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Abstract

We consider a fleet of elementary robots that can be connected in different ways to transport

loads of different types. For instance, a single robot can transport a small load and the

association of two robots can either transport a large load or two small loads. The robot

associations can be reconfigured between two trips. We seek to determine the minimum

number of robots necessary to transport a set of loads in a given time interval. We formulate

this fleet sizing problem with an integer linear program. We also derive analytical expressions

for the minimum number of robots in the special case of unit capacities. Finally, we compare

the minimum number of robots with or without reconfiguration. We show that the value

of reconfigurability can be very high and diminishes with the fleet size. Reconfigurability

is particularly useful when the demand for small loads has to be met at a different time

interval from the demand for large loads. Finally, numerical experiments show that we can

obtain the optimal solution in a short computation time when the number of load types and

configurations is reasonable, which corresponds to many warehouse configurations.

Keywords : Logistics; Fleet sizing; Reconfigurability; Robots; Warehouse.

1. Introduction

This research is the fruit of a collaboration between LIMOS CNRS Laboratory and

MecaBotiX company. This company designs reconfigurable mobile poly-robots that trans-

port standardized loads in a warehouse such that boxes or pallets. A poly-robot is a vehicle

formed by assembling multiple elementary robots (or simply bots). These poly-robots can

be reconfigured over time to adapt to the type of load to be carried. Figure 1 shows four

examples of M3-Cooper poly-robots: a mono-bot, a bi-bot, a tri-bot and a quadri-bot. For in-

stance, a box could be carried by a mono-bot, while a pallet could be carried by a quadri-bot.
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Figure 1: Examples of M3-Cooper reconfigurable poly-robots (MecaBotiX, 2024)

Reconfigurable poly-robots present promising advantages for future warehouse transport

operations. First, they can dynamically adjust to the size or weight of the load, eliminating

the need for oversized or undersized robots and enabling the reassignment of available mod-

ular units. Second, these robots can facilitate denser storage by navigating narrower aisles

when operating as single units. Lastly, their interchangeable design enhances fault tolerance

and lowers maintenance expenses.

However, a number of challenges remain before reconfigurable robots can be used on an

industrial scale in logistics warehouses. First of all, there are technical issues to be resolved in

order to coordinate the robots with each other and enable rapid, automated reconfiguration.

In addition, there are several optimization issues, such as task scheduling and fleet sizing. In

this paper, we focus on the problem of sizing a fleet of reconfigurable robots. We consider two

scenarios. In the first, reconfiguration is only possible at the beginning and configurations

are fixed for the entire time horizon. In the second, the poly-robots can be reconfigured over

time. The objective is then to determine and compare the minimum number of bots required

to move a set of loads within a given time horizon, for both scenarios.

2. Literature review

In this section, we review the literature related to reconfigurable robotic systems and fleet

sizing problem. We also provide a summary of our contributions.
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Reconfigurable robotic systems

A reconfigurable robotic system is an assembly of modules that can attach and detach

from each other to modify and adapt to different tasks and environments (Bojinov et al.,

2000). Stoy et al. (2010) define three categories of self-reconfigurable robots based on the

number of modules: pack robots, herd robots and swarm robots. Pack robots are composed

of several modules, usually in the range of tens, and requires strict coordination due to the

fact that the individual modules play a crucial role in the robot’s overall performance. Herd

robots are composed of a large number of modules, usually in the range of hundreds, and

global coordination of these modules is challenging. They are better managed as a collection

of groups since the actions of individual modules are still significant but not as critical to

the overall performance of the robot. Eventually, swarm robots are comprised of countless

modules. Here, each module is controlled locally since the impact of an individual module

on the overall behavior of the robot is minimal.

Several prototypes of reconfigurable robotic systems have been developed. The reader is

referred to Jahanshahi et al. (2017) or Seo et al. (2019) for a survey on this topic. For example,

systems using multiple modules can create different forms to perform different tasks: it could

turn into a snake to reach narrow places, into a hexapod to carry a load or it may split into

many smaller robots to perform a task in parallel (Castano et al., 2000; Yim et al., 2000).

The self-reconfigurable robots can also be used as conveyors. The spherical shape of the

ATRON modules enables them to function as wheels, facilitating the construction of surfaces

that have the ability to transport items (Østergaard et al., 2006; Brandt et al., 2007). Shen

et al. (2006) demonstrate a solution based on SuperBot modules that can perform multimodal

locomotions such as snake, caterpillar, insect, spider, rolling track, H-walker, etc. Chebab

(2018) focuses on the design of new architectures of modular mobile manipulators that can

cooperate with each other to perform tasks in industrial or service contexts related to the

handling and transport of boxes. Wan et al. (2024) propose a navigation framework with

non-complex transformation states for inter-reconfigurable robots to perform combining and

splitting control dimensions. Another application of reconfigurable robots can be found in

Mars exploration, where tasks such as transportation or building construction have to be

performed with limited resources (Irawan et al., 2019). A survey of modular system for

multifunctional applications in space exploration is presented by Post et al. (2021). More

generally, reconfigurable robotic systems are related to reconfigurable manufacturing systems

(see e.g. Cui et al. (2024)).

