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Abstract

We study a newsvendor problem with greenhouse gas (GHG) emissions at the dis-
posal stage regulated by a cap-and-trade policy. We first consider a synchronous version
of the problem where the replenishment period and the emission assessment period are
the same. For this problem, we propose simple algorithms to derive the optimal quantity
and cost for both continuous and discrete demand distributions. We show that ignoring
the carbon tax may lead to large overcost, especially when the GHG quota is small. For
a normally distributed demand, we also show that the demand standard deviation has
a non-linear and non-monotonic effect on the order quantity. We then investigate an
asynchronous version of the problem where replenishment decisions occur at a higher
frequency than the quota allocation. We formulate this lot sizing problem as a Markov
decision process and solve it with a dynamic programming algorithm whose complexity
is assessed. Through a numerical experimentation and theoretical results, we demon-
strate how and when the flexibility of the optimal dynamic replenishment decisions
allows to reduce costs. When approaching the end of the time horizon, the uncertainty
reduction allows the decision maker to adopt a riskier policy and order larger quantities.

Keywords : Newsvendor, GHG emissions, Cap-and-trade.

1 Introduction

1.1 Background and motivation

With growing concerns about the burden of human activity on local and global ecosystems,
industry leaders and researchers are increasingly looking for ways to reduce said ecological
footprint [GSIA, 2017, Chen et al., 2022]. Almost all fields of human activity are concerned,
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from agriculture to manufacturing, from tourism to transportation. Numerous new operation
research models are developed to meet this challenge.

In an effort to face what appears to be the most important challenge currently facing
humanity, regulations have been put in place to reduce emissions of GHG in general, and of
carbon dioxide (CO2) in particular. The so called cap-and-trade mechanism allocates large
organizations, either in the private (e.g. industrial) or public (e.g. countries or municipalities)
sectors, a certain allowance (cap, or quota) to emit GHG [Schmalensee and Stavins, 2017].
Above this limit, a penalty is enforced. A player that successfully reduces its emissions and
doesn’t meet its quota can sell the surplus allowance to another one that wishes in doing so,
not to pay said penalty. GHG emissions are measured usually on a yearly basis in units of
equivalent tons of emitted CO2 following a predefined universal protocol depending on the
sector at hand.

In 2016, it was calculated that the management of solid waste produced approximately
1.6 billion tonnes of carbon dioxide–equivalent greenhouse gas emissions, which accounts for
roughly 5% of the world’s total emissions. Without improvement in this area, it is predicted
that solid waste-related emissions will surge to 2.6 billion tonnes of CO2-equivalent by the
year 2050 [Kaza et al., 2018]. For some sectors of activity, GHG emissions are mostly emitted
during the disposal stage. This is consistent, for example, with industries that mostly acquire
and sell perishable agricultural products or food products. Landfilling organic or mixed waste
tend to emit considerable amounts of CO2, but also of methane, which is 25 times more
potent in terms of greenhouse effect [Jha et al., 2008, Nevrlỳ et al., 2019, Nordahl et al.,
2020, Sánchez et al., 2015]). The disposal stage can also represent the main vector for GHG
emissions when industries make extensive use of renewable energy at the production stage
[Jin et al., 2018].

1.2 Research questions

To include the GHG cap-and-trade constraint in the logistics of enterprises, various well
known operational models have been updated, among which we find the newsvendor prob-
lem (NVP). The present work considers a NVP under a cap-and-trade regulation on GHG
emissions, for the case in which emissions occur at the disposal stage. We first study a prob-
lem, denoted synchronous D-NVP (D for disposal), which describes the case in which the
demand realization period and the GHG emission assessment period are the same. In prac-
tice, the disposal process and corresponding quota, dictated either by a regulating authority
(e.g. GHG emmissions) or by a disposal contractor (e.g. landfill) is typically conducted on
a different time basis than the replenishment decisions. This is specially true for perishable
goods, which are purchased on a much shorter periodical basis (e.g. daily or weekly) than the
typical GHG emissions accounting (yearly). We model this reality by introducing a second
problem, denoted asynchronous D-NVP, in which replenishment decisions are made more
frequently than the emission assessment. At each period, replenishment takes place following
a regular NVP scheme. Products are perishable and thus unsold items are disposed of. But
it is only at the end of the multi-period horizon that the GHG emissions are accounted for.
Only if this quantity exceeds the quota does the company pay a tax per item disposed of in
excess of said quota, or receives a reward per unit of unused quota (cap-and-trade).

The research questions we address are as follows. We explore the structure of the optimal
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policies for both synchronous D-NVP and asynchronous D-NVP. We also study the sensitivity
of the optimal policy and cost to key parameters of the problem. Finally, we study the effect
of the replenishment frequency (versus emission assessment frequency) on the efficiency of
the supply chain.

1.3 Main contributions

Disposal in general and landfilling in particular are major contributors to GHG emissions
[Lou and Nair, 2009, Kumar and Sharma, 2014]. However, to the best of our knowledge,
this has not yet been considered in the inventory management literature in the context of a
cap-and-trade emission regulation. The main contribution of the present work is to consider
a NVP with GHG emissions at the disposal stage under a cap-and-trade emission regulation.
The other emission regulation mechanisms (strict cap, linear carbon tax and cap-and-offset)
can be seen as special cases of the cap-and-trade scheme, as pointed out by Chen et al. [2013].

We first consider a synchronous problem in which the demand realization period and the
GHG emission assessment period are the same. This problem is closely related to Song and
Leng [2012], but while they consider emissions associated with ordering, our model focuses
on emission generated at the disposal stage. It is also related to Qu et al. [2021] who consider
emissions at the disposal stage with a linear carbon tax, (see Section 2.3). We consider a
more general cap-and-trade mechanism which is far more complex to analyze and can not be
reduced to a standard NVP. For the synchronous problem, we present a simple algorithm to
compute the optimal order quantity for continuous and discrete demand distributions. We
obtain additional results for specific demand distributions like the normal distribution. We
also derive managerial insights, including the cost of ignoring the carbon regulation or the
effect of demand variability on operational costs. We show that ignoring the carbon tax may
lead to large overcost, especially when the GHG quota is small. We also demonstrate that
the demand variability has a more complex effect in the D-NVP than in the standard NVP.

Secondly, we address the more general asynchronous problem in which replenishment
decisions are made more frequently than the emission assessment. While closely related to
the problems presented in Gong and Zhou [2013] and Zhang et al. [2016], the asynchronous
problem presented in this work differs from theirs in two aspects, namely, that we assume
that GHG emissions are generated by disposal (versus production) and that inventory is not
transferable from one period to another. We formulate the asynchronous problem as a Markov
decision process where the system state is, at each period, the unused emission quota. We use
a dynamic programming algorithm (whose complexity is assessed) to compute the optimal
policy and the optimal cost. We establish that the optimal cost is decreasing with unused
quota and time. Finally, we demonstrate the superiority of a policy that takes advantage
of the flexibility offered by a multi-period dynamic policy over simpler rules. Incidentally,
allowing the company to adjust more closely its activity to the planned cap also improves
the predictability of overall emissions to the regulator.

In the next section we provide an overview of the literature in the relevant fields. In
Section 3, we study the synchronous D-NVP. Then we consider the asynchronous D-NVP in
Section 4.
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2 Literature review
In the present work, the gap we intend to address lies in the very special structure found in
cap-and-trade regulation for GHG emissions, when applied to the disposal stage of NVPs.
Following this, we review the literature related to inventory models in which a carbon tax is
levied and/or a limit on emissions is imposed.

For a review on the broader field of sustainable operations management, the reader is
addressed to Hong et al. [2022]. Their review is comprehensive on a wide range of topics
including supplier selection, green design, production and logistics including among other
disposal and emissions management. For more specific overviews of the literature on low-
carbon supply chain management, including on the carbon legislation, social aspects of the
problem, and modeling methodologies, the reader is addressed to Chelly et al. [2019] and
Zhou et al. [2021].

