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Première partie

Analyse spectrale

3



Chapitre 1

Préambule

L’objectif de ce chapitre est de déterminer les valeurs propres et les vecteurs propres d’une
matrice carré A d’ordre n à l’aide de méthodes numériques efficaces. Rappelons que le
scalaire λ est une valeur propre de A si il existe un vecteur x 6= 0 tel que

Ax = λx

Le vecteur x est alors appelé vecteur propre associé à la valeur propre λ.
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Chapitre 2

Rappels

Les quelques rappels qui suivent ne remplacent en aucun cas un cours d’algèbre linéaire
mais doivent pouvoir permettre à un étudiant de suivre ce qui suit.

2.1 Déterminants

Soit A = (aij) une matrice carrée d’ordre n. On utilisera les notations suivantes pour le
déterminant de la matrice A.

Déterminant de A = det(A) =

∣∣∣∣∣∣
a11 · · · a1n

· · ·
an1 · · · ann

∣∣∣∣∣∣
Matrice 1× 1

A =
(
a11

)
det(A) = |a11| = a11

Matrice 2× 2

A =

(
a11 a12

a21 a22

)
=
(
u v

)

det(A) =

∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21

= Aire orientée du parallélogramme formé par u et v

= ‖u‖‖v‖ sin(θ)

où θ désigne l’angleorienté formé par les vecteurs u et v.

Propriété 1. det(A) = 0 ssi u et v sont colinéaires (aire du parallélogramme nulle) ssi
si u et v sont linéairement dépendants.

Matrice 3× 3

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 =
(
u v w

)

Développement du déterminant suivant la 1ère ligne :

det(A) =

∣∣∣∣∣∣
a+

11 a−12 a+
13

a−21 a+
22 a−23

a+
31 a−32 a+

33

∣∣∣∣∣∣ = a11

∣∣∣∣a22 a23

a32 a33

∣∣∣∣− a12

∣∣∣∣a11 a13

a21 a23

∣∣∣∣+ a13

∣∣∣∣a21 a22

a31 a32

∣∣∣∣
= Aire orientée du volume formé par u, v, w

Propriété 2. det(A) = 0 ssi u, v, w sont coplanaires (volume nul) ssi u, v, w sont
linéairement dépendants

Matrice n× n

Soit A = (aij) une matrice n× n. On note Aij la sous-matrice de A où l’on supprime la
ligne i et la colonne j.

On peut développer le déterminant de A comme suit : Développement suivant la i-ème
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ligne ou suivant la j-ème colonne :

det(A) =

n∑
j=1

(−1)i+jaijdet(Aij) (développement suivant la i-ème ligne)

=

n∑
i=1

(−1)i+jaijdet(Aij) (développement suivant la j-ème ligne)

Une manière de calculer un déterminant quelconque est d’itérer le développement en ligne
ou en colonne jusqu’à obtenir des matrices 1× 1. On parle alors de méthode de Laplace.
Malheureusement, cette méthode a une complexité exponentielle en n×(n−1)×· · ·×1 = n!
et ne permet pas de calculer le déterminant de grandes matrices.

Exercice 1. Développer suivant la 3-ème colonne le déterminant de la matrice suivante.

A =


1 2 3 4
4 6 7 8
9 10 11 12
13 14 15 16


Quelques propriétés des déterminants

Voici quelques propriétés classiques du déterminant :
— Matrice diagonale ou triangulaire : det(A) =

∏n
i=1 aii

— det(AT ) = det(A)
— det(AB) = det(A)det(B)

— det(A−1) =
1

det(A)
si A est inversible

— A est inversible si et seulement si det(A) 6= 0
— Si det(A) = 0, les vecteurs colonne (ou ligne) sont linéairement dépendant
— Si det(A) 6= 0, les vecteurs colonne (ou ligne) sont linéairement indépendants

Voici par ailleurs l’effet sur le déterminant de quelques transformations élémentaires :

1. Li ↔ Lj ou Ci ↔ Cj (permutation deux lignes ou deux colonnes) : le déterminant
change de signe ;

2. Li ← Li + αLj ou Ci ← Ci + αCj : déterminant est inchangé ;

3. Li ← αLi, le déterminant est multiplié par α ;

4. B = αA : chaque ligne est multiplié par α d’où det(B) = αndet(B) avec n l’ordre
de A.

L’algorithme du Pivot de Gauss n’utilisant que des opérations de type 1 et 2, la matrice
obtenue à la fin a le même déterminant que A au signe près. Ainsi,

det(A) = (−1)k
n∏
i=1

pi

où les pi sont les pivots et k le nombre de permutations de lignes (ou de colonnes). On peut
donc utiliser l’algorithme du pivot de Gauss pour calculer le déterminant d’une matrice,
avec une complexité en O(n3).

Exercice 2. Calculer à la main les déterminants des matrices suivantes

A =


10 20 30 40
10 10 10 10
5 6 0 2
0 3 0 1



B =


10 20 30 40
10 10 10 10
5 6 4 2
2 3 2 1


Correction : det(A) = −2000, det(B) = 0. Astuce : L3 ← L3 − 2L4.

Exercice 3. Donner les polynômes caractéristiques de l’exercice 1 de la feuille de TD.

Exercice 4. La matrice de Hilbert Hn est la matrice définie par Hn(i, j) =
1

i+ j − 1
pour i, j = 1, . . . , n. Montrer que

det(Hn) =

n−1∏
k=0

(k!)3

(n+ k)!
.

2.2 Éléments propres

Définition 1. Soit A une matrice carrée d’ordre n.Un scalaire λ ∈ IR est valeur propre
de A ssi il existe x 6= 0 tel que

Ax = λx⇔ (A− λI)x = 0

On dira qu’un tel x est vecteur propre associé à la valeur propre λ.

On appelle spectre de A (noté Sp(A)) l’ensemble des valeurs propres de A. On appelle
par ailleurs rayon spectral de A (noté ρ(A)) le plus grand module des valeurs propres de
A :

ρ(A) = max
λ∈Sp(A)

|λ|.

Enfin, on appelle espace propre associé à λ (noté SEP(A, λ)) l’ensemble des vecteurs
propres associés la valeur propre λ .

Exemple. Soit A =

2 0 0
0 3 0
0 0 −4

 On peut vérifier que A

0
1
0

 = 3

0
1
0

. Donc 3 est

valeur propre de A et
(
0 1 0

)>
est un vecteur propre associé.
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On peut montrer que les valeurs propres de A sont 2, 3 et -4. Ainsi, le spectre de A est
Sp(A) = {2, 3,−4} et le rayon spectral est ρ(A) = 4.

Cherchons les sous-espace propre associé à la valeur propre 3 en résolvant le système
linéaire suivant.

Ax = 3x⇔

 2x1 = 3x1

3x2 = 3x2

4x3 = 3x3

⇔ x1 = x3 = 0

Ainsi,

SEP(A, 3) =

x2

0
1
0

 , x2 ∈ IR

 = V ect


0

1
0


Interprétation géométrique

Exercice 5. Pour les transformations suivantes du plan (IR2), donner la matrice A
associée , les valeurs propres et les sous-espaces propres :

— Identité
— Symétrie centrale
— Homothétie
— Symétrie axiale
— Projection orthogonale sur une droite
— Rotation

Astuce : ne pas faire de calculs mais des raisonnements géométriques, en s’aidant de
figures.

Correction :
— Identité

A = I

Sp(A) = {1}
SEP (A, 1) = IRn

— Symétrie centrale

A = I

Sp(A) = {−1}
SEP (A, 1) = IRn

— Homothétie de rapport α

A = αI

Sp(A) = {α}
SEP (A,α) = IRn

— Projection orthogonale sur V ect(u), la droite portée par le vecteur u

A =
uu>

u>u

Sp(A) = {1, 0}
SEP (A, 1) = V ect(u)

SEP (A, 0) = V ect(u)⊥

— Symétrie axiale par rapport à la droite portée par le vecteur u :

Sp(A) = {−1, 1}
SEP (A, 1) = V ect(u)

SEP (A,−1) = V ect(u)⊥

— Rotation dans IR2 d’angle θ

A =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
Il n’y a pas de valeur propre réelle mais il y a des valeurs propres complexes, par
exemple eiθ.

Déterminer les valeurs propres

Le système linéaire (A− λI)x = 0 admet des solutions non nulles si et seulement si

det(A− λI) = 0.

On appelle polynôme caractéristique le polynôme χA(λ) = det(A− λI).

Propriété 3. Le polynôme caractéristique d’une matrice d’ordre n est de degré n.

Théorème 1. Les valeurs propres de A sont les racines (éventuellement complexes) du
polynôme caractéristique de A.

On appelle multiplicité algébrique d’une valeur propre l’ordre de multiplicité en tant que
zéro du polynôme caractéristique.

Déterminer les vecteurs propres

Pour déterminer les vecteurs propres associés à une valeur propre λ, il suffit de résoudre
le système linéaire

Ax = λx⇔ (A− λI)x = 0⇔ x ∈ Ker(A− λ)
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Ainsi, nous avons SEP(A, λ) = Ker(A − λI). On appelle multiplicité géométrique de la
valeur propre λ la dimension de l’espace propre associé, soit dim(SEP(A, λ)).

Exercice 6. Exercice 1 de la feuille de TD (sauf question sur la diagonalisabilité).

2.3 Quelques propriétés des éléments propres

— Les valeurs propres d’une matrice diagonale ou triangulaire sont les éléments dia-
gonaux.

— 0 est valeur propre de A si et seulement si det(A) = 0

— Si λ 6= 0 est valeur propre de A, alors
1

λ
est valeur propre de A−1.

— La trace de A est égale à la somme des valeurs proprers : Trace(A) =
∑n
i=1 aii =∑n

i=1 λi.
— Le déterminant de A est égal au produit des valeurs propres : det(A) =

∏n
i=1 λi.

Exercice 7. Démontrer les trois premières propriétés.

