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Premiere partie

Analyse spectrale



Chapitre 1
Préambule

L’objectif de ce chapitre est de déterminer les valeurs propres et les vecteurs propres d’une
matrice carré A d’ordre n a 'aide de méthodes numériques efficaces. Rappelons que le
scalaire A est une valeur propre de A si il existe un vecteur = # 0 tel que

Az = \x

Le vecteur x est alors appelé vecteur propre associé a la valeur propre .




Chapitre 2

Rappels

Les quelques rappels qui suivent ne remplacent en aucun cas un cours d’algebre linéaire
mais doivent pouvoir permettre & un étudiant de suivre ce qui suit.

2.1 Déterminants
Soit A = (a;;) une matrice carrée d’ordre n. On utilisera les notations suivantes pour le
déterminant de la matrice A.

a11  ccc Qlp
Déterminant de A = det(A) =

an1 ot Onn

Matrice 1 x 1

A= (au)
det(A) = |a11| = a1l

Matrice 2 x 2

d@t(A) = a9y aos = a11Q22 — A12021

= Aire orientée du parallélogramme formé par u et v
= [[ullllv]| sin(6)

ou 6 désigne I'angleorienté formé par les vecteurs u et v.

Propriété 1. det(A) = 0 ssi u et v sont colinéaires (aire du parallélogramme nulle) ssi
si u et v sont linéairement dépendants.

Matrice 3 x 3

a1 ai2 a3
A= a21 Q22 Q23 = (U v ’UJ)
az1 asz ass

Développement du déterminant suivant la lere ligne :

a0 Ol azy as ain a3 az  as
det(A) = |ay, ady an|=an — a2 + a3
+ - ¥ azz2  as3 az1 Q23 as1 as2
G31  Gzp 0433
= Aire orientée du volume formé par u, v, w
Propriété 2. det(A) = 0 ssi u,v,w sont coplanaires (volume nul) ssi u,v,w sont

linéairement dépendants

Matrice n x n

Soit A = (a;;) une matrice n X n. On note A;; la sous-matrice de A ol 'on supprime la
ligne ¢ et la colonne j.
On peut développer le déterminant de A comme suit : Développement suivant la i-éme



ligne ou suivant la j-eéme colonne :

I
M=

det(A) (=1)"*a;;det(A;j) (développement suivant la i-eme ligne)

<.
Il
—

(—1)Ha;;det(A; ) (développement suivant la j-eme ligne)

|

@,
Il
—

Une maniere de calculer un déterminant quelconque est d’itérer le développement en ligne
ou en colonne jusqu’a obtenir des matrices 1 x 1. On parle alors de méthode de Laplace.
Malheureusement, cette méthode a une complexité exponentielle en nx (n—1)x---x1 = n!
et ne permet pas de calculer le déterminant de grandes matrices.

Exercice 1. Développer suivant la 3-éme colonne le déterminant de la matrice suivante.

1 2 3 4
4 6 7 8
A= 9 10 11 12
13 14 15 16

Quelques propriétés des déterminants

Voici quelques propriétés classiques du déterminant :
— Matrice diagonale ou triangulaire : det(A) = [, as
— det(AT) = det(A)
— det(AB) = det(A)det(B)

si A est inversible

— det(A™1) = !
det(A)
— A est inversible si et seulement si det(A) # 0
— Si det(A) = 0, les vecteurs colonne (ou ligne) sont linéairement dépendant
— Si det(A) # 0, les vecteurs colonne (ou ligne) sont linéairement indépendants

Voici par ailleurs effet sur le déterminant de quelques transformations élémentaires :

1. L; <+ L; ou C; <+ C; (permutation deux lignes ou deux colonnes) : le déterminant
change de signe;

2. L; + L; + aLj ou C; < C; + aCj : déterminant est inchangé;
3. L; < al;, le déterminant est multiplié par «;

4. B = aA : chaque ligne est multiplié par a d’ot det(B) = a™det(B) avec n 'ordre
de A.

L’algorithme du Pivot de Gauss n’utilisant que des opérations de type 1 et 2, la matrice
obtenue a la fin a le méme déterminant que A au signe pres. Ainsi,

det(A k H i

o les p; sont les pivots et k le nombre de permutations de lignes (ou de colonnes). On peut
donc utiliser I'algorithme du pivot de Gauss pour calculer le déterminant d’une matrice,
avec une complexité en O(n?).

