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ABSTRACT
We consider a fleet of elementary robots that transport items within a warehouse.
These elementary robots can be connected in different ways to transport loads of
different types. The capacity of the resulting poly-robot depends on its configuration
and on the load type being transported. For each load type, we have to meet a
transportation demand within a given time interval. Several poly-robots may be
required either simultaneously or sequentially to meet this demand. We have to
decide how to decompose the demand into transportation tasks. A transportation
task specifies the load type, the corresponding number of loads and the configuration
of the involved poly-robot. The objective is to determine the transportation tasks
and schedule them over time, in order to minimize the investment cost (related to
the fleet size) and the running costs (related to the use of the fleet). We show that
the resulting Multi-Bot problem is strongly NP-hard. We also study several special
cases that can be solved in polynomial time and derive from our theoretical results
an efficient heuristic for the general case. A numerical study shows that the heuristic
algorithm is effective even for large instances.
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1. Introduction

1.1. Industrial motivation

This work is motivated by the increasing robotization of manufacturing and logistics
processes. New generation of mobile robots is now able to cooperate in order to handle
or transport large or heavy objects. For example, the Mecabotix company designs and
prototypes poly-robots such as the M3-Cooper models (see Figure 1). A poly-robot
refers to a vehicle obtained by combining together several elementary robots. A p-
bot refers to a poly-robot involving exactly p elementary robots. We call the number
p a configuration. These poly-robots can be reconfigured to adapt to the loads to be
transported (in terms of size and mass) and to navigate independently in environments
such as warehouses, manufacturing plants or construction sites. A load is a physical
object (a box, a pallet, etc) to be transported, and not a number that would indicate a
weight or a volume. A load type is a group of loads that share the same characteristics
with respect to the transportation process. Figure 1 shows two examples of M3-Cooper
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poly-robots carrying different load types. The 1-bot in Figure 1(a) carries a box, while
the 4-bot in Figure 1(b) carries a pallet.

(a) 1-bot (b) 4-bot

Figure 1. Examples of M3-Cooper reconfigurable poly-robots (MecaBotiX 2022)

Figure 1 Alt text: The first figure shows a mono-bot carrying a box and the second figure shows a quadri-bot
carrying a palette.

In partnership with the LIMOS CNRS laboratory, we have collaborated with the
Mecabotix company to address the following problem (Chaikovskaia, Gayon, and Mar-
jollet 2022). Different load types (such as small boxes, large boxes, pallets, etc.) must
be transported within a warehouse between a pickup and delivery platform and des-
ignated storage areas within a specified time horizon. Depending on the number of
elementary robots in a given configuration, the resulting poly-robot can carry dif-
ferent types and quantities of loads. Poly-robots can be reconfigured over time in a
negligible time. For example, a 4-bot and a 2-bot can be reconfigured into one 3-bot
and three 1-bots. The time horizon is divided into elementary periods (e.g. intervals
of 15 minutes). Dividing the time space into periods responds to the need for synchro-
nization between the different processes (transportation, reconfiguration, production
and logistics). Between two periods, poly-robots can be reconfigured, and these config-
urations remain fixed for the rest of the period. The number of loads (i.e. the number
of physical objects) of a given load type that a poly-robot can transport in a given
period depends on the load type and the configuration. For each load type, there is a
transportation demand to be met on the time horizon. This demand can be satisfied
through several transportation tasks that can be executed sequentially or in parallel,
relying on the same poly-robot or on several poly-robots (possibly in different con-
figurations). A transportation task specifies the load type, the number of loads and
the configuration of the involved poly-robot. Deriving the transportation tasks from
the demand is therefore a key aspect of the problem. Another important issue is how
to assign these transportation tasks to the periods. There are two types of costs. In-
vestment costs are related to the number of elementary robots in the fleet. Running
costs are related to the use of the robot fleet (e.g. maintenance costs, energy costs,
wear costs). The objective is to determine the transportation tasks and schedule them
over time, in order to minimize the sum of investment and running costs. We call this
problem Multi-Bot.

1.2. Literature review

In many industrial contexts, automated production must adapt to rapidly changing
demands for a wide variety of customized products. This flexibility requirement can be
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met through reconfiguration. Once an operation (whether related to the production of
goods or their transportation) has been completed, the supporting infrastructure can
be redesigned by adding, removing, or replacing components, or by modifying the con-
nections between these components. These components may include hardware (such
as robots and instruments), software, or human resources. They work as renewable
resources (see Dauzère-Pérès, Roux, and Lasserre (1998); Lee et al. (2013); Hart-
mann and Briskorn (2022)) that move within the production area to match current
production or transportation needs during a given production cycle. By strategically
allocating these resources to specific operations, one can not only complete the task
but also improve its speed, increase throughput, and reduce costs.

In what follows, we review several streams of research that share characteristics with
the specific Multi-Bot problem, which arose from the concerns of the Mecabotix
company. First, it is closely related to the sizing and control of AGV (Automated
Guided Vehicles) fleets, since our poly-robots may be considered as some kind of AGV.
Next, there are also similarities with the well-known RCPSP (Resource Constrained
Project Scheduling Problem) and the RIP (Resource Investment Problem), because of
the scheduling features contained in our problem (elementary robots as resources, and
assignment of the transportation tasks to the periods). The Multi-Bot problem has
also common features with the line balancing problem, due to the specific structure of
our objective function which leads to a balanced distribution of the use of elementary
robots between periods. Finally, it is related to the bin packing problem (Garey and
Johnson 1979), as we shall see during the structural analysis of the problem (see
Section 4).

The literature on AGV fleet sizing and operational planning is extensive (see Fraga-
pane et al. (2021) for a survey on planning and control of autonomous mobile robots
for intralogistics). It is important to note that robots are typically expensive, and
the sizing of a robot fleet is a critical issue. The literature on robot fleet sizing deals
with either stochastic (see e.g. Koo, Jang, and Suh (2004); Choobineh, Asef-Vaziri,
and Huang (2012)) or deterministic models (see e.g. Egbelu (1987); Rjeb, Gayon, and
Norre (2021)). The literature considers a variety of objective functions. Most often,
the objective is to minimize the number of robots required to complete a set of trans-
portation tasks within a given time interval. Several works consider more elaborate
cost functions (see e.g. Etezadi and Beasley (1983); Beaujon and Turnquist (1991);
Sinriech and Tanchoco (1992); Chaikovskaia et al. (2021)).

The proximity between the Multi-Bot problem and the RCPSP scheduling prob-
lem, in particular its multi-mode variants, arises from the role played by the elemen-
tary robots as renewable resources, that are transferred between transportation tasks.
There is a substantial body of literature on RCPSP (see Hartmann and Briskorn (2022)
for a survey). In multi-mode RCPSP (see Dauzère-Pérès, Roux, and Lasserre (1998);

Wḱeglarz et al. (2011); Beşikci, Bilge, and Ulusoy (2015); Tao and Dong (2018); Liu
et al. (2018)), a job can be executed in different modes, each of which affects both
its duration and its resource requirements. In many cases, adapting resources to meet
job targets may induce a setup that combines additional time and economic cost. The
RIP is the dual problem of the RCPSP. While the RCPSP aims to find the shortest
project duration given the available amount of resources, the RIP seeks to minimize
the total resource cost given a time limit on the project. It was first introduced by
Möhring (1984) who presents it as a problem of ”scarce time” while the RCPSP is
a problem of ”scarce resource”. The multi-mode variant of the RIP, where a job can
be executed in different modes, was also investigated (Hsu and Kim 2005; Gerhards
2020).
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The above performance criterion leads us to balance, as much as possible, the dis-
tribution of transportation tasks across periods. This balancing feature is typical of
line balancing which usually refers to the distribution of jobs among machines and
periods on an assembly line to minimize machine stress and enhance the robustness
of the production system (see Leus and Herroelen (2004); Dolgui and Proth (2013);
Özceylan et al. (2019); Boysen, Schulze, and Scholl (2022)). In some version of the line
balancing problem, the objective is to minimize the number of workstations (Moon,
Logendran, and Lee 2009). It’s worth mentioning the work of Battäıa et al. (2015)
who consider an assembly line in the automotive industry. In this paper, the resources
are identical, and the processing time of a task depends on the number of workers
assigned to it. Workers can move from one station to another at the end of each task,
with negligible travel time. The objective is to assign tasks to workers in order the
minimize the number of workers.

