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Coordination of manufacturing, remanufacturing and
returns acceptance in hybrid

manufacturing/remanufacturing systems

Abstract

This paper deals with the coordination of manufacturing, remanufacturing and
returns acceptance control in a hybrid production-inventory system. We use
a queuing control framework, where manufacturing and remanufacturing are
modelled by single servers with exponentially distributed processing times. Cus-
tomer demand and returned products arrive in the system according to indepen-
dent Poisson processes. A returned product can be either accepted or rejected.
When accepted, a return is placed in a remanufacturable product inventory.
Customer demand can be satisfied as well by new and remanufactured products.
The following costs are included: stock keeping, backorder, manufacturing, re-
manufacturing, acceptance and rejection costs. We show that the optimal policy
is characterized by two state-dependent base-stock thresholds for manufacturing
and remanufacturing and one state-dependent return acceptance threshold. We
also derive monotonicity results for these thresholds. Based on these theoretical
results, we introduce several relevant heuristic control rules for manufacturing,
remanufacturing and returns acceptance. In an extensive numerical study we
compare these policies with the optimal policy and provide several insights.

Keywords: Remanufacturing, manufacturing, returns acceptance control,
inventory control, stochastic dynamic programming, optimal policy, heuristic
policies.

1. Introduction

During the last two decades, quite some attention has been paid to the prob-
lem of jointly controlling the manufacturing of new products and remanufactur-
ing of returned products. In addition to the joint control of manufacturing and
remanufacturing, another important issue is whether or not to accept returns.
There are many situations in practice where controlling the returns acceptance
can result in considerable cost savings, especially when the costs related to ac-
cepting a return are high. These costs include, among others, transportation
costs (related to the collection of returns), stock keeping costs, recovery costs.

In this paper, we consider the hybrid system shown in Figure 1. When
a product is returned, it can be either rejected, or accepted and placed in a
remanufacturable inventory, where it is assumed that in principle all accepted
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returns can be remanufactured. The finished good inventory can be replenished
by manufacturing new products or remanufacturing accepted returns.

Accept

Reject

Returns

Remanufacturable

inventory

Demand

Manufacturing

Remanufacturing

Raw materials

Finished good

inventory

Figure 1: Hybrid system with manufacturing and remanufacturing.

Manufacturing, remanufacturing as well as returns acceptance decisions can
be based on different data. Two important data in this context are the finished
good inventory position (I) and the remanufacturable inventory position (R).
More precisely, I denotes the number of products in the finished good inventory
plus the products actually being manufactured or remanufactured minus back-
logs and R denotes the number of products in the stock of accepted returned
products not yet remanufactured.

We address the problem of jointly controlling manufacturing, remanufactur-
ing, and returns acceptance control in a setting with stochastic processing times
and finite capacities. The structure of the optimal policy is characterized and
helps us to design simple heuristic control rules for manufacturing, remanufac-
turing and returns acceptance. In a numerical study, we compare these heuristic
control rules with the optimal rules.

The setup of the rest of the paper is as follows. Section 2 provides a literature
review and points out our contributions to literature and practice. In Section 3
the assumptions of our queueing control model are detailed. The structure of the
optimal policy is derived in Section 4. In Section 5 we present several heuristic
control rules for manufacturing, remanufacturing and returns acceptance. Then
we compare them numerically to the optimal policy. The paper ends with a
brief summary of the main results.

2. Literature review

The literature review focuses on the setting of Figure 1 with two distin-
guished inventories: the remanufacturable inventory and the finished good in-
ventory. We do not review papers where the remanufacturable inventory is not
modelled explicitly. For instance Fleischmann et al. (2002) assume that returns
can be re-used immediately as new products. In such a situation, the prob-
lem can usually be reduced to a single-dimensional problem where decisions are
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based only on the finished good inventory position. We also restrict our survey
to papers assuming stochastic demands and returns. For exhaustive reviews, we
refer the reader to Rubio et al. (2008); Ilgin and Gupta (2010).

We first begin by papers that investigates the structure of the optimal policy.
In a periodic-review setting, Inderfurth (1997) studies a problem where returns
can be accepted or rejected and unsatisfied demands are backlogged. When the
manufacturing time and the remanufacturing time are equal (and constant), he
proves the optimality of an (Sm, Sr, Sa) policy with Sm the manufacture up
to level, Sr the remanufacture up to level, and Sa the accept (returns) up to
level. The manufacturing decision and the acceptance decision are based on the
aggregate inventory (I + R) while the remanufacturing decision is based only
on the inventory position I. More precisely, this policy states to manufacture
if and only (iff) if I + R < Sm, remanufacture iff if I < Sr and accept returns
iff I + R < Sa. To emphasize the link between decisions and data, we denote
this policy by (Sm[I +R], Sr[I], Sa[I +R]). We will use similar notations in the
rest of this section. If the procurement time exceeds the remanufacturing time
by one period, Inderfurth (1997) characterizes the optimal policy for the special
case where the accepted returns are remanufactured directly without waiting.
For systems with a remanufacturable inventory and non identical manufacturing
and remanufaturing times, the optimal policy has not yet been characterized.
Before Inderfurth, Simpson (1978) had characterized the optimal policy for the
case with zero manufacturing and remanufacturing times.