Exercice 2. Calculer a la main les déterminants des matrices suivantes

10 20 30 40
10 10 10 10
A= 5 6 0 2
0 3 0 1
10 20 30 40
10 10 10 10
B= 5 6 4 2
2 3 2 1

Correction : det(A) = —2000, det(B) = 0. Astuce : L3 <— Ly — 2L4.
Exercice 3. Donner les polynomes caractéristiques de l’exercice 1 de la feuille de TD.

1

Exercice 4. La matrice de Hilbert H,, est la matrice définie par Hn,(i,j) = P
i+j—

pouri,j =1,...,n. Montrer que

det(H 1:[ n—l—k

2.2 Eléments propres

Définition 1. Soit A une matrice carrée d’ordre n.Un scalaire \ € IR est valeur propre
de A ssi il existe x # 0 tel que

Az =X zx & (A— Nz =
On dira qu’un tel x est vecteur propre associé a la valeur propre .

On appelle spectre de A (noté Sp(A)) l'ensemble des valeurs propres de A. On appelle
par ailleurs rayon spectral de A (noté p(A)) le plus grand module des valeurs propres de

A

A) = A
p(A) Agslgg;)I |

Enfin, on appelle espace propre associé a A (noté SEP(A, \)) l'ensemble des vecteurs
propres associés la valeur propre A .

2 0 0 0 0
Exemple. Soit A = [0 3 0 | On peut vérifier que A[1| = 3| 1]. Donc 3 est
0 0 —4 0 0

valeur propre de A et (0 1 0) est un vecteur propre associé.



On peut montrer que les valeurs propres de A sont 2, 3 et -4. Ainsi, le spectre de A est
Sp(A) = {2,3,—4} et le rayon spectral est p(A) = 4.

Cherchons les sous-espace propre associé a la valeur propre 3 en résolvant le systeme
linéaire suivant.

21‘1 = 3$1
Arx =3r & 319 =3x9 & x1=23=0
dxs = 3x3
Ainsi,
0 0

SEP(A,3)=<(x2 | 1] ,22 € R p = Vect 1

o
o

Interprétation géométrique

Exercice 5. Pour les transformations suivantes du plan (IRZ), donner la matrice A
associée , les valeurs propres et les sous-espaces propres :

— Identité

— Symétrie centrale

— Homothétie

— Symétrie axiale

— Projection orthogonale sur une droite

— Rotation
Astuce : ne pas faire de calculs mais des raisonnements géométriques, en s’aidant de

figures.

Correction :
— Identité
A=1
Sp(A) = {1}
SEP(A,1)=IR"
— Symétrie centrale
A=1
Sp(A) = {-1}
SEP(A,1)=IR"
— Homothétie de rapport o
A=al
Sp(A) = {a}

SEP(A,a) = IR"

— Projection orthogonale sur Vect(u), la droite portée par le vecteur u

-
uu
A=
ulu
Sp(4) = {1,0}
SEP(A,1) = Vect(u)
SEP(A,0) = Vect(u)*

— Symétrie aziale par rapport a la droite portée par le vecteur u :

Sp(A) = {~1,1}
SEP(A,1) = Vect(u)
SEP(A,—1) = Vect(u)*

— Rotation dans IR* d’angle 0

(56 )

Il n’y a pas de valeur propre réelle mais il y a des valeurs propres complexes, par
exemple €.
Déterminer les valeurs propres
Le systeme linéaire (A — AI)z = 0 admet des solutions non nulles si et seulement si
det(A — M) =0.

On appelle polynéme caractéristique le polynéme x4 (\) = det(A — AI).

Propriété 3. Le polynome caractéristique d’une matrice d’ordre n est de degré n.

Théoréme 1. Les valeurs propres de A sont les racines (éventuellement complexes) du
polyndéme caractéristique de A.

On appelle multiplicité algébrique d’une valeur propre l'ordre de multiplicité en tant que
zéro du polynoéme caractéristique.