2.4 Matrices semblables

Deux matrices A et B sont semblables si elles représentent la même application linéaire
f dans deux bases différentes B et B′.

Propriété 4. A et B sont semblables ssi il existe S inversible telle que

B︸︷︷︸
B′

= S−1︸︷︷︸
B′→B

A︸︷︷︸
B

S︸︷︷︸
B→B′

(2.1)

La matrice S est la matrice de passage de la base B à B′ et la matrice S−1 est la matrice
de passage de B′ à B.

Propriété 5. Les valeurs propres de deux matrices semblables sont identiques.

Exercice 8. Démontrer cette propriété.

Exemple

Prenons un exemple dans IR2. Soit les bases B = (e1, e2) et B′ = (e′1, e
′
2) telles que

{
e′1 = e1 + e2

e′2 = 2e1 − e2
⇔


e1 =

1

3
e′1 +

1

3
e′2

e2 =
2

3
e′1 −

1

3
e′2

La matrice de passage de B à B′ s’écrit alors

S =

(
1 2
1 −1

)

et la matrice de passage de B′ à B est alors l’inverse de S :

S−1 =


1

3

2

3

1

3
−

1

3

 .

Soit l’application linéaire f telle que

f(e1) = e1 + 2e2

f(e2) = 3e1 + 4e2

La représentation matricielle de f dans B est

A =

(
1 3
2 4

)
.

D’après la propriété 4, nous avons alors immédiatement la représentation matricielle de
f dans B′ :

B = S−1AS =


16

3
−

1

3

−
2

3
−

1

3


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Vérifions que cela est vrai sur cet exemple :

f(e′1) = f(e1 + e2) = f(e1) + f(e2)

= 4e1 + 6e2

= 4

(
1

3
e′1 +

1

3
e′2

)
+ 6

(
2

3
e′1 −

1

3
e′2

)

=
16

3
e1 −

2

3
e2

f(e′2) = f(2e1 − e2) = 2f(e1)− f(e2)

= −e1 = −
1

3
e′1 −

1

3
e′2

B est donc bien la matrice représentative de f dans la base B′.
Prenons maintenant l’exemple d’une matrice diagonale de valeurs propres 2 et -1 :

D =

(
3 0
0 −1

)
.

D est la représentation matricielle de f dans B = (e1, e2) :

f(e1) = 3e1

f(e2) = −e2

Son interprétation géométrique est très simple :

La matrice représentative C de f dans B′ est alors

C = S−1DS =


1

3

8

3

4

3

5

3


et son interprétation géométrique est moins immédiate, de même que le calcul de ses
valeurs propres.

2.5 Diagonalisation

On dit que A est diagonalisable si elle est semblable à une matrice diagonale D et qu’on
peut donc l’écrire sous la forme

A = PDP−1

Diagonaliser une matrice A, c’est trouver les matrices P , D et P−1.

On dit que A est trigonalisable si elle est semblable à une matrice triangulaire T

A = PTP−1

Trigonaliser A, c’est trouver P , T et P−1. Trouver les valeurs propres d’une matrice
diagonale ou triangulaire est trivial.

Polynôme scindé

Soit un polynôme

P (x) = a0 + a1x+ · · ·+ anx
n.

On dit que P (x) est scindé si il peut s’écrire sous la forme de polynômes du premier degré,
c’est-à-dire si il existe λ1, · · · , λn tels que

P (x) = (x− λ1)(x− λ2) · · · (x− λn).

Un polynôme est toujours scindé dans IC mais pas nécessairement dans IR. Par exemple,
le polynôme

P (x) = (x2 + 1)(x− 2)3 = (x− i)(x+ i)(x− 2)3

est scindé dans IC mais pas dans IR.

2.5.1 Diagonalisabilité

Théorème 2 (Conditions nécessaires et suffisantes de diagonalisabilité). A est diagona-
lisable dans IR

— ssi la somme des espaces propres est égale à IRn

— ssi il existe une base constituée de vecteurs propres de IRn

— ssi

1. χA est scindé sur IR

2. et, pour chaque valeur propre de A, la multiplicité algébrique est égale à la
multiplicité géométrique

Corollaire 1 (Condition suffisante de diagonalisabilité). Si A admet n valeurs propres
distinctes, alors A est diagonalisable.

9



2.5.2 Comment diagonaliser une matrice diagonalisable ?

1. Trouver les valeurs propres λ1, · · · , λn
2. Trouver les vecteurs propres v1, · · · , vn associés

3. D = diag(λ1, · · · , λn)

4. P = (v1, · · · , vn)

5. Inverser P

Par exemple, soit A une matrice d’ordre 6 diagonalisable telle que

Sp(A) = {λ1, λ2, λ3}
SEP(A, λ1) = V ect{v1, v2}
SEP(A, λ2) = V ect{v3}
SEP(A, λ2) = V ect{v4, v5, v6}

Alors

D = diag(λ1, λ1, λ2, λ3, λ3, λ3)

P = (v1, · · · , v6)

Exercice 9. Diagonaliser les matrices diagonalisables de l’exercice 1.

2.5.3 Applications de la diagonalisation

Puissance d’une matrice

Nous cherchons à calculer la puissance k-ième d’une matrice A. En général, la complexité
pour calculer Akest en O(kn3). Si la matrice est diagonalisable, nous avons

Ak = (PDP−1)k = PDkP−1 = P

λ
k
1 (0)

. . .

(0) λkn

P−1

et la complexité est en O(n3).

Suites récurrentes linéaires

Soit une suite linéaire récurrente linéaire d’ordre 2 :

un+2 = aun+1 + bun.

En notant Un =

(
un+1

un

)
et A =

(
a b
1 0

)
, nous avons alors

Un+1 = AUn

Un = AnU0.

Le même principe peut être appliqué à des suites linéaires d’ordre p :

un+p = a0un + a1un+1 + · · ·+ ap−1un+p−1

Deux exemples de suites classiques :
— Fibonacci : un+2 = un+1 + un (cf exercice)
— Tribonacci : un+3 = un+2 + un+1 + un

Autres applications

— Systèmes d’équations différentielles linéaires
— Analyse de données
— Résistance des matériaux
— ...

2.5.4 Matrices symétriques réelles

Théorème 3 (Théorème fondamental). Une matrice A symétrique réelle est diagonali-
sable à l’aide d’une matrice de passage orthogonale Ω.

A = ΩDΩT

De plus, toutes les valeurs propres de A sont réelles et les sous-espaces propres sont
orthogonaux.

Exercice 10. Vérifier, pour l’exercice 1, que ce théorème est cohérent avec les résultats
obtenus pour les matrices symétriques réelles :

— Les matrices sont bien diagonalisables ?
— Les sous-espaces propres sont-ils bien orthogonaux ?
— Pour la 3ème matrice, construire une matrice de passage orthogonale.

(
1 1
1 0

)
,

(
1 2
2 4

)
,

0 1 0
1 0 1
0 1 0

 ,

11 −5 5
−5 3 −3
5 −3 3


Matrices orthogonales

Soit A une matrice carrée. A est orthogonale
— ssi ATA = I ssi AAT = I
— ssi ses vecteurs colonnes (ou lignes) sont orthonormés (cTi cj = 0, cTi ci = 1)
— ssi A conserve la norme euclidienne, c’est-à-dire si ∀x ∈ IRn, ‖Ax‖ = ‖x‖

||Ax|| = (Ax)TAx = xTATAx = xTx = ||x||

Quelques exemples de matrices orthogonales :
— rotations
— symétrie centrale

10



— symétrie axiale
— permutations

Propriétés des matrices orthogonales :
— Une matrice orthogonale est inversible et facile à inverser : A−1 = AT

— Si A et B orthogonales, alors AB orthogonale.
— det(A) ∈ {−1,+1}
— Les valeurs propres d’une matrice orthogonale sont de module 1

Un exemple de matrice orthogonale non diagonalisable dans IR (rotation de π/2 ) mais
diagonalisable dans IC.

R =

(
0 −1
1 0

)
det(R− λI) = λ2 + 1. D’où Sp(R) = {i,−i}, puis

SEP(R, i) = V ect

{(
1
−i

)}

SEP(R,−i) = V ect

{(
1
i

)}
Au final, la diagonalisation est la suivante :

R =

(
1 1
−i i

)(
i 0
0 −i

)
1

2
−

1

2i

1

2

1

2i


Projection orthogonale

On dit que P est une matrice de projection si P 2 = P . On dit par ailleurs que P est une

matrice de projection orthogonale si P 2 = P = PT .

Soit P la matrice de projection orthogonale sur le s.e.v. (sous-espace vectoriel) L de IRn.
Etant symétrique, P est diagonaliable. De plus :

— 1 est valeur propre d’espace propre = L
— 0 est valeur propre d’espace propre = L⊥

Notons qu’une matrice de projection (non orthogonale) est diagonalisable et a aussi pour
valeurs propres 0 et 1.
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Chapitre 3

Méthode de la puissance itérée

Pour simplifier l’exposé de la méthode de la puissance itérée, nous supposerons dans toute
ce chapitre que :

— La matrice A est diagonalisable et peut donc se mettre sous la forme

A = PDP−1

avec D une matrice diagonale d’ordre n et P une matrice inversible d’ordre n.
— Les valeurs propres de A, notées λ1, · · · , λn, sont réelles et distinctes en module

|λ1| > |λ2| > · · · > |λn|

3.1 Principe

La méthode de la puissance itérée consiste à calculer la suite

xk+1 =
Axk

‖Axk‖
(3.1)

qui va converger vers un vecteur propre associé à λ1, le valeur propre de plus grand
module, sous une condition que nous allons détailler plus loin.

Afin de démontrer ce résultat, nous allons d’abord établir un lemme qui exprime xk en
fonction de x0.

Lemme 1. Pour k ≥ 1,

xk =
Akx0

‖Akx0‖
.