For an overview of how the cap-and-trade mechanism is integrated into various opera-
tional, financial or regulatory considerations in recent years, the reader is addressed among
others to Chen et al. [2021], Li et al. [2021], Liu et al. [2021], Chen et al. [2020], and
Schmalensee and Stavins [2017]

2.1 EOQ models

We first review the literature dealing with an EOQ setting where a firm faces a continuous
and constant demand over time, as in the seminal work of Harris [1913]. Hua et al. [2011]
consider an EOQ model subject to cap-and-trade regulation where emissions are generated
by ordering and inventory holding. The penalty incurred per unit emitted above the cap
is equal to the reward on each unit saved from the cap. This assumption greatly simplifies
the analysis. They show that the optimal order quantity is between the standard optimal
order quantity (without accounting for emissions) and the order size that minimizes carbon
emissions. They also show that the cap-and-trade mechanism reduces carbon emissions while
increasing the total cost.

Chen et al. [2013] study several variants of Hua et al. [2011]. The carbon emissions are
associated with ordering, inventory holding but also with production/purchasing. They con-
sider four mechanisms : strict cap (emissions must no exceed a cap), carbon tax (penalty
per unit of carbon emitted), cap-and-offset (tax only emissions that exceed a certain thresh-
old) and cap-and-trade (penalty/reward per unit of emission above/below the cap). For the
first three mechanisms (strict cap, carbon tax and cap-and-offset), they derive the optimal
quantity and cost. They also remark that the first three schemes can be viewed as special
cases of the cap-and-trade mechanism. For instance, when the reward equals the penalty,
the cap-and-trade problem is similar to the one with a carbon tax. They also show that "the
opportunity for reducing carbon emissions via operational adjustments exists whenever the
operational drivers of emissions are different from the operational drivers of costs."

He et al. [2015] study more in detail the cap-and-trade mechanism discussed in Chen
et al. [2013]. They derive the optimal quantity when the reward is different from the penalty.
They also study the carbon tax scheme and reach results similar to Chen et al. [2013]. In
addition to considering the effects of regulation on the lot size, decisions also include the
level of permit trading (buying or selling) for the cap-and-trade case. We can also mention
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Bouchery et al. [2012], Arslan and Turkay [2013] that have investigated similar problems or
Toptal et al. [2014] that consider the joint decisions on inventory replenishment and emission
reduction investments.

2.2 Deterministic lot-sizing models

Another stream of literature considers a lot-sizing setting with a deterministic demand per
period that varies over time. Benjaafar et al. [2012] investigate several uncapacitated lot-
sizing problems that incorporate carbon cap/tax. They first consider a single firm that
must determine when and how much to order over a planning horizon with multiple periods
and known demand. The cost structure includes ordering, holding and backorder costs. The
carbon emissions are associated with ordering, inventory holding and production/purchasing.
They formulate the decision problem with a MILP (mixed integer linear program) for four
mechanisms : strict cap, carbon tax, cap-and-offset and cap-and-trade. They also extend
the approach to a serial supply chain consisting of N different firms that either collaborate
or not. Among the presented observations, we cite here two important ones: "Tighter caps
on emissions can paradoxically lead to higher total emissions" and "Imposing supply chain-
wide emission caps leads to lower emissions at lower costs; it also increases the value of
collaboration".

Some research papers study the complexity of the economic lot-sizing problem with carbon
cap/tax (see e.g. Retel Helmrich et al. [2012], Akbalik and Rapine [2014], Helmrich et al.
[2015]). In particular, it is shown that the single item uncapacitated lot-sizing problem with
an emission capacity constraint is NP-hard.

Other research papers consider multiple modes of production or transport. Absi et al.
[2013] consider a multi-sourcing lot-sizing problem with an emission constraint that can be
defined per period, on the whole horizon or over a rolling horizon. They show that the problem
with a constraint per period can be polynomially solved while the others are NP-hard. Absi
et al. [2016] consider the more general setting of a fixed carbon emission associated with each
mode, in addition to its unit carbon emission. They show that the problem with a constraint
per period is then NP-hard. Hong et al. [2016] obtain additional results in the special case
of dual sourcing (green or regular). Phouratsamay and Cheng [2019] add inventory bounds
to the problem. Palak et al. [2014] consider an application to the biofuel supply chain.

Finally, we mention some variants that also consider carbon emission constraints. Wu
et al. [2018] consider a multi-item lot sizing problem with parallel machines. Azadnia et al.
[2015] and Bodaghi et al. [2018] study a lot sizing problem with sustainable supplier selection.
Vaez et al. [2019] present a bi-objective model to solve a lot-sizing and scheduling problem
simultaneously that would maximize the total profit and minimize CO2 emissions. Shaw et al.
[2023] include, in addition to carbon footprint, other dimensions such as water footprint, solid
and liquid waste, etc. Zouadi et al. [2018] study a system with both regular manufacturing
and remanufacturing processes.

2.3 Newsvendor models

Another class of canonical problems that has been reformulated to incorporate carbon tax/cap
is the NVP. The NVP strives to determine the quantity to order for a single acquisition and
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selling period, under a random demand with known distribution (see e.g. Qin et al. [2011]
for a literature review on NVP). Song and Leng [2012] study a NVP where carbon emissions
occur at the production stage. They consider several emission regulations (mandatory capac-
ity, taxation and cap-and-trade) and derive the optimal policy for each of them. Under the
cap-and-trade regulation, the penalty paid for each unit exceeding the production quota and
the reward for each unused unit of the quota are different, which adds complexity over the
standard NVP. Qu et al. [2021] propose a more general emission model where GHG emissions
are accounted at different stages (production, sales, disposal, and returns). They consider a
cap-and-trade mechanism in which the per unit reward for not reaching the emission quota
is equal to the penalty in case of an excursion from said quota. With this last assumption,
the cap-and-trade mechanism turns into a simple linear carbon tax mechanism and therefore
the optimal order quantity is independent of the allocated quota.

Zhang and Xu [2013] combine a carbon cap-and-trade mechanism into a single-period
capacitated multi-item production planning problem. They analyze the sensitivity of their
solution to carbon price and carbon cap. In Arıkan and Jammernegg [2014] as well as in
Choi [2013], a carbon tax is considered in a dual ordering single period system typical of
the fashion industry. In both cases the carbon emissions are simply added to the cost of
production, and the additional emissions due to disposal are blended in by the use of the
estimated proportion of leftovers. Rosič and Jammernegg [2013] consider an NVP with dual
sources, a primary one with low cost and long lead time, and a secondary with short lead time
and a higher purchasing price subject to taxing and trading on emissions from transport.

Heydari and Mirzajani [2021] show how the coordination of a manufacturing supply chain
under a revenue sharing agreement allows to optimize both profitability and sustainability.
Li et al. [2019] explore the impact of two different carbon permit allocations mechanisms on
the emissions of a two-echelon supply chain for different types of emission reduction incentive
between the retailer and the supplier.

Bai and Chen [2016] formalize a robust dual source NVP with cap-limited carbon emis-
sions generated by each of the two order types. Qi et al. [2021] propose a risk management
approach to reach a dual decision on order quantity and emission levels under cap-and-trade
regulation with emission sensitive demand driven by environmentally aware customers.

2.4 Stochastic lot-sizing

Finally, we review the literature dealing with a lot-sizing setting where a firm faces a stochastic
demand in each time period. Gong and Zhou [2013] consider a manufacturer that has access
to both green and regular production technologies with GHG emissions linear with produced
quantities. At each period a series of decisions are made on the technology to be used
(characterized by its cost and its level of emissions), the quantities to be produced, and the
emission allowances to be traded (bought or sold). At the end of the horizon, the total
cost is assessed as the sum of all periodic costs pertaining to production, emission trading,
holding and backlogging, with the addition, when applicable, of a one time cost induced by
products overage and a heavy penalty for emission excursions. The authors provide structural
properties of the optimal policy, which includes trading and production decisions. While
Gong and Zhou [2013] address the dual-technology problem, Zhang et al. [2016] consider a
more general problem with any number of technologies. Ma et al. [2018] study a problem
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combining producer choice and lot sizing. In Shi et al. [2023], a procurement commitment
contract between a retail giant and a capital constrained supplier is considered in the context
of a low carbon supply chain where the supplier can invest in carbon emissions reduction.
They present a Stackelberg game in which the retailer is the leader and the supplier the
follower.

We can also mention a related stream of literature addressing the hydro-thermal schedul-
ing problem under GHG emissions constraints (see e.g. Rebennack et al. [2011] and Reben-
nack [2014]).

Table 1 gives an overview of the publications most related to our work.