Déterminer les vecteurs propres

Pour déterminer les vecteurs propres associés a une valeur propre A, il suffit de résoudre
le systeme linéaire

Ar= o (A-A)z=0< z € Ker(A - )



Ainsi, nous avons SEP(A, A) = Ker(A — AI). On appelle multiplicité géométrique de la
valeur propre A la dimension de 'espace propre associé, soit dim(SEP(A4, A)).

Exercice 6. Exercice 1 de la feuille de TD (sauf question sur la diagonalisabilité).

2.3 Quelques propriétés des éléments propres

— Les valeurs propres d’une matrice diagonale ou triangulaire sont les éléments dia-
gonaux.
— 0 est valeur propre de A si et seulement si det(A) =0

1
— Si A #£ 0 est valeur propre de A, alors 1 est valeur propre de A~".
— La trace de A est égale & la somme des valeurs proprers : Trace(A4) = >"" | a;; =

Z:‘L:l Ai

— Le déterminant de A est égal au produit des valeurs propres : det(A4) = [/, \i.

i=1

Exercice 7. Démontrer les trois premiéres propriétés.

2.4 Matrices semblables

Deux matrices A et B sont semblables si elles représentent la méme application linéaire
f dans deux bases différentes B et B’.

Propriété 4. A et B sont semblables ssi il existe S inversible telle que

B =8"'! 4 8 (2.1)
~—~ N
B’ B'—-B B BB

La matrice S est la matrice de passage de la base B & B’ et la matrice S~! est la matrice
de passage de B’ a B.

Propriété 5. Les valeurs propres de deux matrices semblables sont identiques.

Exercice 8. Démontrer cette propriété.

Exemple

Prenons un exemple dans IR?. Soit les bases B = (e1, e2) et B = (e}, €}) telles que

1 / /
, e = —e; +—ey
el =er+e 3 3
!
ey, = 2e1 —eg 2, ,
€9 = 761 - 762
3 3

€1
€z

€1

La matrice de passage de B & B’ s’écrit alors

=04

et la matrice de passage de B’ & B est alors I'inverse de S :

Soit "application linéaire f telle que

f(el) =e1 + 2eo
fle2) = 3e1 + 4es

La représentation matricielle de f dans B est

1 3
A= .
D’apres la propriété ] nous avons alors immédiatement la représentation matricielle de

f dans B’ :

B=S"1AS =

[N}
W= W=



Vérifions que cela est vrai sur cet exemple :

f(e1) = fler+e2) = fler) + fle2)

= 4eq + Geo
1 1 2 1
=4 <36/1 +3€’2> +6 (36’1 - 36/2>
16 2
= "¢ — e
3 37
fley) = f(2e1 —e2) = 2f(e1) — f(e2)
1 ! 1 /
=—e =—¢, — ¢
1 3¢1 7 5%

B est donc bien la matrice représentative de f dans la base B’.
Prenons maintenant I’exemple d’une matrice diagonale de valeurs propres 2 et -1 :

D:(g 01>.

D est la représentation matricielle de f dans B = (e1, e3) :

f(el) = 361
fle2) = —e2

Son interprétation géométrique est tres simple :
)

f(e{) =3e;

N
>

—

f(ex) = —e;

La matrice représentative C' de f dans B’ est alors

C=8"'DS=

Lol W
Wl ot Wl o

et son interprétation géométrique est moins immédiate, de méme que le calcul de ses
valeurs propres.

2.5 Diagonalisation

On dit que A est diagonalisable si elle est semblable & une matrice diagonale D et qu’on
peut donc ’écrire sous la forme

A=pPDpP!

Diagonaliser une matrice A, c’est trouver les matrices P, D et P!,
On dit que A est trigonalisable si elle est semblable & une matrice triangulaire T'

A=PTP!
Trigonaliser A, c’est trouver P, T et P~!. Trouver les valeurs propres d’une matrice
diagonale ou triangulaire est trivial.

Polynéme scindé

Soit un polynéme
P(z)=ag+ a1+ -+ apz™.

On dit que P(x) est scindé si il peut s’écrire sous la forme de polynémes du premier degré,
c’est-a-dire si il existe A1, -+, A\, tels que

Plz)=(z—M)(x— X)) - (T — \yp).

Un polynoéme est toujours scindé dans € mais pas nécessairement dans IR. Par exemple,
le polynome

P(z) = (2 +1)(x — 2)3 = (z —i)(x + i) (x — 2)3

est scindé dans € mais pas dans IR.