Simpson (1978), and Inderfurth (1997) consider a situation where they al-
low to dispose accepted return from the remanufacturable inventory. For both
models, the optimal policy structure shows that the disposal option is only used
when the returns arrive in the stock and not later. This makes these models
equivalent to our model with respect to returns acceptance control.

Li et al. (2010) generalizes the results of Simpson (1978) to include fixed man-
ufacturing costs and fixed disposal costs. The optimal policy orders a quantity
Sm−I−R when I+R drops below the reorder point sm and disposes I+R−sa
returns (or at least R returns if I + R − sa < 0) when I + R rises above the
disposal point sa. DeCroix (2006) extends the results of Inderfurth (1997) to a
multi-stage series system where products are remanufactured at the upstream
stage.

In what follows, we review papers focussing on heuristic policies. Kiesmüller
(2003) investigates the problem with non-equal manufacturing and remanufac-
turing times. She proposes two heuristic policies assuming that all returns are
accepted that we can denote by (Sm[I ′], Sr[I]) and (Sm[I + R], Sr[I

′]). She
defines a modified inventory position I ′ and a modified remanufacturable in-
ventory R′, that take into account only part of the products being actually
manufactured or remanufactured.

In a continuous-time review setting, Van der Laan and Teunter (2006) as-
sume that demand and returns occur according to independent Poisson pro-
cesses. They include setup costs for manufacturing and remanufacturing. The
times for manufacturing and remanufacturing are again equal. They investi-
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gate two heuristics policies where all returns are accepted. The (sm[I], Qm,

Qr) policy orders a quantity Qm when the inventory position I drops below the
reorder point sm. The remanufacturing is controlled by a push policy: as soon
as there are Qr products in the remanufacturable stock, these products are sent
to remanufacturing. The authors compare this policy with a pull remanufactur-
ing policy (sm[I], Qm, sr[I], Qr), with sr the reorder point for remanufacturing
products. The authors provide approximate formulas for the optimal values of
the different parameters and compare them to the optimal parameter values in
a numerical study.

Van der Laan et al. (1996b) study a model with the option of rejecting re-
turns upon arrival. The manufacturing time is constant while remanufacturing
is operated by a finite number of servers with exponentially distributed times.
There is a setup cost for manufacturing and no setup cost for remanufacturing.
The authors propose an (sm[I + R], Qm, Sa[R]) push remanufacturing policy
and derive an analytical expression for the average cost. Van der Laan et al.
(1996a) generalize the above policy via an (sm[I+R], Qm, S1

a[I+R], S2
a[R]) push

remanufacturing policy. For a system with remanufacturable stock holding cost,
returns are accepted if both I +R < S1

a, and R < S2
a hold. This returns accep-

tance policy resembles the Kanban generalized policy proposed by Liberopoulos
and Dallery (2003).

Van der Laan and Salomon (1997) consider a model with correlated demand
and return processes, demand and return inter-occurrence times being Coxian-2
distributed. The authors compare the (sm[I], Qm, Qr, Sa[I]) push remanufac-
turing policy with the (sm[I], Qm, sr[I], Sr, Sa[R]) pull remanufacturing policy,
where the system remanufactures Sr − I products if I ≤ sr. Teunter and Vla-
chos (2002) complement the numerical study of this model. In a multi-echelon
setting, Aras et al. (2006) consider a two stage problem with remanufacturing
at the downstream stage.

Korugan and Gupta (2000) have investigated very briefly the same setting
as ours, proposing a Kanban policy. However, neither theoretical results nor
numerical results are presented in this work.

We now summarize our contributions with respect to the literature. Our
first contribution is the characterization of the optimal policy for the setting de-
scribed in Section 1. We prove that the optimal policy, minimizing discounted
or average costs, is characterized by two state-dependent base-stock thresholds
for manufacturing and remanufacturing and one state-dependent returns accep-
tance threshold. We also derive several monotonicity results for these thresh-
olds. To the best of our knowledge, only Simpson (1978), Inderfurth (1997),
and Li et al. (2010) have derived optimality results for the setting of Figure
1. However, they assume constant times and infinite capacities for manufactur-
ing and remanufacturing while we assume stochastic processing times and finite
capacities.

Our second contribution is the comparison of heuristic policies with the
optimal policy. We restrict our attention to heuristics that are consistent with
our theoretical monotonicity results. Most of these heuristic policies have been
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studied in the literature in different contexts but have not been compared with
the optimal policy. Designing from scratch efficient heuristics that jointly control
manufacturing, remanufacturing and acceptance is a difficult task. To deal with
this difficulty, we first consider heuristic policies where only one of the three
controls (manufacturing or remanufacturing or returns acceptance) is a heuristic
and the two other controls are set optimally given this heuristic control. It allows
us to derive insights about the relevance of various heuristics for the three types
of control. Based on this analysis, we derive insights on several heuristics that
jointly control manufacturing, remanufacturing and acceptance.

