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Abstract We consider a capacitated make-to-stock production system that offers a
product to a market of price-sensitive users. The production process is partially
controlled. On the one hand, the decision-maker controls the production of a single
facility. On the other hand, an uncontrolled flow of items arrives at the stock. Such
a situation occurs in several contexts; for example, when there is a return flow of
products or a fixed delivery contract. We model the system as a make-to-stock
queue with lost sales. We address the static pricing problem and the dynamic
pricing problem with the objective of maximizing the average profit over an
infinite horizon. For both problems, we characterize the optimal production and
pricing policy. We also obtain analytical results for the static pricing problem. From
numerical results, we show that dynamic pricing might be much more beneficial
when the production is not totally controlled.

Keywords Make-to-stock queue . Static pricing . Dynamic pricing . Markov
decision process

JEL Classification C00

1 Introduction

Recent years have seen an increased adoption of dynamic pricing (DP) strategies in
retail and manufacturing companies. However, in industries where the sellers have
the capability to store inventory and to replenish it, the benefits of DP with respect
to static pricing (SP) are not always obvious. When pricing and replenishment
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decisions are jointly optimized, Chen et al. (2004) and Gayon et al. (2004) exhibit
rather modest benefits of DP strategies with respect to SP strategies (when the
demand is stationary). If the decision-maker loses, in part, control over the
replenishment decisions, we might expect higher benefits from DP. In this paper,
our goal is to investigate the benefits of DP when the replenishment process is not
totally controlled. To our knowledge, there is currently no academic work studying
this issue.

The assumption of a partially uncontrolled replenishment process is relevant in
several contexts. In a reverse logistics setting, there exists a return flow of products
that is not controlled. The literature makes a distinction between products which
are in a good state and those which are not. The former can be put again in
inventory without prior repair operations (after possible testing and repackaging).
For example, mail-order companies and electronic retailers allow their customers to
return products within a certain amount of days. These products might be sold in
another market, remanufactured, recycled, or disposed of. For a complete
discussion on inventory control with return flows, we refer the reader to
Fleischmann et al. (1997). Several authors have proposed inventory control models
with return flows, but none of the models we have encountered consider the price
as a decision. Another context where replenishment is not totally controlled is
when a firm has a fixed delivery contract. For example, Cheung and Yuan (2003)
studied an infinite horizon inventory model of a buyer with a periodic order
commitment. The commitment required the buyer to purchase, at least, a certain
fixed amount on a periodic basis. For a survey on the different types of order
commitments, refer to Anupindi and Bassok (1999). Finally, in the context of very
high production set-up costs, it might be profitable not to stop the production for a
long time. This is the case in the glass industry where the production is not stopped
for several years. In the short term, this can be seen as an uncontrolled production.

The literature dealing with the coordination of pricing and inventory decisions
can be broadly classified into two categories: systems with nonrenewable and
perishable capacities (known as yield management) and systems where the sellers
have the capability to store inventory and to replenish it. Writings on yield
management have been appearing for more than 30 years and have been notably
applied to airline and hotel industries. For an overview of this class of problems,
see the papers of Weatherford and Bodily (1992), McGill and Van Ryzin (1999),
and Bitran and Caldentey (2003). Recent years have seen many retail and
manufacturing firms exploring new pricing strategies, and there has been, at the
same time, a growing amount of literature on the coordination of pricing and
inventory decisions. For a complete synthesis of the domain, we refer the reader to
three recent surveys: those by Yano and Gilbert (2002), Elmaghraby and
Keskinocak (2003), and Chan et al. (2004).

