particular, the previous inequalities
are true forP an optimal policy and the result follows.

Appendix B. Proof of Theorem 3

Consider a feasible policyP for the production prob-
lem and two consecutive order time instantss and t of
PB. Similarly to Lemma 1, we establish that the cost
Cp(s, t) incurred byP on time interval (s, t] is at least
K + Hmin(s, t).

As already noticed, the holding cost of any feasible
policy on (s,T] is at leastHmin(s, t). Thus the inequality
clearly holds ifP orders (i.e. starts a production) in the
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time interval (s, t]. Conversely assume thatP does not
order on (s, t]. Let u ∈ (s, t] be the end of the active
period of PB in the time interval. We establish that the
stock level in policyP is greater or equal to the stock
level in policy PB at any point in time of (s, t]. That is,
the balancing policy PB carries the minimum possible
inventory for a policy that does not order inside the time
interval (s, t]. First note that for anyz ∈ [u, t], we have
xP(z) ≥ xPB(z) as P satisfies demand in [u, t] without
stockouts. In addition, sincexP(s) ≥ xmin(s) = xPB(s),
xP(u) ≥ xPB(u) andPB continuously produces in [s,u],
we also havexP(z) ≥ xPB(z) for all z ∈ [s,u]. As a result,
the holding cost incurred by policyP on (s,T] is at least
H(s, t) = K + Hmin(s, t).

Thus for any policyP we haveCp(s, t) ≥ K +
Hmin(s, t) and a proof similar to the one of Theorem 1
leads to the same approximation guarantee of two.

Appendix C. Proof of Theorem 4

Consider a feasible policyP for the problem with
shortages and lets1 < · · · < sn be the sequence of orders
found by the BB policy. We prove that the total costCbb

incurred by BB on the time horizon is at most twiceCp,
the total cost incurred by policyP. We use again the
notationCp(s, t) to denote the total cost incurred byP
over (s, t], including backlogging costs.

We start by noticing that the BB policy places its first
order at times1, such thatB(0, s1) = K > 0: Hence
s1 > 0 andκbb0 = 0. For the last cycle, we distinguish
between two cases, depending on whethersn < T or
sn = T. If sn < T, the BB policy incurs a total cost
of H(sn,T) ≤ K on (sn,T]. As policy P is feasible,
either it orders on (sn,T] or it does not and then its in-
ventory level atsn is at leastΛ(sn,T). Therefore it in-
curs on (sn,T] a cost of at leastCp(sn,T) ≥ H(sn,T) =
Cbb(sn,T). If sn = T, the BB policy incurs a cost

Cbb(sn−1, sn) = K + min
u∈[sn−1,sn]

{H(sn−1,u) + B(u,T)}

≤ 2K

Note that since BB orders atT, the algorithm ensures
that H(sn−1,T) > K by construction. Therefore, ifP
orders in (sn−1,T] it incurs an order cost ofK, while
if it does not it incurs a holding cost greater thanK.
Consequently we haveCbb(sn−1,T) ≤ 2Cp(sn−1,T).

Now let si andsi+1 be two consecutive order times of
the BB policy, withsi+1 < T. The total cost incurred by

BB over (si , si+1] is

Cbb(si , si+1) = min
u∈[si ,si+1]

{H(si ,u) + B(u, si+1)} + K

= 2K

On the other hand, eitherP orders in (si , si+1] and
incurs a cost of at leastK or it does not and then
there existsuP ∈ [s, t] such thatxp(z) ≥ 0 for all
z ∈ [si ,uP] and xp(z) ≤ 0 for all z ∈ (uP, si+1]. Hence
P incurs a holding and backlogging cost of at least
minu∈[si ,si+1] {H(si ,u) + B(u, si+1)} = K. Therefore we
haveCbb(si , si+1) = 2K ≤ 2Cp(si , si+1).

The proof follows from Proposition 1.