We do not include setup times, setup costs and disposal options. Setup
times and costs can be neglected typically when manufacturing and remanu-
facturing require the same mindset of the person executing both activities, as
well as the same tools, same materials. We also assume that preemption is
possible. Hereafter we give an example where the above assumptions fit quite
well. Companies like Dell build tailor-made products which may for instance
be returned as commercial returns. The configuration of a return may (almost)
correspond with the configuration of a demanded product. Then, especially in
case of very expensive components, it can be better to start with the return
instead of continuing building new from scratch. Or vice versa, when e.g. the
time to reconfigure a returned product takes far more time than starting new
from scratch.

3. Problem formulation

We consider a single item production-inventory hybrid system where product
demand can be fulfilled either by manufacturing new products or by remanu-
facturing returned products (see Figure 2).

Reject

c
b

B2

B1

Mm

Mr
Accept

c
a

Demand

Poisson process

(rate    )

Manufacturing facility

Exponential processing time

(rate       )

Remanufacturing facility

Exponential processing time

(rate      )

Returns

Poisson process

(rate    )
c
r

c
m

Figure 2: Model of the hybrid system with manufacturing and remanufacturing.

Manufacturing and remanufacturing are modelled by single servers Mm and
Mr with exponentially distributed processing times (rates µm and µr). These
two servers can start or stop processing at any time (preemption is allowed).
The unit manufacturing and remanufacturing costs are respectively denoted by

5
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cm and cr. Returns arrive according to a Poisson process with rate δ inde-
pendent of the demand process. They can be either rejected upon arrival with
cost cb or accepted with cost ca and placed into buffer B1. It is not allowed
to dispose a return once accepted. When a return is accepted, it is placed in
a remanufacturable product inventory B1. Via the remanufacturing server, re-
manufacturable products can be moved to the finished good inventory B2. In
parallel, the manufacturing server can also fill the finished good inventory B2.
Inventory B2 sees customer demands arriving according to a Poisson process
with rate λ. Customer demand can be satisfied as well by new or remanufac-
tured products. We assume that backorders are allowed and there are no storage
restrictions. At time t, the net inventory level at B2 (resp. B1) is denoted by
X2(t) (resp. X1(t)). Note that X2(t) can be negative due to backorders. When
buffer B1 is empty, remanufacturing is not possible. Per unit of time, the sys-
tem incurs in state x = (x1, x2) a cost rate C(x) = h1x1 + h2x

+
2 + bx−

2 where
hi is the unit inventory holding cost at buffer Bi, b is the unit backlog cost,
x+ = max{0, x} and x− = −min{0, x}. To ensure the stability of the system,
we have to assume that the demand rate is smaller than the total production
capacity rate: λ < µm +min{µr, δ}.

A control policy π = (πa, πr, πm) consists of three control rules: the re-
turns acceptance control rule πa, the remanufacturing control rule πr, and the
manufacturing control rule πm. The returns acceptance control rule (respec-
tively manufacturing control rule, remanufacturing control rule) specifies when
to accept returned products (respectively when to produce new items, when to
remanufacture returned products). In the rest of the paper, a control policy will
be called for short a policy.

The discounted expected cost over an infinite horizon for a policy π, with
x = (x1, x2) the state of the system when t = 0 and α > 0 the discount rate, is
given by :

vπ(x) = Eπ

x

[

+∞
∫

0

e−αtC(X(t))dt

]

+Eπ

x

[

∞
∑

i=1

(

e−αφa(i)ca + e−αφb(i)cb

+e−αφm(i)cm + e−αφr(i)cr

)

]

.

where φa(i), φb(i), φm(i) and φr(i) respectively represent the ith event time
when either a return is accepted, a return is rejected, a product is manufactured
or an accepted return is remanufactured. The objective is to minimize the
expected discounted cost over an infinite horizon. Let v⋆ be the optimal value
function defined by

v⋆(x1, x2) = min
π

{vπ(x1, x2)} .

The optimal policy is denoted by π⋆ = (π⋆
a, π

⋆
r , π

⋆
m).

We are also interested in the average cost problem over an infinite hori-
zon. The theoretical results derived in the next section for the discounted cost
problem pertains to the average cost problem (Puterman, 1994).
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4. Characterization of the optimal policy

The discounted cost problem can be formulated as a continuous time Markov
Decision Process (MDP). After uniformization, rate τ = λ+µr+µm+δ+α, we
can transform the continuous time MDP into a discrete time MDP (Puterman,
1994). The optimal value function satisfies the following optimality equations:

v⋆ = T v⋆, (1)

with

T v(x1, x2) =
1

τ





C(x1, x2) + λv(x1, x2 − 1)
+δTav(x1, x2) + µrTrv(x1, x2)

+µmTmv(x1, x2)



 , (2)

and
Tav(x1, x2) = min{v(x1, x2) + cb, v(x1 + 1, x2) + ca},
Tmv(x1, x2) = min{v(x1, x2), v(x1, x2 + 1) + cm},

Trv(x1, x2) =











v(x1, x2) if x1 = 0,

min{v(x1, x2), v(x1 − 1, x2 + 1) + cr}

if x1 > 0.

The operators Ta, Tr and Tm are related to respectively the returns accep-
tance control, the remanufacturing control and the manufacturing control.