2.5.1 Diagonalisabilité

Théoreme 2 (Conditions nécessaires et suffisantes de diagonalisabilité). A est diagona-
lisable dans IR

— ssi la somme des espaces propres est égale d IR"

— ss1 1l existe une base constituée de vecteurs propres de IR™

— 880

1. x4 est scindé sur IR
2. et, pour chaque valeur propre de A, la multiplicité algébrique est égale a la

multiplicité géométrique

Corollaire 1 (Condition suffisante de diagonalisabilité). Si A admet n valeurs propres
distinctes, alors A est diagonalisable.



2.5.2 Comment diagonaliser une matrice diagonalisable ?

1. Trouver les valeurs propres A1,--- , A,

2. Trouver les vecteurs propres vi,--- , v, associés
3. D =diag(A, -, An)

4. P = (v1, -+ ,0p)

5. Inverser P

Par exemple, soit A une matrice d’ordre 6 diagonalisable telle que

Sp(A) = {1, A2, A3}

SEP(A, A1) = Vect{vy, v}
SEP(A, \2) = Vect{vs}
SEP(A, \2) = Vect{vy, vs,v6}

Alors

D = diag(A1, A1, A2, Az, Az, A3)
P = (v1,-- ,v6)

Exercice 9. Diagonaliser les matrices diagonalisables de ’exercice 1.

2.5.3 Applications de la diagonalisation
Puissance d’une matrice

Nous cherchons & calculer la puissance k-ieme d’une matrice A. En général, la complexité
pour calculer AFest en O(kn?). Si la matrice est diagonalisable, nous avons

i (0)
A =(PDP™")* =PDFP~t =P . p!
0) A

n

et la complexité est en O(n?).

Suites récurrentes linéaires
Soit une suite linéaire récurrente linéaire d’ordre 2 :

Upt2 = QUp+1 + by,

En notant U, = (u”H) et A= <a b), nous avons alors

n 1 0
Un+1 = AUn
U, = A"U,.

10

Le méme principe peut étre appliqué a des suites linéaires d’ordre p :
Un+p = AQUR +a1Uupyr + -+ Qp—1Un+p—1

Deux exemples de suites classiques :
— Fibonacci : Upto = Unt1 + Uy, (cf exercice)
— Tribonacci : Up43 = Upta + Unt1 + Un

Autres applications

— Systemes d’équations différentielles linéaires
— Analyse de données
— Résistance des matériaux

2.5.4 Matrices symétriques réelles

Théoréme 3 (Théoréme fondamental). Une matrice A symétrique réelle est diagonali-
sable a l'aide d’une matrice de passage orthogonale Q.

A=QDOT

De plus, toutes les valeurs propres de A sont réelles et les sous-espaces propres sont
orthogonauz.

Exercice 10. Vérifier, pour l'exercice 1, que ce théoréme est cohérent avec les résultats
obtenus pour les matrices symétriques réelles :

— Les matrices sont bien diagonalisables ¢

— Les sous-espaces propres sont-ils bien orthogonauz ¢

— Pour la 3¢me matrice, construire une matrice de passage orthogonale.

01 0 11 -5 5
e (et (B e
0 1 0 5 -3 3
Matrices orthogonales

Soit A une matrice carrée. A est orthogonale
— ssi ATA=Tssi AAT =1
— ssi ses vecteurs colonnes (ou lignes) sont orthonormés (cf ¢c; =0, ¢l'c; = 1)

— ssi A conserve la norme euclidienne, c’est-a-dire si Vo € IR", | Az| = ||=]|
|Az|| = (Az)T Az = 2T AT Az = 272 = ||2]|

Quelques exemples de matrices orthogonales :
— rotations
— symétrie centrale



— symétrie axiale

— permutations
Propriétés des matrices orthogonales :

— Une matrice orthogonale est inversible et facile & inverser : A=! = AT

— Si A et B orthogonales, alors AB orthogonale.

— det(A) € {-1,+1}

— Les valeurs propres d’une matrice orthogonale sont de module 1
Un exemple de matrice orthogonale non diagonalisable dans IR (rotation de 7/2 ) mais
diagonalisable dans C.