Fleet sizing problem

The fleet sizing problem consists in determining the optimal number of vehicles for the

transport of goods, this is a key logistics problem which concerns all means of transport (air,
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sea, road, inside warehouses, ...). Baykasoğlu et al. (2019) provides a review of fleet planning

problems (including fleet sizing) in transportation systems. In road transportation, the issue

is not only the composition of the fleet but also the choice of the route (Hoff et al., 2010).

The problem involves tanks and rail cars (Sha and Srinivasan, 2016; Milenković and Bojović,

2013; Cheon et al., 2012), trucks (Mohtasham et al., 2021; Amjath et al., 2022), vehicles

(Rahimi-Vahed et al., 2015; Koç et al., 2014; Kumar et al., 2018) and electric vehicles (Miao

et al., 2020; Manzolli et al., 2022; Guo et al., 2024a,b). With respect to maritime fleets,

several studies consider a single type of vessel (Everett et al., 1972; Lai and Lo, 2004), while

others extend the approach to the case of several types of vessels (Schwartz, 1968; Mehrez

et al., 1995). The problem of renewing the maritime fleet consists in dynamically adjusting

the fleet according to the evolution of the service requirements (Xinlian et al., 2000; Meng

and Wang, 2011). A complete review on the maritime fleet size problem is given by Pantuso

et al. (2014).

Finally, we mention here a study that considers vehicles with configurable capacity. Tellez

et al. (2018) consider several types of users with different spatial requirements such as pas-

sengers using seats or wheelchairs. They explore a variant of the dial-a-ride problem that

allows for on-route modifications to the vehicle’s interior configuration.

The fleet sizing problem has also been investigated in the field of autonomous vehicles

which include Automated Guided Vehicles (AGVs) and Autonomous Mobile Robots (AMRs).

Recent review paper of Leong and Ahmad (2024) gives a detailed overview of the autonomous

load-carrying mobile robots, with a particular focus on indoor applications for both ground

and aerial platforms. Vis (2006) reviews research on AGV design and control and Fragapane

et al. (2021) examines AMR planning and control for intralogistics. Vis (2006) identifies

three categories of fleet sizing models: deterministic, stochastic and simulation. Deterministic

approaches like network flow models and linear programming models can be utilized prior to

the actual operation to estimate the required number of vehicles. Stochastic models, such as

queuing networks or simulation models, aim to incorporate external influences (see e.g. Koo

et al. (2004); Choobineh et al. (2012); Gödeke and Detzner (2023); Soufi et al. (2024)). On

one hand, analytical models tend to underestimate the required number of vehicles compared

to simulation results. On the other hand, simulation requires a lot of details and hardly copes

with large fleets.

In what follows, we provide details on deterministic approaches for sizing autonomous

vehicle fleets. Lee and Murray (2019) investigate a new approach for warehouse order picking.

They focus on two types of commercially available mobile robots: pickers, capable of grasping

items from shelves, and transporters, designed to swiftly deliver items from the warehouse to

the packing station. They determine the optimal combination of picker and transport robots
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that surpasses the performance of traditional human-based picking operations. Lyu et al.

(2019) simultaneously consider the optimal number of AGVs, the shortest transportation

time, a path planning problem, and a conflict-free routing problem. Aziez et al. (2021) focus

on the optimization of the number and types of carts and AGVs required to fulfill daily

requests in a hospital while optimizing AGVs routes and adhering to time constraints. Each

request necessitates specific types of carts, which are transported by the AGVs.

Contributions

We consider the problem of sizing a fleet of cooperative and reconfigurable robots to

transport loads of different types. Our main contributions can be summarized as follows.

In Section 3, we propose a framework to model the fleet sizing problem for a fleet of recon-

figurable robots. In Section 4, we propose Integer Linear Programs (ILPs) formulations for

the problems with or without reconfiguration. In Section 5, we derive closed-form expres-

sions for the minimum number of robots in the special case of unit capacities. In Section

6, we compare the strategy with reconfiguration and the strategy without reconfiguration.

We show that reconfiguration can allow to reduce significantly the fleet size. However, the

value of reconfigurability diminishes with the fleet size. We also consider a variant where the

demand is per period rather than over the whole horizon. For this variant, we show that

the gain, in number of robots, is not bounded. Finally, in Section 7 we present numerical

experiments that show that our ILP models can be solved in a very short time for small to

medium instances.