In order to prove that the optimal policy has some structural properties,
we will show that the optimal value function is supermodular and superconvex
(Koole, 1998). Let V be a set of real-valued functions in N×Z with the following
properties.

Definition 1. If v ∈ V , then for all (x1, x2) ∈ N×Z:

(a) v is supermodular :

v(x1 + 1, x2 + 1)− v(x1 + 1, x2)
−v(x1, x2 + 1) + v(x1, x2) ≥ 0,

(b) v is superconvex :



















v(x1 + 2, x2)− v(x1 + 1, x2 + 1)

−v(x1 + 1, x2) + v(x1, x2 + 1) ≥ 0, and

v(x1, x2 + 2)− v(x1 + 1, x2 + 1)

−v(x1, x2 + 1) + v(x1 + 1, x2) ≥ 0.

Note that supermodularity and superconvexity imply together convexity in
directions x1 and x2, i.e. :

{

v(x1 + 2, x2)− 2v(x1 + 1, x2) + v(x1, x2) ≥ 0, and

v(x1, x2 + 2)− 2v(x1, x2 + 1) + v(x1, x2) ≥ 0.

7
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We show in Appendix A that if a value function v is in V then T v is also in
v. As operator T is a contraction mapping, it implies the optimality equations
(1) that the optimal value function v∗ is also in V . We are now ready to state
our main result on the structure of the optimal policy (see Appendix A for a
detailed proof).

Theorem 1. The optimal value function v∗ belongs to V . Further, the optimal
policy π⋆ consists of two state-dependent base-stock levels Sm(x1) and Sr(x1) for
manufacturing and remanufacturing and one state-dependent return acceptance
threshold Sa(x1) such that:

• Produce at Mm iff x2 < Sm(x1). Moreover Sm(x1) − 1 ≤ Sm(x1 + 1) ≤
Sm(x1).

• Remanufacture at Mr iff x2 < Sr(x1). Moreover Sr(x1) ≤ Sr(x1 + 1).

• Accept returns in B1 iff x2 < Sa(x1). Moreover Sa(x1 + 1) ≤ Sa(x1)− 1.

So the optimal policy consists of three switching curves. Each switching
curve divides the state space in two and is associated with one decision to
take. To illustrate Theorem 1, we provide in Figure 3 the switching curves as a
function of the state of the system for one set of parameter values. These curves
are obtained with a value iteration algorithm based on Bellman equations (1).
More details on the computational procedure are given in Appendix D. The
properties of the switching curves illustrated in Figure 3 will be used in Section
5 to build simple threshold policies that approximate the optimal policy.

When h1 ≥ h2, we can derive the following additional intuitive result which
states that a push remanufacturing policy is optimal when it is more expensive
to keep in stock remanufacturable products rather than finished good products.
The proof can be found in Appendix B.

Theorem 2. If h1 ≥ h2, a push remanufacturing policy is optimal (remanufac-
ture whenever x1 > 0).

5. Heuristic policies

The optimal policy π⋆ = (π⋆
a, π

⋆
r , π

⋆
m) consists of three control rules: the

returns acceptance control rule π∗

a, the remanufacturing control rule π∗

r , and the
manufacturing control rule π∗

m. Each optimal control rule can be summarized
by a rather complex switching curve which delimitates respectively when to
manufacture or not, when to remanufacture or not and when to accept returns
or not (see Theorem 1 and Figure 3). In the literature, simple heuristic threshold
control rules are used instead of these complex switching curves.

The main purpose of this section is to compare the optimal policy π⋆ to the
heuristic policies used in the literature. If heuristic control rules are used for
the three decisions (manufacturing, remanufacturing and returns acceptance),
it is difficult to explain the gap with the optimal policy. In order to isolate the
effect of one heuristic control rule on the optimality gap, we introduce policy

8
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a, r, m

Sm(x1)
Sr(x1)
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Figure 3: Average cost optimal policy for the instance {δ = 0.6, µr = 0.6,
µm = 0.6, λ = 1, h1 = 1, h2 = 5, b = 10 , ca = cr = cm = cb = 0}, with a,m, r

respectively denoting the areas where the system accepts returns, manufactures,
and remanufactures products.

π⋆(πm) which is the best policy given that manufacturing control rule πm is
applied. For instance, πm can consist in manufacturing new products when the
serviceable inventory is smaller than some threshold. Similarly we can define
respectively π⋆(πr) and π⋆(πa) as the best policies given that remanufacturing
control rule πr and returns acceptance control rule πa are applied. In a second
step, we study joint heuristic policies where the three rules (manufacturing,
remanufacturing and returns acceptance) are heuristic rules.

5.1. Set-up of numerical experiments

Our numerical results are based on 6160 instances being the combinations
of

α ∈ {0.1, 0}, λ = 1, δ ∈ {0.2, 0.5, 0.8, 1.1},
µr ∈ {0.2, 0.5, 1, 2}, µm ∈ {0.2, 0.5, 1, 2},

cb = cr = 0, cm ∈ {0, 5, 10}, ca ∈ {0, 5, 10},
h1 = 1, h2 ∈ {1.5, 5, 10}, b ∈ {2, 10, 100},

that satisfy the stability condition λ < µm+min{µr, δ}. We explain in Appendix
C why we can set cb = cr = 0, λ = 1 and h1 = 1 without loss of generality.