Although our Multi-Bot problem shares characteristics with the above problems,
it differs in the following fundamental aspects. First, we consider poly-robots that can
adapt their configuration to the objects to be carried, whereas the AGV literature
usually deals with non-reconfigurable fleets of mobile robots. Secondly, there is a dif-
ference in the way jobs (or items for the bin packing problem) are defined. In RCPSP,
RIP, line balancing or bin packing problems, the jobs are given in the input. In the
Multi-Bot problem, the jobs are not part of the input. We are given a demand to
satisfy over the time horizon for each load type and we need to decompose this demand
into transportation tasks, each task being characterized by a load type, a quantity (the
number of loads to carry) and a configuration. Determining the transportation tasks
from the demand is therefore a key aspect of the problem which, to the best of our
knowledge, has not been addressed in the above literature.

1.3. Main contributions and outline

Inspired by a logistics problem presented by a company that designs reconfigurable
poly-robots, we present the Multi-Bot problem. Given a demand for different load
types, we have to determine the transportation tasks, as well as their distribution over
time, with the goal to minimize the sum of investment and running costs. In Section
2, we begin by introducing the Multi-Bot model and casting it into the ILP (Integer
Linear Programming) framework. In Section 3, we present additional constraints that
restrict the search space for feasible solutions. In Section 4, we demonstrate that the
general case is strongly NP-hard. We also show that the special cases with a single
feasible unit configuration (p = 1), a single period or a single load type can be solved
in polynomial time. Section 5 is devoted to an auxiliary Knapsack-like problem that
is used as a pre-process for the heuristic algorithm presented in Section 6. Section 7
presents numerical tests that demonstrate the efficiency of the proposed algorithm.

2. The Multi-Bot problem

2.1. Problem description

We consider a fleet of mobile elementary robots that cooperate to transport loads of
different types. As explained in the introduction, a p-bot is a poly-robot made of p
elementary robots. The number p is called a configuration and belongs to the set of
configurations P = {1,. . . , P}, where P is the maximum number of elementary robots
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in a configuration.
A load is a physical object and a load type is a group of loads that share the same

characteristics. There are K load types and we denote by K = {1, . . . ,K} the set of
load types.

The time is divided in T periods of equal length. We let T = {1, . . . , T} be the set
of periods. At the beginning of a given period t, the elementary robots are located in
a pickup and delivery platform and can be reconfigured to get the best poly-robots
for the current period. The configurations remain fixed for the rest of the period.

A poly-robot can only handle one load type in a given period. In period t, a p-bot
can transport at most cpk loads of type k. So cpk represents the capacity of a p bot
with respect to the load type k. For each load type k, there is at least one feasible
configuration p such that the associated p-bot is able to transport that load type,
which means that there exists p ∈ P such that cpk > 0.

The transportation demand for load type k is denoted by dk, which represents the
number of individual loads that have to be transported over the entire time horizon.
For a given load type, the transportation demand can be met with one or several poly-
robots (possibly in different configurations) and over one or several periods. Hence,
we have to decide how to decompose the demand into transportation tasks. A trans-
portation task specifies the load type k, the configuration p of the poly-robot involved
and the number of loads n of type k to be transported (with n ≤ cpk).

Let us introduce the objective function. Let α be the investment cost per elementary
robot. Let β be the running costs incurred each time an elementary robot is involved
in a transportation task. If a p-bot is used in some period, it counts for p · β in the
running costs. So the running costs are proportional to the number of trips made by
elementary robots. Denote by Ht the number of elementary robots used in period t for
transportation tasks, by HMax = maxtHt the number of elementary robots involved
in the whole process, and by H =

∑
tHt the number of elementary robot trips. The

total cost is then:

Cost = α ·HMax + β ·H. (1)

The investment cost α ·HMax is proportional to the number of elementary robots in
the fleet. The running costs β ·H must be interpreted as the costs related to the use
of the elementary robots. The goal is to determine the transportation tasks, as well as
how to assign them to periods, in order to minimize overall costs while satisfying all
the demand. We call Multi-Bot this optimization problem.

An illustrative example Let us illustrate the Multi-Bot problem with a simple
example. Consider three load types 1, 2 and 3. Let T = 4 periods and the following
demands: d1 = 3, d2 = 4, d3 = 1. Capacities are given in Table 1.

Load type
Configuration

k = 1 k = 2 k = 3
1-bot 0 0 0
2-bot 1 0 0
3-bot 2 2 0
4-bot 3 2 1

Table 1. Capacities for a simple example
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Figure 2 represents the Gantt chart of a feasible solution for this example. The ordi-
nate axis represents the reference number of the elementary robots, while the abscissa
axis shows the reference number of the periods. Each rectangle indicates the load type
being transported and the number of loads. The height of a rectangle corresponds to
the number of elementary robots involved in the poly-robot. For instance, in period 1,
a single load of type 3 is carried by a 4-bot. Then it reconfigures into a 3-bot to carry
two loads of type 2 in period 2, and so on. For this feasible solution, the number of
elemeaentary robots required in each period are: H1 = 4, H2 = H3 = 3 and H4 = 4.
The number of elementary robots to achieve the whole process is HMax = 4. The
total number of elementary robot trips is H =

∑
tHt = 14. Note that this solution is

optimal, since we can neither reduce HMax, nor H.

Figure 2. An example: Gantt chart

Figure 2 Alt text: The figure shows a Gantt chart with 4 time periods. In period 1, a load of type 3 is carried

by a 4-bot. In periods 2 and 3, a load of type 2 is carried by a 3-bot. In period 4, three loads of type 1 by one
3-bot.

Discussion of the application context As a typical application, the Mecabotix
company envisions an industrial context where the different load types correspond to
materials stored in different areas within a large warehouse. A transportation task for
type k consists in picking up a number of loads n ≤ cpk from a pick-up and delivery
platform A0, loading it into a p-bot, transporting it, storing it in the dedicated area Ak

and returning to the pick-up and delivery platform A0. Alternatively, the task could
involve moving to Ak, picking up a load n ≤ cpk of type k, and carrying it back to A0.

Each transportation task is likely to take between 10 and 15 minutes, with part of
this time dedicated to the handling of the load within the target area Ak. Of course,
the length of the period will depend on the context and the size of the warehouse.

With regard to the time and human resources required for the reconfiguration pro-
cess, the reconfiguration of a poly-bot is estimated to take less that 2 minutes, at the
junction between two consecutive periods, and is carried out by the workers involved
in the warehouse. Moreover, it is expected in practice that reconfiguration will be in-
frequent, in the sense that in most cases, a p-bot achieving the transportation of loads
of type k at period t will keep on with the same kind of transportation task at time
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t+ 1. With the industrialization of poly-robots, reconfiguration times should become
negligible in the future.

Uncertainty about the duration of trips, reconfiguration and load handling can be
difficult to manage in practice. Structuring the time space into periods responds to the
need for synchronization between the transportation tasks and the human operators
in charge of the reconfiguration process, and between the transportation tasks and
external processes (production or logistics). The length of a period is likely to be
between 10 and 20 minutes, depending on the context and the size of the warehouse.
The whole process would take place throughout the day, so the number of periods is
about 40. The duration of a transportation task, which in our model is assumed to
take place within a single period, should be less than that the duration of a period.

It is natural to assume that the capacity cp,k increases with p, but the correspon-
dence between the parameter p and the capacity may not be linear. Typically, we may
be forced to add at least two elementary robots to a given configuration p in order to
make the resulting poly-robot able to carry additional loads.

Of course, some assumptions might need to be modified. At the end of Section 2.2,
we will explain how to include in our ILP model scheduling constraints (time window
and precedence) and how to consider transportation tasks that require more than one
time period.

2.2. ILP formulation

We denote by xtpk the decision variable representing the number of poly-robots in
configuration p transporting loads of type k in period t.

Multi-Bot ILP: min α ·HMax + β ·
∑
t∈T

Ht (2)

subject to :∑
t∈T

∑
p∈P

cpk · xtpk ≥ dk ∀k ∈ K (3)

Ht =
∑
k∈K

∑
p∈P

p · xtpk ∀t ∈ T (4)

HMax ≥ Ht ∀t ∈ T (5)

xtpk, Ht, H
Max ∈ N, ∀k ∈ K, ∀p ∈ P, ∀t ∈ T (6)

The objective function (2) consists in minimizing simultaneously the number of
elementary robots HMax and the number of elementary robot trips

∑
tHt. Constraint

(3) means that we must have a sufficient capacity to satisfy demand dk. Quantity∑T
t=1

∑P
p=1 cpk · xtpk represents the maximum number of loads of type k that can

be transported over the horizon, given the xtpk. Constraint (4) expresses the number

Ht of elementary robots used in period t as a function of the decision variables xtpk.