Article Model type Demand Source of
emissions

Emission regula-
tion

Hua et al. [2011] EOQ Deterministic
Ordering,
production,
inventory

Cap-and-trade

Chen et al. [2013] EOQ Deterministic
Ordering,
production,
Inventory

Tax, cap, cap-
and-offset, cap-
and-trade

He et al. [2015] EOQ Deterministic
Ordering,
production,
inventory

Tax, cap-and-
offset, cap-and-
trade

Benjaafar et al. [2012] Lot-sizing Deterministic
Ordering,
production,
inventory

Tax, cap, cap-
and-offset, cap-
and-trade

Akbalik and Rapine
[2014] Lot-sizing Deterministic

Ordering,
production,
inventory

Cap-and-trade

Song and Leng [2012] NVP Stochastic Production Cap, tax, cap-
and-trade

Qu et al. [2021] NVP Stochastic

Production,
sales, dis-
posal,
returns

Tax

The present paper NVP, lot-sizing Stochastic Disposal Cap-and-trade

Table 1: Overview of most relevant publications

3 The synchronous D-NVP
In this section, we first formalize the synchronous problem. Then we present some preliminary
results before deriving the optimal quantity. Finally, we compare the optimal solution with
simple heuristics.
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3.1 Assumptions and notations

Let D be the random demand with cumulative distribution (c.d.f.) function F (·) and ex-
pected value E(D) = µ. If F is strictly increasing, we denote by F−1(·) its inverse function.
When the demand is continuous, we denote by f(·) its probability density function (p.d.f.)
of D. When the demand is discrete, we denote by p(·) its probability mass function (p.m.f.).

Let h > 0 be the per-unit overage cost and b > 0 the per-unit underage cost. The
company is allocated a GHG quota of x ≥ 0. It pays a GHG tax cd > 0 for each disposed
unit exceeding the quota and is rewarded rd ≥ 0 for each unused unit of the quota (e.g. by
trading emission allowance). To avoid opportunistic behavior, we assume that cd > rd which
is a standard assumption in the literature (see e.g. Gong and Zhou [2013]).

Let v(x, q) be the expected cost when we order a quantity q and the allocated quota is x.
We have

v(x, q) = G(q) + Z(x, q). (1)

where G(q) denotes the expected cost of a standard NVP and Z(x, q) denotes the expected
cost related to GHG emissions. The expected cost of a standard NVP is given by

G(q) = hE(q −D)+ + bE(D − q)+ (2)

where y+ = max(0, y) is the positive part of y. By using the property that (q − D)+ =
(q −D) + (D − q)+, we can rewrite G(q) as

G(q) = h(q − E(D)) + (h+ b)E(D − q)+ (3)

where we only have to compute E(D − q)+. The expected cost related to GHG emissions is
given by

Z(x, q) = cdE
[
(q −D)+ − x

]+ − rdE
[
x− (q −D)+

]+
. (4)

The objective is to determine the order quantity that minimizes the expected cost v(x, q).
We will refer to this problem as D-NVP. The problem of minimizing G(q) will be refered to
as standard NVP. Let v∗(x) be the optimal expected cost for quota x. We have

v∗(x) = min
q≥0

v(x, q).

Since there may exist several optimal quantities when v(x, q) is not strictly convex, we denote
by q∗(x) the smallest optimal order quantity for quota x. When x goes to infinity, the problem
reduces to a standard NVP. Therefore we denote by q∗(∞) and v∗(∞) the optimal quantity
and cost of a standard NVP.

We show in Appendix A that we can set the GHG reward to zero (rd = 0) without loss of
generality. Therefore, we make this assumption in the remainder of this article. Moreover,
since [(q −D)+ − x]+ = [q −D − x]+ when x ≥ 0, the emission cost can be expressed in the
following simpler way:

Z(x, q) = cdE [q −D − x]+ . (5)

For the reader’s convenience, we summarize below the main notations that will be used
in subsequent sections.
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Parameters
D Random demand
F (·) Cumulative distribution function of D
f(·) Probability density function (for continuous random variable D)
p(·) Probability mass function (for discrete random variable D)
h Overage cost
b Underage cost
x GHG quota
cd GHG tax for each unit exceeding the quota
rd GHG reward or each unused unit of quota

Decision variables
q Order quantity
q∗(x) Optimal quantity

Cost functions
G(q) Expected cost of a standard NVP
Z(x, q) Expected cost related to GHG emissions with order quantity q
v(x, q) Total expected cost when order quantity is q
v∗(x) Optimal expected cost

3.2 Preliminary results

We begin by presenting some preliminary results that will be useful to derive the optimal
policy. In what follows, we study the convexity and monotonicity of the expected cost v(x, q)
with respect to quota x and order quantity q. Note that the following results hold for any
demand distribution (either discrete or continuous).

Since (q −D)+ and (D − q)+ are convex in q, so are their expectations E(q −D)+ and
E(D−q)+. It follows that G(q) is also convex in q since it is the sum of two convex functions
(see e.g. Porteus [2002]). Function γ(x, q) = (q−D−x)+ is a 2-dimensional convex function.
It is also non-decreasing in q and non-increasing in x. It follows that E[q −D − x]+ has the
same properties and so does Z(x, q), given in Equation (5).

Lemma 1 (GHG emission cost) The expected cost related to GHG emissions, Z(x, q) is
a convex function. It is also non-decreasing in order quantity q and non-increasing in GHG
quota x.

On one hand, G(q) is convex in q and independent of x. On the other hand, Z(x, q) is
a convex function by Lemma 1. It follows that the total expected cost v(x, q) is a convex
function. By Theorem A.4 in Porteus [2002], we also have that v∗(x) = minq v(x, q) is convex.
It is also non-increasing in x

Theorem 1 (Total cost) Cost functions v(x, q) and v∗(x) are convex. They are also non-
increasing in GHG quota x.
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Finally, we establish two results that will be used later. The following lemma establishes
that xcd represents the maximum benefit that can be expected with a GHG quota x (versus
a null quota).

Lemma 2
v∗(0)− xcd ≤ v∗(x) ≤ v∗(0)

This lemma is proven in Appendix B.
We have already noticed that the problem reduces to a standard NVP when the quota x

goes to infinity. The following lemma presents a stronger result. When the quota x is larger
or equal than the optimal quantity of the standard NVP, the optimal quantity and cost are
the same as those of a standard NVP.

Lemma 3 If x ≥ q∗(∞), then q∗(x) = q∗(∞) and v∗(x) = v∗(∞).

The proof of this lemma is given in Appendix C.
Based on the above general results that hold for any distribution, specific properties of

the problem and its solution are presented in the next section.

3.3 Optimal quantity and cost

In this section, we derive the optimal quantity and cost first for a continuous demand and then
for a discrete demand. We also obtain additional results for specific distributions, including
the normal distribution which is most commonly used in inventory management.

3.3.1 Continuous demand

We will now provide additional results for a continuous demand with p.d.f. f . From Equation
(5), we have

Z(x, q) = cd

∫ q−x

−∞
(q − x− s)f(s)ds. (6)

We can differentiate this function by using Leibniz rule :

∂Z

∂q
(x, q) = cd

∫ q−x

−∞
f(s)ds

= cdF (q − x).

It is also well known for the standard NVP that G′(q) = (h + b)F (q) − b (see e.g. Porteus
[2002]). It follows that

∂v

∂q
(x, q) = G′(q) +

∂Z

∂q
(x, q)

= (h+ b)F (q) + cdF (q − x)− b.
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On one hand, the function v(x, q) is convex in q (see Theorem 1). On the other hand, we
have

lim
q→−∞

∂v

∂q
(x, q) = −b < 0,

lim
q→+∞

∂v

∂q
(x, q) = h+ cd > 0.

Hence the minimum with respect to q is reached when the partial derivative equals zero, i.e.
when (h+ b)F (q)+cdF (q−x) = b. We also show in Appendix D that one more unit of quota
increases the optimal quantity by (at most) one more unit.

Theorem 2 (Continuous demand) For the synchronous D-NVP with continuous demand
and quota x, the smallest optimal order quantity is

q∗(x) = min {q : (h+ b)F (q) + cdF (q − x) = b} . (7)

Moreover, we have

q∗(x) ≤ q∗(x+ 1) ≤ q∗(x) + 1. (8)

Note that the optimal quantity can be computed efficiently by a numerical method, e.g.
by a bisection method, since F is a non-decreasing function.