For each of these instances, we compute the average cost (α = 0) and the
discounted cost (α = 0.1) for the optimal policy and of for various heuristic
policies. Our computational procedure is detailed in Appendix D. We denote
by g(π) the average cost (respectively discounted cost) of a policy π when
α = 0 (respectively α = 0.1). In the discounted cost case, we compute the value
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functions when the initial state is x = (0, 0). The deviation between a policy π

and the optimal policy π∗ is denoted by

∆g(π) =
g(π)− g(π⋆)

g(π⋆)
.

The quantity ∆g(π) represents the percentage cost increase when using policy π

instead of the optimal policy. For a given policy π, we denote the average devia-
tion over the 6160 instances by ∆g(π), the maximal deviation by max{∆g(π)},
and the percentage of instances with deviation lower than β% by ∆g(π) < β%.

5.2. Manufacturing control rules

From Theorem 1 the optimal manufacturing switching curve Sm(x1) has
a slope between 0 and −45◦ (see Figure 4). The two extreme cases are the
horizontal switching curve and the decreasing diagonal switching curve. We
limit our attention to manufacturing control rules that are consistent with the
optimal manufacturing rule.

Decreasing

diagonal 

Horizontal

Optimal

Sm(x1)

x1

x2

Figure 4: Slope of the optimal manufacturing switching curve.

In the following description of the heuristic manufacturing control rules, Zm

denotes a policy parameter.

[x2]m : Manufacture iff x2 < Zm (see Figure 5a).

[x1 + x2]m : Manufacture iff x1 + x2 < Zm (see Figure 5b).

For a given Zm, we compute the optimal policy by dynamic programming
and then we optimize over all possible values of Zm (see Appendix D for details).

Manufacturing control rules [x2]m and [x1 + x2]m have been studied respec-
tively in (van der Laan and Salomon, 1997; Korugan and Gupta, 2000; van der
Laan and Teunter, 2006) and in (Simpson, 1978; Inderfurth, 1997; van der Laan
et al., 1996a,b; Kiesmüller, 2003).
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(a) [x2]m

x1

x2

man.

idle

Zm

(b) [x1 + x2]m

Figure 5: Heuristic manufacturing control rules

Table 1 provides a summary of our extensive numerical study comparing the
different manufacturing control rules with the optimal manufacturing control
rule. We observe that optimally controlling manufacturing can make a signif-
icant difference in some cases. Moreover, one instance has a cost deviation
greater than 6% for the two heuristic manufacturing control policies.

π ∆g(π) max{∆g(π)} ∆g(π) < 1%
π⋆([x2]m) 0.39% 9.82% 87.9%

π⋆([x1 + x2]m) 1.03% 23.7% 69.9%

Table 1: Comparison of heuristic manufacturing control rules to the optimal.

However, the [x1]m and [x1 + x2]m control rules have excellent average per-
formances. The main criterion for choosing between [x2]m and [x1+x2]m is the
ratio µr to µm. In Figure 6 (and other numerical experiments not reported) we
observe that [x1 + x2]m is near optimal when the remanufacturing rate µr is
large relative to the manufacturing rate µm. If µr is large, a remanufacturable
product can be available quickly to serve demand, so it is logical to control man-
ufacturing with the aggregate inventory level (x1 + x2). Inversely, when µr is
small, a remanufacturable product can not be available to serve demand before
a long time, so manufacturing control rule should be based on [x2]m. Our ob-
servations are consistent with Simpson (1978) and Inderfurth (1997) who proves
that controlling manufacturing with [x1 + x2]m is optimal when manufacturing
and remanufacturing times are constant and equal and when there is no capacity
constraint.

The main insights derived in this section can be summarized as follows :

• Implementing the optimal manufacturing control rule can lead to large cost
reductions in comparison with heuristic control rules [x2]m and [x1+x2]m.
Moreover, there exist instances for which the two heuristic manufacturing
control rules have poor performances.

• The manufacturing control rule [x2]m that uses only local data is nearly
optimal when the remanufacturing time is large.

• The manufacturing control rule [x1+x2]m that uses two types of data (the
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Figure 6: The effect of µr on the performances of the manufacturing control
rules (δ = 0.8, µm = 1, λ = 1, h1 = 1, h2 = 4, b = 5, ca = cr = cm = cb = 0,
α = 0).

remanufacturable inventory level and the finished good inventory level)
performs well when the remanufacturing time is small.

5.3. Remanufacturing control rules

In the same spirit of the previous section, we focus on remanufacturing con-
trol rules that are consistent with the structure of the optimal policy established
in Theorem 1 and illustrated in Figure 7. The two extreme cases are the hori-
zontal switching curve and the vertical switching curve.

In the following description of the heuristic remanufacturing control rules, we
denote by Zr a remanufacturing control rule parameter that will be optimized
in the numerical study:

[x2]r : Remanufacture iff x2 < Zr (see Figure 8a).

[x1]r : Remanufacture iff x1 > Zr (see Figure 8b).

[push]r : Remanufacture whenever possible, i.e. when x1 > 0 (see Figure 8c).