Démonstration. Montrons par récurrence cette propriété. Elle est vraie par construction

pour k = 1. Supposons la vraie pour k > 1. Nous avons alors

xk+1 =
Axk

‖Axk‖
=

A
Akx0

‖Akx0‖∥∥∥∥∥A Akx0

‖Akx0‖

∥∥∥∥∥
=

Ak+1x0

‖Ak+1x0‖

et la propriété est vraie pour k + 1 et donc pour tout entier k ≥ 1.

Soit x0 un vecteur quelconque de IRn. A étant diagonalisable, x0 peut être décomposé
dans une base de vecteurs propres sous la forme

x0 =

n∑
i=1

zi

où zi appartient à l’espace propre associé à la valeur propre λi, noté SEP(A, λi).

Nous avons alors

Ax0 =

n∑
i=1

λizi

puis, par récurrence,

Akx0 =

n∑
i=1

λki zi

Il vient alors

Akx0 =

n∑
i=1

λki zi = λk1

z1 +

n∑
i=2

(
λi

λ1

)k
zi


︸ ︷︷ ︸

wk

= λk1wk
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Comme |λi/λ1| < 1, nous avons

(
λi

λ1

)k
qui tend vers 0 quand k tend vers l’infini. Il suit

que

wk = z1 +

n∑
i=2

(
λi

λ1

)k
zi −→

k→∞
z1.

Par ailleurs, nous avons d’après le lemme 1

xk =
Akx0

‖Akx0‖
=

λk1wk

‖λk1wk‖

=
λk1
|λk1 |

wk

‖wk‖
= signe(λk1)

wk

‖wk‖
.

Ainsi x2k −→
k→+∞

z1

‖z1‖
(≡ v1) et x2k+1 −→

k→+∞
signe(λ1)v1

Le signe de λk1 est positif si k est paire et du même signe que λ si k est impair. D’où

x2k −→
k→+∞

z1

‖z1‖

x2k+1 −→
k→+∞

signe(λ1)
z1

‖z1‖

Nous avons montré que les suites x2k et x2k+1 convergeaient vers un vecteur propre normé
associé à la valeur propre λ1. Nous pouvons maintenant énoncer le principal théorème de
ce chapitre.

Théorème 4. Soit A une matrice diagonalisable de valeurs propres λ1, · · · , λn distinctes
en module et rangées par modules décroissants : |λ1| > |λ2| > · · · > |λn|.
Soit la suite de vecteurs (xk) définie par

xk+1 =
Axk

‖Axk‖
(3.2)

Si x0 est de composante non nulle dans la direction des vecteurs propres associées à λ1,
alors les suites extraites x2k et x2k+1 convergent vers un vecteur propre de norme 1,
associé à la valeur propre λ1.

3.2 Quotient de Rayleigh

Nous avons donc une méthode itérative pour obtenir une approximation d’un vecteur
propre associé à λ1. Afin de calculer une approximation de λ1, nous allons utiliser le
quotient de Rayleigh.

Définition 2 (Quotient de Rayleigh). Soit A une matrice d’ordre n et x ∈ IRn. On
définit le quotient de Rayleigh de la matrice A relativement au vecteur x 6= 0 par

ρA(x) =
x>Ax

x>x

Proposition 1. Si x est un vecteur propre associé à la valeur propre λ, alors ρA(x) = λ.

Démonstration.

ρA(x) =
x>Ax

x>x
=
x>λx

x>x
= λ

x>x

x>x
= λ

Une fois un vecteur propre obtenu par la méthode de la puissance itérée, on en déduit
immédiatement la valeur propre associée en calculant le quotient de Rayleigh.

3.3 Algorithmes

L’algorithme 1 reproduit bêtement la suite définie dans l’équation (3.1), en fournissant en
sortie une approximation de λ1 et d’un vecteur propre normé associé. Plus le paramètre
ε est petit, meilleure est l’approximation.

Données : A, x0, ε
Résultat : λ et x
initialisation : x← x0, λanc ← 1, λ← 0;
tant que |λ− λanc| > ε faire

λanc ← λ;

x←
Ax

‖Ax‖
;

λ←
x>Ax

x>x
;

fin
Algorithme 1 : Version näıve de la méthode de ma puissance itérée

Dans ce premier algorithme, on constate qu’on calcule plusieurs fois Ax. Afin d’éviter
cela, introduisons la suite (yk) :

yk+1 = Axk

xk =
yk

‖yk‖

Avec cette reformulation, on peut écrire un 2ème algorithme plus efficace.
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Données : A, y0, ε
Résultat : λ et x
initialisation : y ← y0, λanc ← 1, λ← 0;
tant que |λ− λanc| > ε faire

λanc ← λ;

x←
y

‖y‖
;

y ← Ax ;

λ←
x>y

x>x
;

fin
Algorithme 2 : Version améliorée de la méthode de ma puissance itérée

3.4 Vitesse de convergence

La vitesse de convergence de la suite (xk) dépend de la vitesse de convergence de la suite(
λ2

λ1

)k
et donc de

λ2

λ1

, c’est-à-dire du quotient entre les deux plus grandes valeurs propres

en module. La vitesse de convergence sera lente si les deux plus grandes valeurs propres
sont proches en module.

Afin d’atteindre une précision ε, il faut que∣∣∣∣∣λ2

λ1

∣∣∣∣∣
k

≤ ε⇔ k ≥
log ε

log

∣∣∣∣∣λ2

λ1

∣∣∣∣∣.
Précision souhaitée ε Nb itérations (λ1/λ2 = 0.5) Nb itérations (λ1/λ2 = 0.99)

10−1 4 230
10−2 7 459
10−3 10 688
10−4 14 917
10−5 17 1146
10−6 20 1375
10−7 24 1604

On gagne donc (au moins) un chiffre significatif toutes les 4 itérations lorsque λ1/λ2 = 0.5
et toutes les 230 itérations lorsque λ1/λ2 = 0.99.

Définition 3 (Convergence linéaire (ou géométrique)). On dit qu’une suite (uk) converge
linéairement vers u∗ si il existe un réel α ∈ [0, 1[ et un entier k1 tel que

∀k ≥ k1, ‖uk+1 − u∗‖ ≤ α‖uk − u∗‖

Le réel α est appelé le taux de convergence.

Dans le cas d’une convergence linéaire, on peut montrer que l’on gagne 1 chiffre significatif
toutes les q itérations où q est une constante.

La suite géométrique bk = ak, avec a =

(
λ2

λ1

)k
, converge linéairement vers 0 si |a| < 1.

En effet :
|bk+1 − u∗| = |bk+1| = |a||ak| = |a||bk − b∗|

On peut aussi définir la notion de convergence quadratique pour laquelle il existe q tel que
la précision soit doublée toutes les q itérations. Par exemple, la suite ci-dessous converge
quadratiquement vers 0.(

1

22k

)
=
{

5.10−1, 2.5.10−1, 6.3.10−2, 3.9.10−3, 1.5, 2.3.10−10, 5.4.10−20, 2.9.10−39
}

Un exemple d’algorithme quadratique : la méthode de Newton

Pour trouver la racine d’une fonction continue, la méthode de dichotomie a une vitesse de
convergence linéaire. Pour une fonction dérivable, on peut utiliser la méthode de Newton
qui consiste à calculer la suite

xn+1 = xn −
f(xn)

f ′(xn)
.

Sous certaines hypothèses, cet algorithme converge vers un zéro de f de manière quadra-
tique. Cherchons par exemple à résoudre x2 = 2 dont les solutions sont

±
√

2 ≈ ±1.4142135624.

En prenant x0 = 10, l’algorithme obtient une précision de 10 décimales en 8 itérations
pour

√
2 :

(xk) = {10, 5.1,2.7460784314, 1.7371948744, 1.4442380949, 1.4145256551, 1.4142135968,

1.4142135624}.

Quelle est l’idée de la méthode de Newton ? La méthode de Newton consiste à approcher
la fonction f par son développement limité à l’ordre 1 en xn :

f(x) ≈ f(xn) + f ′(xn)(x− xn)

Nous cherchons alors un zéro de cette approximation

f(xn) + f ′(xn)(x− xn) = 0⇔ x = xn+1 −
f(xn)

f ′(xn)

La méthode de Newton consiste à approcher la fonction f par son développement limité
à l’ordre 1 en xn :

f(x) ≈ f(xn) + f ′(xn)(x− xn)
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Nous cherchons alors un zéro de cette approximation

f(xn) + f ′(xn)(x− xn) = 0⇔ x = xn+1 −
f(xn)

f ′(xn)

Le zéro obtenu est alors le point xn+1.

3.5 Calcul de la plus petite valeur propre

Soit A une matrice inversible. Les valeurs propres de A−1 sont les inverses des valeurs
propres de A et peuvent êtres triées par module croissant :

|λ−1
1 | < · · · < |λ−1

n |

Si l’on applique la méthode de la puissance itérée à A−1, on obtiendra λ−1
n qu’il suffira

d’inverser pour obtenir la plus petite valeur propre de A.

3.6 Méthode de déflation

Dans cette partie, nous allons chercher à éliminer de A la valeur propre dominante λ1

obtenue par la méthode de la puissance itérée. Notons v1 un vecteur propre associé à λ1,
obtenu par exemple par la méthode de la puissance itérée.

Pour faire simple, nous allons nous placer dans le cas d’une matrice symétrique réelle A
mais il existe une méthode pour des matrices non symétriques.

Proposition 2. Soit A une matrice symétrique réelle de valeurs propres λ1, · · · , λn dis-
tinctes en module et rangées par modules décroissants : |λ1| > |λ2| > · · · > |λn|. Alors B
définie par

B = A− λ1
v1v
>
1

v>1 v1

a les mêmes vecteurs propres v1, v2, · · · , vn que A et pour valeurs propres associées
0, λ2, · · · , λn.

Démonstration. La matrice A est symétrique réelle et est diagonalisable d’après le
théorème fondamental. Ses espaces propres sont par ailleurs orthogonaux : v>i vj = 0
pour i 6= j.