Consider now two limit cases. When the quota is null (x = 0), we pay the GHG tax
cd for all unsold units and the problem is equivalent to a standard NVP with overage cost
h + cd and underage cost b. When the quota is infinite, no GHG tax is incurred and the
problem is equivalent to a standard NVP with overage cost h and underage cost b. Let
q∗(∞) = limx→∞ q∗(x) be the optimal quantity when the quota goes to infinity. If we assume,
additionally, that F is strictly increasing, then the optimal solution is unique and we have,
in the limit cases

q∗(0) = F−1

(
b

h+ cd + b

)
,

q∗(∞) = F−1

(
b

h+ b

)
. (9)

As an application of Theorem 2, we derive closed-form expressions for the optimal quantity
and cost for three continuous demand distributions (exponential, uniform and normal). For
the exponential and uniform distributions, the results are given in appendices E.1 and E.2
respectively. The next section provides complementary results for the normal distribution
and numerical examples.

3.3.2 The special case of normal distribution

In this section, we assume that the demand D follows a normal distribution N (µ, σ2). Let
also Z = D−µ

σ
be the standard normal random variable with p.d.f. ϕ(t) = 1√

2π
e−t2/2 and c.d.f.

Φ(t) = P (Z ≤ t). The following theorem, established in Appendix E.3, provides additional
results to compute the optimal quantity and cost.
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Theorem 3 (Normal distribution) The optimal quantity and cost are given by

q∗(x) = µ+ σz∗(x),

v∗(x) = σ(h+ b)ϕ(z∗(x)) + cd[σϕ(w
∗(x))− xΦ(w∗(x))],

where w∗(x) = z∗(x)− x
σ

and z∗(x) is the unique solution of

(h+ b)Φ(z∗(x)) + cdΦ
(
z∗(x)− x

σ

)
= b.

When the quota x goes to infinity, we re-obtain the results for a standard NVP with normal
demand :

z∗(x) −→
x→+∞

z∗(∞) = Φ−1

(
b

h+ b

)
,

w∗(x) −→
x→+∞

−∞,

q∗(x) −→
x→+∞

µ+ σ z∗(∞), (10)

v∗(x) −→
x→+∞

σ(h+ b)ϕ [z∗(∞)] . (11)

Figure 1 illustrates the effect of the quota x on the optimal quantity and cost, for several
values of the GHG tax cd. The curve with cd = 0 corresponds to a standard NVP. When
quota x goes to infinity, all curves converge to the standard NVP curve. We also see that
the optimal order quantity q∗(x) (resp. optimal cost v∗(x)) is non-decreasing (resp. non-
increasing) with quota x. Finally, we observe that q∗(x) is concave in x and that v∗(x) is
convex in x.

Figure 1: Effect of quota x on the optimal quantity and cost (h = 1, b = 2, rd = 0, normally
distributed demand with parameters µ = 100, σ = 15)

Figure 1 Alt text: The first figure shows that the optimal quantity is increasing concave with quota and
decreasing with GHG tax. The second figure shows that the optimal cost is decreasing convex with quota
and increasing with GHG tax.
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Figure 2 illustrates the effect of the demand variability, as represented by its coefficient
of variation σ/µ, on the optimal quantity and cost, for several values of the quota x. For
the standard NVP, we remind that the optimal quantity and cost are linear functions of σ
(see equations (10) and (11)). Figure 2 shows that this property does not hold for D-NVP,
except for x = 0 or when x goes to infinity. When x = 0, the problem is equivalent to a
NVP with underage cost b = 3 and overage cost h + cd = 6 > b. It results that the optimal
order quantity decreases linearly with σ. When x goes to infinity, the problem is equivalent
to a NVP with underage cost b = 3 and overage cost h = 1 < b. It results that the optimal
quantity increases linearly with σ. We also observe that σ has a non-monotonic effect on the
optimal quantity, for x = 25, 50, 100. When σ is small, the optimal quantity increases with
σ to avoid lost sales. When σ is large, the optimal quantity decreases to avoid exceeding the
allocated quota. From an application perspective, in a standard NPV, the rule of thumb is
"the more variable the demand, the larger the optimal quantity" (when b > h). This rule
of thumb is no longer valid for D-NVP. This means that managers should be vigilant when
working under a cap-and-trade emission regulation since an increased variability in demand
can lead to smaller order quantities.

Figure 2: Effect of the demand coefficient of variation on the optimal quantity and cost
(h = 1, b = 3, cd = 5, rd = 0, normally distributed demand with mean µ = 100)

Figure 2 Alt text: The first figure shows that the optimal quantity increases (or decreases) linearly with the
coefficient of variation when the quota is large (or small). For intermediate values of the quota, the optimal
quantity increases and then decreases with the coefficient of variation. The second figure shows that the
optimal cost is increasing convex with the coefficient of variation for all quota values.

In conclusion, we were able to extend the results of the standard NVP with a normal
distribution to the D-NVP. We have also shown that the demand variability has a more
complex effect in the D-NVP than in the standard NVP.
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3.3.3 Discrete demand

Finally we address the case of a discrete demand with probability mass function p, such that
p(s) = 0 for s /∈ N. We have

v(x, q) = G(q) + cd

q−x−1∑
s=−∞

(q − x− s)p(s) (12)

Let ∆v(x, q) = v(x, q + 1) − v(x, q). For the standard NVP, we know that ∆G(q) = G(q +
1)−G(q) = (h+ b)F (q)− b. It follows that

∆v(x, q) = ∆G(q) + cd

{
q−x∑

s=−∞

(q + 1− x− s)p(s)−
q−x−1∑
s=−∞

(q − x− s)p(s)

}

= (h+ b)F (q)− b+ cd

q−x∑
s=−∞

p(s)

= (h+ b)F (q) + cdF (q − x)− b

Since ∆v(x, q) is non-decreasing in q, it is discrete convex in q. Hence the smallest optimal
order quantity is

q∗(x) = min {q ∈ N : ∆v(x, q) ≥ 0}

and we get the following theorem.

Theorem 4 (Discrete demand) For the synchronous D-NVP with discrete demand and
quota x, the smallest optimal order quantity is

q∗(x) = min {q ∈ N : (h+ b)F (q) + cdF (q − x) ≥ b} . (13)

Moreover, we have

q∗(x) ≤ q∗(x+ 1) ≤ q∗(x) + 1. (14)

Since F is non-decreasing, the optimal quantity can be easily computed, for example by a
bisection method in O(logQ) with Q an upper-bound on the optimal quantity.

3.4 Simple heuristic policies

Having presented the optimal solution and some of its properties for the synchronous D-
NVP, we consider the usefulness of such solutions by comparing them with a few simple and
intuitive heuristic policies:

• H1 : Order q∗(0), the optimal quantity of a standard NVP with underage cost b and
overage cost h + cd. This would be optimal if the GHG tax cd was systematically
charged for disposed units, or if there is no quota. This policy is overly conservative
and tends to order less than the optimal quantity;
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• H2 : Order q∗(∞), the optimal quantity of a standard NVP with underage cost b and
overage cost h. This would be optimal if the GHG tax was null (cd = 0). The policy is
overly risky and tends to order more than the optimal quantity;

• H3 : Order qH(x) = min{x + q∗(0), q∗(∞)}. This policy orders the optimal quantity
when x = 0 or when x ≥ q∗(∞).

We can compare the order quantities of the different policies with Equation (14):

q∗(0) ≤ q∗(x) ≤ qH(x) ≤ q∗(∞).

Figure 3 plots the quantities and costs of these three heuristic policies and the optimal
policy. As expected, H1 performs well for small quotas and poorly for large quotas. It is the
opposite for H2 which performs well for large quotas and poorly for small quotas. Heuristic
H3 performs very well for small or large quotas but is significantly outperformed by the
optimal policy for intermediate quotas.

Figure 3: Effect of quota on the optimal quantity and cost (h = 1, b = 2, cd = 10, rd = 0,
normally distributed demand with parameters µ = 100, σ = 30)

Figure 3 Alt text: The figure shows that H1 performs well for small quotas and poorly for large quotas. It is
the opposite for H2 which performs well for large quotas and poorly for small quotas. Heuristic H3 performs
very well for small or large quota but is significantly outperformed by the optimal policy for intermediate
quotas.

From a practical point of view, implementing heuristic H2 is equivalent to consider a
situation in which the decision maker would ignore the carbon tax and therefore act as if the
GHG quota were unlimited. Therefore, Figure 3 shows that ignoring the carbon tax may
lead to large overcost, especially when the GHG quota is small.