Control rules [x2]r and [push]r have been respectively studied in (Simpson, 1978;
Inderfurth, 1997; van der Laan and Salomon, 1997; Korugan and Gupta, 2000;
van der Laan and Teunter, 2006; Kiesmüller, 2003) and in (van der Laan et al.,
1996a,b; van der Laan and Salomon, 1997; van der Laan and Teunter, 2006).
As far as we know, control rule [x1]r has not been mentioned in the literature
before.

The extensive numerical study shows that the [x2]r control rule performs
extremely well with an average deviation of 0.06% and a worst-case deviation

12
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Figure 7: Slope of the optimal remanufacturing switching curve.
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rem.

(c) [push]r

Figure 8: Heuristic remanufacturing control rules.

of 3.41% (see Table 2). The [push]r and the [x1]r control rules have exactly the
same performances. This might look surprising but there is a simple explanation
for this. The [push]r control rule is a special case of the [x1]r control rule with
Zr = 0. One can easily show that the optimal Zr for [x1]r is precisely 0 and the
two control rules are then equivalent.

π ∆g(π) max{∆g(π)} ∆g(π) < 1%
π⋆([x2]r) 0.06% 3.41% 99.0%
π⋆([x1]r) 4.70% 135% 59.4%

π⋆([push]r) 4.70% 135% 59.4%

Table 2: Comparison of heuristic remanufacturing control rules to the optimal.

When h1 ≥ h2, the [push]r control rule is optimal (see Theorem 2). As the
[push]r control rule is a special case of the [x2]r control rule, the [x2]r control
rule is also optimal when h1 ≥ h2. Figure 9 plots the effect of ratio h1 on the
average costs. We observe that the [x2]r control rule is always nearly optimal.
We also see that the [push]r control rule can have a poor performance when
h1 < h2.
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Figure 9: The effect of h1 on the performances of the manufacturing control
rules (δ = 0.8, µr = µm = λ = 1, h2 = 2, b = 5, ca = cr = cm = cb = 0, α = 0).

The main insights derived in this section can be summarized as follows :

• Controlling remanufacturing with only the finished good inventory data is
sufficient since the [x2]r control rule has extremely good performances.

• The [push]r control rule is optimal when h1 ≥ h2 and is near optimal
when h1 close to h2. Otherwise, it might have very poor performances.

5.4. Returns acceptance control rules

The form of the optimal returns acceptance switching curve, according to
Theorem 1 is sketched in Figure 10. The two extreme cases are the decreasing
diagonal switching curve and the vertical switching curve.

In the following description, Za is a returns acceptance control rule param-
eter that will be optimized in the numerical study.

[x1 + x2]a : Accept returns iff x1 + x2 < Za (see Figure 11a).

[x1 + x
+
2 ]a : Accept returns iff x1 + x+

2 < Za (see Figure 11b).

[x1]a : Accept returns iff x1 < Za (see Figure 11c).

[acc]a : Accept all returns (see Figure 11d).

[rej]a : Reject all returns (see Figure 11e).

Control rules [x1 + x2]a, [x1 + x+
2 ]a, [x1]a and [acc]a have respectively been

investigated in (Simpson, 1978; Inderfurth, 1997), (Korugan and Gupta, 2000),
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Figure 10: Slope of the optimal returns acceptance switching curve.
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Figure 11: Heuristic acceptance control rules.

(van der Laan et al., 1996b; van der Laan and Salomon, 1997) and (van der
Laan and Teunter, 2006; Kiesmüller, 2003).

The control rules [acc]a and [rej]a have clearly the worst performances since
they are special cases of the three other control rules. For instance [x1]a is
equivalent to [acc]a when the policy parameter Za goes to ∞ and to [rej]a
when Za goes to −∞.

Table 3 provides a summary of our numerical study comparing the accep-
tance control rules. We first observe that controlling optimally the returns
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acceptance can make a significant difference for each of the heuristic acceptance
control rule. The five control rules have a worst-case performance larger than
17%. The worst-case performance for control rules [acc]a and [rej]a is even
not bounded, due to instability reasons. Under [acc]a, the remanufacturable
inventory is unstable when the return rate δ exceeds the remanufacturing rate
µr. Under [rej]a, the backlog queue is unstable when the system is under-
capacitated (λ ≥ µr).

πa ∆g(π) max{∆g(π)} ∆g(π) < 1%
[x1 + x2]a 1.00% 26.4% 76.7%
[x1 + x+

2 ]a 1.02% 17.6% 71.9%
[x1]a 1.75% 25.3% 53.6%
[rej]a ∞ ∞ 8.66%
[acc]a ∞ ∞ 13.5%

Table 3: Comparison of heuristic acceptance control rules to the optimal.

Among the 6160 instances, one instance has a percentage cost increase ∆g

greater than 7% for the five acceptance control rules under consideration. So, we
observe that optimally controlling the returns acceptance can make a significant
difference.