Appliquons B au vecteur propre v1 :

Bv1 =

(
A− λ1

v1v
>
1

v>1 v1

)
v1

= Av1 − λ1
v1(v>1 v1)

v>1 v1

= λ1v1 − λ1v1

= 0

Ainsi v1 est vecteur propre de B associé à la valeur propre 0.

Appliquons maintenant B à un vecteur propre vi, i 6= 1 :

Bvi = Avi − λ1
v1(v>1 vi)

v>1 v1

= λivi − 0 = λivi

Donc vi est vecteur propre de B associé à la valeur propre λi.

Une méthode pour calculer l’ensemble des valeurs propres de A consiste à utiliser la
méthode de la puissance itérée pour calculer la plus grande valeur propre en module puis
d’effectuer le changement de matrice A← B et de recommencer.

3.7 Généralisation du théorème à des matrices non
diagonalisables

Le théorème 4 s’étend à des matrices non diagonalisables possédant une valeur propre
dominante. La preuve repose sur la décomposition de Jordan et est hors programme.
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Deuxième partie

Optimisation non linéaire
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Chapitre 4

Introduction

Dans cette deuxième partie du cours, nous allons nous intéresser à une fonction f à
plusieurs variables : f : IRn → IR. Notre objectif sera de trouver le minimum de f(x) où
x = (x1, · · · , xn).

min f(x)

s.c. x ∈ IRn

Nous considérerons dans un deuxième temps une version avec contraintes de ce problème,
où l’espace des solutions est restreint à un sous-ensemble X de IRn.

min f(x)

s.c. x ∈ X

Ce cours est complémentaire à celui de programmation linéaire. En programmation
linéaire, la fonction objectif et les contraintes sont linéaires :

— Fonction objectif linéaire : f(x) =
∑n
i=1 cixi où les ci sont des réels

— Contrainte linéaire :
∑n
i=1 aixi ≤ bi où les ai sont des réels

Pour notre part, nous considérerons des fonction f pouvant être non linéaires. En voici
quelques exemples :

f(x) =

n∑
i=1

x2
i , f(x) =

n∑
i=1

|xi|, f(x) =

n∏
i=1

xi

Les contraintes pourront elles aussi être non linéaires.
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Chapitre 5

Optimisation à une variable

Nous allons considérer dans ce chapitre le cas le plus simple d’une fonction à une variable :
f : IR→ IR .

min f(x)

s.c. x ∈ IR

Nous supposerons, la plupart du temps, que la fonction f est deux fois dérivables et nous
noterons ses dérivées f ′ et f ′′.

Définition 4 (Minimum global). On dit que f atteint en x∗ un minimum global si
f(x∗) ≤ f(x) pour tout x ∈ IR.

On peut aussi définir la notion de minimum de manière locale, au voisinage d’un point
x, c’est-à-dire ”à proximité” de ce point. La notion de voisinage en mathématiques est
relativement abstraite. Retenons simplement la propriété suivante.

Propriété 6 (Voisinage d’un réel). Soit x un réel tel que a < x < b. Les intervalles [a, b],
]a, b[, [a, b[ et ]a, b] sont des voisinages de x.

Définition 5 (Minimum local). On dit que f atteint un minimum local en x∗ si il existe
un voisinage V de x∗ tel que f(x∗) ≤ f(x) pour tout x ∈ V .

Les notions de minimum local et de minimum global sont illustrées en figure 5.1.

Une manière de trouver les minimums d’une fonction à une variable est d’établir son
tableau de variation, comme vous le faisiez au lycée. Considérons par exemple la fonction
f(x) = x2 − 2x+ 3 = (x− 1)2 + 2. Sa dérivée f ′(x) = 2x− 2 est croissante et s’annule en
x = 1.

x −∞ 1 +∞
f ′(x) − 0 +

f(x)

+∞
@
@
@R

2

��
�
�

+∞

Le minimum global de cette fonction est donc atteint en x∗ = 1 et vaut f(x∗) = 2.

Cet exemple est simple à résoudre pour deux raisons : 1) la fonction f est convexe et a
un unique minimum local, 2) l’équation f ′(x) = 0 se résoud à la main. En pratique, ces
deux conditions ne sont souvent pas réunies. Il peut y avoir plusieurs minimums locaux
et l’équation f ′(x) = 0 peut ne pas avoir de solution triviale. Nous devrons alors recourir
à des méthodes numériques pour déterminer le minimum d’une fonction.

5.1 Conditions d’optimalité

Nous allons établir des conditions nécessaires, puis suffisantes, d’optimalité, pour une
fonction f deux fois dérivables. Avant cela, nous allons faire quelques rappels sur le
développement de Taylor.

Développement de Taylor

Le théorème de Taylor nous dit qu’une fonction f dérivable n fois peut être approchée
par un polynôme d’ordre n au voisinage d’un point x∗. Les coefficients de ce polynôme
dépendent uniquement des dérivées de la fonction f en x∗.

Développement de Taylor à l’ordre 1

Considérons une fonction f dérivable en x∗. Le développement de Taylor a l’ordre 1 s’écrit

f(x) = f(x∗) + f ′(x∗)(x− x∗)︸ ︷︷ ︸
Approximation affine de f(x)

au voisinage de x∗

+ o(x− x∗)︸ ︷︷ ︸
Négligeable au
voisinage de x∗

où le reste o(x − x∗) est une fonction négligeable devant (x − x∗) au voisinage de x∗,

c’est-à-dire que
o(x− x∗)
x− x∗

tend vers zéro quand x tend vers x∗.
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Figure 5.1 – Mimimum local et minimum global

En posant h = x− x∗, on peut ré-écrire le développement de Taylor à l’ordre 1 comme

f(x∗ + h) = f(x∗) + f ′(x∗)h+ o(h).

où o(h) est une fonction négligeable devant h quand h tend vers 0.

Développement de Taylor à l’ordre 2

Considérons une fonction f deux fois dérivable en x∗. Le développement de Taylor à
l’ordre 2 de f s’écrit

f(x) = f(x∗) + f ′(x∗)(x− x∗) +
f ′′(x∗)

2
(x− x∗)2

︸ ︷︷ ︸
Approximation de f(x) par un polynôme

du second dégré au voisinage de x∗

+ o((x− x∗)2)︸ ︷︷ ︸
Négligeable au
voisinage de x∗

Le reste o((x − x∗)2) est une fonction négligeable devant (x − x∗)2 au voisinage de x∗,

c’est-à-dire que
o((x− x∗)2)

(x− x∗)2
tend vers zéro quand x tend vers x∗.

A nouveau, un simple changement de variable donne

f(x∗ + h) = f(x∗) + f ′(x∗)h+
f ′′(x∗)

2
h2 + o(h2).

où o(h2) est une fonction négligeable devant h2 quand h tend vers 0.

Développement de Taylor à l’ordre n

Considérons une fonction f dérivable n fois en x∗. Le développement de Taylor a l’ordre
n s’écrit

f(x) =

n∑
k=0

f (k)(x∗)

k!
(x− x∗)k︸ ︷︷ ︸

Approximation par un polynôme
de dégré n au voisinage de x∗

+ o((x− x∗)n)︸ ︷︷ ︸
Négligeable au
voisinage de x∗

où f (k) désigne la dérivée k-ième de f .

On peut aussi l’écrire

f(x∗ + h) =

n∑
k=0

f (k)(x∗)

k!
hk + o(hn)

o(hn) est est une fonction négligeable devant hn quand h tend vers 0.

Dans le cadre des démonstrations qui suivent, nous n’aurons besoin que des
développements de Taylor à l’ordre 1 et 2.
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Points stationnaires

Définition 6. On dit que x∗ est un point stationnaire si f ′(x∗) = 0.

Exercice 11. Déterminer les points stationnaires de f(x) = sin(x).

Correction :

f ′(x) = 0⇔ cos(x) = 0⇔ x =
π

2
+ kπ avec k ∈ ZZ

Les points stationnaires de f valent donc xk =
π

2
+ kπ avec k ∈ ZZ.
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Conditions nécessaires

Théorème 5 (Condition nécessaire du 1er ordre). Soit f une fonction dérivable. Si x∗

est un minimum local de f , alors x∗ est un point stationnaire (et donc f ′(x∗) = 0).

Démonstration. Supposons que x∗ est un minimum local. D’après le développement de
Taylor à l’ordre 1, nous avons

f(x∗ + h)− f(x∗) = f ′(x∗)h+ o(h)

Le reste o(h) devient négligeable devant h quand h tend vers 0. Il existe donc un voisinage
V de 0 tel que f ′(x∗)h ≥ 0 pour tout h ∈ V . Ceci implique que f ′(x∗) = 0. En effet, si
(f ′(x∗) > 0 et h < 0) ou si (f ′(x∗) < 0 et h > 0), alors f ′(x∗)h < 0, ce qui contredirait
l’hypothèse d’un minimum local.

Théorème 6 (Condition nécessaire du 2nd ordre). Soit f une fonction deux fois
dérivables. Si x∗ est un minimum local de f , alors f ′′(x∗) ≥ 0.

Démonstration. Supposons que x∗ est un minimum local. D’après le théorème 5, nous
avons f ′(x∗) = 0, puis en utilisant le développement de Taylor à l’ordre 2 :

f(x∗ + h)− f(x∗) = f ′(x∗)︸ ︷︷ ︸
=0

h+
f ′′(x∗)

2
h2 + o(h2)

=
f ′′(x∗)

2
h2 + o(h2)

Comme x∗ est un minimum local, il existe un voisinage V de 0 tel que
f ′′(x∗)

2
h2 ≥ 0 pour

tout h ∈ V . Ceci implique que f ′′(x∗) ≥ 0.

Les deux conditions

1. f ′(x∗) = 0 (condition nécessaire 1er ordre)

2. f ′′(x∗) ≥ 0 (condition nécessaire du 2nd ordre)

sont nécessaires mais pas suffisantes pour que x soit un minimum local. Par exemple, la
fonction f(x) = x3 satisfait ces deux conditions en x∗ = 0 qui n’est pas un minimum
local.