4 The asynchronous D-NVP
The synchronous D-NVP presented in the former section is a simplified version of the more
ubiquitous case in which the replenishment occurs following the company requirements, while
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the GHG emmissions are assessed by the regulator, at a different frequency. This general
case, which we have called asynchronous D-NVP, is presented and solved in this section.

4.1 Problem description

We consider a D-NVP that is repeated over T time periods. We let Dt be the demand
in period t ∈ {1, · · · , T}. We assume that D1, · · · , DT are identically and independently
distributed (i.i.d.) with the same distribution as D (introduced in Section 3.1). We also
assume that the demand is discrete and bounded by Dmax in order to be able to compute
the optimal policy. The company has a GHG quota xmax that is allocated for the whole time
horizon and that is available at the begininng of period 1. A GHG tax cd is charged for each
disposed unit exceeding xmax at the end of the horizon. If we denote by Qt the order quantity
in period t, the total number of disposed units is N =

∑T
t=1(Qt −Dt)

+ and the total GHG
tax is cd[N − xmax]

+.
Let us denote by Xt the unused quota at the beginning of period t. Variable Xt is random

and results from the unused quota, order quantity, and demand realization in the precedent
period, with the notable exception of X1 = xmax which is deterministic and represents the
cap determined by regulation. We have the following relation between Xt+1 and Xt :

Xt+1 = [Xt − (Qt −Dt)
+]+.

It implies that 0 ≤ Xt ≤ xmax for t = 1, . . . , T .
A policy π specifies the quantity to order in each period, for each state of the system. At

the beginning of period t, the state of the system can be summarized by the unused quota
Xt. We denote by vπt (x) the expected cost under policy π from period t to T if Xt = x. Let
v∗t (x) be the optimal expected cost from period t to period T when the unused quota is x at
the beginning of period t. We have :

v∗t (x) = min
π

vπt (x).

The objective is to determine the policy that minimizes the total expected cost. This
problem can be seen as a Markov decision problem with finite state space {0, · · · , xmax}
and finite action space {0, · · · , Dmax}, since the optimal order quantity does not exceed the
maximum demand. By Proposition 4.4.3 in Puterman [1994], there exists a deterministic
Markovian policy which is optimal. Hence we can restrict our analysis to deterministic
Markovian policies. Therefore the optimal policy can be fully described by q∗t (x), the optimal
order quantity in period t given unused quota x.

For the reader’s convenience, we summarize below the additional notations that will be
used in the rest of this section.
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Parameters
T Number of periods
Dt Demand in period t
xmax GHG quota allocated for the whole time horizon
Dmax Maximum demand

Decision variables
q∗t (x) Optimal order quantity in period t when the unused quota is x

Cost functions
v∗t (x) Optimal expected cost from period t to T if the unused quota is x

at the beginning of period t
vt(x, q) Expected cost from t to T if we order q in period t and follow the

optimal policy from t+ 1 to T , with x the remaining quota in t

Note that the deterministic version of this problem is trivial. It is optimal to order exactly
the demand and the optimal cost is equal to zero.

4.2 Stochastic dynamic program

In order to compute the optimal policy and cost for the asynchronous D-NVP, we propose
in this section a stochastic dynamic program, study its algorithmic complexity and use it to
derive some theoretical results.

Let vt(x, q) be the expected cost from period t to period T when Xt = x, we order a
quantity q at time t and follow the optimal policy from period t+ 1 to T .

We first set the initial conditions for the stochastic dynamic program. For x ∈ [0, xmax],

v∗T+1(x) = 0.

Then we have, for t = 1, . . . , T , x = 1, . . . , xmax and q = 1, . . . , Dmax :

vt(x, q) = v(x, q) + E
{
v∗t+1([x− (q −Dt)

+]+)
}

(15)
v∗t (x) = min

q≥0
vt(x, q) (16)

q∗t (x)= argmin
q≥0

vt(x, q). (17)

In Equation (15), [x−(q−Dt)
+]+ represents the unused quota in period t+1 with x, Dt, and

q respectively the unused quota, the demand, and the order quantity in period t. Remind
also that v(x, q), in Equation (15), is the expected cost of the synchronous D-NVP presented
in Section 3.1 :

v(x, q) =
Dmax∑
s=0

p(s)
{
h(q − s)+ + b(s− q)+ + cd(q − x− s)+

}
(18)
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We can compute the expectation in Equation (15) as follows :

E
{
v∗t+1([x− (q −D)+]+)

}
=

Dmax∑
s=0

p(s)v∗t+1([x− (q − s)+]+)

We now provide some details, in Algorithm 1, for the implementation of the stochastic
dynamic program.

Algorithm 1 Stochastic dynamic program
Input: h, b, cd, T , Dmax, qmax, xmax, vmax, p(s) for s = 0, · · · , Dmax

Output: v∗t (x) and q∗t (x) for x = 0, · · · , xmax and t = 1, · · · , T + 1
1: t← T + 1
2: for x = 0, · · · , xmax do
3: v∗t (x)← 0

4: while t > 1 do
5: t← t+ 1
6: for x = 0, · · · , xmax do
7: v∗t (x)← vmax

8: for q = 0, · · · , qmax do
9: v ← 0

10: for s = 0, · · · , Dmax do
11: v ← v+ p(s){h(q− s)++ b(s− q)++ cd(q−x− s)++ v∗t+1([x− (q− s)+]+)}
12: if v < v∗t (x) then
13: v∗t (x)← v
14: q∗t (x)← q

There are four loops in this algorithm and the complexity is in O(T · xmax · qmax ·Dmax).
There is no interest to have an order quantity larger than the demand and we can assume
that qmax ≤ Dmax. It follows that the algorithm complexity is in O(T · xmax ·D2

max).

Finally, we establish some theoretical results for the optimal cost v∗t (x).

Theorem 5 The optimal value function v∗t (x) is non-increasing in unused quota x and in
time t.

We prove this theorem by induction. Trivially, v∗T+1(x) is non-increasing in x. Assume that
v∗t+1(x) is non-increasing in x. From Theorem 1, we know that v(x, q) is non-increasing
in x. It follows from Equation (15) that vt(x, q) is non-increasing in x. So does v∗t (x) =
minq≥0 vt(x, q). On the other hand, we have [x− (q −D)+]+ ≤ x. Hence, by Equation (15),
vt(x, q) = v(x, q) + E

{
v∗t+1([x− (q −Dt)

+]+)
}
≥ v(x, q) + v∗t+1(x) ≥ v∗t+1(x) and v∗t (x) =

minq≥0 vt(x, q) ≥ v∗t+1(x).

We can also bound the cost of the asynchronous D-NVP as follows. We know that the
unused quota Xt at the beginning of period t is between 0 and xmax (the GHG quota).
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Hence, the cost incurred in period t is between v∗(xmax) and v∗(0), the optimal costs of the
synchronous D-NVP with respectively quotas xmax and 0. It follows that

T · v∗(xmax) ≤ v∗1(xmax) ≤ T · v∗(0).

4.3 Illustration of the optimal policy and cost

In this section, we apply the above stochastic dynamic program to the case of a demand
following a Poisson distribution with mean λ, i.e. P (D = k) = e−λλk

k!
for k non-negative

integer. Figure 4 illustrates the behavior of the optimal cost and policy as a function of time
period t and unused quota x.

Figure 4: Optimal quantity and cost for an asynchronous D-NVP (T = 15, h = 1, b = 10, cd =
10, rd = 0, Poisson demand with mean λ = 5)

Figure 4 Alt text: The first figure shows that the optimal cost is decreasing with time and unused quota.
The second figure shows that the optimal quantity is increasing with time and quota.

We observe that the optimal quantity q∗t (x) is non-decreasing in t. When the number of
remaining periods is diminishing, there is less and less reason to keep the unused quota for
future periods and it is preferable to increase the order quantity. From a managerial point
of view, this means that when approaching the end of the time horizon, the uncertainty
reduction allows the decision maker to adopt a riskier policy and order larger quantities (for
the same unused quota). We also see that the optimal cost v∗t (x) is non-increasing and convex
in t. Finally, we observe that when the quota is null or very large, the optimal quantity q∗t (x)
is constant and the optimal cost is linear in t. The reason for this is that in both cases, the
problem is equivalent to solving T independent NVPs with underage cost b and overage cost
h (when x is very large) or overage cost h+ b (when x = 0).
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4.4 Synchronous versus asynchronous D-NVP

In order to assess the benefits of the added flexibility offered by the asynchronous D-NVP
over the synchronous case, we compare two types of policies derived from these two problems.
In the first policy, a quota x is allocated to each period and can not be used in other periods.
In the second policy, a quota Tx is allocated to the whole horizon. On a practical level, a
choice between these policies is offered to practitioners in either one of two situations. The
first occurs when the emission mechanism between the company and the GHG authority can
be negotiated. In the second, when faced to a regulation based on a multi-period horizon,
the use of a simple rule of thumb policy is considered as an alternative to an optimal but
more complex solution.