Constraint (5) means thatHMax, the number of elementary robots necessary to achieve
the whole process, must be greater than or equal to Ht for all t. Constraint (6) reminds
that all decision variables are non negative integers.

Note that if variables xtpk are integral, then optimal HMax and Ht are also integral.

We deduce that we can relax the integrality constraints on HMax and H, thus making
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it easier for a MILP (Mixed Integer Linear Programming) solver to handle.

Including scheduling constraints We can easily restrict the transportation of cer-
tain load types to specific periods. Let us assume that loads of type k must be trans-
ported in a time window {τmin

k , · · · , τmax
k }. Such a constraint may be expressed as:

xtpk = 0, ∀t /∈ {τmin
k , · · · , τmax

k },∀p ∈ P

This constraint is not going to deeply modify the structure of the problem.
We can also require that the transportation of all loads of some type k1 be completed

before the transportation of another load type k2 begins. To include this constraint in
the ILP, we introduce an additional binary variable Zk1

t which is equal to 1 if some
transportation task involving load type k is performed at period t, and 0 otherwise.
Then we set the following constraints, M being a large number:

M · Zk1

t ≥
∑
p

xtpk1
∀t ∈ T (7)

M · Zk1

t +
∑
p∈P

t∑
u=1

xupk2
≤ M ∀t ∈ T (8)

Constraint (7) means that Zk1

t can be equal to 0 only if no load of type k1 is processed
during period t. Thus Constraint (8) tells that if any load of type k1 is processed at pe-
riod t, then loads of type k2 cannot be processed during periods 1, . . . , t. The structure
of these constraints, which linearize logical implications through Big M formulations,
tends to significantly increase the gap to optimality induced by relaxing the integrality
constraints of the ILP and makes the problem more complex.

Non-identical transportation times To simplify, we have assumed so far that a
transportation task can take place in a single period. However, allowing some trans-
portation tasks to last more than one period does not significantly change the structure
of the resulting Multi-Bot problem. Let ∆pk be the transportation time for loads of
type k in configuration p. It represents the number of consecutive periods required to
complete a transportation task.

The ILP must be adapted as follows. The decision variable xtpk must now be inter-
preted as the number of p-bots that start transporting loads of type k in period t .
The variable Ht must include all the transportation tasks started between t−∆pk +1

and t: Ht =
∑

p,k

∑t
u=t−∆pk+1 p · xupk.

3. Enhancing the model with additional constraints

The goal of this section is to show that it is possible to restrict the space for the search
of good solutions without inducing any loss in the quality of the optimal solution.

3.1. The most profitable configuration

We first introduce the notion of most profitable configuration and show that the other
configurations play a marginal role in the optimal solution. This will be used in section
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5 and 6 to design an efficient heuristic algorithm.
We define the marginal capacity of a p-bot, with respect to load type k, as the

capacity per elementary robot cpk
p .

Definition 1. The most profitable configuration for load type k is the configuration
p0(k) that maximizes the marginal capacity:

p0(k) = argmax
p∈P

cpk
p

If several configurations maximize the marginal capacity, we choose the smallest one.

The most profitable configuration p0(k) is not necessarily the one that should be
systematically chosen in the optimal solution. However, we can show that the other
configurations play a marginal role in the optimal solution. The following lemma gives
an upper bound for the number xtpk of p-bots used in period t to transport loads of
type k, when p is not the most profitable configuration. The proof of this lemma is
given in Appendix A.

Lemma 1. When a configuration p is not the most profitable (p ̸= p0(k)), adding the
constraint

xtpk ≤ p0(k)

GCD(p0(k), p)
− 1 (9)

does not modify the optimal value of Multi-Bot (GCD means here Greatest Common
Divisor).

We deduce from Lemma 1 that we should focus on the most profitable configura-
tions. The algorithms we describe in Section 5 and 6 derive from this interpretation
of Lemma 1. Moreover, the higher the demand, the more we should use the most
profitable configuration.

We end by introducing the following quantities for p ̸= p0(k).

xMax
pk =

p0(k)

GCD(p0(k), p)
− 1 (10)

wMax
k =

∑
p̸=p0(k)

p · xMax
pk (11)

The quantity xMax
pk is the bound established in Lemma 1 and represents the maximum

number of p-bots used in a given period to transport loads of type k, when p is not the
most profitable configuration. The quantity wMax

k represents the maximum number
of elementary robots, in configurations other than p0(k), that should be used in a
given period to transport loads of type k. Since, p ≤ P , we have immediately the
following bounds: xMax

pk ≤ P and wMax
k ≤ P 3. These bounds will be useful to study

the complexity of the Multi-Bot problem (see Section 4) and of the complexity of
the heuristic algorithm (see Section 6).

An illustrative example We end this section by considering a simple example to
illustrate the notion of most profitable configuration. For some type load k0, Table 2
gives for each configuration the capacities, marginal capacities and xMax

pk0
.
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Configuration p 1 2 3 4
Capacity cpk0

1 3 3 8
Marginal capacity

cpk0

p 1 1.5 1 2

Maximum number of p-bots (xMax
pk0

) 3 1 3 N/A

Table 2. Marginal capacity: An example

On this example, we see that the most profitable configuration for loads of type k0
is configuration 4. We also have wMax

k0
= 14, which represents the maximum number

of elementary robots (in configurations 1, 2 or 3) used to transport loads of type k0 in
a given period.

3.2. Other additional constraints

The cumulative number of periods induced by all the trips made in order to satisfy

demand must be at least Q =
∑

k

⌈
dk

cp0(k),k

⌉
. Based on this fact, we derive the following

two additional constraints that H and HMax must satisfy:

HMax ≥
⌈
Q

T

⌉
∑
t

Ht ≥ Q

Finally, we also see that if t is such that the difference between HMax and Ht is greater
than P , then it is possible to shift some trips from the time value tmax associated with
HMax to t without deteriorating the current objective value. We conclude that we can
impose the following constraint:

∀t, Ht ≥ HMax − P

This constraint is used in the next section to prove that the special case with a single
load type (K = 1) can be solved in polynomial time.

4. Complexity of the Multi-Bot problem

Though our main focus is the design of efficient and flexible solution approaches for the
Multi-Bot problem, we first analyze its complexity. In particular, we show that the
well-known bin packing problem can be polynomially reduced to Multi-Bot, thereby
proving that Multi-Bot is strongly NP-hard. This analysis paves the way for the
design of an efficient heuristic algorithm for solving Multi-Bot (see Section 6).

Theorem 1. The Multi-Bot problem is strongly NP-Hard, even if we restrict it to
the case where there is a single feasible configuration p(k) for each load type k and
β = 0 in the objective function.

Let us consider the special case of Multi-Bot when β = 0 and when, for each
product type k, there is single feasible configuration p(k). This means that only one
configuration p(k) can be used to transport loads of type k. The number of transporta-
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tion tasks for load type k is then simply nk =
⌈

dk

cp(k),k

⌉
. Since β = 0, the objective

becomes to minimize the number HMax of elementary robots.
This special case of Multi-Bot resembles the well-known bin packing problem. The

periods correspond to the bin packing boxes. The load types 1, · · · ,K corresponds to
the bin packing items. Each item k has a size p(k) and we have nk copies of this item.

Therefore, our intuition suggests that Multi-Bot should be strongly NP-hard, as is
the bin packing problem. However, because the weights p(k) are not arbitrary numbers
but belong to a set {1, . . . , P}, where P is part of the structural components of the
encoding size of a Multi-Bot instance, we must proceed with caution. For this reason,
we provide a detailed proof of Theorem 1 in Appendix B.

The Multi-Bot problem is NP-Hard, but fixing the value of one of the key param-
eters P , T or K to 1 turns it into a problem that can be solved in polynomial time,
as stated in the following theorem (see the proof in Appendix C.)

Theorem 2. The Multi-Bot problem can be solved in polynomial time if T = 1 or
P = 1 or K = 1.

We end this section by discussing the case when the marginal capacity cpk
p decreases

in p. More precisely, assume that for each load type k,
cp′k
p′ ≤ cpk

p for every p′ > p. The
most profitable configuration is then configuration 1 for every k. We don’t have to
use configurations p > 1 in the optimal solution, since we can always replace a p-bot
by p 1-bots with a higher total capacity. This reduces the Multi-Bot problem to the
special case P = 1 which is polynomial in time and can be solved analytically (see
Appendix C). For this reason, in the numerical study we will choose capacities with
marginal capacities that do not decrease.