3. Assumptions and notations

We consider a fleet of N mobile elementary robots that are able to cooperate to transport

loads of different types. An elementary robot is abbreviated to bot. A poly-robot refers to a

vehicle obtained by combining together several bots. A p-bot refers to a poly-robot involving

exactly p bots. We call the number p a configuration. A 1-bot is a bot working alone. A

maximum of P bots can cooperate together (p = 1, · · · , P ).

There are dk loads of type k to be transported (k = 1, · · · , K). We assume that the

demand is known at the beginning of the time horizon. All the loads to be moved are located

in the loading area of the warehouse and must be transported to the unloading area. A p-bot

can only carry one load type at a time and can simultaneously carry cpk loads of type k. We

assume that for each load type there is at least one configuration capable of carrying it.

The time horizon is divided into T periods (t = 1, · · · , T ). During a period, a p-bot is

able to perform a round trip and carry a maximum of cpk loads of type k. At each period,

the poly-robots can reconfigure themselves. For example, if we have at time t a 5-bot and
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a 2-bot, that is to say a total of 7 bots, we can transform them into a 3-bot and a 4-bot in

period t+ 1 (see Figure 2).

Figure 2: Reconfiguration example between two periods

The goal is to minimize the number of bots needed to carry all the loads over the time

horizon. We consider two variants. In the first variant, reconfiguration is prohibited and the

configurations are decided for the entire horizon. In the second variant, reconfiguration is

allowed and the configurations can be changed at the start of each period. When reconfigu-

ration is allowed, we denote by NR the minimum number of bots. When reconfiguration is

not allowed, we denote by NW the minimum number of bots.

We summarize below the main notations that will be used in subsequent sections.

P Number of configurations (p = 1, · · · , P )

p-bot Poly-robot formed with p bots

K Number of load types (k = 1, · · · , K)

dk Number of loads of type k

cpk Number of loads of type k that a p-bot can transport in a single period

T Number of periods (t = 1, · · · , T )
NW Minimum number of bots when reconfiguration is forbidden

NR Minimum number of bots when reconfiguration is allowed

xt
pk Number of p-bots transporting loads of type k in period t

xp Number of p-bots (only defined for the problem without configuration)

Example. We now present an example to illustrate the problems with or without configu-

ration. Consider four configurations, as in Figure 1, and four types of loads 1, 2, 3, 4 cor-

responding to respectively Small (S), Medium (M), Large (L) and Extra Large (XL) loads.

Let’s take T = 5, d1 = 7, d2 = 1, d3 = 1 and d4 = 1. The capacities are set to 0 or 1 and are

given by Table 1.

The optimal solutions are trivial for this simple problem and are represented with a

Gantt chart in Figure 3. Each rectangle indicates the load type being transported. The

height of a rectangle corresponds to the number of bots involved in the poly-robot. Without

reconfiguration, the optimal number of bots is NW = 6. With reconfiguration, the optimal

number of bots is NR = 4.
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Load type
Configuration

k = 1 (S) k = 2 (M) k = 3 (L) k = 4 (XL)
1-bot 1 0 0 0
2-bot 1 1 0 0
3-bot 1 1 1 0
4-bot 1 1 1 1

Table 1: Capacities for an example with 4 types of loads and configurations

(a) Without reconfiguration (b) With reconfiguration

Figure 3: Gantt chart for an example with four types of loads

We briefly comment the solutions presented in Figure 6. When reconfiguration is not

allowed, the 4-bot is not able to reconfigure, so it carries a single XL load, then a single L

load, a single M load and a single S load. It follows that we need two additional 1-bots to

carry the remaining S loads. When reconfiguration is allowed, a 4-bot carries one load XL in

period 1. Then it reconfigures in period 2 into a 3-bot plus a 1-bot. In period 3, the 3-bot

reconfigures itself into a 2-bot plus a 1-bot. Finally, in period 4, the 2-bot reconfigures into

two 1-bots.

Discussion of assumptions. The MecaBotiX company envisions a practical industrial appli-

cation where various load types correspond to materials stored in distinct zones of a large

warehouse. A typical transportation task for a load of type k involves collecting a number

of items n (n ≤ cpk) from a pick-up and delivery platform A0, loading them onto a p-bot,

delivering them to the designated storage area Ak, and then returning to A0. Alternatively,

the task might require the p-bot to move to Ak, pick up loads of type k, and transport them

back to A0.

Each transportation task typically lasts between 10 and 15 minutes, part of which is

allocated for handling the load within the target area Ak. However, the exact duration
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depends on factors like warehouse size, which can range from a few thousand to over a

million square feet.