0 -1
=)

det(R — M) = A2 + 1. D’ou Sp(R) = {i, —i}, puis

SEP(R, i) = Vect { (_1@> }
SEP(R, —i) = Vect { C) }

Au final, la diagonalisation est la suivante :

N = N =
[\
o~

Projection orthogonale

On dit que P est une matrice de projection si P2 = P. On dit par ailleurs que P est une
matrice de projection orthogonale si P2 = P = PT,

Soit P la matrice de projection orthogonale sur le s.e.v. (sous-espace vectoriel) L de IR".
Etant symétrique, P est diagonaliable. De plus :

— 1 est valeur propre d’espace propre = L

— 0 est valeur propre d’espace propre = L+
Notons qu’une matrice de projection (non orthogonale) est diagonalisable et a aussi pour
valeurs propres 0 et 1.

11



Chapitre 3

Méthode de la puissance itérée

Pour simplifier I'exposé de la méthode de la puissance itérée, nous supposerons dans toute
ce chapitre que :
— La matrice A est diagonalisable et peut donc se mettre sous la forme

A=pPDpP!

avec D une matrice diagonale d’ordre n et P une matrice inversible d’ordre n.
— Les valeurs propres de A, notées Ay, -+, A, sont réelles et distinctes en module

(A1l > Ao > - > A

3.1 Principe
La méthode de la puissance itérée consiste a calculer la suite

- Al’k
[ Az

Th+41 (31)

qui va converger vers un vecteur propre associé a Ap, le valeur propre de plus grand
module, sous une condition que nous allons détailler plus loin.

Afin de démontrer ce résultat, nous allons d’abord établir un lemme qui exprime zp en
fonction de zg.

Lemme 1. Pour k > 1,
Akl‘o

Tp = —
| ARz

Démonstration. Montrons par récurrence cette propriété. Elle est vraie par construction

pour k = 1. Supposons la vraie pour k > 1. Nous avons alors

Ak.’EO
Az, | A% 20| AktHlgg
xk,—‘rl = = =
| Azl A AF | AR Lo |
[ AFzo |
et la propriété est vraie pour k + 1 et donc pour tout entier k > 1. O

Soit Tg un vecteur quelconque de IR"™. A étant diagonalisable, z¢ peut étre décomposé
dans une base de vecteurs propres sous la forme

n
o — E Zi
i=1

ou z; appartient & ’espace propre associé a la valeur propre \;, noté SEP(A, \;).

ACEO = i )\izi
i=1

Nous avons alors

puis, par récurrence,
n
i=1
Il vient alors
n n A k
Akxo = E /\fzz = /\]1C 21+ E )\71 Zi
i=1 i=2 1

Wk

= )\’fwk



k
s
Comme |\;/\1] < 1, nous avons (;) qui tend vers 0 quand k tend vers Uinfini. Il suit
1
que

n )\ k
7
WE = 21 + — | % — Z1.
k 1 2;<)\1> Zlc—><><>1
1=

Par ailleurs, nous avons d’aprées le lemme

AFzq )\]fwk
T = % 1 Ik
Ao [[Awsl]
)\]f Wi . by Wk
= ——— =signe(\{) .
INF] Jlws | [lwe|l
Ainsi x — L (=u)) et x — signe(A;)v
2k koo HZIH( 1) 2k+1 koo g ( 1) 1

Le signe de A} est positif si k est paire et du méme signe que \ si k est impair. D’ot1

T
2k otoo |||
. 21
x — signe(\;)——
S S

Nous avons montré que les suites xoy et xoi1 convergeaient vers un vecteur propre normé
associé a la valeur propre A;. Nous pouvons maintenant énoncer le principal théoreme de
ce chapitre.

Théoréme 4. Soit A une matrice diagonalisable de valeurs propres Ay, - -+ , A, distinctes
en module et rangées par modules décroissants : |A1| > |A2| > - > | Ay

Soit la suite de vecteurs (xy) définie par

Al’k
| Az |

Th+1 = (32)

Si xg est de composante non nulle dans la direction des vecteurs propres associées a A1,
alors les suites extraites wop et Tog41 convergent vers un vecteur propre de norme 1,
associé a la valeur propre Ay.