In this paper, we consider the problem of jointly coordinating price and
replenishment decisions in a make-to-stock queue with partially controlled
production. In a make-to-stock queue, the replenishment lead-times are load-
dependent and are affected by the number of outstanding orders due to limitations
in production capacity. The framework of our model is inspired by Li (1988) and
Gayon et al. (2004). Li considered anM=M=1 make-to-stock queue with lost sales
where the demand rate is a continuous function of the price. In addition to the
production control, the manager sets the price dynamically over time to maximize
average profit over an infinite horizon. Because of the memory-less property of the
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system, the price depends only on the stock level. Li proved the optimality of a
base-stock policy. Moreover, he showed that the optimal sequence of prices is a
nonincreasing function of the inventory level. Gayon et al. considered an extension
of this model where the demand fluctuates over time. The rate of the Poisson
process depends on the price, but also on the economical environment, which
evolves according to a continuous-time Markov chain. The environment state is
known by the decision-maker and the optimal policy consists of base-stock levels,
one for each environment state. For a given environment state, the sequence of
optimal prices is nonincreasing. Gayon et al. also carried out a numerical study to
assess the potential benefits of DP in different situations. They showed that the
potential benefits of DP over SP are rather modest when the demand rate of the
Poisson process does not depend on the environment state. DP appears to be more
effective when the demand rate depends on the environment state.

The rather modest benefits of DP observed by Gayon et al. are in part due to the
totally controlled production process. When the production is not totally
controlled, we might expect higher benefits. We take the results of Li and
Gayon et al. as a starting point in investigating the effect of partially controlled
replenishment on the benefit of DP over SP. Our model differs from the one of Li in
the following way: In addition to the controlled replenishment process, there is an
uncontrolled flow of items arriving in the inventory, modeled by a Poisson process.
In the DP case, we extend the results of Li by showing that the optimal policy is of
base-stock type and that the optimal prices are nonincreasing in the stock level. In
the SP case, we extend the results of Gayon et al. by showing that the optimal
policy is also of base-stock type. The numerical computation of the optimal SP
strategy appears to be more difficult than the one of the optimal DP strategy. The
SP strategy computation indeed requires many value iteration programs to run (one
for each possible price) instead of one for the DP problem. To address this issue, we
analytically compute, in a SP setting, the average profit for a given price and a
given base-stock level. The problem then turns into a two-dimensional
optimization. Furthermore, when the production is fully uncontrolled, we obtain
explicit expressions for the optimal price and the optimal profit when the demand
function is either linear or exponential. Based on previous results, we carry out a
numerical study on the benefits of DP with respect to SP. Our main insight is that
DP is potentially much more beneficial when the replenishment process is not
totally controlled.

The rest of the paper is organized as follows: In Section 2, we present the
formulation of the models and the problems. In Section 3, we characterize the
structure of the optimal policy for the DP problem. Section 4 identifies, for the SP
problem, the optimal policy and establishes a certain number of analytical results.
Section 5 provides numerical results, which we use to derive insights. In Section 6,
we offer a summary of main contributions.

2 Models formulation

In this section, we present the DP problem and the SP problem. We formulate the
DP problem as a continuous-time review model where production and pricing
decisions can be made at any point of time. The SP formulation is identical except
that a unique price has to be chosen for the whole time horizon.
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2.1 Dynamic pricing problem

Consider a supplier who partially controls his production. On the one hand, he has
a single facility and can decide to produce or not. The processing time of this
facility is exponentially distributed with rate μ1 and the completed items are placed
in a finished goods inventory. The unit variable production cost is c1. On the other
hand, there is an uncontrolled production process and the inventory receives items
according to a Poisson process with rate μ2, with unit variable production cost c2.
The stock level x belongs to N, the set of nonnegative integers. The induced
inventory holding cost is hðxÞ, and is convex in x.

Demand for items in stock arrive according to a Poisson process with rate λðpÞ
depending on the posted price p. A demand that cannot be met from the stock is
definitely lost. Partly following Gallego and van Ryzin (1994), we impose several
assumptions on the demand function. First, we assume that λðpÞ is decreasing in p.
Therefore, there is a one-to-one correspondence between prices and demand rates
so that λðpÞ has an inverse denoted pðλÞ. One can then alternatively view the rate λ
as the decision variable, which is sometimes more convenient to work with from an
analytical perspective. Second, we assume that the set of allowable demand rates is
a bounded interval of the form ½0;Λ�, where Λ is the maximum demand rate. Third,
we assume the revenue rate rðλÞ ¼ λpðλÞ is a continuous and strictly concave
function. Concavity of rðλÞ stems from the standard economic assumption that the
marginal revenue is decreasing in output. Finally, to ensure the stability of the stock
level, we assume that the uncontrolled production rate is smaller than the maximum
possible value of the demand rate, that is, μ2 < Λ.