The process of reconfiguring a poly-bot, performed by warehouse staff, is estimated to

take less than two minutes and usually occurs between consecutive time periods. In practice,

reconfiguration is expected to be rare, as a p-bot assigned to transport type k loads during

period t will likely continue the same task in the subsequent period t+1. With advancements

in poly-robot industrialization, reconfiguration times are anticipated to become negligible.

Managing uncertainties in trip durations, reconfiguration, and load handling remains

challenging. Dividing time into structured periods helps synchronize transportation tasks

with worker schedules and external operations (e.g., production or logistics). Period lengths

are expected to range from 10 to 20 minutes, depending on warehouse context and size. Over a

typical workday, approximately 40 such periods can be accommodated. Transportation tasks

should be completed within a single period, ensuring synchronization with other processes.

4. Mathematical formulations

In this section, we present Integer Linear Program (ILP) formulations for the two variants.

4.1. Without reconfiguration

We first assume that reconfiguration is prohibited. We denote by xp the decision variable

representing the number of p-bots chosen for the entire horizon. The total number of bots

is then
∑P

p=1 p · xp. We also denote by xt
pk the decision variable representing the number

of poly-robots in configuration p transporting loads of type k in period t. For the solution

illustrated in Figure 3a, the decision variables that are not equal to zero are: x1 = 2, x4 =

1, x1
11 = 2, x1

44 = 1, x2
11 = 2, x2

43 = 1, x3
11 = 1, x3

42 = 1, x4
11 = 1, x4

41 = 1. The number of

required bots is then x1 + 4x4 = 6.

The problem without reconfiguration can be formulated by the following ILP.

NW =min
P∑

p=1

p · xp

subject to :

T∑
t=1

P∑
p=1

cpk · xt
pk ≥ dk ∀k (1)

xp ≥
K∑
k=1

xt
pk ∀t, ∀p (2)

xp ∈ N, xt
pk ∈ N ∀k, ∀p, ∀t
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Constraint (1) means that the total capacity of the fleet along the time horizon must be

able to transport all loads of each type. Constraint (2) means that the number xp of p-bots

must be greater than or equal to the number of p-bots used over each period.

4.2. With reconfiguration

When reconfiguration is allowed, the problem can be formulated by the following ILP.

We remind that xt
pk is the decision variable representing the number of poly-robots in con-

figuration p transporting loads of type k in period t.

NR =min N

subject to :

T∑
t=1

P∑
p=1

cpk · xt
pk ≥ dk ∀k (3)

N ≥
K∑
k=1

P∑
p=1

p · xt
pk ∀t (4)

N ∈ N, xt
pk ∈ N ∀k, ∀p, ∀t

Constraint (3) is the same as in the problem without reconfiguration. Constraint (4)

means that the number of bots used, N , must be greater than or equal to the number of bots

used over each period.

Note that the problem with reconfiguration is strongly NP-hard, even when there is a

single configuration p(k) for each load type k. This special case is precisely an IMS (Identical

Machine Scheduling) problem, denoted as Pm||Cmax in the scheduling literature (Pinedo,

2012). The correspondence between our problem (with a single configuration per type of

load) and the IMS problem is as follows. The T periods correspond to T parallel machines.

The K load types correspond to K different types of jobs. The demand dk corresponds to

dk jobs of type k with processing time p(k). Since the IMS problem is strongly NP-hard

(Graham, 1969), our problem with reconfiguration is also strongly NP-hard.

4.3. Additional operational constraints

We can add various operational constraints to the basic ILP formulations. For instance,

we can impose a maintenance of the fleet in period t by setting xt
pk = 0 for all p and k. We

can also impose that demands of type k must be satisfied in a time window Tk ⊂ {1, · · · , T},
by letting xt

pk = 0 for all t /∈ Tk and all p. To take into account failures, we can introduce an

efficiency e ∈]0, 1] of vehicles after accounting for breakdowns (Egbelu, 1987), where e = 1
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means that there is no failure. We should then set the number of bots to ⌈NR/e⌉ and ⌈NW/e⌉
for the problems with or without reconfiguration.

5. Minimum number of bots for the special case of unit capacities

We now consider K types of loads and P = K configurations with 0-1 capacities. More

precisely, the capacity matrix is lower triangular and is such that ckp is equal to 1 if p ≥ k and

0 otherwise. We also assume that there is at least one load of type K (dK ≥ 1), otherwise

the problem reduces to a problem with (K − 1) types of loads.

Table 2 illustrates the capacity matrix with K = 3 types of loads and P = 3 config-

urations. We can imagine that loads of type 1, 2, 3 correspond to respectively Small (S),

Medium (M) and Large (L) loads. With this terminology, small loads can be transported by

all configurations, medium loads by 2-bots or 3-bots and large loads only by 3-bots.