5. Pre-processing less profitable configurations

In this section, we present a pre-processing procedure that will be used in the heuristic
algorithm presented in Section 6. The general idea is to solve the following auxiliary
problem. For a given load type k and a given number w of elementary robots, the
question is how to determine the set of poly-robots that maximizes the total capacity
while using configurations that are not the most profitable one (p ̸= p0(k)). This aux-
iliary problem is a Knapsack-like problem and will be called Aux-Bot(k,w). Thanks
to Lemma 1, we show that we can solve it in a very efficient way with a Dynamic
Programming (DP) algorithm.

From Section 3.1, we know that most loads of type k should be handled as much as
possible by the most profitable configuration p0(k). More precisely, Lemma 1 tells us
that xtpk can be chosen to be no more than xMax

pk when p ̸= p0(k). Moreover the number

of elementary robots that are not in the most profitable configuration in period t (i.e.∑
p̸=p0(k)

p ·xtpk) never exceeds wMax
k . So, a natural way to get rid of the variables xtpk,

p ̸= p0(k), during our resolution process is to replace them, for any period t, by the
weight w =

∑
p ̸=p0(k)

p · xtpk.
Once we have this weight value, it is sufficient to retrieve related values xtpk by

setting xtpk = yp, where y = (yp)p ̸=p0
is an optimal solution of the following Knapsack-

like problem Aux-Bot(k,w):
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Aux-Bot(k,w) : v = max
∑

p ̸=p0(k)

cpk · yp (12)

subject to :∑
p ̸=p0(k)

p · yp ≤ w (13)

yp ≤ xMax
pk ∀p (14)

yp ∈ N ∀p (15)

In the above ILP formulation, w is the maximum number of elementary robots that
are not in the most profitable configuration in a given period. Accordingly, we want
to maximize the capacity v =

∑
p ̸=p0(k)

cpk ·yp that is achieved by vector y at period t.

Constraint (13) expresses the fact that performing y should not involve more than w
elementary robots. Constraint (14) tells us that, according to Lemma 1, we can bound
each value yp by xMax

pk .

What happens now is that we do not need to solve an instance of Aux-Bot(k,w)
each time we try a decision about w. As we will see, for any k, all instances Aux-
Bot(k,w), 0 ≤ w ≤ wMax

k , may be solved in an exact way and in polynomial time with
the DP algorithm A Bot(k). Related solutions can be stored inside a table Table Bot [k].
For each load type k, Table Bot [k] provides us with a list of 3-uples (w, v, y), such that
v is the optimal value of Aux-Bot(k,w) and y = (yp)p ̸=p0(k) is the related optimal
solution. Then, each time we have to deal with some pair (t, k) and decide about values
xtpk, p ̸= p0(k), we only have to decide about value w, next retrieve v and y from the

table Table Bot [k] and finally set xtpk = yp for any p ̸= p0(k).
According to this, it seems natural to build the table Table Bot in advance, as part

of a pre-process distinct and independent from the resolution of Multi-Bot. This
approach is fully justified in practice. The construction of the table Table Bot only
involves infrastructure data about poly-robot capacities. Conversely, solving Multi-
Bot must take place at the beginning of each time horizon and adapt to current
demands dk.

Let us explain how algorithm A Bot(k) works. A Bot(k) is a DP algorithm and, like
any DP algorithm, it relies on a time space, a state space, and a set of transitions
commanded by decisions. In the present case:

• The DP time space (not to be confused with T ) is the set {0}∪{p = 1, . . . , P, p ̸=
p0(k)); The successor Succ(p) of a time value p is p+1 in case p+1 ̸= p0(k) and
p+ 2 otherwise.

• The state space is the set of all non negative number w such that w ≤ wMax
k .

Each state w is given together its best cumulated capacity v.
• A decision d at time p is any non negative integral number between 0 and xMax

pk ,
which means at time p the value of ySucc(p).

• Related transition increases w by Succ(p) · d and cumulated capacity v by
cSucc(p),k · d.

• Initial state is 0 with related value 0; Related capacity v is 0. Final states are all
w which could be reached at time P , provided with a final cumulative capacity
v.

• Bellman principle: for any p, we only keep Pareto pairs (w, v), which means that
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we forbid two pairs (w, v) and (w′, v′) related to a same p to be such that w ≤ w′

and v ≥ v′.

In order to easily retrieve the solution vectors y, A Bot(k) implements this scheme
according to a backward driven strategy (see Algorithm 1), that means while scanning
the time space downward from a fictitious period P +1 to a period Start, equal to 2 if
p0(k) = 1 and equal to 1 otherwise. It computes, for each p ̸= p0(k), a list STATE[p]
of 3-uples (w, v, d), where (w, v) is Pareto optimal in the above sense and d means the
decision at time p, that means the value yp. Scanning the time space backward means,
for each p ̸= p0(k), defining its predecessor Pred(p), in such a way that q = Pred(p)
if and only if p = Succ(q).

Algorithm 1 A Bot(k)

1: Periods P + 1, Start and operator Pred are defined in a natural way as described
above;

2: Initialize vector STATE = (STATE[p], p = Start, . . . , P + 1) whose values are
lists of 3-uple (w, v, d) with:

3: STATE[P + 1] = {(0, 0,−1)};
4: For any p ̸= P + 1, STATE[p] = Null = Empty list;
5: Set p = P + 1 ;
6: While p ̸= Start do

For any (w, v, d) in STATE[p] do
For a = 0, . . . , xMax

pk do
w1 = w + a · p ;
v1 = v + a · cPred(p),k;
If no (w2, v2, a2) exists in STATE[Pred(p)] such that w2 ≤ w1 and
v2 ≥ v1 then
Insert (w1, v1, d) into STATE[Pred(p)] ;
Remove from STATE[Pred(p)] any (w2, v2, a) such that w2 ≥ w1
and v2 ≤ v1 ;

Set p = Pred(p);
7: For any (w, v, d) ∈ STATE[Start] do

Retrieve from STATE the optimal solution y of Aux Bot(k,w);
Insert (w, v, y) into Table Bot[k] ;

Algorithm A Bot(k) solves Aux-Bot(k,w) in a single run. It is polynomial time
since the number of states w is bounded by wMax

k ≤ P 3. The number of possible
decisions is bounded by P and the number of time steps is P+1. Hence the algorithmic
complexity is in O(P 5), as stated in the following lemma.

Lemma 2. A Bot(k) solves all instances Aux-Bot(k,w), 0 ≤ w ≤ wMax
k , in polyno-

mial time with an algorithmic complexity in O(P 5).

Speeding A Bot(k) and reducing the size of Table Bot[k]. We may adapt the
construction of Table Bot in such a way that we better control the number of states
generated by the procedure A Bot(k) and by the same way we limit its running time.
In order to dot it, we rewrite exact A Bot(k) as a heuristic procedure A Bot(k, Smax),
with the restriction that state values w must not exceed Smax. According to Section
3.1, we should choose Smax smaller than P 3.
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6. A heuristic algorithm H Bot for the general case

In this section, we focus on designing an efficient algorithm for the Multi-Bot prob-
lem. The H Bot algorithm proceeds in two steps, with the second step relying on the
pre-process described in Section 5. We first present the general idea of H Bot before
going into more detail.

First step (use only the most profitable configurations): In the first step,
H Bot uses exclusively poly-robots in the most profitable configuration p0(k),
for every k. By doing so, the Multi-Bot problem can be seen as a variant of the
bin packing problem (see Section 4). We choose the following algorithm to fill
the boxes. First, sort the items by decreasing order of their sizes p0(k). Second,
assign them sequentially to the boxes in such a way that the maximal size of a
box increases as slowly as possible.

Second step (redistribute to less profitable configurations): After the first
step, we have a feasible solution that uses only the most profitable configu-
rations. In the second step, for each load type k and period t, H Bot tries to
redistribute w elementary robots (with w = 0, 1, . . . , Smax) to less profitable
configurations according to the pre-processing procedure described in Section 5.
It selects the w that decreases the objective function the most.

6.1. First step of H Bot: Use only the most profitable configurations

The first step of H Bot, called H Bot First Step, focuses on most profitable configu-
rations. Algorithm 2 details H Bot First Step, which works as follows. First sort the
load types by decreasing order p0(k). Secondly, for each k, do the following. Compute
the number nk =

⌈
dk/cp0(k),k

⌉
of transportation tasks that are required to satisfy all

the demand dk. These nk transportation tasks are then distributed evenly between
the T periods. The remaining transportation tasks are then allocated to the periods
using the smallest number of elementary robots.