We summarize now the previous notations:

x Stock level
p Posted price
μ1 Controlled production rate
μ2 Uncontrolled production rate
c1 Unit controlled production cost
c2 Unit uncontrolled production cost
hðxÞ Unit holding cost when the stock level is x
λðpÞ Demand rate when the price is p
Λ Maximum demand rate
pðλÞ Inverse of λðpÞ
rðλÞ Revenue rate

In particular, we will consider two classes of demand rate functions frequently
used in the pricing literature and which satisfy the above conditions. Let a and b
be two positive real numbers with μ2 < a. We then define the linear demand
function, and its associated revenue rate, by

λlinðpÞ ¼ a � bp ; p 2 ½0; 1=b�;
r linðλÞ ¼ λ

b
ða � λÞ; λ 2 ½0; a�

J. P. Gayon and Y. Dallery



The second demand function we consider is the exponential

λexpðpÞ ¼ ae�bp ; p � 0;

rexpðλÞ ¼ �λ

b
ln

λ

a

� �
; λ 2 ½0; a�

The problem is to decide, at any time, whether to produce or not and to choose a
price p, or, equivalently, a demand rate λ, to maximize the average profit over an
infinite horizon. We can formulate this problem as a Markov decision process. We
define the state x as the inventory level. We let vdðxÞ be the relative value function
of being in state x and gd be the optimal average profit. Let β ¼ Λþ μ1 þ μ2.
Using uniformization (Serfozo 1979), we can transform the continuous-time
Markov decision process into an equivalent discrete time Markov decision process,
where the following optimality equations are:

vdðxÞ þ gd
β

¼ 1

β
�hðxÞ þ μ1T0vdðxÞ þ T1vdðxÞ þ μ2½vdðx þ 1Þ þ c2�f g

with

T0vdðxÞ ¼ max½vdðxÞ; vdðx þ 1Þ þ c1�;

T1vdðxÞ ¼
maxλfrðλÞ þ λvdðx � 1Þ þ ðΛ� λÞvdðxÞg if x > 0

ΛvdðxÞ if x ¼ 0

(

The operator T0 corresponds to the production decision, while T1 corresponds to
the arrival rate decision, or, equivalently, the price decision. Notice that the
maximum in T1 is well defined due to the assumptions on the revenue rate, rðλÞ,
which is strictly concave and defined on a bounded interval. The quantity μ2
ðvdðx þ 1Þ þ c2Þ corresponds to the uncontrolled arrival of an item in the
inventory. Finally, we define the operator T, such that

vdðxÞ þ gd
β

¼ TvdðxÞ

and the operator Δ such that ΔvðxÞ ¼ vðx þ 1Þ � vðxÞ.

2.2 Static pricing problem

The setting of the SP problem is similar, except that the price cannot be changed
over time. Let us consider first the problem with a given price p (or, equivalently, a
given demand rate λ). The problem is then to find the optimal production policy
maximizing the average profit over an infinite horizon. We can formulate again this
problem as a Markov decision process. When the demand rate is λ, we let vsðx;λÞ
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be the relative value function of being in state x and let gsðλÞ denote the optimal
average profit. Then, we can write the optimality equations:

vsðx;λÞ þ gsðλÞ
β

¼ 1

β
�hðxÞþμ1T0vdðx;λÞþ ~T1vdðx;λÞ þ μ2½vsðxþ1;λÞþc2�

� �
where ~T0 ¼ T0, and

~T1vsðxÞ ¼ rðλÞ þ λvsðx � 1Þ þ ðΛ� λÞvsðxÞ ifx > 0
ΛvsðxÞ ifx ¼ 0

�

The second problem that the decision-maker faces is that of choosing the rate λ
and is formulated as

max
λ

gsðλÞ

3 Characterization of the optimal policy for the dynamic pricing problem

To characterize the optimal policy, we first show that the relative value function
vdðxÞ is concave in x . To that end, let us prove that the operator T preserves
concavity. Assume that v is concave or, equivalently, thatΔv is nonincreasing in x.
Concavity is preserved under operator T0 (Koole 1998), and T0v is concave.
Concavity is also preserved under operator T1, and T1v is concave. This last result is
mentioned by Koole (1998), and a detailed proof is provided by Gayon et al. (2004).
By assumption,�h is also concave. Finally, the operatorTv, as a nonnegative linear
combination of concave functions, is also concave. By the principle of value
iteration, we finally obtain that vd is also concave, and we obtain the following
lemma:

Lemma 1 The relative value function vdðxÞ is concave in x .
As a result of Lemma 1, the difference ΔvdðxÞ ¼ vdðx þ 1Þ � vdðxÞ is

nonincreasing in x , and there exists a level zd such that:

vdðxÞ < vdðx þ 1Þ þ c1 if x < zd

vdðxÞ � vdðx þ 1Þ þ c1 if x � zd

(

Relating these two equations with the production operator T0, we conclude that it is
optimal to produce when x < zd and to idle production otherwise, and we obtain

Property 1 The optimal policy is of base-stock type: there exists a base-stock level
zd , such that it is optimal to produce if the stock level is smaller than zd and to idle
production otherwise.

We also obtain results about the optimal prices, which are summarized in
Property 2.
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Property 2 The sequence of optimal prices is unique and is nonincreasing in the
stock level.

Proof Let px be the optimal price when the stock level is x . For x > 0, px is a
maximizer of the following function:

fxðλÞ ¼ rðλÞ � λΔvdðx � 1Þ
fxðλÞ is strictly concave in λ because rðλÞ is also strictly concave in λ.
Consequently, there exists a unique maximizer, λx , on the interval ½0;Λ�, which
corresponds to a unique optimal price px because there is a one-to-one
correspondence between a demand rate and a price.
We prove now, by contradiction, that the sequence of prices is nonincreasing in x.

Let x < y and denote by λx and λy the optimal rates in state x and y , respectively.
Assume now that λx > λy . We can rewrite fyðλyÞ in the following way:

fyðλyÞ ¼ fxðλyÞ þ λy ½Δvdðx � 1Þ �Δvdðy � 1Þ� þ ΛðvðyÞ � vðxÞÞ
We have fxðλyÞ < fxðλxÞ according to the uniqueness of the maximizer λy . Fur-
thermore, from Lemma 1,vd is concave, and thus, Δvdðx � 1Þ �Δvdðy � 1Þ � 0.
As a result, we have

fyðλyÞ < fxðλxÞ þ λx ½Δvdðx � 1Þ �Δvdðy � 1Þ� þ Λ½vdðyÞ � vdðxÞ� ¼ fyðλxÞ
Finally, we obtain that fyðλyÞ < fyðλxÞ, which is contradictory because λy is
supposed to be the maximizer of fy. Therefore, the assumption λx > λy is false and
we conclude that λx � λy, which is equivalent to px � py .

4 Characterization of the optimal policy for the static pricing problem

For the SP problem, proving the concavity of vsðx;λÞ in x is similar to the DP
problem, and it implies Property 3.

Property 3 The optimal policy of the SP problem is of base-stock type.
The optimal policy for the SP problem can then be specified by a base-stock

level, zs, and a static price, ps. Notice that we do not ensure the uniqueness of zs and
ps . The computation of zs and ps might be computationally difficult. It actually
requires, for each possible price, a dynamic program to be run. In the following
subsections, we seek to compute the optimal paramaters zs and ps . Explicit
expressions for the average profit for a given base-stock z and price p are obtained
by analyzing a continuous-time Markov chain. Furthermore, when the system is
fully uncontrolled, we obtain analytical expressions for the optimal price and profit
when the demand function is either linear or exponential.
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4.1 Partially controlled production

Consider a policy with a base-stock level z and a price p , or, equivalently, a
demand rate λ. Let gsðz; pÞ be the associated average profit. Then, the stock level
evolves according to a continuous-time Markov chain with state space IN and
transition rates qij , from state i to state j, given by

q;iþ1 ¼ μ1 þ μ2 if 0 � i � z � 1

qi;iþ1 ¼ μ2 if i � z

q;i�1 ¼ λ if i � 1

qij ¼ 0 otherwise

8>>><
>>>:

We introduce the additional notations: ρ1 ¼ λ=ðμ1 þ μ2Þ and ρ2 ¼ μ2=λ. By
assumption, we have ρ2 < 1.