3.2 Quotient de Rayleigh

Nous avons donc une méthode itérative pour obtenir une approximation d’un vecteur
propre associé a A;. Afin de calculer une approximation de A;, nous allons utiliser le
quotient de Rayleigh.

13

Définition 2 (Quotient de Rayleigh). Soit A une matrice d’ordre n et x € IR". On
définit le quotient de Rayleigh de la matrice A relativement au vecteur x # 0 par

" Az
pa(®) = ——
z'x

Proposition 1. Six est un vecteur propre associé a la valeur propre X, alors pa(x) = .

Démonstration.

O

Une fois un vecteur propre obtenu par la méthode de la puissance itérée, on en déduit
immédiatement la valeur propre associée en calculant le quotient de Rayleigh.

3.3 Algorithmes

L’algorithme [1| reproduit bétement la suite définie dans I’équation (3.1)), en fournissant en
sortie une approximation de A; et d’un vecteur propre normé associé. Plus le parametre
€ est petit, meilleure est I’approximation.

Données : A, xg,¢
Résultat : )\ et =
initialisation : x < xg, Agne < 1, A < 0;
tant que |\ — Agnc| > € faire
)\anc < /\a
Az
T —
|| Az||
x| Az )

JL'TJ?

A

fin
Algorithme 1 : Version naive de la méthode de ma puissance itérée

Dans ce premier algorithme, on constate qu’on calcule plusieurs fois Az. Afin d’éviter
cela, introduisons la suite (yi) :

Yet1 = Az,
Yk

T = ——
lly |

Avec cette reformulation, on peut écrire un 2éme algorithme plus efficace.



Données : A, 1y, €

Résultat : A et x

initialisation : y < Yo, Agne < 1, A < 0;
tant que |\ — A\y,c| > € faire

)\anc < /\7

Y

[yl
y <+ Ax
zTy

)
r'z

A —

fin
Algorithme 2 : Version améliorée de la méthode de ma puissance itérée

3.4 Vitesse de convergence

La vitesse de convergence de la suite (xy) dépend de la vitesse de convergence de la suite
k

A A
2] et donc de )\—27 c’est-a-dire du quotient entre les deux plus grandes valeurs propres

1 1
en module. La vitesse de convergence sera lente si les deux plus grandes valeurs propres
sont proches en module.

Afin d’atteindre une précision e, il faut que

k loge

<esk> |
log |—
A1

A2

1

Précision souhaitée € | Nb itérations (A1 /A2 = 0.5) | Nb itérations (A /A2 = 0.99)
107! 4 230
102 7 459
1073 10 688
1074 14 917
1075 17 1146
1076 20 1375
1077 24 1604

On gagne donc (au moins) un chiffre significatif toutes les 4 itérations lorsque A\; /A2 = 0.5
et toutes les 230 itérations lorsque A; /A2 = 0.99.

Définition 3 (Convergence linéaire (ou géométrique)). On dit qu’une suite (uy) converge
linéairement vers u* si il existe un réel o € [0,1] et un entier ky tel que

VE > ko, s - u'l| < ol — o]

Le réel a est appelé le taux de convergence.
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Dans le cas d’une convergence linéaire, on peut montrer que 1’on gagne 1 chiffre significatif
toutes les g itérations ol ¢ est une constante.

N k
La suite géométrique by = a”, avec a = (}\) , converge linéairement vers 0 si |a| < 1.
1

En effet :
b1 — | = [B*T] = |a|la®| = |al[bx — b

On peut aussi définir la notion de convergence quadratique pour laquelle il existe q tel que
la précision soit doublée toutes les ¢ itérations. Par exemple, la suite ci-dessous converge
quadratiquement vers 0.

1
(275> ={5.1071,2.5.107",6.3.1072,3.9.107%,1.5,2.3.107 ', 5.4.107°%,2.9.10 7%}

Un exemple d’algorithme quadratique : la méthode de Newton

Pour trouver la racine d’une fonction continue, la méthode de dichotomie a une vitesse de
convergence linéaire. Pour une fonction dérivable, on peut utiliser la méthode de Newton
qui consiste a calculer la suite

f'(xn)

Sous certaines hypotheses, cet algorithme converge vers un zéro de f de maniere quadra-
tique. Cherchons par exemple & résoudre 22 = 2 dont les solutions sont

Tp+l = T —

+/2 ~ +1.4142135624.