Algorithm 2 H Bot First Step

1: Order values k by decreasing p0(k) values and put them in a list LK ;
2: For any t, initialize Ht as 0;
3: For any t, k initialize xtp0(k),k

as 0;

4: For k in LK do⌈
dk/cp0(k),k

⌉
= B · T + F ; /*Euclidean division by T*/

For any t, set xtp0(k),k
= B and Ht = B · p0(k);

While F ≥ 1 do
Pick up t such that Ht is minimal;
Ht � Ht + p0(k);
xtp0(k),k

� xtp0(k),k
+ 1;

F � F − 1;

6.2. Second step of H Bot: Redistribute to less profitable configurations

The principle of the second step of the algorithm, called H Bot Second Step, is as
follows. From the first step, we have a feasible solution using only the most profitable
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configuration and which can be described by the variables xtp0(k),k
with t ∈ T and

k ∈ K. In the second step, for each load type k and period t, H Bot Second Step
tries to redistribute elementary robots to less profitable configurations. More precisely,
it iteratively picks up some pair (t, k), some 3-uple (w, v, y) from Table Bot [k] (see
Section 5) and redistributes part of variable xtp0(k),k

among variables xtpk, p ̸= p0(k),

so that the objective function decreases and the number of redistributed elementary
robots does not exceed w.

We need to introduce some notations before providing a detailed version of
H Bot Second Step (see Algorithm 3). We use the following representation of a Multi-
Bot solution:

• A vector z = (ztk)t∈T
k∈K

such that ztk = xtp0(k),k
;

• A vector δ = (δtk)t∈T
k∈K

where each δtk is a 3-uple (wt
k, v

t
k, y

t
k), belonging to Ta-

ble Bot [k].

Such a pair (z, δ) gives rise to the Multi-Bot solution x = (xtpk)t∈T
p∈P
k∈K

such that:

xtpk =

{
ztk if p = p0(k)
(ytk)p if p ̸= p0(k)

So H Bot Second Step starts from the values ztk = xtp0(k),k
computed by

H Bot First Step. Then, H Bot Second Step proceeds in a greedy way. At each it-
eration, it selects some pair (t, k) that has not yet been selected. For this pair (k, t),
it tries every (w, v, y) in Table Bot [k] and keeps the one that decreases the most the
objective function.

We now give some details on how we update the solution, given a pair (k, t) and a
3-uple (w, v, y). For load type k, the transportation capacity for the most profitable
configuration over the entire horizon is

Bk = cp0(k),k

∑
t

ztk.

Note that this capacity Bk is greater than or equal to the demand dk and we have
therefore an unused transportation capacity Bk − dk ≥ 0. The number of removed
p0(k)-bots is then

R =

⌊
Bk − dk + v

cp0(k),k

⌋
.

We update the solution as follows: ztk must be increased by R and δtk becomes (w, v, y).
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Algorithm 3 H Bot Second Step

1: Start with values ztk = xtp0(k),k
computed according to H Bot First Step and from

a null vector δ;
2: Initialize a vector MARK = (MARKt

k, t = 1, . . . , T, k = 1, . . . ,K) with Boolean
values, to the null vector;

3: Initialize a vector NMARK = (NMARKt, t = 1, . . . , T ) with integral values all
equal to K;

4: For any k, set Bk = cp0(k),k

∑
t z

t
k;

5: For any t, set Ht =
∑

k p0(k)z
t
k;

6: Set H =
∑

tHt;
7: Initialize counter value COUNT to T ·K;
8: While COUNT ̸= 0 do

Choose t and k; (Instruction 1)
For any (w, v, y) in Table Bot [k] compute:

R =
⌊
(Bk − dk + v)/cp0(k),k

⌋
;

HAux = H + w −R · p0(k);
HAux2 = Ht + w −R · p0(k);
HMax = max(maxs ̸=tHs, HAux2);
Cost = α ·HMax+ β ·HAux;

Choose (w, v, y) such that R ≤ ztk and which provides us with the smallest
value H∗; (Instruction 2)
Update:

MARKt
k is set to 1; COUNT and NMARKt are decremented by 1;

Bk is set to Bk −R · cp0(k),k + v;
Ht is set to HAux2 and H is set to HAux;
ztk is decremented by R and δtk becomes (w, v, y).

Let us detail instructions 1 and 2.

Instruction 1

• Choice of t: We choose t such that NMARKt ̸= 0 and Ht is maximal;
• Choice of k: Once t has been chosen, we target k such that MARKt

k = 0 and
that p0(k) is the largest possible.

Instruction 2

• If the 3-uple (w, v, y) is null, there is no improvement of our current solution
(z, δ) and the ”update” instruction is not applied.

6.3. Complexity of H Bot

As explained earlier, we consider both the construction of the table Table Bot and the
instruction 1 of H Bot First Step to be part of a pre-process, and so do not include
them in the computation of the complexity of the algorithm H Bot. This is fully
justified by the fact that the construction of Table Bot does not aim at any decision
making, but only at the processing of data related to existing infrastructures, while
the algorithm H Bot is supposed to be run at the beginning of each production cycle
(time horizon) in order to make scheduling decisions related to current transportation
demands.
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The main loop of H Bot First Step is indexed on k and its internal ”While F ≥ 1
do” loop is indexed on F ≤ T . Since the instruction which commands the computation
of t may be performed in O(T ), we deduce that the complexity of H Bot First Step is
O(T 2 ·K).

The main loop of H Bot Second Step is indexed onK ·T . As it is written (Instruction
1), the instruction ”Choose t and k” may be performed in constant time. Since the
construction of Table Bot is performed in such a way that the number of elements
in any Table Bot [k] never exceeds the parameter Smax, we see that the complexity of
H Bot Second Step is O(K · T · Smax). We can now state the complexity of H Bot in
the following theorem.

Theorem 3. The complexity of the H Bot algorithm is O(K · T · Smax + T 2 ·K)

7. Numerical experiments

We describe here several numerical experiments that were carried out with a twofold
purpose. On the one hand, we want to observe some characteristics of the solutions of
the Multi-Bot problem, specifically the size HMax of the robot fleet. On the other
hand, we are interested in the performance of the H Bot algorithm, in particular its
ability to approach optimality.

The algorithms are implemented in C++, on a PC AMD Opteron 2.1GHz, while
using gcc 4.1 compiler. ILP models are handled by the PuLP library. PuLP is an
application programming interface and it can generate data files created in the Math-
ematical Programming System (MPS) format or Linear Programming (LP) files and
call one of the solvers (GLPK, CBC, CPLEX) to solve linear problems. Here we use
CBC (Coin Branch and Cut) solver.

7.1. Instances

We build an instance by first choosing T, P,K, α, β and next generating the capac-
ities and the demands as follows.

• For each load type k, we randomly select ak in {1, · · · , 5} and bk in {0, · · · , ak}.
Then we set

cpk = akp− bk + ϵ

with ϵ randomly selected in {0, 1} for each configuration p. We denote by cmean
k =

1
P

∑
p cpk the mean capacity.

Our goal is to build here instances that are both non trivial and realistic. The
above formula means that we are implementing a capacity cpk that increases
with p and is such that the marginal capacity cpk

p also increases with p. This
realistic assumption implies that all configurations p are likely to be involved in
an optimal solution (see the discussion at the end of Section 4).

• Then we generate the demand for load type k as

dk = ⌊γ · J · T · P · cmean
k ⌋

where J is randomly selected in {1, · · · , 10}. Note that demand dk increases with
demand factor γ.
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Parameter γ, called the demand factor, allows us to observe the effect of
high demands, that make the processing of the items rely mostly on the most
profitable configuration p0(k). Conversely, it also allows us to see what happens
when the demands are low, so that most transportation tasks related to type k
are performed by small configurations (p < p0(k)). For intermediate values of γ
we expect most profitable configurations to be used.

We call nominal instance the instance with parameters (T = 10, P = 6, K = 6,
α = 9, β = 1, γ = 1). To carry out a sensitivity analysis, we first apply our algorithms
to this nominal instance, then change one parameter at a time among T, P,K, α, β, γ,
while keeping the others unchanged, as follows:

• T = 1, 5, 10, 20, 50
• K = 1, 3, 6, 8, 10
• P = 1, 3, 6, 12, 18
• α = 0, 1, 5, 9, 10 and β = 10− α
• γ = 0.1, 0.5, 1, 100, 1000

Table 3 summarizes the list of instances and their main characteristics. Each in-
stance is identified by an identifier Id. The nominal instance has the identifier Id = 1,
and appears in bold in the various tables.