More precisely, we consider the two following policies for the problem introduced in Section
4.1 with i.i.d. demands D1, · · · , DT .

1. Synchronous Disposal (SD) policy : The problem is divided into T independent periods
with a fix quota x for each period. At the end of the period the remaining quota is
therefore lost. The optimal cost of a single period is v∗(x), as defined in Section 3.
Hence, the cost of SD policy over the T periods is vSD(x) = Tv∗(x). The single-period
problem is solved with the algorithm described in Section 3.3.3;

2. Asynchronous Disposal (AD) policy: The quota is allocated for the whole time horizon
(T periods), as detailed in Section 4.1. The quota is Tx, i.e. T times the quota for
one period under the SD policy. The AD policy is optimal and its expected cost is
vAD(x) = v∗1(Tx). The multi-period problem is solved with the DP algorithm detailed
in Section 4.2.

The difference between the costs of the two policys is bounded as follows (see proof in
Appendix F).

Theorem 6
vAD(x) ≤ vSD(x) ≤ vAD(x) + Txcd

The quantity Txcd represents the maximum benefit that can be expected from using the
total quota Tx.

In addition, the following theorem establishes that the costs of the two policys are equal
when the quota per period x is larger or equal than the optimal quantity of a standard NVP
(see proof in Appendix G).

Theorem 7 If x ≥ q∗(∞), then vAD(x) = vSD(x) = Tv∗(∞).

The relative cost increase for using the SD policy instead of the AD policy is given by:

β =
vSD(x)− vAD(x)

vAD(x)
=

Tv∗(x)− v∗1(Tx)

v∗1(Tx)
. (19)

We conducted a numerical experimentation to compare AD and SD policys over a broad
range of scenarios and present here the results. Some of the solution properties presented
here are empirical results. Other observations led us to fully demonstrated theoretical results.

First we conduct an exhaustive experimentation over 532 336 instances with the following
parameter values:
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• Overage cost h = 1 (reference cost);

• Underage cost b ∈ {0.1, 0.2, 0.5, 1, 2, 5, 10};

• Carbon tax per unsold item cd ∈ {0.1, 0.2, 0.5, 1, 2, 5, 10};

• Per-period Poisson demand with mean λ ∈ {1, 2, 5, 10, 20, 50, 100};

• Horizon T ∈ {1, · · · , Tmax} with Tmax = 50;

• x ∈ {0, · · · , ⌈xmax

T
⌉} with xmax = 350.

For the 73 tuples (b, cd, λ), we run the DP described in Section 4.2 for an initial total quota
of xmax = 350 and a number of periods Tmax = 50. For each tuple, it provides us the cost
of the AD policy for 1 552 sub-problems with T = 1, · · · , Tmax and any quota per-period
x ∈ {0, · · · , ⌈xmax

T
⌉}. We bound x with ⌈xmax

T
⌉ to avoid any non-integer per-period quota. In

the end, we have 73 × 1 552 = 532 336 instances. Here some general observations:

• The relative cost increase β is always non-negative consistently with Theorem 6;

• The relative cost increase β reaches a maximum value of 108% meaning that SD policy
sometimes outperforms AD policy by a very large margin;

• As expected, β = 0 when T = 1 or x = 0 or x ≥ q∗(∞) (see Theorem 7 for an
explanation of the last case);

• The average relative cost increase is 8.83% when we exclude instances with T = 1 or
x = 0 or x ≥ q∗(∞).

To better understand the sensitivity of the solution to the different parameters, a second
experimentation phase was performed. To keep the number of experiments reasonable while
still reaching meaningful insights, we scrutinized each parameter of interest over a wide
range of its values while other parameters are kept within a limited number of values. In
the following we shortly discuss the impact of each of the main parameters on the relative
cost increase β. Figure 5 illustrates the effect of parameters b, cd, λ, x and T on the cost of
AD and SD policys and relative cost increase β. In each sub-figure, one parameter is varied
starting from the following nominal instance : h = 1, b = 10, cd = 10, λ = 5, x = 2, T = 10.

Sensitivity to underage cost b

In Figure 5.a, we observe that the absolute costs are increasing in b as expected. Their
difference, however, both absolute and, as a result, relative, tends to zero when b tends to
zero or to ∞. As a result β is maximal for intermediate values of b.

Proposition 1 The relative cost increase β goes to 0 either when b goes to 0 or to +∞.

The proof of this proposition, and those that follow, are provided in Appendix H.
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Figure 5: AD policy versus SD policy (h = 1, b = 10, cd = 10, λ = 5, x = 2, T = 10)

Figure 5 Alt text: The figure includes 6 graphics, each one representing vAD(x), vSD(x) and β as a function
of one of the parameters.
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Sensitivity to carbon tax cd

In Figure 5.b, we observe that the absolute costs are increasing in cd. The cost of AD policy
is increasing much slower than the one of the SD policy. When cd = 0, the two costs are
equal to Tv∗(∞), i.e. the cost of T standard NVP with overage cost h and underage cost b.

With cd increasing, the optimal quantity q∗(x) under SD policy gradually decreases, until
it reaches quota x. When q∗(x) = x, there is no incurred disposal cost (see the definition of
the disposal cost in Equation (5)). Any further increase of cd do not induce any additional
cost, and therefore the cost vSD(x) remains constant as is shown by the plateau in the right
side of the graph.

Sensitivity to mean demand λ

In Figure 5.c, we observe that the effect of λ is very similar to the one of b except that the
absolute cost difference does not go to 0 when λ goes to infinity.

Proposition 2 The relative cost increase β goes to 0 either when λ goes to 0 or to +∞.

Sensitivity to GHG quota x

Consistently with theorems 1 and 5, Figure 5.d shows that the costs are non-increasing with
x. The two costs are equal when x = 0 or x ≥ q∗(∞) as shown in Theorem 7. The effect of
x on the relative cost increase is summarized in the following proposition.

Proposition 3 The relative cost increase β goes to 0 either when x goes to 0 or to +∞.

Sensitivity to horizon length T

When T = 1, the two policys are the same and therefore have the same cost. vSD(x) is
increasing linearly with T since vSD(x) = Tv∗(x). In Figure 5.e, the cost vAD(x) seems to
increase linearly with T but this is, in fact, not the case. To better show this behavior, Figure
5.f compares the costs normalized by period, vSD(x)/T and vAD(x)/T . Finally, we observe
that β is increasing with T which means that the longer the horizon, the higher the flexibility
benefits of the AD policy.

5 Conclusion
In this work, we study a NVP with GHG emissions at the disposal stage, under a cap-and-
trade regulation. First, we investigate the synchronous problem, when the GHG quota is
allocated to a single period of the NVP. For this problem, we develop a simple algorithm
to compute the optimal policy. We show that ignoring the carbon tax may lead to large
overcost, especially when the GHG quota is small. We also show that, for a normally dis-
tributed demand, in contrast with the classical NVP, the order quantity is non linear (and
non monotonic) in the demand standard deviation when the emission quota is limited.

Second, we study an asynchronous version of the problem, when the GHG quota is allo-
cated to several periods of the NVP. The present research lays the foundations of this type
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of model, which is more in line with the industrial reality where quotas are given per year
while replenishment decisions are made at a higher frequency (e.g. daily or weekly). For
this problem, we develop an efficient dynamic program to compute the optimal policy. In an
extensive numerical study, we observe that the added flexibility offered by an asynchronous
disposal policy over a synchronous disposal policy allows for a reduction of costs, specially
for long time horizons (the longer the horizon, the higher the flexibility). By dynamically
adjusting the level of activity to the remaining GHG emission allowance, companies can re-
duce their expenses. In parallel, adjusting the order quantity dynamically while taking into
account what remains of the emission allowance at the current time point allows to meet more
precisely the cap set by the regulator. While this does not necessarily mean a lower level of
emissions, the proposed dynamic policy results in a more precise use of the planned quota,
and with it a lower variability in emissions. This allows the regulator to plan and deploy more
effectively a cap-and-trade emission reduction regulation, and get more predictable results
from it.