Load type
Configuration

k = 1 (S) k = 2 (M) k = 3 (L)
1-bot 1 0 0
2-bot 1 1 0
3-bot 1 1 1

Table 2: Capacities for 3 types of loads

When considering such capacity structure, we are able to derive simple formulas for the

minimum number of bots with or without reconfigurations. In the case without reconfigu-

ration, we obtain a result that holds for an arbitrary number of types of loads K. In the

case with reconfiguration, we obtain a result up to 3 types of loads. With 4 types of loads or

more, the problem becomes much more complex as the reconfiguration decision is no more

trivial. For instance, we can reconfigure a 4-bot into two 2-bots or into a 3-bot plus a 1-bot.

Theorem 1 (Unit capacities) Let d′K = 0 and for k = K, · · · , 2

xk =

⌈
(dk − d′k)

+

T

⌉
d′k−1 = d′k − dk + xk · T

Then

NW =
K∑
k=1

k · xk (5)
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and, for K ≤ 3,

NR =
K∑
k=2

k · xk +

⌈
(d1 − d′1 −

∑K−1
k=1 d′k)

+

T

⌉
(6)

The proof of this theorem is detailed in Appendix A. Note that (6) holds for K > 3 if we

further assume that there is a sufficient number of type 1 loads to exploit the partially used

slots (e.g. d1 ≥ K(T − 1)). In this theorem, xk represents the number of required k-bots and

d′k the number of free periods in the last used configuration after the assignment of loads of

type k + 1, · · · , K.

6. Reconfigurable versus non-reconfigurable fleet

We now examine how many bots can be saved thanks to reconfigurability. To begin with,

we present a simple example with two types of loads where the fleet size can be divided by

two. In this example, loads of type 1 and 2 correspond to respectively small (S) and medium

(M) loads. Let T = 4, P = K = 2, d1 = 6, d2 = 1, c11 = c22 = 1 and c12 = c21 = 0. Then

NR = 2, NW = 4 and NW

NR
= 2 (see Figure 4 for the Gantt chart).

(a) Without reconfiguration (b) With reconfiguration

Figure 4: Gantt chart of an example where the limit is reached with two types of loads

We prove in Appendix B that we can remove at most PK bots thanks to reconfigurability.

Theorem 2 (General case) For the problem described in Section 3, we have

0 ≤ NW −NR ≤ PK (7)

Equation (7) can be rewritten as

NW

NR

≤ 1 +
PK

NR

.
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It implies that the potential gain is diminishing with the fleet size. For instance, let P =

K = 4. If NR = 10, then
NW

NR

≤ 2.6. If NR = 100, then
NW

NR

≤ 1.16. If NR = 1000, then

NW

NR

≤ 1.016.

6.1. Unit capacities

For the setting with unit capacities (described in Section 5), we now compare the optimal

numbers of bots with or without reconfiguration. As formula (6) in Theorem 1 holds only

for K ≤ 3, we assume in that there are at most 3 load types.

Theorem 3 (Unit capacities) When K ≤ 3, we have

0 ≤ NW −NR ≤ K − 1. (8)

The proof of this theorem can be found in Appendix C. This theorem shows that the

gain is not substantial in absolute value. When K = 1, i.e. when there is a single load

type, the gain is null as expected. When K = 2, we can gain at most one bot by using

reconfigurability. When K = 3, the gain is at most of 2 bots. Note that Theorem 3 holds for

K > 3 if we further assume that there is sufficient number of loads of type 1 to exploit the

partially used slots.

Theorem 3 implies that NW

NR
≤ 1 + K−1

NR
. As dK ≥ 1, we have NR ≥ K and we get that

1 ≤ NW

NR

≤ 2− 1

K
. (9)

In what follows, we provide examples where the upper bound in (8) and (9) are reached

for two or three types of loads.

Example with two types of loads

In the following example, loads of type 1 and 2 correspond to respectively small (S) and

medium (M) loads. Let’s take T = 2, d1 = 2 and d2 = 1. Then NR = 2 and NW = 3 and
NW

NR
= 3

2
. Figure 5 represents the Gantt chart for this example. On the ordinate axis is the

reference number of the bots and on the abscissa axis is the reference number of the period.

In each rectangle is indicated the carried load type.

In case where reconfiguration is permitted, the 2-bot can transport one medium load

before transforming into two 1-bots, which are then capable of carrying two small loads. On

the other hand, if reconfiguration is not allowed, the 2-bot cannot divide into two independent

robots, and can only transport a single small load.
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(a) Without reconfiguration (b) With reconfiguration

Figure 5: Gantt chart for an example with two types of loads

Example with three load types

In the following example, loads of type 1, 2 and 3 correspond to respectively small (S),

medium (M) and large (L) loads. Let’s take T = 5, d1 = 8, d2 = 2 and d3 = 1. Then NR = 3,

NW = 5 and NW

NR
= 5

3
. Figure 6 represents the Gantt chart of an optimal solution.