If πi denotes the stationary probability to be in state i , then we have the
following relations:

πi ¼ ρ�i
1 π0 if 0 � i � z

πi ¼ ρ�z
1 ρi�z

2 π0 if i � z

(

Using the normalization condition,
P1

i¼0 πi ¼ 1, we obtain

π0 ¼ ρz1
1� ρzþ1

1

1� ρ1
þ ρ2
1� ρ2

� ��1

The average profit, gsðz; pÞ, can be expressed as the difference between the average
revenue and the average holding cost:

gsðz; pÞ ¼ λpð1� π0Þ�h
P1
i¼0

iπi

We finally obtain an analytical expression for the average profit:

gsðz; pÞ ¼ λpð1� π0Þ � hπ0
ρzþ1
1 � ρ1 � ρ1z þ z

1� ρ21
þ ρ2
1� ρ2

� �

This result will be used in the numerical section to compute the optimal parameters
zs and ps maximizing the two-dimensional function gsðz; pÞ.

4.2 Fully uncontrolled production

For a fully uncontrolled system (μ1 ¼ 0), the stationary probability is the one of a
M=M=1 queue with an arrival rate μ2 and a service rate λ. We have, therefore, in
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this case: πi ¼ ρi2ð1� ρ2Þ. There is no base-stock level (as μ1 ¼ 0Þ, and we can
simplify the notation gsðz; pÞ to gsðpÞ. We obtain that

gsðpÞ ¼ μ2 p� h

λ� μ2

� �

By analyzing the derivative of gsðpÞ , we compute explicitly the optimal prices plins
and pexps for a linear and exponential demand function, respectively,

plins ¼ max 0;
a � μ2 �

ffiffiffiffiffiffi
ah

p

b

( )

pexps 0;
1

b
ln

aðh þ 2μ2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ 4μ2h

q
Þ

2μ2
2

2
4

3
5

8<
:

9=
;

In the linear case, the optimal average profit, glins , turns out to be very simple

glins ¼

�μ2h

a � μ2
if plins ¼ 0

μ2

a

�
a � μ2 � ða þ bÞ

ffiffiffi
h

a

r �
otherwise

8>>><
>>>:

5 Numerical study

In this section, we want to examine the benefits of implementing a DP policy when
the production is not totally controlled.

5.1 Computational procedure

In all the numerical experiments, we consider a linear demand function of the form
λðpÞ ¼ a � bp. Moreover, we take a ¼ b ¼ 1 without losing any generality, be-
cause it is similar to setting a monetary unit and a time unit. We assume for all
problem instances that the holding costs are linear, of the form hðxÞ ¼ hx, and that
there is no production cost (c1 ¼ c2 ¼ 0).

For a given problem, let gd be the optimal average profit using a DP policy and
gs the optimal average profit using a SP policy. Define PG, the relative profit gain
for using a DP policy (instead of an SP policy), by

PG ¼ gd � gs
gs

We compute gd by solving the dynamic programs corresponding to each
problem instance using the value iteration method. The value iteration algorithm is
terminated only when a five-digit accuracy is achieved. The size of the state space
is increased until the average profit is no longer sensitive to the truncation level.
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The procedure to evaluate gs and the associated optimal policy is based on
the analytical results of Section 4. When the production is totally uncontrolled
(μ1 ¼ 0), we compute directly the optimal price and profit because we have an
exact formula. When the production is partially uncontrolled (μ1 > 0), we
discretize the interval of prices ½0; 1� with increments of 0:001. For a given price p,
we search the optimal base-stock ssðpÞ and optimal average profit gsðpÞ. We repeat
this operation for all prices in the discretized set, and the maximum average profit
obtained is set as gs and the corresponding optimal price as ps .

5.2 The benefit of dynamic pricing

Gayon et al. (2004) investigate the benefit of DP with respect to SP in the case of a
totally controlled production (μ2 ¼ 0). Their main observation is that when the
static price is chosen effectively, the potential impact of DP is limited. In particular,
they show that the maximum profit gain is 3:81% for a linear demand function,
whatever the problem parameters are. We will study now the impact of an
uncontrolled production on the benefit of DP.