Conditions suffisantes

Théorème 7 (Conditions suffisantes). Soit f une fonction deux fois dérivables. Si les
deux conditions suivantes sont réunies, alors x∗ est un minimum local.

1. f ′(x∗) = 0 (condition du 1er ordre), c’est-à-dire x∗ est un point stationnaire

2. f ′′(x∗) > 0 (condition du 2nd ordre) :

Démonstration. Soit x∗ vérifiant les deux conditions du théorème. Nous avons alors,
d’après le développement de Taylor à l’ordre 2 :

f(x∗ + h)− f(x∗) = f ′(x∗)︸ ︷︷ ︸
=0

h+
f ′′(x∗)

2
h2 + o(h2)

=
f ′′(x∗)

2︸ ︷︷ ︸
>0

h2 + o(h2)

Comme o(h2) est négligeable devant
f ′′(x∗)

2
h2 quand f tend vers 0, il existe un voisinage

V de 0 tel que f(x∗+h)−f(x∗) ≥ 0 pour tout h ∈ V . Donc x∗ est un minimum local.

La condition f ′′(x∗) > 0 n’est pas une condition nécessaire. En effet, la fonction f(x) = x4

atteint son minimum en x∗ = 0 et f ′′(0) = 0.
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(a) Conditions suffisantes pour un
minimum local.

(b) Conditions suffisantes pour un
maximum local.

(c) Un exemple où x∗ satisfait
les conditions nécessaires mais
n’est pas un minimum local.

(d) Un exemple satisfaisant les
conditions nécessaires partout
et où tous les points sont des mi-
nimums locaux.

Figure 5.2 – Conditions suffisantes d’optimalité et conditions nécessaires

Exercice 12. Déterminer les minimums locaux de sin(x).

Correction : Les candidats potentiels à être des minimums locaux sont les points station-

naires xk =
π

2
+ kπ avec k ∈ ZZ. Nous avons par ailleurs f ′′(x) = − sin(x) et

f ′′ (xk) = − sin

(
π

2
+ kπ

)
=

{
−1 si k est pair
+1 si k est impair

Les minimums locaux sont donc atteints en xk avec k impair. La valeur de fonction objectif
en ces points est f(−π/2) = sin(−π/2) = −1.

5.2 Fonction convexe

Définition 7. On dit qu’une fonction f : I ⊂ IR→ IR est
— convexe sur I si

∀(a, b) ∈ I2, ∀λ ∈]0, 1[, f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b)

— strictement convexe sur I si

∀(a, b) ∈ I2, a 6= b, ∀λ ∈]0, 1[, f(λa+ (1− λ)b) < λf(a) + (1− λ)f(b)

Une fonction f est concave (respectivement strictement concave) si −f est convexe (res-
pectivement strictement convexe).

Figure 5.3 – Interprétation graphique de la définition d’une fonction convexe
https://commons.wikimedia.org/wiki/File:Fonction_convexe.png

Propriété 7 (Interprétation graphique). Une fonction f est convexe si et seulement si

pour tous points A et B de sa courbe représentative, l’arc
_

AB est en-dessous de la corde
[AB].
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Figure 5.4 – Un exemple de fonction convexe mais non strictement convexe. Cette
fonction n’est par ailleurs pas dérivable en -2 et 2.

Propriété 8 (Continuité). Une fonction convexe sur un intervalle ouvert I est continue
sur I.

Une fonction convexe sur un intervalle fermé peut être discontinue aux extrémités. Par
exemple, la fonction f : IR→ IR+ telle que f(x) = 0 pour x > 0 et f(0) = 0.

Propriété 9. Quelques propriétés supplémentaires :
— Si f convexe et a ≥ 0, alors af est convexe
— La somme de fonctions convexes est convexe
— La somme d’une fonction convexe et d’une fonction strictement convexe est stric-

tement convexe
— La fonction composée de deux fonctions convexes est convexe : si f et g sont

convexes, alors f o g est convexe.
— Une fonction à la fois convexe et concave est une fonction affine (de la forme

ax+ b)

Voici quelques exemples de fonctions convexes et concaves :
— Strictement convexes : x2, ex, 1/x pour x > 0
— Convexes mais non strictement convexes : |x|, fonction affine ax + b, fonction

illustrée en figure 5.4
— Strictement concaves : 1/x pour x < 0,

√
x pour x ≥ 0, ln(x) pour x > 0

— Ni convexes, ni concaves : sin(x), cos(x) , x3

Fonction convexe dérivable

Propriété 10. Soit f une fonction dérivable sur I.
— f est convexe sur I si et seulement si sa dérivée est croissante sur I.
— f est strictement convexe sur I si et seulement si sa dérivée est strictement crois-

sante sur I.

On peut utiliser ces propriété pour vérifier que les exemples de fonctions dérivables
données ci-dessus sont bien convexes, concaves ou ni l’un ni l’autre. Par exemple, x4

est strictement convexe car sa dérivée 3x3 est strictement croissante. De même, ax + b
est convexe car sa dérivée a est constante (donc croissante).

Fonction convexe dérivable deux fois

Propriété 11. Soit f une fonction deux fois dérivables sur un intervalle I ⊂ IR :
— f est convexe sur I si et seulement si sa dérivée seconde est positive sur I.
— Si la dérivée seconde est strictement positive sur I, alors f est strictement convexe

sur I.

La réciproque n’est pas vraie pour une fonction strictement convexe. Par exemple, la
fonction x4 est strictement convexe et sa dérivée seconde f ′′(x) = 12x2 vaut 0 en x = 0.
On peut montrer que si la dérivée seconde est strictement positive, sauf en un nombre
fini de points, alors la fonction f est strictement convexe.

Minimum d’une fonction convexe

Les fonctions convexes sont des fonctions ”faciles” à optimiser en raison des propriétés
suivantes.

Théorème 8. (admis) Si f est convexe , alors un minimum local est aussi un minimum
global.

Notons qu’une fonction convexe n’a pas de minimum global si elle n’a pas de borne
inférieure (exemple : − log(x) sur IR∗+).

Théorème 9. Si f est convexe et dérivable, alors f atteint un minimum global en x∗ si
et seulement si f ′(x∗) = 0.

Démonstration. Supposons que f atteint un minimum global en x∗, lors x∗ est aussi un
minimum local et f ′(x) = 0.

Réciproquement, supposons que f ′(x∗) = 0. La fonction f étant convexe, nous avons f ′

croissante d’après la propriété 10. Il suit que f ′(x) ≤ 0 pour x ≤ x∗ et f ′(x) ≥ 0 pour
x ≥ x∗. Ainsi, f est décroissante pour x ≤ x∗ et croissante pour x ≥ x∗. On conclut que
x∗ est un minimum global.

Minimiser une fonction convexe dérivable revient donc à trouver un zéro de la fonction
f ′, ce qui peut être fait par exemple par une méthode de dichotomie.
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5.3 Méthode de dichotomie

Trouver les zéros d’une fonction est un problème classique qui n’est pas pour autant
toujours simple. La méthode de dichotomie permet d’obtenir une approximation d’un
zéro (mais pas tous les zéros) d’une fonction continue.

Rappelons le principe rapidement de la méthode de dichotomie. Soit g une fonction conti-
nue sur l’intervalle [a, b] pour laquelle on cherche à résoudre g(x) = 0. Si g(a) et g(b) sont
de signes opposés, alors l’algorithme 3 va fournir un zéro de g(x), c’est-à-dire une solution
de g(x) = 0.

Données : a, b, ε
Résultat : a, b
tant que b− a > ε faire

m←
a+ b

2
;

si g(a)× g(m) ≤ 0 alors
b← m;

sinon
a← m;

fin

fin
Algorithme 3 : Méthode de dichotomie permettant de trouver un zéro d’une fonction
continue sur un intervalle [a, b]

Si l’on applique cet algorithme à f ′, on trouvera donc une approximation d’un point
stationnaire de f , si il en existe un sur l’intervalle [a, b]. Si la fonction f est convexe, le
point stationnaire trouvé sera un minimum global d’après le théorème 9.

Exercice 13. Implémenter l’algorithme de dichotomie en Python et trouver un point
stationnaire de f(x) = ex + 1/x sur l’intervalle [0.1, 10]. Ce point stationnaire est-il un
minimum local ? Un minimum global ?

Correction : Nous avons f ′(x) = ex − 1/x2 et f ′′(x) = ex + 2/x3.

On peut appliquer l’algorithme de dichotomie à f ′ car f ′ continue, f ′(0.1) < 0 et f ′(10) >
0. L’algorithme de dichotomie fournit comme point stationnaire x∗ ' 0.703467. Comme
f ′′(x∗) ' 7.77, le point x∗ remplit bien les conditions suffisantes du théorème 13 et est
donc bien un minimum local.

Par ailleurs, la fonction f étant convexe, ce minimum local est aussi un minimum global.

5.4 Fonction unimodale

Les fonctions unimodales constituent une autre classe de fonctions ”faciles” à optimiser.
Donnons tout d’abord une définition intuitive d’une fonction unimodale sur un intervalle
[a, b] pour un problème de minimisation. Une fonction unimodale est une fonction qui est

strictement décroissante puis strictement croissante. Il peut ne pas y avoir de phase de
croissance (ou de décroissance). Ainsi, une fonction strictement croissante est unimodale.
De même, une fonction strictement décroissante sur [a, b] est unimodale. La figure 5.5
donne plusieurs exemples de fonctions unimodales.

Définition 8. Soit f : [a, b]→ IR une fonction continue. On dit que f est unimodale sur
l’intervalle [a, b] si il existe x∗ ∈ [a, b] tel que f est strictement décroissante sur [a, x∗] et
strictement croissante sur [x∗, b].