(a) Without reconfiguration

(b) With reconfiguration

Figure 6: Gantt chart for an example with three load types

6.2. Demand per period

So far, we have shown that the gain in relative value, NW/NR, can be significant while

the gain in absolute value, NW − NR, remains limited. We will now consider a variation of
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the problem where the gain in absolute value can be significant.

We now assume that the demand is per period and not over the whole horizon. More

precisely, there are dkt loads of type k to be transported in period t (instead of dk loads of type

k to be transported over the whole horizon in the previous sections). This may correspond,

for example, to the activity of a warehouse that delivers one type of load on Monday and

another type of load on Tuesday. With this new assumption, the ILPs remain unchanged

except that constraints (1) and (3) have to be replaced by the following one:

P∑
p=1

cpk · xt
pk ≥ dkt ∀k, ∀t (10)

We present below a simple example where the gain in absolute value can be significant.

Consider two types of loads and two periods where d1 loads of type 1 have to be transported

in period 1 and d2 loads of type 2 have to be transported in period 2 (see Table 3a for a

summary of demands). Type 1 (S) loads can only be transported by 1-bots while type 2

(M) loads can only be transported by p-bots with p ≥ 2 (see Table 3b for a summary of

capacities).

Period
Load type

t = 1 t = 2
k = 1 (S) d1 0
k = 2 (M) 0 d2

(a) Demands

Load type
Configuration

k = 1 (S) k = 2 (M)
1-bot 1 0
p-bot 0 1

(b) Capacities

Table 3: Instance where the gain in absolute value can be significant

For this example, the minimum numbers of bots is trivial and can be expressed as:

NW = d1 + pd2,

NR = (d1 − pd2)
+ + pd2

= max(d1, pd2).

It follows that

NW −NR = min(d1, pd2),

NW

NR

=


1 +

d1
pd2

if d1 ≤ pd2

1 +
pd2
d1

if d1 > pd2.
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When d1 = pd2, the ratio NW/NR is maximum and equal to 2 while the difference is equal

to d1 and is thus unbounded. Figure 7 plots the effect of d1 on the difference NW −NR and

the ratio
NW

NR

.

(a) Difference (b) Ratio

Figure 7: Effect of the number of loads of type 1 on the gains in absolute and relative value

Figure 8 represents the Gantt chart for the above example with p = 4, d1 = 8 and d2 = 2.

We have then NR = 8 and NW = 16, NW −NR = 8 and NW/NR = 2.

(a) With reconfiguration (b) Without reconfiguration

Figure 8: Gantt chart for the instance described in Table 3 with p = 4, d1 = 8 and d2 = 2
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7. Numerical experiments

In this section, we solve the two ILPs introduced in Section 4 with the PuLP library,

using CBC (Coin Branch and Cut) solver. The programs are implemented in Python on a

PC AMD Opteron 2.1GHz.

Instances. We build an instance by first choosing T, P,K and next generating the capacities

and the demands as follows. For each load type k, we randomly select the capacity c1k in

{1, · · · , K}. Then we set, cpk = p · (c1k + ϵ) + τ with ϵ randomly selected in {1, 2} and τ

randomly selected in {1, 3} for each configuration p > 1. We denote by cmean
k =

1

P

∑
p cpk the

mean capacity. The demand for load type k is then set as dk = ⌊γ · J · T ·P · cmean
k ⌋ where J

is randomly selected in {1, · · · , 10}. Note that demand dk increases with the demand factor

γ.

We call nominal instance the instance with parameters (T = 10, P = 5, K = 5, γ = 0.1).

We first apply the ILP programs to this nominal instance, then change one parameter at a

time among T, P,K, γ, while keeping the others unchanged, as follows:

• T = 10, 20, 30, 40, 80, 120

• K = 2, 3, 5, 6, 9, 12

• P = 2, 3, 5, 6, 9, 12

• γ = 0.1, 0.5, 1, 5, 10

Results. The solver efficiently computes optimal or near-optimal solutions in less than one

second for the scenarios involving K ≤ 4 types of loads, P ≤ 4 configurations and T ≤ 40

periods. However, as the parameters K, P and T grow, the computation time increases

significantly. Table 4 provides the CPU times to obtain the optimal solution for different

values of T . For each value of T , we generate 10 different instances and compute the average

CPU time for the instances solved to optimality. Note that the difficult instances are not the

same for the problem with reconfiguration or without.
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T