If we focus on control rules [x1 + x2]a, [x1 + x+
2 ]a and [x1]a, it is difficult

to decide when to use one control rule or the other. This is illustrated on
Figure 12 which shows the non-monotonic effect of the remanufacturing rate on
the deviation. In other numerical experiments (not reported here), we observe
other behaviors. In all our numerical tests, we always observe that control rule
[x1 + x2]a should be preferred to [x1 + x+

2 ]a when µr is large enough. When
µr is large, stocks B1 and B2 can be merged into a virtual single stock which
leads to good performances of the that control rule [x1+x2]a. When µr is small
enough, [x1 + x+

2 ]a outperforms [x1 + x2]a . In this case, the remanufacturing
server is the bottleneck and it is useless to accept an additional return since the
remanufacturing facility will not process it quickly enough. Hence, controlling
returns with [x1 + x+

2 ]a is more efficient since it does not take into account
backlogs. For the same reasons, when µr is very small, the control rule [x1]a
may outperform other control rules. Note that control rule [x1]a only considers
local data for controlling returns acceptance.

The main insights derived in this section are :

• For all heuristic acceptance control rules, the cost deviation from the op-
timal policy can be large and implementing the optimal manufacturing
control can lead to large cost reductions.

• There exists instances for which all heuristic acceptance control rules have
poor performances.

• For short remanufacturing times, the [x1 + x2]a control rule should be
preferred to [x1 + x+

2 ]a and vice versa.
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Figure 12: The effect of µr on the performances of the acceptance control rules
(δ = 0.8, µm = 1.2, λ = 1, h1 = 1, h2 = 2, b = 5, ca = cr = cm = cb = 0,
α = 0).

• Control rule [x1]a using only local data might have very good perfor-
mances.

5.5. Joint heuristic strategies

In this section we consider heuristic policies that simultaneously use heuristic
control rules for manufacturing, remanufacturing and acceptance. Consistently
with our previous insights, we exclude control rules that have poor performances
and focus on the following control rules :

• Manufacturing : [x2]m and [x1 + x2]m

• Remanufacturing : [x2]r

• Returns acceptance : [x1 + x2]a, [x1 + x+
2 ]a and [x1]a

In the literature (see Section 2) several heuristic policies can be seen as
combinations of these control rules. We need to slightly adapt them to the
situation studied in this paper. As we do not include setup costs, we set the
lot size Q to 1. As preemption is allowed, we replace I (the inventory position
of finished goods) by x1 and R (the inventory position of remanufacturable
products) by x2.

In the literature, three heuristic policies meets the above conditions :

The Kanban (KB) policy :
(

[x1 + x+
2 ]a, [x2]r, [x2]m

)

which has been inves-
tigated by Korugan and Gupta (2000), see Figure 13a.
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The Fixed buffer (FB) policy : ([x1]a, [x2]r, [x2]m) which has been investi-
gated by van der Laan and Salomon (1997), see Figure 13b.

The Base stock echelon (BSE) policy : ([x1 + x2]a, [x2]r, [x1 + x2]m) which
has been investigated by Simpson (1978), see Figure 13c.

x1

x2

Za

Z�
Z�

(a) KB

x1

x2

Za

Z�
Z�

(b) FB

x1

x2

Za

Z�
Z�

(c) BSE

Figure 13: Heuristic policies adapted from the literature.

In sections 5.2 and 5.4 we observed that µr is a key parameter when choosing
an efficient heuristic control. When µr is small, we observed that the preferred
control rules are [x1+x+

2 ]a, [x2]r, and [x2]m. The policy with such control rules
is the KB policy. In the same way, when µr is large, the preferred control rules
are [x1 + x2]a, [x2]r, and [x1 + x2]m. The policy with such control rules is the
BSE policy.

For intermediate values of µr, we look at two new combinations :

The Base stock return (BSR) policy : ([x1 + x2]a, [x2]r, [x2]m), see Figure
14a.

The Kanban return (KBR) policy :
(

[x1 + x+
2 ]a, [x2]r, [x1 + x2]m

)

, see Fig-
ure 14b.
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(b) KBR

Figure 14: New heuristic policies.
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Policies ∆g max{∆g} ∆g < 1%
From lit. KB 1.68% 29.3% 52.9%

FB 2.36% 32.4% 36.2%
BSE 4.02% 67.4% 37.4%

New BSR 1.58% 26.5% 58.6%
KBR 3.13% 35.2% 35.2%

Table 4: Comparison of the heuristic policies with the optimal policy.

Table 4 summarizes our numerical results for these five heuristic policies.
We can not claim that one heuristic policy outperforms all other heuristic

policies. It is consistent with our analysis on each control rule. All control rules
can have excellent results in some situations and poor results in other situations.
Among the 6160 instances, one instance has a percentage cost increase of 8.5%
for the five heuristic policies. Hence the optimal control can make a significant
difference.

6. Conclusion

In this paper we have studied an hybrid manufacturing/remanufacturing sys-
tem with limited capacity and stochastic demand, returns and processing times.
We have partially characterized the structure of the optimal policy. Based on
this characterization, we have selected several heuristic control rules for man-
ufacturing, remanufacturing and returns acceptance. An extensive numerical
study has lead to the following insights. On the one hand, controlling remanu-
facturing with a fixed buffer control rule (using only local data) gives excellent
results. On the other hand, the optimal manufacturing control and the optimal
returns acceptance control can lead to large cost reductions in comparison with
classic heuristic control rules that are used in the literature. Instance based
heuristics can also lead to large cost increases.