Le minimum de f sur l’intervalle [a, b] est donc atteint en x∗ et il n’y a pas d’autres
minimums locaux.

Propriété 12. Une fonction strictement convexe est unimodale.

La réciproque n’est pas vraie (voir par exemple les figures 5.5b, 5.5c et 5.5d).

Dans le TP qui vous sera distribué, plusieurs méthodes sont présentées pour trouver le
minimum de fonctions unimodales.

Pour un problème de maximisation, une fonction unimodale pourra être définie comme
une fonction strictement décroissante, puis croissante.
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(a) f1(x) = x2. Le minimum est atteint
en x∗ = 0 et vaut f(x∗) = 0. Cette
fonction est strictement convexe.
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(b) f2(x) =
√
−x si x < 0 et f2(x) =√

x si x ≥ 0. Le minimum est at-
teint en x∗ = 0 et vaut f(x∗) = 0.
Cette fonction n’est ni convexe, ni
concave.
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(c) f3(x) = min(4x, x + 5) pour x ∈
[−5, 7]. Le minimum est atteint en
x∗ = −5 et vaut f3(−5) = −20.
Cette fonction est strictement crois-
sante et strictement concave.
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(d) f4(x) = −x3 pur x ∈ [−3,+3]. Le
minimum est atteint en x∗ = 3 et
vaut f(3) = −27. Cette fonction est
strictement croissante mais n’est ni
convexe, ni concave.

Figure 5.5 – Exemples de fonctions unimodales
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Chapitre 6

Optimisation à plusieurs variables

Nous allons maintenant considérer le problème de la minimisation d’une fonction à n
variables f : IRn → IR.

min f(x1, · · · , xn)

s.c. (x1, · · · , xn) ∈ IRn

La fonction f sera appelée la fonction objectif.

En notant x = (x1, · · · , xn)>, ce problème de minimisation s’écrit alors

min f(x)

s.c. x ∈ IRn

Les notions de minimum local et de minimum global s’étendent naturellement au cas
d’une fonction à plusieurs variables :

— On dit que f atteint en x∗ un minimum global si f(x∗) ≤ f(x) pour tout x ∈ IRn

— On dit que f atteint un minimum local en x∗ si il existe un voisinage V de x∗ tel
que f(x∗) ≤ f(x) pour tout x ∈ V .

Les figures qui suivent illustrent graphiquement pour des fonctions à deux variables les
notions de minimum local, minimum global et point selle.

Figure 6.1 – Un exemple de fonction à deux variables f(x1, x2)

Figure 6.2 – Minimum local (local min), maximum local (local max) et point selle
(saddle point)
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Figure 6.3 – Minimum local (local minima) versus minimum global (global minima)

Figure 6.4 – Un exemple de fonction à deux variables convexe, ”facile” à minimiser : un
minimum local est aussi un minimum global

Figure 6.5 – Deux exemples de fonctions à deux variables avec de nombreux minimums
locaux. Il est ”difficile” de trouver le minimum global pour de telles fonctions.
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6.1 Différentiation

La notion de différentiabilité généralise la notion de dérivabilité à des fonctions de plu-
sieurs variables. La fonction f est différentiable en un point x si il existe une approxima-
tion linéaire de la fonction f au voisinage de x. Pour simplifier l’exposé de ce cours, nous
supposerons que toutes les fonctions considérées sont deux fois différentiables.

6.1.1 Gradient

Le gradient de f , noté ∇f , est la généralisation de la dérivée à une fonction à plusieurs
variables :

∇f =



∂f

∂x1

...

∂f

∂xn


Rappelons que

∂f

∂xi
désigne la dérivée de f par rapport à la variable xi.

Le gradient définit un champ de vecteurs comme représenté sur la figure 6.6. Le gradient
en un point indique la direction vers laquelle la fonction f augmente le plus (localement).
Sa norme indique l’intensité de cette variation locale.

Figure 6.6 – Gradient pour une fonction à deux variables (figure tirée de Wikipedia,
article ”Champ de vecteurs”)

Exercice 14. Soit la fonction f(x1, x2, x3) = x1e
x2 sin(x3). Quel est le gradient de f ?

Correction :

∇f(x) =

 ex2 sin(x3)
x1e

x2 sin(x3)
x1e

x2 cos(x3)



Exercice 15. Soit la fonction f(x) = ||x||2 (norme euclidienne). Montrer que ∇f(x) =
2x.

6.1.2 Courbes de niveau

On appelle courbe de niveau l’ensemble {(x1, · · · , xn)|f(x1, · · · , xn) = α} où α est une
constante. Sur les cartes IGN représentent par exemple, les courbes de niveau représentent
l’altitude en fonction de la latitude et de la longitude.

Propriété 13. Le gradient en x est orthogonal à la courbe de niveau en x et pointe vers
la région où la valeur de f est la plus grande.
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Examinons le cas particulier des courbes de niveau d’une fonction quadratique.

6.1.3 Fonction vectorielle

Une fonction F : IRn → IRp est appelée fonction vectorielle car elle transforme un vecteur
en un autre vecteur. Une telle fonction est définie par ses p composantes F1, · · · , Fp allant
de IRn dans IR.

F :

x1

...
xn

 −→
F1(x1, · · · , xn)

...
Fp(x1, · · · , xn)


Le gradient d’une fonction vectorielle est définie comme la matrice n×p dont les colonnes
sont les gradients des fonctions Fi.

∇F (x) = [∇F1(x) ∇F2(x) . . . ∇Fp(x)]

On définit par ailleurs le jacobien comme étant la transposée du gradient :

JF (x) = ∇F (x)> =


∇F1(x)>

∇F2(x)>

...
∇Fp(x)>

 .
Exercice 16. Soit la fonction vectorielle F : IR2 → IR3 telle que

F (x1, x2) =

 x1 − x2

2x1 + 3x2

x1x2


Donner le gradient et le Jacobien de F .

Correction : Nous avons F (x1, x2) = (F1(x1, x2), F2(x1, x2), F3(x1, x2))> avec
F1(x1, x2) = x1 − x2, F2(x1, x2) = 2x1 + 3x2 et F3(x1, x2) = x1x2.

∇F (x) = [∇F1(x) ∇F2(x) ∇F3(x)] =

(
1 2 x2

−1 3 x1

)

JF (x) = ∇F (x)> =

 1 −1
2 3
x2 x1


.

6.1.4 Matrice hessienne

Nous allons généraliser la notion de dérivée seconde à une fonction à plusieurs variables
f : IRn → IR. Remarquons tout d’abord que ∇f : IRn → IRn est une fonction vectorielle.
On appellera hessienne le gradient du gradient de f :

∇2f = ∇(∇f)

=

(
∇

(
∂f

∂x1

)
· · · ∇

(
∂f

∂xn

)
]

)

=



∂2f

∂x2
1

· · ·
∂2f

∂x1∂xn
...

. . .
...

∂2f

∂xn∂x1

· · ·
∂2f

∂x2
n


Ainsi, la hessienne de f , notée ∇2f(x), est la matrice des dérivées secondes de f :

∇2f(x) =

(
∂2f

∂xi∂xj

)
1≤i≤n,1≤j≤n

Nous savons que
∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
(sous certaines conditions que nous supposerons

vérifiées dans ce cours). La hessienne est donc une matrice symétrique.

Exercice 17. Soit la fonction f(x1, x2, x3) = x1e
x2 sin(x3). Donner la hessienne de f .

Correction :

∇2f(x) =

 0 ex2 sin(x3) ex2 cos(x3)
ex2 sin(x3) x1e

x2 sin(x3) x1e
x2 cos(x3)

ex2 cos(x3) x1e
x2 cos(x3) −x1e

x2 sin(x3)


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6.1.5 Développement de Taylor

Le développement de Taylor se généralise à des fonctions à plusieurs variables. Nous
noterons d = (d1, · · · , dn) une direction et t un réel.

Pour une fonction différentiable, le développement de Taylor a l’ordre 1 s’écrit

f(x+ td) = f(x) + td>∇f(x) + o(t).

Pour une fonction différentiable deux foi , le développement de Taylor a l’ordre 2 s’écrit

f(x+ td) = f(x) + td>∇f(x) +
t2

2
d>∇2f(x)d+ o(t2).

6.1.6 Règles de différentiation

On peut établir les règles de différentiation suivantes :

1. ∇(A) = 0 avec A matrice (n× p)
2. ∇(af) = a∇f avec a un réel et f : IRn → IRp

3. ∇(f1 + f2) = ∇f1 +∇f2 avec f1 et f2 allant de IRn dans IRp

4. Si B est une matrice (p× n), alors

∇(Bx) = B>

5. Fonction affine avec a un vecteurs colonne de IRn et b ∈ IR :

∇
(
a>x+ b

)
= a

Ce résultat se déduit des propriétés 1, 3 et 4.

6. Forme quadratique avec A matrice carrée (n× n)

∇
(
x>Ax

)
= (A+A>)x (= 2Ax si A est symétrique)

Règle de chainage

Soit h : IRn → IRp et g : IRp → IRq. Soit φ = g ◦ h leur composition :

φ(x) = g[h(x)]

Alors

∇φ(x) = ∇h(x)∇g[h(x)]

Exercice 18. Soit f(x) = ||Ax− b||2 (norme euclidienne) où A est une matrice (p× n)
et b un vecteur colonne de IRp. Montrer que ∇f(x) = 2A>(Ax− b) et ∇2f(x) = 2A>A.