En prenant zy = 10, l'algorithme obtient une précision de 10 décimales en 8 itérations

pour V2
(z1) = {10,5.1,2.7460784314, 1.7371948744, 1.4442380949, 1.4145256551, 1.4142135968,
1.4142135624}.

Quelle est I'idée de la méthode de Newton ? La méthode de Newton consiste a approcher
la fonction f par son développement limité a l'ordre 1 en z,, :

Nous cherchons alors un zéro de cette approximation
f(@n)

La méthode de Newton consiste a approcher la fonction f par son développement limité
alordre 1 en x,, :

f(xn) =+ f/('rn)(w - xn) =0&x= Tn+1 —

f@) = fzn) + f(an) (@

_ $n)



Nous cherchons alors un zéro de cette approximation

—x,) =0 =x,41 —

Le zéro obtenu est alors le point x,1.

3.5 Calcul de la plus petite valeur propre

Soit A une matrice inversible. Les valeurs propres de A~! sont les inverses des valeurs
propres de A et peuvent étres triées par module croissant :

AT < < A

Si l'on applique la méthode de la puissance itérée & A~1, on obtiendra A, ! qu’il suffira
d’inverser pour obtenir la plus petite valeur propre de A.

3.6 Meéthode de déflation

Dans cette partie, nous allons chercher a éliminer de A la valeur propre dominante \;
obtenue par la méthode de la puissance itérée. Notons v1 un vecteur propre associé a Ay,
obtenu par exemple par la méthode de la puissance itérée.

Pour faire simple, nous allons nous placer dans le cas d'une matrice symétrique réelle A
mais il existe une méthode pour des matrices non symétriques.

Proposition 2. Soit A une matrice symétrique réelle de valeurs propres Ay, -+, Ap dis-
tinctes en module et rangées par modules décroissants : |A\1| > |Aa| > -+ > |\,|. Alors B
définie par

1)1’(){r

’UF’Ul

B=A-X\

a les mémes vecteurs propres vi,va, -« -
07)‘27"' 7)\n-

,Un que A et pour wvaleurs propres associées

Démonstration. La matrice A est symétrique réelle et est diagonalisable d’apres le
théoreme fondamental. Ses espaces propres sont par ailleurs orthogonaux : v, v; =0
pour i # j.
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Appliquons B au vecteur propre vy :

T
Bv1 = (A — Alv}rvl ) V1

U1 U1

vy (v] v1)

Uir’l)l

= AU1 — /\1
= A1 — A\us
=0

Ainsi v est vecteur propre de B associé a la valeur propre 0.

Appliquons maintenant B & un vecteur propre v;, i % 1 :

v (v] v;)

’UlT’Ul

B’Uz' = A’Ui — )\1 = )\ﬂ)i — O = )\ﬂ)i

Donc v; est vecteur propre de B associé a la valeur propre ;.
O

Une méthode pour calculer ’ensemble des valeurs propres de A consiste a utiliser la
méthode de la puissance itérée pour calculer la plus grande valeur propre en module puis
d’effectuer le changement de matrice A < B et de recommencer.

3.7 Généralisation du théoreme a des matrices non
diagonalisables

Le théoreme {4 s’étend a des matrices non diagonalisables possédant une valeur propre
dominante. La preuve repose sur la décomposition de Jordan et est hors programme.



Deuxieme partie

Optimisation non linéaire
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Chapitre 4
Introduction

Dans cette deuxieme partie du cours, nous allons nous intéresser a une fonction f a
plusieurs variables : f : IR™ — IR. Notre objectif sera de trouver le minimum de f(z) ol
x=(x1,  ,Zn)-

min  f(z)
s.c. velR"

Nous considérerons dans un deuxiéme temps une version avec contraintes de ce probleme,
ol I'espace des solutions est restreint & un sous-ensemble X de IR".

min  f(x)

sc. ze€X

Ce cours est complémentaire & celui de programmation linéaire. En programmation
linéaire, la fonction objectif et les contraintes sont linéaires :