Table 3. Characteristics of instances
Id α β γ T P K cmean

k (*) dk
1 9 1 1 10 6 6 16, 10, 13, 6, 9, 13 1920, 1800, 3120, 1800, 3780, 7020
2 9 1 1 1 6 6 14, 8, 7, 14, 5, 4 840, 288, 252, 420, 270, 120
3 9 1 1 5 6 6 4, 15, 4, 6, 6, 15 840, 1800, 360, 1260, 360, 900
4 9 1 1 20 6 6 17, 4, 13, 12, 6, 13 8160, 480, 6240, 2880, 6480, 10920
5 9 1 1 50 6 6 4, 18, 3, 13, 3, 8 4800, 16200, 8100, 15600, 1800, 12000
6 9 1 1 10 6 1 3, 6, 10, 13, 15, 19 3300
7 9 1 1 10 6 3 10, 18, 7 2400, 10800, 2520
8 9 1 1 10 6 8 17, 10, 14, 13, 15, 19, 12, 17 4080, 1800, 6720, 3120, 9000, 4560, 5760, 10200
9 9 1 1 10 6 10 7, 10, 13, 19, 16, 18, 5, 11, 11, 5 2100, 5400, 1560, 5700, 4800, 3240, 900, 1980, 1980, 1800
10 9 1 1 10 1 6 2, 3, 1, 1, 1, 3 200, 210, 50, 60, 20, 270
11 9 1 1 10 3 6 5, 3, 3, 3, 3, 4 750, 180, 360, 630, 720, 120
12 9 1 1 10 12 6 7, 12, 19, 12, 21, 14 4200, 4320, 2280, 7200, 12600, 13440
13 9 1 1 10 18 6 36, 37, 19, 28, 46, 9 45360, 19980, 20520, 5040, 82800, 12960
14 10 0 1 10 6 6 11, 18, 16, 15, 18, 17 5940, 1080, 1920, 3600, 7560, 3060
15 5 5 1 10 6 6 13, 14, 4, 6, 6, 16 1560, 1680, 2160, 720, 2880, 5760
16 1 9 1 10 6 6 6, 11, 6, 9, 5, 17 1080, 4620, 2160, 3240, 1200, 4080
17 0 10 1 10 6 6 4, 18, 13, 13, 11, 13 2400, 7560, 7020, 780, 3960, 2340
18 9 1 0.1 10 6 6 4, 13, 7, 7, 4, 4 168, 468, 210, 126, 168, 192
19 9 1 0.5 10 6 6 7, 13, 10, 15, 4, 19 1890, 780, 1200, 4050, 1080, 1710
20 9 1 100 10 6 6 14, 4, 11, 4, 13, 15 84000, 48000, 66000, 240000, 156000, 90000
21 9 1 1000 10 6 6 11, 8, 7, 9, 16, 4 5280000, 2880000, 4200000, 3240000, 5760000, 240000

(*) cmean
k and dk are listed by ascending index: cmean

1 , cmean
2 , . . . and d1, d2, . . .

7.2. Solution characteristics

For each instance, we apply both the H Bot Algorithm and the ILP model (with PuLP
library). We get the following characteristics for the solutions provided by the ILP:

• HMax(ILP ) = Number of elementary robots necessary to achieve the whole
process.

• Cost(ILP ) = α · HMax(ILP ) + β · H(ILP ), where H(ILP ) is the number of
elementary robot trips globally performed . Thus Cost(ILP ) is the value of the
objective function as expressed in the ILP model.
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• CPU(ILP ) = CPU time (in seconds) required by the PuLP library in order to
run the ILP model. We do not allow this CPU time to exceed 600 seconds. If this
time is not enough to ensure optimality, Cost(ILP ) represents the upper bound
computed by the library, and so we mention the gap to optimality between this
upper bound and related lower bound provided by the library.

For H Bot Algorithm, we get the following characteristics for the solutions:

• HMax(H Bot) = Number of elementary robots necessary to achieve the whole
process according to the H Bot Algorithm.

• Cost(H Bot) = α·HMax(H Bot)+β·H(H Bot), whereH(H Bot) is the number
of elementary robot trips globally performed by those robots according to the
H Bot Algorithm.

• HMean(H Bot) = H(H Bot)
T = average number of elementary robots that are

active per period.

• Gap Cost(H Bot) = Cost(H Bot)−Cost(ILP )
Cost(ILP ) : Gap to optimality induced by the

H Bot algorithm.
• Gap Cost(1 Step) = Gap to optimality when we restrict ourselves to the first

step of H Bot.

• Gap F leet(H Bot) = HMax(H Bot)−HMax(ILP ))
HMax(ILP ) : Gap between the value HMax

computed by H Bot and the same value computed by the ILP model.
• Gap F leet(1 Step) = Same as GAP fleet if we restrict ourselves to the first step
of H Bot.

• CPU(H Bot) = CPU time (in seconds) required by the H Bot Algorithm.

Note that HMax/HMean represents the utilization rate of elementary robots.

7.3. Analysis of results

The numerical results are summarized in tables 4 and 5. In both tables, we identify
the nominal instance in bold. We can make the following comments.

Global performance of the H Bot Algorithm. For all instances, the computation
time of the H Bot algorithm is less than 0.1 seconds, while the maximum gap to
optimality related to cost value is 0.71%, and the maximum gap related to fleet size
is 1.49%. The H Bot algorithm achieves optimality for 8 out of the 21 instances.
Additionally, in the case of instance 9, H Bot outperforms the ILP solver. Thus, the
trade-off between accuracy and computation time clearly favors the H Bot algorithm,
indicating it is very efficient. It is noteworthy that the largest gaps mentioned above
are associated with instance 18 and the value γ = 0.1, i.e. when low demands diminish
the role of the optimal configurations p0(k), forcing the scheduler to rely on other
configurations. We also observe that the running times induced by H Bot are relatively
stable, which is expected since H Bot works as a greedy algorithm.

Impact of the second step of H Bot. The second step of H Bot improves the
cost value obtained after the first step for 16 out of the 21 instances. However, the
associated improvement margin is generally very small and never exceeds 0.75%, sug-
gesting that most transportation tasks must rely on the optimal configurations p0(k).
Not surprisingly, the second largest improvement margin corresponds to the case with
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Table 4. Fleet size: In each sub-table, we vary the corresponding target parameter with respect
to the bolded nominal instance (T = 10, P = 6, K = 6, α = 9, β = 1, γ = 1)

Id
Varied
parame-
ter

HMax

(ILP)
HMax

(H Bot)
HMean

(H Bot)
HMax

(1 Step)
Gap Fleet
(H Bot)

Gap Fleet
(1 Step)

2 T = 1 796 796 796 802 0% 0%
3 T = 5 469 471 468.4 471 0.43% 0.43%
1 T = 10 609 610 608.4 610 0.16% 0.16%
4 T = 20 568 569 567.8 569 0.18% 0.18%
5 T = 50 520 520 519.8 520 0% 0%

Average 0.15% 0.15%
6 K = 1 99 99 99 99 0% 0%
7 K = 3 422 422 422 422 0% 0%
1 K = 6 609 610 608.4 610 0.16% 0.16%
8 K = 8 1008 1009 1007.7 1009 0.11% 0.11%
9 K = 10 827 827 826 827 0% 0%

Average 0.05% 0.05%
10 P = 1 39 39 39 39 0% 0%
11 P = 3 147 147 146.8 147 0% 0%
1 P = 6 609 610 608.4 610 0.16% 0.16%
12 P = 12 1871 1872 1870.2 1872 0.05% 0.05%
13 P = 18 5870 5873 5869.5 5873 0.05% 0.05%

Average 0.05% 0.05%
14 α = 10 506 507 505.8 507 0.20% 0.20%
1 α = 9 609 610 608.4 610 0.16% 0.16%
15 α = 5 568 569 568 570 0.18% 0.35%
16 α = 1 585 586 584.9 586 0.17% 0.17%
17 α = 0 2426 689 687.7 689 α = 0 α = 0

Average 0.18% 0.22%
18 γ = 0.1 67 68 66.9 68 1.49% 1.49%
19 γ = 0.5 321 321 320.8 321 0% 0%
1 γ = 1 609 610 608.4 610 0.16% 0.16%
20 γ = 100 34916 34917 34915.9 34917 0.003% 0.003%
21 γ = 1000 762982 762983 762981.6 762983 0.001% 0.001%

Average 0.33% 0.33%

Total (†)

average
0.15% 0.16%

(†) The nominal instance is counted only once in the average.
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Table 5. Cost and CPU time: In each sub-table, we vary the corresponding target parameter with respect to the

bolded nominal instance (T = 10, P = 6, K = 6, α = 9, β = 1, γ = 1)

Id
Varied
parame-
ter

Cost (ILP)(*)
Cost
(H Bot)

Cost
(1 Step)

Gap
Cost
(H Bot)

Gap
Cost
(1 Step)

CPU
time
(ILP)

CPU
time
(H Bot)

2 T = 1 7960 7960 8020 0% 0.75% 0.01 s. 0.01 s.
3 T = 5 6563 6581 6591 0.003% 0.43% 0.09 s. 0.01 s.
1 T = 10 11565 11574 11578 0.08% 0.11% 0.08 s. 0.01 s.
4 T = 20 16467 16476 16478 0.05% 0.07% 9.81 s. 0.01 s.
5 T = 50 30668 30669 30675 0.003% 0.02% 61.45 s. 0.01 s.