As an avenue for future research, it would be natural to first address the limitations of the
model presented inhere, for example by including GHG emissions on production, sales and
returns. In addition, the possibility of trading emission allowances at each period to adjust
the current level of emission quota based on the time point and the forecasted demand
can be considered. The current model can be further extended by considering the case of
multiple product portfolios, as well as the availability of several production and/or disposal
technologies, all characterized by their cost and their level of emissions. More generally,
considering emissions at the disposal stage in various lot sizing problems other than NVPs
is also expected to raise interesting research questions. It would be also of interest to obtain
additional results for the asynchronous problem, such as the convexity of the value function.
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Appendix

A Equivalence with a problem without GHG reward
From Section 3.1, we have

v(x, q) = G(q) + Z(x, q)

= hE(q −D)+ + bE(D − q)+ + cdE
[
(q −D)+ − x

]+ − rdE
[
x− (q −D)+

]+
. (20)

Since [−y]+ = y+ − y, we can rewrite Equation (4) as

Z(x, q) = (cd − rd)E[(q −D)+ − x]+ + rdE[(q −D)+ − x] (21)
= (cd − rd)E[(q −D)+ − x]+ + rdE(q −D)+ − rdx (22)

Since [(q −D)+ − x]+ = [q −D − x]+ when x ≥ 0, the emission cost can be expressed as

Z(x, q) = (cd − rd)E(q − x−D)+ + rdE(q −D)+ − rdx (23)

and the total cost as

v(x, q) = (h+ rd)E(q −D)+ + bE(D − q)+ + (cd − rd)E
[
(q −D)+ − x

]+ − rdx. (24)

An instance of the problem is characterized by a vector of parameters I = (h, b, cd, rd, F ).
Remind that we assume that cd−rd ≥ 0. By comparing equations (20) and (24), we conclude
that the instance Ĩ = (h + rd, b, cd − rd, 0, F ) has a total cost ṽ(x, q) = v(x, q) + rdx. Since
rdx is a constant with respect to q, instances I and Ĩ have the same optimal quantity and
the optimal cost is simply shifted. Hence we can set rd = 0 without loss of generality in the
rest of the paper.

B Proof of Lemma 2
It is easy to derive the upper-bound. We have v∗(x) ≤ v∗(0) since v∗(x) is non-decreasing in
x (see Theorem 1).

It is slightly more involved to derive the lower-bound. Let write v(x, q) as v(0, q) minus
some quantity. We have from (1), (3) and (5) that:

v(x, q) = E
[
b(D − q)+ + h(q −D)+ + cd(q −D − x)+

]
(25)

= E
[
b(D − q)+ + (h+ cd)(q −D)+

]
− cdE

[
(q −D)+ − (q −D − x)+

]
(26)

= v(0, q)− cdE
[
(q −D)+ − (q −D − x)+

]
. (27)

As (q −D)+ − (q −D − x)+ ≤ x, it follows that :

v(x, q) ≥ v(0, q)− cdx.

Then

v∗(x) = min
q

v(x, q) (28)

≥ min
q

v(0, q)− cdx (29)

= v∗(0)− cdx (30)

We conclude that v∗(x) ≥ v∗(0)− cdx.

25



C Proof of Lemma 3
Assume in what follows that x ≥ q∗(∞). As v∗(x) is non-increasing in x (see Theorem 1),
we have

v∗(x) ≥ v∗(∞). (31)

From (1), we have
v(x, q∗(∞)) = G(q∗(∞)) + Z(x, q∗(∞))

On one hand x ≥ q∗(∞) implies that Z(x, q∗(∞)) = cdE [q∗(∞)−D − x]+ = 0. On the
other hand G(q∗(∞)) = v∗(∞). Hence we have

v(x, q∗(∞)) = v∗(∞). (32)

(31) and (32) imply that v(x, q∗(∞)) ≤ v∗(x). Hence q∗(∞) minimizes v(x, q) and we obtain
that q∗(x) = q∗(∞) and v∗(x) = v∗(∞).

D Bounds on the optimal quantity
Consider a continuous demand. Let show that q∗(x) ≤ q∗(x+ 1). We have

∂v

∂q
(x, q) = (h+ b)F (q)− b+ cdF (q − x)

≥ (h+ b)F (q)− b+ cdF (q − (x+ 1)) =
∂v

∂q
(x, q + 1)

It follows that

q∗(x) = min

{
q :

∂v

∂q
(x, q) = 0

}
≤ min

{
q :

∂v

∂q
(x, q + 1) = 0

}
= q∗(x+ 1)

Let us show now that q∗(x+ 1) ≤ q∗(x) + 1. We have

∂v

∂q
(x+ 1, q∗(x) + 1) = (h+ b)F (q∗(x) + 1)− b+ cdF (q∗(x)− x)

≥ (h+ b)F (q∗(x))− b+ cdF (q∗(x)− x)

=
∂v

∂q
(x, q∗(x)) ≥ 0

which implies that q∗(x+ 1) ≤ q∗(x) + 1.

E Specific distributions

E.1 Exponential distribution

Assume that the demand follows an exponential distribution with rate λ, that is F (s) =
1− exp(−λs) and f(s) = λ exp(−λs) for s ≥ 0.
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Theorem 8 (Exponential distribution) The expected costs are given by :

G(q) = h

(
q − 1

λ

)
+ (h+ b)

e−λq

λ
,

Z(x, q) = cd

{
(q − x)+ − 1− e−λ(q−x)+

λ

}
.

Moreover, the optimal quantity is given by

q∗(x) =

{
1
λ
ln
(

(h+b)+cde
λx

h+cd

)
if 0 ≤ x < q∗(∞)

q∗(∞) if x ≥ q∗(∞)

where
q∗(∞) =

1

λ
ln

(
h+ b

h

)
.

We now prove this theorem. We first compute

E(D − q)+ =

∫ ∞

q

(t− q)λe−λtdt =
e−λq

λ

and

E[(q − x)+ −D]+ =

∫ (q−x)+

0

(q − t)λe−λtdt = (q − x)+ − 1− e−λ(q−x)+

λ
.

Then, with equations (3) and (23), we have

G(q) = h(q − µ) + (h+ b)pE(D − q)+ = h

(
q − 1

λ

)
+ (h+ b)

e−λq

λ

and

Z(x, q) = cdE[(q − x)+ −D]+

= cd

{
(q − x)+ − 1− e−λ(q−x)+

λ

}
.

We have

∂v

∂q
(x, q) = pF (q) + cdF (q − x)− b

=

{
(h+ b)F (q)− b if 0 ≤ q ≤ x
(h+ b)F (q) + cdF (q − x)− b if q ≥ x

=

{
(h+ b)

(
1− e−λq

)
− b if 0 ≤ q ≤ x

(h+ b)
(
1− e−λq

)
+ cd

(
1− e−λ(q−x)

)
− b if q ≥ x

=

{
−(h+ b)e−λq + h if 0 ≤ q ≤ x
−e−λq

(
h+ b+ cde

λx
)
+ (h+ cd) if q ≥ x
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Moreover
∂v

∂q
(x, x) < 0

⇔ − (h+ b)e−λx + h < 0

⇔ x < q∗(∞) :=
1

λ
ln

(
h+ b

b

)
We can then distinguish two cases.

Case 1 : x < q∗(∞) The partial derivative is continuous and strictly increasing in q.
Hence, the optimal quantity is the unique solution of

∂v

∂q
(x, q) = 0

⇔ − e−λq
(
h+ b+ cde

λx
)
+ (h+ cd) = 0

⇔ q =
1

λ
ln

(
h+ b+ cde

λx

h+ cd

)
Case 2 : x ≥ q∗(∞) The optimal quantity is the unique solution of

∂v

∂q
(x, q) = 0

⇔ − (h+ b)e−λq + h = 0

⇔ q =
1

λ
ln

(
h+ b

h

)
= q∗(∞)

Finally we have

q∗(x) =

{
1
λ
ln
(

h+b+cde
λx

h+cd

)
if 0 ≤ x < q∗(∞)

q∗(∞) if x ≥ q∗(∞)

where q∗(∞) = 1
λ
ln
(
h+b
h

)
. □

E.2 Uniform distribution

Assume now that the demand follows a continous uniform distribution U(a1, a2). For s ∈
[a1, a2], we have F (s) = (s− a1)/(a2 − a1).