We can see several avenues for research. Assumptions like no setup time
and cost and exponential processing times could be relaxed. It would be also
interesting to add the possibility to dispose accepted returns. Our model also
assumes that preemption is allowed. Without preemption, the problem becomes
significantly more complex and requires to add state variables to keep track of
the state of the manufacturing and remanufacturing servers (on or off), offering
another research direction.
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Appendix A. Proof of Theorem 1

Because T is a contracting mapping, the fixed point theorem ensures that
vn+1 = T vn converges to the optimal value function v∗, which is the unique
solution of the optimality equation v⋆ = Tv⋆ (Puterman, 1994). Moreover, T is
a convex combination of cost function (C) and event operators denoted TA(1),
TCJ(1,2), and TA(2) in Koole (1998) for respectively Ta, Tr, and Tm. Koole
(1998) proves that this operators propagates the properties of supermodularity
and superconvexity. If we take v0(x1, x2) = 0 ∀(x1, x2), it is clear that v0 ∈ V

and then via induction v⋆ ∈ V .
As v∗ ∈ V , supermodularity and superconvexity ensure that the three

switching curves are well defined. For instance, convexity in x2 ensures that
we can define the manufacturing threshold Sm(x1) = min[x1|v(x1, x2 + 1) −
v(x1, x2) + cm > 0]. The monotonicity results for the switching curves are also
implied by the fact that v∗ ∈ V . For instance, supermodularity ensures that
Sm(x1 + 1) ≤ Sm(x1).

Appendix B. Proof of Theorem 2

We want to prove by induction that ∆e2−e1
v⋆(x1, x2) = v⋆(x1 − 1, x2 +1)−

v⋆(x1, x2) ≤ 0. Let v be the value function such that ∆e2−e1
v ≤ 0. We want to

prove that ∆e2−e1
T v ≤ 0.
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Koole (2006) proves that operators Ta, Tr, and Tm propagate the property
∆e2−e1

v ≤ 0. In addition, we have

∆e2−e1
c(x1, x2) = c(x1 − 1, x2 + 1)− c(x1, x2)

=

{

h1 − h2 ≤ 0 if x2 ≥ 0,

−h1 − b ≤ 0 else.

So we can conclude with (2) that ∆e2−e1
T v ≤ 0 and by induction that ∆e2−e1

v⋆ ≤
0.

Appendix C. System simplification

The set of parameters for our problem is large:

{δ, µr, µm, λ, h1, h2, b, c
a, cb, cm, cr, α}.

We want to simplify our model by reducing the number of parameters for the
average cost criteria.

Let fm(π), fr(π), fa(π) and fd(π) be respectively the average flow of product
from manufacturing, from remanufacturing, of accepted returns and of rejected
returns. The average cost C(π) = fm(π)cm+fd(π)c

b+fa(π)c
a+fr(π)c

r+H(π),
with H(π) the average cost of storage and backlogs. We know that fr(π) =
fa(π) = δ − fd(π) and fm(π) = λ − δ + fd(π) so C(π) = fa(π)(c

a − cb + cr −
cm) + δcb + λcm +H(π).

Without loss of generality we can set cb = cr = cm = 0 and create a relative
acceptance cost c = ca − cb + cr − cm. Note that c can be negative. The
actual system has the same average cost optimal policy and its average cost is
the same with a constant offset δcb + λcm. This simplification does not hold
for discounted cost, however we will assume cb = cr = cm = 0 to reduce the
number of parameters for the discounted case. This type of approximation is
standard in the literature (Veatch and Wein, 1994).

Moreover, we assume λ = 1 and h1 = 1 without loss of generality. Then, the
initial set of parameters

{δ, µr, µm, λ, h1, h2, b, c
a, cb, cm, cr, α}

reduces to
{δ′, µ′

r, µ
′

m, h′

2, b
′, c, α′}.

In the numerical study, we can not consider negative values of c because
the expected discounted/average cost could be 0 or negative. In this case the
computation is longer because the convergence of the fixed point algorithm is
longer when the cost is close to 0. Moreover the comparison between policies is
difficult when some of the costs are positives and others negatives. So we set
cb = cr = 0 and ca, cm ∈ {0, 5, 10}.
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Appendix D. Computational procedure

To compute the optimal policy and the optimal cost, we truncate the state
space in three directions. Let M1, M+

2 and M−

2 denote three integers with
0 ≤ x1 ≤ M1 and M−

2 ≤ x2 ≤ M+
2 . We apply a value iteration algorithm

(Puterman, 1994) to this truncated state space and we increase the state space
until the discounted/average cost is no more sensitive to the truncation level
with 5 digits accuracy.

The approach to compute the cost of a heuristic policy is similar. We only
need to change the operators. For instance, the operator of returns acceptance
with heuristic control [x1 + x2]a becomes:

T̃av(x1, x2) =

{

v(x1 + 1, x2) if x1 + x2 < Za

v(x1, x2) else

When optimizing the policy parameters, we make the assumption that the
expected cost is unimodal with respect to policy parameters. The assumption
of unimodality has been checked on several instances.
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