Average 0.03% 0.28% 14.29 s. 0.01 s.
6 K = 1 1881 1881 1881 0% 0% 0.01 s. 0.002 s.
7 K = 3 8018 8018 8018 0% 0% 0.12 s. 0.003 s.
1 K = 6 11565 11574 11578 0.08% 0.11% 0.08 s. 0.01 s.
8 K = 8 19149 (0.005%) 19158 19164 0.05% 0.09% 600 s. 0.01 s.
9 K = 10 15704 (0.07%) 15703 15712 -0.01% 0.05% 600 s. 0.02 s.

Average 0.02% 0.05% 240 s. 0.01 s.
10 P = 1 741 741 741 0% 0% 0.01 s. 0.01 s.
11 P = 3 2791 2791 2793 0% 0.07% 0.01 s. 0.004 s.
1 P = 6 11565 11574 11578 0.08% 0.11% 0.08 s. 0.01 s.
12 P = 12 35541 35550 35568 0.03% 0.08% 0.22 s. 0.02 s.
13 P = 18 111525 (0.002%) 111552 111584 0.02% 0.05% 600 s. 0.07 s.

Average 0.03% 0.06% 120 s. 0.02 s.
14 α = 10 5060 5070 5070 0.20% 0.20% 0.09 s. 0.01 s.
1 α = 9 11565 11574 11578 0.08% 0.11% 0.08 s. 0.01 s.
15 α = 5 31240 31245 31275 0.02% 0.11% 15.36 s. 0.01 s.
16 α = 1 53226 (0.014%) 53227 53290 0.002% 0.12% 600 s. 0.01 s.
17 α = 0 68770 68770 68860 0% 0.13% 0.01 s. 0.01 s.

Average 0.06% 0.13% 123 s. 0.01 s.
18 γ = 0.1 1272 1281 1288 0.71% 1.26% 0.02 s. 0.01 s.
19 γ = 0.5 6097 6097 6099 0% 0.03% 0.11 s. 0.01 s.
1 γ = 1 11565 11574 11578 0.08% 0.11% 0.08 s. 0.01 s.
20 γ = 100 663403 663412 663417 0.001% 0.002% 0.13 s. 0.01 s.
21 γ = 1000 14496655 (6x10−6 %) 14496663 14496671 0.00005% 0.00011% 600 s. 0.06 s.

Average 0.16% 0.28% 120 s. 0.02 s.

Total (†)

average
0.06% 0.17% 147 s. 0.02 s.

(*) Values in brackets represent the gap to optimality in percentage at the time limit of 600 s.

(†) The nominal instance is counted only once in the average.
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the smallest demand (γ = 0.1), which leads the scheduler to involve non-optimal
configurations.

The behavior of the ILP model. The ILP model fails to ensure optimality within
600 seconds for 5 out of the 21 instances. However, it still provides a very efficient upper
bound even in these cases. We observe that while the ILP software is relatively robust
with respect to variations in the time parameter T , it is significantly more sensitive
to variations in the number of load types K and the number of configurations P
(instances 8, 9, 13). Additionally, similar cost weights α and β tend to complicate
the model structure and thus challenges the ILP solver (instances 15 and 16). Finally,
increasing the size of the demands (instance 21) makes it difficult for the branch-and-
bound process performed by the ILP solver to accurately identify the best-fit values
of the variables, thereby increasing the computational effort.

Impact of scaling parameters α and β. Since our problem may be viewed as a
multi-criteria problem, with 2 different cost components H and HMax that we merge
in order to get a 1-criterion formulation, we must ask about the impact of the scaling
parameters α and β. Table 4 shows that this effect is rather small. We may evaluate
it by comparing HMax with the mean value HMean = H

T of the average number of
robots involved per period, and observing the correlation between the distortion of
HMax with respect to HMean and the value of α. In fact HMean happens to be always
very close to HMax, with a gap HMax−HMean

HMax that never exceeds 1%. Even though we
can observe that this gap tends to slightly decrease as α increases, we may roughly
say that both HMax and HMean criteria tend to converge.

We conclude this section by putting the algorithms into perspective with regard to
their industrial application. In practice, if the optimization process is run once a day,
the computation time can be set to 10 minutes or even 1 hour. In this case, the ILP
approach can be used for small to medium solutions. However for large instances, or if
theMulti-Bot problem involves temporal constraints or more complex configurations,
the ILP will be in trouble. In practice, the transportation process in an industrial
warehouse is dynamic, and we have to deal with new demands and random events, that
force decision makers to frequently update the planning of transportation tasks. For
small instances, the ILP model can produce good solutions in less than that 2 minutes,
which is the time between periods that can be used for manual reconfiguration. For
larger instances, we need a fast algorithm to quickly reschedule transportation tasks.
Finally, the choice between ILP and heuristic is not just a matter of running time.
Relying on a sophisticated tool like a MILP library in a warehouse is expensive for
an industrial player. It also raises questions about worker training and the potential
inflexibility of such a tool. It follows that a heuristic approach may be useful even if
we are able to significantly reduce the running times of the ILP model.

8. Conclusion

This paper studies the Multi-Bot problem which consists in sizing a fleet of recon-
figurable robots. The transport of loads from one area to another is performed by
reconfigurable mobile robots. A new configuration of robots can be formed after each
period. We show that the problem is strongly NP-hard and that, in some special cases,
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the problem can be solved in polynomial time. We then derive from our theoretical
results an efficient heuristic algorithm for the general case. A numerical study shows
that the heuristic algorithm can successfully be applied even for large instances and
has very good performances on the tested instances.

We have assumed in this work that a configuration can be identified with a number
of elementary robots. This number may not be sufficient to characterize a poly-robot.
It would be interesting in the future to consider poly-robots whose capacity depends
not only on the number of elementary robots, but also on their geometry. Another
research perspective is to include reconfiguration times or costs in the model.
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Appendix A. Proof of Lemma 1

Let x be a feasible solution and let us suppose that, for some (t, k) and for some
p1 ̸= p0(k) we may write: p0(k) = u·GCD(p0(k), p1); p1 = v·GCD(p0(k), p1);x

t
p1,k

≥ u.

24



Then we increase xtp0(k),k
by v and decrease xtp1,k

by u. Doing this maintains the value

(2) of the solution since u · p1 = v · p0. But the inequality p0(k) · cp1,k ≤ p1 · cp0(k),k

also keeps the quantity
∑

l,p cpkx
l
pk from decreasing and so (3) keeps holding. We can

do this until (9) becomes satisfied and so we conclude.

Appendix B. Strong NP-hardness of Multi-Bot

Our proof comes in 2 steps.

Step 1: Turning Multi-Bot into a satisfiability problem with same
complexity

We get a feasible Multi-Bot solution by setting xtpk = dk for any t, p, k. If

we set dMax = supk dk then we deduce that optimal cost value of Multi-
Bot is bounded by 2dMax · sup(α, β) · K · P · T . It comes that solving Multi-
Bot may be achieved by successively solving (binary search process) no more
than

⌈
log2(2d

Max · sup(α, β) ·K · P · T )
⌉
instances of the following decision problem

Multi-Bot-Dec(S), S ≤ 2dMax · sup(α, β) ·K · P · T being a threshold parameter.