Let γ ¼ μ2=ðμ1 þ μ2Þ be the proportion of production capacity that is
uncontrolled. Figure 1 represents the optimal SP and DP average profit vs γ when
the maximum production rate ðμ1 þ μ2Þ is fixed. As expected, the DP profit is
always greater than the SP profit. We also observe that both curves decrease in γ .
This is rather intuitive because, when γ increases, the decision-maker keeps the
same production capacity but loses control over the production process. Moreover,
the absolute profit gain of DP policy vs SP policy, ðgd � gsÞ, increases in γ . This
trend is confirmed on Fig. 2, which represents the relative profit gain, PG, vs γ for
different values of the holding cost h . The relative profit also appears to be
increasing in γ. For example, when h ¼ 0:01, the profit gain is 15% when γ ¼ 1
instead of 1:8% when γ ¼ 0. The main insight provided by Figs. 1 and 2 is that
when the production is less and less controlled, a flexibility on prices is a more and
more efficient tool.

Let us now study the influence of γ on the optimal dynamic prices and static
prices. Figure 3 presents the optimal dynamic prices pðxÞ vs the stock level x for
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Fig. 1 The effect of � on the optimal static and dynamic profits (�1 þ �2 ¼ 0:5, h ¼ 0:04)
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different values of γ . As proven in Section 3, we observe that the optimal dynamic
prices are nonincreasing in the stock level. For each stock level x , we also notice
that the optimal dynamic price pðxÞ decreases in γ . When γ is increasing, the
production is less and less controlled, and, to limit excess inventory, it is better to
diminish the prices to increase the demand rate. We also notice that the influence of
γ, on the prices, increases with the stock level. When the stock level increases, the
incentive to decrease the price to get rid of the inventory surplus is also increasing.
Finally, when the inventory level is high enough, the optimal dynamic price is 0 to
limit excess inventory as much as possible. Figure 4 presents the optimal static
prices vs γ for different values of the maximum production rate ðμ1 þ μ2Þ. As in
the DP case, the optimal static price is decreasing in γ. The explanation is the same:
when γ is increasing, it is better to decrease the price to raise the demand and thus
to limit the inventory holding costs. We also observe that the optimal static price is
decreasing in the maximum production rate ðμ1 þ μ2Þ. When the production
capacity is decreasing, it becomes more and more difficult to satisfy the demand
and it is better to raise the price to limit stockouts and to increase the profit at
the same time.

0

20

40

60

80

0 0.2 0.4 0.6 0.8 1

γ

P
ro

fi
t 

g
ai

n
 (%

)

0.04

0.03

0.02

0.01

h

Fig. 2 The effect of � on the relative profit gain (�1 þ �2 ¼ 0:5)

0

0.2

0.4

0.6

0.8

0 5 10 15 20 25

Stock level (x)

O
p

ti
m

al
 d

yn
am

ic
 p

ri
ce

s

0

0.5

1

γ

Fig. 3 Optimal dynamic prices vs stock level (�1 þ �2 ¼ 0:5, h ¼ 0:04)

Dynamic vs static pricing in a make-to-stock queue



6 Conclusion

In this paper, we have analyzed a SP problem and a DP problem in a make-to-stock
queue with partially uncontrolled production. We have characterized the optimal
policy for both problems. The optimal production policy is of base-stock type in
both cases. In the DP case, the optimal pricing policy consists of a list-price with
one price per stock level, the price being nonincreasing in the stock level. In the SP
problem, we have obtained analytical results on the average profit. Furthermore,
when the production is totally uncontrolled, we obtain analytical expressions of the
optimal prices and profits for two classes of demand function (linear and
exponential). Based on these results, we have carried out a numerical study on the
potential benefits of DP with respect to SP when the demand function is linear. As
observed by Chan et al. (2004) and Gayon et al. (2004), when the production is
totally controlled, multiple price changes result in limited profit improvement over
a single price. However, when some of the production is not controlled, we have
shown that the potential benefits of DP are much more important. Throughout the
paper, we have assumed that the uncontrolled flow of items was stochastic. This
assumption was not realistic to model an order commitment, and it would be of
interest to study the deterministic case. However, we believe that the insights we
obtained should remain unchanged.
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