Exercice 19. Soit f : IRn → IR, t ∈ IR et d ∈ IRn. Soit la fonction θ(t) = f(x + td).
Montrer que

θ′(t) = d>∇f(x+ td)

Correction : Nous avons θ = f ◦ h avec h(t) = x + td =

x1 + td1

...
xn + tdn

. De plus ∇h(t) =

(d1, · · · , dn) = d>. En utilisant la règle de châınage, il vient

θ′(t) = ∇h(x)∇f [h(x)] = d>∇f(x+ td)

6.2 Formes quadratiques

Une forme quadratique q(x) est un polynôme à plusieurs variables ne comprenant que
des termes de type xixj de degré total égal à 2. Voici quelques exemples :

q(x1) = 3x2
1

q(x1, x2) = 2x2
1 − 3x2

2 + 7x1x2

q(x1, x2, x3) = 2x2
1 − 3x2

2 + x2
3 + 6x1x2 + 2x1x3 − 5x2x3

Une forme quadratique de degré n peut s’écrire sous la forme

q(x) = x>Ax

=
∑
i

aiix
2
i + 2

∑
1≤i<j≤n

aijxixj

où A est une matrice symétrique d’ordre n.

Par exemple, nous avons pour les exemples ci-dessus :

2x2
1 − 3x2

2 + 7x1x2 =
(
x1 x2

)( 2 7/2
7/2 −3

)(
x1

x2

)

2x2
1 − 3x2

2 + x2
3 + 3x1x2 + 2x1x3 − 5x2x3 =

(
x1 x2

)2 6 1
6 −3 −5/2
1 −5/2 1

(x1

x2

)

6.3 Matrices définies positives

Définition 9 (Matrice définie positive). Soit A une matrice carrée d’ordre n. On dit que
— A est définie positive (A > 0) si

∀x ∈ IRn, x 6= 0, x>Ax > 0
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— A est semi-définie positive (A ≥ 0) si

∀x ∈ IRn, x>Ax ≥ 0

Exercice 20. Soit A =

(
1 1
0 1

)
. Montrer que A est définie positive.

x>Ax =
(
x1 x2

)(1 1
0 2

)(
x1

x2

)
= x2

1 + x1x2 + 2x2
2 = (x1 + 0.5x2)2 + 1.75x2

2

qui est strictement positif si (x1, x2) 6= 0.

Théorème 10 (Admis). Soit A une matrice carrée symétrique d’ordre n. Alors
— A est définie positive si et seulement si les valeurs propres de A sont strictement

positives
— A est semi-définie positive si et seulement si les valeurs propres de A sont positives

6.4 Conditions d’optimalité

Définition 10. On dit que x∗ est un point stationnaire si ∇f(x∗) = 0.

Théorème 11 (Condition nécessaire du 1er ordre). Soit f une fonction différentiable.
Si x∗ est un minimum local de f , alors ∇f(x∗) = 0.

Démonstration. En observant le développement de Taylor à l’ordre 1 en x∗, il faut
nécessairement, pour que x∗ soit un minimum local, que d>∇f(x∗) ≥ 0 pour toute direc-
tion d. Ceci implique que ∇f(x∗) = 0.

Théorème 12 (Condition nécessaire du 2nd ordre). Soit f une fonction deux fois
différentiables. Si x∗ est un minimum local de f , alors ∇2f(x∗) est semi-définie posi-
tive.

Démonstration. En observant le développement de Taylor à l’ordre 2 en x∗, il faut
nécessairement que d>∇f(x∗)d ≥ 0 pour toute direction d, ce qui revient à ce que ∇2f
soit semi-définie positive .

Théorème 13 (Conditions suffisantes). Soit f une fonction deux fois différentiables. Si
les deux conditions suivantes sont réunies, alors x∗ est un minimum local.

1. ∇f(x∗) = 0 (point stationnaire)

2. ∇2f(x∗) > 0 (hessienne définie positive)

Démonstration. En observant le développement de Taylor, les conditions ci-dessus im-
pliquent immédiatement que x∗ est un minimum local.

Exercice 21. Soit f(x1, x2) = 100(x2 − x2
1)2 + (1− x1)2. Déterminer les points station-

naires, les minimums locaux et les minimums globaux de f .

Correction : Calculons le gradient de f :

∇f(x) =

(
−400x1(x2 − x2

1) + 2(x1 − 1)
200(x2 − x2

1)

)

∇f(x) = 0⇔ x = (1, 1)>

Le point x∗ = (1, 1)> est donc le seul point stationnaire.

∇2f(x) =

(
−400x2 + 1200x2

1 + 2 −400x1

−400x1 200

)
D’où

∇2f(x∗) = ∇2f(x∗) =

(
802 −400
−400 200

)
On a alors Trace(∇2f(x∗)) = λ1 + λ2 = 1000 > 0 et det(∇2f(x∗)) = λ1λ2 = 400 > 0, ce
qui implique que les valeurs propres λ1 et λ2 sont strictement positives. La hessienne est
donc définie positive en x∗ et x∗ est un minimum local.

On remarque par ailleurs que f(x1, x2) ≥ 0 pour tout (x1, x2) ∈ IR2. Comme f(1, 1) = 0,
on peut conclure que x∗ est un minimum global.

6.5 Fonction convexe

Définition 11 (Ensemble convexe). Un sous-ensemble C de IRn est un ensemble convexe
si

∀(a, b) ∈ C2, ∀λ ∈]0, 1[, λa+ (1− λ)b ∈ C

La figure 6.7 donne des exemple d’ensembles convexes et non convexes.

Figure 6.7 – Ensembles convexes ou non

Définition 12 (Fonction convexe). Une fonction f : IRn → IR est convexe sur un en-
semble convexe C de IRn si

∀(a, b) ∈ C2, ∀λ ∈]0, 1[, f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b)
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La figure 6.8 représente une fonction convexe à deux variables.

Figure 6.8 – Un exemple de fonction à deux variables convexe, ”facile” à minimiser : un
minimum local est aussi un minimum global

Une fonction f est concave si −f est convexe. La notion de stricte convexité est définie
de manière similaire avec une inégalité stricte.

Définition 13 (Fonction strictement convexe). Une fonction f : IRn → IR est strictement
convexe sur un ensemble convexe C de IRn si

∀(a, b) ∈ C2, ∀λ ∈]0, 1[, f(λa+ (1− λ)b < λf(a) + (1− λ)f(b)

Quelques exemples de fonctions convexes :
— f(x) = a>x+ α (fonction affine)
— f(x) = x>Hx (fonction quadratique) avec H matrice carrée semi-définie positive
— f(x) = ec(x), où c est une fonction convexe
— f(x) = ||x||, où || · || est une norme vectorielle quelconque
— f(x) = af1(x), où f1 est convexe et a ≥ 0
— f(x) = f1(x) + f2(x), où f1 et f2 sont deux fonctions convexes
— f(x) = max{f1(x), f2(x)}, où f1 et f2 sont deux fonctions convexes.

Propriété 14 (Convexité et hessienne). Soit f une fonction deux fois différentiable.
Alors f est convexe si et seulement si la hessienne ∇2f(x) est semi-définie positive pour
tout x ∈ IRn.

Propriété 15 (Stricte convexité et hessienne). Soit f une fonction deux fois
différentiable. Alors f est strictement convexe si la hessienne ∇2f(x) est définie posi-
tive pour tout x ∈ IRn.

Théorème 14 (admis). Soit f une fonction convexe. Alors un minimum local est aussi
un minimum global. Si, de plus, f est strictement convexe, il existe alors au plus un
minimum local.

Théorème 15 (admis). Soit f une fonction convexe et différentiable. Alors x∗ est un
minimum global de f si et seulement si ∇f(x∗) = 0.

6.6 Fonction quadratique

Une fonction quadratique est l’extension à IRn d’un polynôme du second degré. Elle peut
s’écrire sous la forme x>Ax+ b>x+ c avec A matrice symétrique, b ∈ IRn et c ∈ IR. Voici
des exemples de fonctions quadratiques dans IR2 et dans IR3

f(x1, x2) = x2
1 + 2x2

2 − 3x1x2 + 7x1 − 8x2 + 2

f(x1, x2, x3) = x2
1 + 2x2

2 − x2
3 − 3x1x2 − 2x1x3 + 4x2x3 + 7x1 − 8x2 + x3 + 1

Une fonction quadratique est donc la somme (pondérée) de termes quadratiques xixj , de
termes linéaires xi et d’une constante.

Pour simplifier les résultats qui suivront, nous écrirons une fonction quadratique sous la
forme

f(x) =
1

2
x>Ax− b>x+ c

Grâce aux règles de différentiation, nous pouvons aisément calculer le gradient et la hes-
sienne d’une fonction quadratique.

∇f(x) = Ax− b
∇2f(x) = A

Ainsi, si A est définie positive (et donc inversible), la fonction f est strictement convexe
et possède un unique minimum solution de

∇f(x) = 0⇔ Ax = n⇔ x = A−1b.

Notons au passage que minimiser la fonction quadratique f revient alors à résoudre le
système linéaire Ax = b.

Lorsque A est semi-définie positive mais pas inversible, alors la fonction f est convexe et
tout point stationnaire est un minimum local et global.

Lorsque A n’est pas semi-définie positive, il n’y a pas de minimum local d’après les
conditions nécessaires.

Exercice 22. Déterminer les minimums globaux de f(x1, x2) =
1

2
(αx2

1 + βx2
2)− x1 où α

et β sont des réels.

Correction : Calculons le gradient et cherchons dans un premier temps les points station-
naires.

∇f(x1, x2) =

(
αx1 − 1
βx2

)
— Si α = 0, pas de point stationnaire et donc pas de minimum local d’après les

conditions nécessaires d’optimalité. Il n’y a donc pas non plus de minimum global.
— Si α 6= 0 et β 6= 0, il existe un unique point stationnaire (1/α, 0)

>
.

— Si α 6= 0 et β = 0, tous les points (1/α, x2), avec x2 ∈ IR, sont stationnaires.
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Supposons dans la suite que α 6= 0 et étudions la convexité.

∇2f(x1, x2) =

(
α 0
0 β

)
— Si α > 0 et β > 0, alors la hessienne est définie positive et f est strictement

convexe. L’unique point stationnaire (1/α, 0)
>

est donc l’unique minimum global.
— Si α < 0 ou β < 0, alors la hessienne n’est pas semi-définie positive et il n’y a pas

de minimum local ou global
— Si α > 0 et β = 0, alors la hessienne est semi-définie positive et la fonction f est

convexe. Tout point stationnaire (1/α, x2)
>

, avec x2 ∈ IR, est un minimum global.