Multi-Bot-Dec(S): Compute non negative integral vector x = (xtpk, k ∈ K, p ∈
P, t ∈ T ) such that:

∀k,
∑
t,p

cpk · xtpk ≥ dk (B1)

α · (max
t

∑
k,p

p · xtpk) + β
∑
t,p,k

p · xtpk ≤ S (B2)

Since
⌈
log2(2d

Max · sup(α, β) ·K · P · T )
⌉
may be bounded by a polynomial function

of Size(Multi-Bot) = P + T + K +
∑

k,p(1 + ⌈log2 cpk⌉) +
∑

k(1 + ⌈log2 dk⌉) +(1 +

log2 α) + (1 + log2 β), we must only check that Multi-Bot-Dec(S) is strongly NP-
Complete.

Step 2: Multi-Bot-Dec(S) is strongly NP-Complete

Its ILP formulation shows thatMulti-Bot-Dec(S) is in NP. So what remains to check
is that, as suggested at the beginning of the section, the bin packing problem can be
polynomialy reduced to the Multi-Bot-Dec problem (Garey and Johnson 1979), or,
in other words, that the bin packing problem may be viewed as a specific case of
Multi-Bot-Dec. Let us recall that a bin packing instance BP is characterized by:

• A set I = {1, . . . , I} of items such that for any item i ∈ I, is provided with a
weight wi;

• A set B = {1, . . . , B} of identical boxes, all with a same capacity ρ.

Solving BP means computing an assignment σ from I to B, consistent of the ca-
pacities of the boxes, that means such that for any b ∈ B,

∑
i s.t. σ(i)=bwi ≤ ρ.

We know that the bin packing problem is strongly NP-Complete: Strongly means that
there exists a polynomial function Q of I and B such that if we restrict ourselves to
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instances BP such that weights wi and the capacity ρ are bounded by Q(I,B), then
resulting problem remains NP-Complete (Garey and Johnson 1979). In order to prove
that Multi-Bot-Dec is strongly NP-Complete, we only need to design a polynomial-
time algorithm Code which turns any bin packing instance BP into a Multi-Bot-Dec
instance Multi-Bot-Dec = Code(BP), and a polynomial-time algorithm Decode which
turns any Multi-Bot-Dec output x into a bin packing output σ in such a way that:
BP admits a feasible solution σ if and only if Code(BP) admits a feasible solution x
such that Decode(x) = σ. Let us start from such a bin packing instance BP such that
number ρ and coefficients wi are all bounded by Q(I,B), with polynomial function Q
as above. We notice that if we add B · ρ−

∑
iwi items with weight 1 then we do not

modify the feasibility of BP. So we may suppose that BP is such that: B · ρ =
∑

iwi.
Then we derive from BP a Multi-Bot-Dec instance Multi-Bot-Dec as follows:

• We set T = B: that means that we identify any box b with a period, i.e. an index
value t of Multi-Bot-Dec.

• We set α = 1 and β = 0.
• We set K = Number of distinct values wi involved into vector w. We identify any

existing weight wi with an index value k of Multi-Bot-Dec. K may be interpreted
as an item type, characterized by its weight w(k). For instance, if we have 5 items
with respective weights w1 = 2, w2 = 6, w3 = 3, w4 = 2 and w5 = 6, then we get
K = {1, 2, 3}, with w(1) = 2, w(2) = 6, w(3) = 3.

• We set P = supiwi. We identify any possible weight wi with an index value p of
Multi-Bot-Dec.

• According to this, we set: cpk = w(k) if p = w(k) and cpk = 0 else.
• For any k, we set dk = w(k) ·Rk, where Rk denotes the number of items i with
weight wi = w(k).

• Finally we set S = ρ.

According to this, xtpk refers to the number of items with weight p and item type k

which are assigned to box t. Constraint (B1) means that all items should be assigned
to some box t. Every sum Ht =

∑
p,k px

t
pk should be equal to ρ.

If σ is a feasible solution of the bin packing instance BP then we see that we get
a feasible solution x of the instance Multi-Bot-Dec by setting: xtw(k),k = number of

items i with weight w(k) assigned to box t, and xtpk = 0 if w(k) ̸= p. Conversely, if
x is a feasible solution of the instance Multi-Bot-Dec, then we get a solution σ of the
instance BP by assigning xtw(k),k items with weight w(k) to box t. The Code procedure

which computes T, P,K together with coefficients S and dk, k ∈ K, clearly works in
polynomial time as a function of Q(I,B), I and B and thus also as a function of I
and B. The Decode procedure which retrieves assignment σ from x works the same
way. So we conclude the proof.

The Multi-Bot-Dec instance Multi-Bot-Dec involved in the above reduction pro-
cess is specific in the sense that, for any load type k, only one configuration p may
be applied to k. This configuration becomes in an obvious way the most profitable
configuration p0(k). This means that even if we restrict Multi-Bot to the case where,
for any load type k, only one configuration p = p0(k) fits with k, then Multi-Bot
remains NP-Hard.

26



Appendix C. Proof of Theorem 2

Case P = 1

Assume that P = 1. In this case, we use exclusively 1-bots. Since it is optimal to use

1-bots to their maximum capacity, the number of elementary robot trips is
⌈
dk

ck

⌉
for

loads of type k in the optimal solution. It follows that the optimal number of robots
is

Hmax =


∑

k∈K

⌈
dk

ck

⌉
T

 .

The transportation tasks can then be assigned to the different periods, while not
exceeding Hmax transportation tasks per period. We conclude.

Case T = 1

Assume that T = 1. Let us simplify xtpk as xpk. We have HMax = H = H and the

objective function (1) reduces to (α + β)HMax. So, we simply want to minimize the
number of elementary robots in a single period. Multi-Bot can be decomposed into
K independent sub-problems MBk with k ∈ K.

MBk min
∑
p∈P

p · xpk

subject to :∑
p∈P

cpk · xpk ≥ dk

xpk ∈ N, ∀p ∈ P

So we only need to check that MBk can be solved in polynomial time. Lemma 1
tells that every values xp,k, p ̸= p0(k) is bounded by P , and so that

∑
p ̸=p0(k)

p ·
xp,k ≤ P 2. The pseudo-polynomiality of the Knapsack-like problem makes that for
every value H ≤ P 2 of

∑
p ̸=p0(k)

p · xp,k, we are able to compute in polynomial time

the maximal value V (H) of
∑

p ̸=p0(k)
cp,k · xp,k and thus derive the smallest value

xp0(k),k =
⌈
dk–V (H)
cp0k,k

⌉
that will make x meet the demand constraint. We conclude.

Case K = 1

Assume that K = 1. Let us simplify xtp,k as xtp, p0(k) as p0 and dk as d, let us
consider some feasible solution x of Multi-Bot and let us now denote by Min the
smallest value

∑
p p · xtp, t = 1, . . . , T . Let us denote by S the smallest value

∑
p p · yp

that makes possible to get
∑

p cp · yp ≥ d. We saw, while enhancing the Multi-Bot

MILP program, that we may impose, for any t: (
∑

p p · xtp)–Min ≤ P (Bounded

Difference Constraint). Let us now denote by S the smallest value
∑

p p · yp that

makes possible to get
∑

p cp · yp ≥ d. Then the Bounded Difference Constraint tells

us that (T − 1).(Min + P ) +Min must be at least equal to S, which means Min ≥
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S−(T−1)·P
T . Also, decreasing some value xtp will violate the feasibility of x. We deduce

that T · Min − P < S and so that Min ≤ (P+S−1)
T . Now we see that computing

S means solving a Knapsack problem of the same form as the MBk involved in the
proof of Theorem 1, and so that it may be done in polynomial time. We also see that

the number integral values between S−(T−1)·P
T and (P+S−1)

T may be bounded by a
polynomial function of the encoding size of Multi-Bot. Thus, we may apply a DP

scheme involving the set {1, . . . , T} as time space, the values
∑

p p·(xtp−
(S−(T−1))·P

T ) as

decisions, and, for any t0, the cumulative values
∑

p,t<t0
p·(xtp–

(S−(T−1))·P
T ) as states at

the time value t0. Both decision and state spaces have polynomial size. Then we become

able to conclude if we can prove that any decision
∑

p p·(xtp−
(S−(T−1))·P

T ) characterizes

a decision vector xt = (xtp, p = 1, . . . , P ), that can be retrieved in polynomial time.
Once again, we proceed as in the proof of Theorem 1 in order to get that, for any

integral value H between S−(T−1)·P
T and (P+S−1)

T , the Knapsack problem induced
by imposing a non negative integral vector y = (yp, p = 1, . . . , P ) to be such that∑

p p · yp = H and
∑

p cp,k · yp is maximal, can be solved in polynomial time, its
optimal solution being stored in some table. We conclude.
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