Average CPU time

without reconfigu-

ration (*)

Number of in-

stances solved to

optimality with-

out reconfigura-

tion

Average CPU

time with recon-

figuration (*)

Number of in-

stances solved to

optimality with

reconfiguration

10 2.31 s. 9 0.24 s. 9

20 1.21 s. 10 2.97 s. 10

40 0.71 s. 9 6.26 s. 8

80 1.08 s. 9 2.68 s. 5

160 3.84 s. 9 7.84 s. 2

Table 4: Effect of the number of periods T on the computation time (with P = 5, K = 5, γ = 0.1)
(*) for instances solved to optimality in less than 10 minutes

For large instances, solving the ILP becomes impractical within a reasonable timeframe,

necessitating the development of heuristic approaches. Fortunately, in real-world applica-

tions, most warehouses typically handle only a limited number of standardized load types,

such as boxes and pallets. To handle larger instances, it would be interesting to design a

simple and efficient heuristic algorithm. To design such algorithm, we could take advantage

of the fact that our problem shares characteristics with the IMS problem (see Section 4.2).

When there is a single configuration available for each type of load, our problem is precisely

an IMS problem that could be solved by well known heuristics such as LPT (Longest Pro-

cessing Time First). One possible heuristic scheme would the following. First choose, for

each type of load, the most efficient configuration, i.e. the configuration that has a maximum

capacity per bot. Second, solve the IMS problem. Third, try to improve the solution by using

other configurations.

8. Conclusion

Just like human beings for whom it is natural to carry small loads alone and to collabo-

rate with others to carry heavy or bulky loads, we consider a fleet of reconfigurable robots

that adapt themselves according to the load type to be carried. We present the problem

of sizing such a fleet of reconfigurable robots and propose a mathematical formulation. We

show that the resulting ILP models can be solved in a very short computation time with a

limited number of load types and configurations, a situation that corresponds to many ware-

house settings. For the special case where loads are carried one by one, we derive closed-form

expressions for the minimum number of robots up to three load types with reconfiguration,
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and for any number of load types without reconfiguration. We also investigate how reconfig-

urability can reduce the number of bots needed. We show that the value of reconfigurability

can be very high but diminishes with the fleet size. We also observe that reconfigurability

can be particularly useful when the demand for small loads has to be met at a different time

interval from the demand for large loads.

A number of simplifying assumptions have been made, which could be relaxed in future

work. One potential direction would be to explore more complex warehouse topologies or

transportation times that depend on the type of load and configuration. Another interesting

avenue would involve integrating reconfiguration time and costs in the model, as well as

accounting for stochastic demands and transportation times. Additionally, examining poly-

robots whose capacities are influenced by the geometry of their configuration, rather than

solely by their number, could provide valuable insights. In practice, the transportation

process in an industrial warehouse is dynamic, and we have to deal with new demands and

random events that force decision makers to frequently update the planning of transportation

tasks. Hence, we need to be able to generate good feasible solutions in a very short time.

Designing a fast and efficient heuristic algorithm that would be able to tackle large instances

is therefore an area for research.

Appendix A. Proof of Theorem 1

Assume in all this proof that K = P and that ckp is equal to 1 if p ≥ k and 0 otherwise.

Appendix A.1. Without reconfiguration

We begin by exploring the case without reconfiguration. Note that, if you have a p-bot,

it is optimal to use it in priority to transport the biggest loads (with the highest index).

Remind that we denote by xk the minimum number of required k-bots. In what follows, we

determine xk, xk−1, · · · , x1 in this order.

We also denote by d′k the number of free periods in the last used configuration after the

assignment of loads of type k + 1, · · · , K. It is optimal to use these free periods in priority

for loads of type k, then of type k − 1 and so on. Figure A.9 illustrates notation d′k. In this

figure, d′3 = 4 means that we have 4 free periods for the transport of the loads of type 3 (L).

d′2 = 2 means that we have 2 free periods for the transport of loads of type 2 (M). d′1 = 3

means that we have 3 free periods for the transport the loads of type 1 (S).

The number of K-bots necessary to transport loads of type K is

xK =

⌈
dK
T

⌉
.
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Figure A.9: Illustration of notation d′k with four types of loads (T = 5, d1 = 1, d2 = 4, d3 = 2, d4 = 1)

It then may remain available capacity for the last K-bot. More precisely, the number of free

periods for the last K-bot is

d′K−1 = xK · T − dK =

⌈
dK
T

⌉
T − dK .

These d′K−1 free periods are used to transport in priority loads of type (K−1) and it remains

to transport (dK−1 − d′K−1)
+ loads of type K − 1. The number of (K − 1)-bots necessary to

transport these remaining loads of type (K − 1) is then

xK−1 =

⌈
(dK−1 − d′K−1)

+

T

⌉
.