Courbes de niveaux

Considérons une fonction quadratique à deux variables strictement convexe. On peut
montrer que les courbes de niveau sont des ellipses, centrées sur le minimum global x∗,
d’axes orientés par les vecteurs propres (normés) q1 et q2 de A. Le rapport des longeurs
des axes est lié aux valeurs propres λ1 et λ2 de A :

Longeur axe 1

Longueur axe 2
=

√√√√λ2

λ1

6.7 Méthodes de descente

Définition 14 (Direction de descente). Un vecteur d de IRn est une direction de descente
pour la fonction f au point x si

∇f(x)>d < 0.

Soit d une direction de descente et t un réel positif. On suppose t suffisamment petit pour
que l’approximation du premier ordre suivante soit valable :

f(x+ td) ≈ f(x) + td>∇f(x)︸ ︷︷ ︸
<0

.

On a alors f(x+ td) < f(x) et on a amélioré la fonction objectif.

Les méthodes de descente sont des méthodes itératives pour la minimisation des fonctions
différentiables dans lesquelles une direction de descente est choisie à chaque itération à
partir des informations locales. Le schéma général est donné ci-dessous :

Initialisation. Choisir un vecteur intial x0 ∈ IRn.

Itération k .

— Choisir une direction de descente dk
— Choisir un pas de descente tk > 0
— Calculer un nouveau point

xk+1 = xk + tkdk

6.8 Méthode du gradient

La méthode du gradient est une méthode de descente consistant à choisir comme direction
de descente celle de plus grande pente, à savoir la direction opposée au gradient :

dk = −∇f(xk) = −gk

où gk désigne le gradient de f au point xk. On pourra aussi utiliser une version normée
de la direction de descente : dk = −gk/‖gk‖.
L’algorithme 4 illustre une implémentation possible de la méthode du gradient. Reste dans
cet algorithme à définir le critère d’arrêt et la méthode de sélection du pas de descente.

Données : f, x0, ε
Résultat : x
Initialisation : x← x0;
tant que Critère d’arrêt > ε faire

Calcul de la direction de descente : d← −∇f(x);
Calcul du pas de descente t ;
Calcul du nouveau point : x← x+ td ;

fin
Algorithme 4 : Méthode du gradient
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6.8.1 Critère d’arrêt

Plusieurs critères d’arrêt peuvent être utilisés, par exemple :

‖∇f(xk)‖ ≤ ε
‖f(xk+1)− f(xk)| ≤ ε
‖xk+1 − xk‖ ≤ ε

‖xk+1 − xk‖
‖xk‖

≤ ε

6.8.2 Sélection du pas de descente

On peut sélectionner le pas de diverses manières. Voici quelques exemples.

Pas constant

La méthode à pas constant (tk = t) est très simple. Cependant, si le pas est trop grand
la méthode peut diverger. Si le pas est trop petit, la vitesse de convergence va être très
lente.

Pas décroissants

On va choisir une suite de pas décroissants, satisfaisant les deux conditions suivantes

tk −→
k→∞

0

∞∑
k=0

tk = +∞

La dernière condition garantit que la suite (tk) ne converge pas vers un point non sta-
tionnaire.

Pas optimal

A l’itération k, le pas optimal est le pas tk qui minimise la fonction

θ(t) = f(xk + tdk).

D’après l’exercice 19, nous avons

θ′(t) = d>k∇f(xk + tdk).

En particulier,

θ′(tk) = d>k∇f(xk + tkdk) (6.1)

= d>k∇f(xk+1)

= d>k gk+1.

Si tk minimise la fonction θ(t), alors θ′(tk) = 0. Il suit que d>k gk+1 = 0 et gk+1 est
orthogonal à dk. Nous pouvons alors énoncer la proposition suivante.

Proposition 3. Si tk minimise la fonction θ(t) = f(xk + tdk), le gradient gk+1 au point
xk+1 = xk + tkdk est orthogonal à la direction dk.

Cette proposition implique que les directions successives de la méthode du gradient sont
orthogonales si les pas tk sont choisis de manière optimale. La direction de plus grande
pente peut donc être très mauvaise en ce qui concerne la direction du minimum. La figure
6.9 illustre le déplacement en zigzag de la méthode du gradient (avec pas optimal) vers
la solution optimale.

Figure 6.9 – Comportement de la méthode du gradient pour une fonction à deux va-
riables. Les ellipses représentent des courbes de niveau et le minimum est au centre de la
plus petite ellipse.

En général, le pas optimal ne peut pas être déterminé de manière exacte et on doit recourir
à une méthode d’optimisation numérique à une dimension.

6.8.3 Convergence vers un point stationnaire

On peut montrer que la méthode du gradient (avec pas constant, décroissant ou optimal)
converge vers un point stationnaire sous certaines hypothèses relativement techniques
(voir par exemple Bertsekas [2016]). La convergence peut néanmoins être lente en pratique.
Voici un exemple de résultat de convergence.

Proposition 4 (Admis). Soit la méthode du gradient xk+1 = xk − tk∇f(xk). Supposons
que f est convexe, admet un minimum et que, pour tout x, y, il existe L > 0 tel que

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

Alors xk converge vers le minimum de f si tk −→
k→∞

0 et
∑∞
k=0 tk = +∞.
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6.8.4 Cas des fonctions quadratiques

Nous allons nous intéresser dans cette section au cas particulier d’une fonction quadra-
tique :

f(x) =
1

2
x>Ax− b>x+ c,

∇f(x) = Ax− b.

Nous supposerons que A est une matrice symétrique définie positive d’ordre et donc que
f est strictement convexe.

Considérons la méthode du gradient avec pas optimal. La direction choisie est donc dk =
−gk avec gk = ∇f(xk). Comme vu en équation (6.1), nous avons

θ′(tk) = d>k∇f(xk + tkdk)

= d>k [A(xk + tkdk)− b]
= d>k [Axk − b+ tkAdk]

= d>k [gk + tkAdk]

= d>k gk + tkd
>
k Adk

= −g>k gk + tkg
>
k Agk

Il suit

θ′(tk) = 0⇔ tk =
g>k gk

g>k Agk

Récapitulons les différentes étapes à l’itération k :
— Calcul du gradient : gk = Axk − b
— Direction de descente : dk = −gk

— Calcul du pas de déplacement optimal : tk =
g>k gk

g>k Agk
— Nouveau point : xk+1 = xk + tkdk

On peut par exemple utiliser un critère d’arrêt su le gradient

‖∇f(xk)‖2 ≤ ε⇔ g>k gk ≤ ε

Nous pouvons ainsi écrire un algorithme de descente de gradient avec de simples calculs
matriciels (voir algorithme 5).

6.9 Méthode de Newton

La méthode de Newton est une méthode de descente consistant à sélectionner comme point
suivant celui qui minimise l’approximation quadratique de f autour de xk. Supposons que

Données : A, x0, ε
Résultat : x
initialisation : x← x0, g ← Ax0 − b ;

tant que g>g > ε faire
g ← Ax− b;

t←
g>g

g>Ag
;

x← x− t ∗ g ;

fin
Algorithme 5 : Méthode du gradient avec pas optimal pour une fonction quadratique
strictement convexe

xk soit connu et que l’on cherche x minimisant l’approximation quadratique de f autour
de xk :

f(x) = f(xk) + (x− xk)>∇f(xk) +
1

2
(x− xk)>∇2f(xk)(x− xk))︸ ︷︷ ︸

g(x) : fonction quadratique

+o(‖x− xk‖2)

Afin de minimiser g, cherchons son gradient en utilisant les règles de différentiation :

∇g(x) = ∇f(xk) +∇2f(xk)(x− xk)

Si l’on suppose que la matrice ∇2f(xk) est définie positive, alors la fonction g est stricte-
ment convexe et atteint son unique minimum lorsque le gradient s’annule :

∇g(x) = 0⇔ x = xk −
(
∇2f(xk)

)−1∇f(xk)

La méthode de Newton est donc une méthode de descente avec

tk = 1

dk = −
(
∇2f(xk)

)−1∇f(xk)

Cette méthode converge rapidement mais le problème réside dans l’évaluation de dk.

Exercice 23. Montrer que la méthode pure de Newton converge en une itération pour
une fonction quadratique définie positive.

Pour une fonction à une variable, la méthode de Newton consiste à calculer la suite de
points

xk+1 = xk −
f ′(xk)

f ′′(xk)
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6.10 Méthode du gradient conjugué pour des fonc-
tions quadratiques

Définition 15. Soit A une matrice symétrique définie positive. Deux vecteurs non nuls
x et y sont dits conjugués par rapport à A si x>Ay = 0.

Nous allons considérer une fonction quadratique sous la forme

f(x) =
1

2
x>Ax− b>x+ c.

L’algorithme du gradient conjugué présentée ci-dessous construit une suite de directions
conjuguées.

Entrées x0, A, b

Initialisation g0 = Ax0 − b, d0 = −g0

Itération k ≥ 0 .
— Calcul du pas de déplacement optimal :

tk = −
g>k dk

d>k Adk

— Nouveau point :
xk+1 = xk + tkdk

— Mise à jour du gradient :
gk+1 = Axk+1 − b

— Mise à jour de la direction de descente :

βk =
g>k+1Adk

d>k Adk

dk+1 = −gk+1 + βkdk

Théorème 16. Pour une fonction quadratique strictement convexe, la méthode du gra-
dient conjugué converge vers le minimum global en au plus n itérations.

6.11 Problèmes de maximisation

Si l’on s’intéresse à des problèmes de maximisation, tous les résultats précédents se trans-
posent aisément en notant que maximiser f(x) revient à minimiser −f(x).

On dira que x est un maximum local (respectivement global) de f si et seulement si x est
un minimum local (respectivement global) de f .
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