Theorem 9 (Uniform distribution) For q ∈ [a1, a2], the expected costs are given by

G(q) =
h(q − a1)

2 + b(a2 − q)2

2(a2 − a1)
,

Z(x, q) = cd
([q − x− a1]

+)
2

2(a2 − a1)
.
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Moreover, the optimal quantity is given by

q∗(x) =

{
a1 +

b(a2−a1)+cdx
h+b+cd

if 0 ≤ x ≤ q∗(∞)− a1
q∗(∞) if x ≥ q∗(∞)− a1

where
q∗(∞) = a1 +

b(a2 − a1)

h+ b
.

We now prove this theorem.

F (s) =


0 if s < a1

s−a1
a2−a1

if a1 ≤ s ≤ a2
1 if s ≥ a1

f(s) =

{
1

a2−a1
if a1 ≤ s ≤ a2

0 else

We first compute

E(D − q)+ =

∫ a2

q

t− q

a2 − a1
dt =

(a2 − q)2

2(a2 − a1)

and

E[(q − x)+ −D]+ =

∫ (q−x)+

0

f(t)dt

=

{
0 if q − x < a1∫ q−x

a1

q−t
a2−a1

dt if a1 ≤ q − x ≤ a2

=

{
0 if q − x < a
(q−x−a1)2

2(a2−a1)
if a1 ≤ q − x ≤ a2

=
([q − x− a1]

+)
2

2(a2 − a1)

Then, with equations (3) and (23), we have

G(q) = h(q − µ) + (h+ b)E(D − q)+ = h

(
q − a1 + a2

2

)
+ h+ b

(a2 − q)2

2(a2 − a1)

=
h(q − a1)

2 + b(a2 − q)2

2(a2 − a1)

and

Z(x, q) = cdE[(q − x)+ −D]+

= cd
([q − x− a1]

+)
2

2(a2 − a1)
.

□
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E.3 Normal distribution

We have

E(Z − z)+ =

∫ ∞

z

(t− z)ϕ(x)dt

=

∫ ∞

z

t√
2π

exp(−t2

2
)dt− z

∫ ∞

z

ϕ(t)dt

=

[
− 1√

2π
exp(−t2

2
)

]+∞

z

− z(1− Φ(z))

= ϕ(z) + zΦ(z)− z

As (Z − z) = (Z − z)+ − (z − Z)+, we have

E(Z − z)+ = E(z − Z)+ − E(Z − z)

= ϕ(z) + zΦ(z)− z − µ+ z

= ϕ(z) + zΦ(z)

Let z = q−µ
σ

and w = q−x−µ
σ

= z − x
σ
. It follows that

G(q) = h(q − µ) + (h+ b)E(D − q)+

= hσz + (h+ b)σ(ϕ(z) + zΦ(z)− z)

= σ {(h+ b)[ϕ(z) + zΦ(z)]− bz}

and

Z(x, q) = cdE(q − x−D)+

= cdσE(w − Z)

= cdσ [ϕ(w) + wΦ(w)]

Finally

v(x, q) = G(q) + Z(x, q)

= σ {(h+ b)[ϕ(z) + zΦ(z)]− bz + cd [ϕ(w) + wΦ(w)]}

We can also write that

v(x, q)

σ
= (h+ b)ϕ(z) + cdϕ(w) + z[(h+ b)Φ(z) + cdΦ(w)− b]− cd

x

σ
Φ(w).

Consider the optimal quantity q∗(x), the normalized optimal quantity z∗(q) = (q∗(x) −
µ)/σ and w∗(x) = z∗(x)− x

σ
. We have

(h+ b)F (q∗(x)) + cdF (q∗(x)− x) = b

⇔(h+ b)Φ(z∗(x)) + cdΦ(w
∗(x)) = b. (33)
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It follows that

v∗(x) = v(x, q∗(x))

= σ[(h+ b)ϕ(z∗(x)) + cdϕ(w
∗(x))]− cdxΦ(w

∗(x))

= σ(h+ b)ϕ(z∗(x)) + cd[σϕ(w
∗(x))− xΦ(w∗(x))]. (34)

When x goes to infinity, w∗(x) goes to −∞, ϕ(w∗(x)) to 0 and Φ(w∗(x)) to 0. It follows
from equations (33) and (34) that

z∗(x) −→
x→+∞

z∗(∞) = Φ−1

(
b

b+ h

)
,

v∗(x) −→
x→+∞

σ(h+ b)ϕ(z∗(∞)).

F Proof of Theorem 6
The lower bound is simple to establish. The AD contract corresponds to the optimal policy
for the asynchronous D-NVP defined in Section 4.1 while the SD contract corresponds to a
heuristic policy for the same problem. It follows that vAD(x) ≤ vSD(x).

To establish the upper bound, we need the following lemma that generalizes Lemma 2.

Lemma 4
vAD(x) ≥ vAD(0)− Txcd

Proof: Under AD contract and some policy π, denote by Qπ
t the order quantity in period t

and by Y π
t the quota that will be consumed in period t.

Let write vAD(x) as vAD(0) minus some quantity:

vAD
π (x) = E

[
T∑
t=1

b(Dt −Qπ
t )

+ + h(Qπ
t −Dt)

+ + cd(Q
π
t −Dt − Y π

t )
+

]

= E

[
T∑
t=1

b(Dt −Qπ
t )

+ + (h+ b)(Qπ
t −Dt)

+

]

− cdE

[
T∑
t=1

((Qπ
t −Dt)

+ − (Qπ
t −Dt − Y π

t )
+)

]

= vAD
π (0)− cdE

[
T∑
t=1

((Qπ
t −Dt)

+ − (Qπ
t −Dt − Y π

t )
+)

]

≥ vAD
π (0)− cdE

[
T∑
t=1

Y π
t

]
(35)

≥ vAD
π (0)− Txcd. (36)

Inequality (35) follows from ((Qπ
t −Dt)

+ − (Qπ
t −Dt − Y π

t )
+) ≤ Y π

t . Inequality (36) follows
from

∑T
t=1 Y

π
t ≤ Tx (the total consumed quota is smaller than the total available quota Tx).
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Hence

vAD(x) = min
π

vAD
π (x)

≥ min
π

vAD
π (0)− Txcd

= vAD(0)− Txcd.

We conclude that vAD(x) ≥ vAD(0)− Txcd. □

Using Lemma 4 and the fact that vSD(x) ≤ vSD(0), we obtain

vSD(x)− vAD(x) ≤ vSD(0)− vAD(0) + Txcd.

As vSD(0) = vAD(0), we conclude that vSD(x)− vAD(x) ≤ Txcd.

G Proof of Theorem 7
Assume in all this proof that x ≥ q∗(∞). For the SD contract, Lemma 3 implies that

vSD(x) = Tv∗(x) = Tv∗(∞). (37)

For the AD contract, we have vAD(x) that is non-increasing in x (see Theorem 5). Hence :

vAD(x) ≥ vAD(∞) = Tv∗(∞) (38)

We have also from Theorem F that :

vSD(x) ≥ vAD(x) (39)

The three equations (37), (38) and (39) imply that vSD(x) ≥ vAD(x) ≥ vSD(x) which implies
that vAD(x) = vSD(x).

H Proof of sensitivity results

Effect of b

When b is sufficiently small, the optimal quantity is zero for the two contracts, which implies
that the cost of both contracts is b · T · E(X) = b · T · λ and therefore β is equal to zero.
Hence, when b is sufficiently small, we have β = 0.

From the definition of β given in (19) and Theorem 6, we have

0 ≤ β ≤ Txcd
vAD(x)

. (40)

When b goes to infinity, vAD(x) goes to infinity while Txcd remains constant. It follows that
β goes to 0 when b goes to infinity.
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Effect of λ

The proof is the same as for the effect of b. It suffices to replace b by λ in the above proof.

Effect of x

When x = 0, the two contracts have no quota and vAD(0) = vSD(0) = Tv∗(0) which implies
that β = 0. When x ≥ q∗(∞), we have from Theorem 7 that vAD(x) = vSD(x) which implies
that β = 0.
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