Assume now that the number of p-bots, xp, has been determined for p = k+1, · · · , K and

that there remains d′k free periods on these configurations. These d′k free periods are assigned

in priority to loads of type k and then (dk − d′k)
+ loads of type k remain to be carried. The

number of additional k-bots required is

xk =

⌈
(dk − d′k)

+

T

⌉
.

The number of free periods for the last k-bot is xk · T − (dk − d′k)
+. There remains also

(d′k − dk)
+ free periods after the transportation of loads of type j (for j > k). It follows that

d′k−1 = xk · T − (dk − d′k)
+ + (d′k − dk)

+

= xk · T + d′k − dk
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In the end, we have

NW =
K∑
k=1

k · xk

with

xk =

⌈
(dk − d′k)

+

T

⌉
d′K = 0

d′k−1 = d′k − dk + xk · T (for k = K, · · · , 2)

Appendix A.2. With reconfiguration

K = 1: With a single load type, we have immediately NR =
⌈
d1
T

⌉
and it is easy to check that

(6) gives the same result.

K = 2: When there are two types of loads, we need x2 2-bots, as in the case without recon-

figuration. If there remains free periods on the last 2-bot, it is optimal to reconfigure into

two 1-bots. On the d′1 free periods of the last 2-bot, we can transport up to 2d′1 loads of type

1. It remains (d1 − 2d′1)
+ loads of type 2 that require

⌈
(d1−2d′1)

+

T

⌉
additional 1-bots. In the

end, the optimal number of bots is

NR = 2 · x2 +

⌈
(d1 − 2d′1)

+

T

⌉
and we have shown that (6) holds.

K = 3: Let’s detail now the case with 3 types of loads. We need x3 3-bots to transport loads

of type 3, as in the case without reconfiguration. If there remains free periods on the last

3-bot, it is optimal to reconfigure into a 2-bot plus a 1-bot. On the d′2 free periods of the

last 3-bot, we can then transport up to d′2 loads of type 2 and d′2 loads of type 1. It remains

(d2 − d′2)
+ loads of type 2 that require x2 =

⌈
(d2−d′2)

+

T

⌉
additional 2-bots, as in the case

without reconfiguration. On the last 2-bots, there are d′1 free periods which can be used to

transport up to 2d′1 loads of type 1. It remains (d1 − d′2 − 2d′1) loads of type 1 that require⌈
(d1−d′2−2d′1)

+

T

⌉
additional 1-bots. If ever d2 = 0, then the 3-bot reconfigures into three 1-bots

and d′2 = d′1. In the end, we have

NR = 3 · x3 + 2 · x2 +

⌈
(d1 − d′2 − 2d′1)

+

T

⌉
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and we have shown that (6) holds.

Appendix B. Proof of Theorem 2

Let p0(k) = argmaxp
cpk
p

the most profitable configuration. Let also xk =
⌊

dk
Tcp0(k),k

⌋
and

x′
k =

⌈
dk

Tcp0(k),k

⌉
. On one hand, we have NR ≥

∑K
k=1 xkp0(k). On the other hand, we have

NW ≤
∑K

k=1 x
′
kp0(k). It follows that NW −NR ≤

∑K
k=1 p0(k)(x

′
k − xk). Since p0(k) ≤ P and

x′
k − xk ≤ 1, it follows that NW −NR ≤ PK.

Appendix C. Proof of Theorem 3

From (5) and (6), we obtain that

NW −NR = (C.1)

=

⌈
(d1 − d′1)

+

T

⌉
−


(
d1 − d′1

T
− 1

T
·
K−1∑
k=1

d′k

)+
 . (C.2)

Note that the number of free periods d′k can not exceed T − 1 as there is at least one period

used to transport some load. Thus d′k ≤ T − 1 for k = 1, · · · , K − 1. It follows that

NW −NR ≤
⌈
(d1 − d′1)

+

T

⌉
−

⌈(
d1 − d′1

T
− (K − 1)

)+
⌉
. (C.3)

To conclude we need the following property. Let b a non-negative integer and x a real

number. Then ⌈x+⌉ − ⌈(x− b)+⌉ ≤ b. The proof of this property is straightforward.

⌈x+⌉ − ⌈(x− b)+⌉ =


0 if x < 0

x if 0 ≤ x ≤ b

b if x > b

≤ b

Using this property and (C.3) gives NW −NR ≤ K − 1.
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I. Aziez, J.-F. Côté, and L. C. Coelho. Fleet Sizing of Healthcare Automated Guided Vehicles.

Bureau de Montreal, Université de Montreal, 2021.
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