Appendix D. Proof of Theorem 5

In this proof, we modify the notation introduced
in §2 as follows: Fors < t and P a policy for the
problem, letCp(s, t) be the sum of the fixed order
cost incurred byP in (s, t] plus the linear order cost
and holding cost incurred by the units used to serve
demands in (s, t]. For instance, assume thatP orders at
time v ∈ (s, t] to satisfy demands in [u, t] and at time
r < s to serve demands in (s, v). Then we have:

Cp(s, t) = c(r)Λ(s, v) + c(v)Λ(v, t) +
∫ s

r
h(x)Λ(s, v)dx

+

∫ v

s
h(x)Λ(x, v)dx+

∫ t

v
h(x)Λ(x, t)dx

Note that this is an extension of the original definition
of Cp(·, ·) and thus all the previous proofs remain valid
with this new definition.

We start by proving the result for the forward algo-
rithm. Let P be a feasible policy for the problem with
nonincreasing order costs. We again haveκbl0 = K(0) =
κp0 for any feasible policyP. Now let i < n and focus on
the ordering cycle (si , si+1]. We bound the cost incurred
by policy P over (si , si+1] as follows:

Case1. P places an order at timeu ∈ (si , si+1]: It incurs
an order costK(u) ≥ K(si+1).

Case2. P does not order in (si , si+1]: It incurs a holding
cost of at leastH(si , si+1). Moreover,P orders
the units used to serve the demands in (si , si+1]
at a previous point in times′ < si , incurring
an additional linear order cost and holding cost
of

(

c(s′) +
∫ s

s′
h(u)du

)

Λ(si , si+1). According to
equation 6, we thus have:
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Cp(si , si+1) =

(

c(s′) +
∫ s

s′
h(u)du

)

Λ(si , si+1)

+ H(si , si+1)

≥ c(si)Λ(si , si+1) + H(si , si+1)

≥ K(si+1)

Thus for anyi < n and ordering cycle (si , si+1], we have:

Cbl(si , si+1) = 2K(si+1) ≤ 2Cp(si , si+1)

Finally, one can use similar arguments to prove that we
have

Cbl(sn,T) = c(sn)Λ(sn,T) + H(sn,T) ≤ Cp

and the cost incurred by the balancing policy over the
entire planning horizon can be bounded as follows:

Cbl(0,T) = Cbl(0, t0) +
n−1∑

i=1

Cbl(si , si+1) +Cbl(sn,T)

= Cbl(0, t0) +
n−1∑

i=1

2K(si+1) +Cbl(sn,T)

≤ Cp(0, t0) +
n−1∑

i=1

2Cp(si , si+1) +Cp(sn,T)

≤ 2Cp(0,T)

For the backward algorithm, the cost accounting for
a cycle (s, t] of the balancing policy is slightly modified
since we now account for the order cost in periods and
the holding cost over [s, t). As a consequence, a cycle is
denoted [s, t) in the remaining of the proof.

Let P be a feasible policy for the problem with
nondecreasing order costs. First, consider the case
where the first order is place earlier thant0: sn < t0. By
definition we have:

Cbl(t0, sn−1) = K(sn) + c(sn)Λ(t0, sn−1)

+ H(sn, sn−1) − H(sn, t0)

≤ 2K(sn)

On the other hand, eitherP orders at some time in-
stantu ∈ [sn, sn−1) and incurs a fixed order costK(u) ≥
K(sn), or it does not and the units used to serve demands
in (t0, sn−1] are ordered in some previous periods′ < sn.

Therefore we have:

Cp(t0, sn−1) =

(

c(s′) +
∫ sn

s′
h(u)du

)

Λ(t0, sn−1)

+ H(sn, sn−1) − H(sn, t0)

≤ c(sn)Λ(t0, sn−1)

+ H(sn, sn−1) − H(sn, t0)

≤ K(sn)

For i ≤ n, we bound the cost incurred by policyP over
the cycle [si , si−1) using similar arguments as the for-
ward case: EitherP places an order in [si , si−1) and in-
curs an order cost of at leastK(si) or it does not and
thus incurs a linear order cost and holding cost of at
leastK(si) to serve demands in [si , si−1). Therefore we
have:

Cbl(0,T) = Cbl(0, sn) +
n∑

i=1

Cbl(si , si−1)

≤ Cp(0, sn) +
n∑

i=1

2K(si)

≤ Cp(0, sn) + 2
n∑

i=1

Cp(si , si−1)

≤ 2Cp(0,T)

and the proof follows.
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