— Fonction objectif lindaire : f(z) = > | ¢;x; olt les ¢; sont des réels

— Contrainte linéaire : Z;L:l a;x; < b; ou les a; sont des réels
Pour notre part, nous considérerons des fonction f pouvant étre non linéaires. En voici
quelques exemples :

n n

f@) =3t f@) =3 |l f@)=]]=

i=1 i=1

Les contraintes pourront elles aussi étre non linéaires.
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Chapitre 5

Optimisation a une variable

Nous allons considérer dans ce chapitre le cas le plus simple d’une fonction & une variable :
fR—=1R.

min  f(z)

s.c. z€IR

Nous supposerons, la plupart du temps, que la fonction f est deux fois dérivables et nous
noterons ses dérivées [’ et f”.

Définition 4 (Minimum global). On dit que f atteint en x* un minimum global si
f(z*) < f(x) pour tout z € IR.

On peut aussi définir la notion de minimum de maniére locale, au voisinage d’un point
x, c’est-a-dire ”a proximité” de ce point. La notion de voisinage en mathématiques est
relativement abstraite. Retenons simplement la propriété suivante.

Propriété 6 (Voisinage d’un réel). Soit x un réel tel que a < x < b. Les intervalles [a, b],
la, b, [a,b] et ]a,b] sont des voisinages de x.

Définition 5 (Minimum local). On dit que [ atteint un minimum local en x* si il existe
un voisinage V' de x* tel que f(z*) < f(x) pour tout x € V.

Les notions de minimum local et de minimum global sont illustrées en figure [5.1

Une maniere de trouver les minimums d’une fonction a une variable est d’établir son
tableau de variation, comme vous le faisiez au lycée. Considérons par exemple la fonction
f(x) =22 =22 +3 = (z—1)? + 2. Sa dérivée f'(z) = 2z — 2 est croissante et s’annule en
=1
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Le minimum global de cette fonction est donc atteint en a* = 1 et vaut f(z*) = 2.

Cet exemple est simple & résoudre pour deux raisons : 1) la fonction f est convexe et a
un unique minimum local, 2) I’équation f’(x) = 0 se résoud & la main. En pratique, ces
deux conditions ne sont souvent pas réunies. Il peut y avoir plusieurs minimums locaux
et ’équation f’(x) = 0 peut ne pas avoir de solution triviale. Nous devrons alors recourir
a des méthodes numériques pour déterminer le minimum d’une fonction.

5.1 Conditions d’optimalité

Nous allons établir des conditions nécessaires, puis suffisantes, d’optimalité, pour une
fonction f deux fois dérivables. Avant cela, nous allons faire quelques rappels sur le
développement de Taylor.

Développement de Taylor

Le théoreme de Taylor nous dit qu'une fonction f dérivable n fois peut étre approchée
par un polynéme d’ordre n au voisinage d’un point x*. Les coefficients de ce polynéme
dépendent uniquement des dérivées de la fonction f en x*.

Développement de Taylor a I’ordre 1
Considérons une fonction f dérivable en x*. Le développement de Taylor a l’ordre 1 s’écrit

fl@)= f@")+ /(@) (@ —a") + olx—a")
——

Négligeable au
voisinage de x™

Approximation affine de f(x)
au voisinage de x=*

ou le reste o(x — z*) est une fonction négligeable devant (x — z*) au voisinage de z*,

o(x — x*)

— tend vers zéro quand x tend vers x*.

c’est-a-dire que



x"2

exp(x)

En posant h = x — z*, on peut ré-écrire le développement de Taylor a I'ordre 1 comme

f@™ +h) = f(@") + f'(a")h + o(h).

o o(h) est une fonction négligeable devant h quand h tend vers 0.

Développement de Taylor a ’ordre 2

| " Considérons une fonction f deux fois dérivable en x*. Le développement de Taylor a
) 7 lordre 2 de f s’écrit
N é j : * /! * * f”(I*) *\ 2 *\2
. f(z) = f(@") + [(@)(@ —a™) + (e —27)" + o((z — 7))
- - %,—/
° Négligeable au
© o s Approximation de f(z) par un polynéme voisinage de z*
‘ du second dégré au voisinage de x*
“ 2 0 ; : : 0 s 2 Le reste o((z — 2*)?) est une fonction négligeable devant (z — 2*)? au voisinage de x*,
x x ol(x — x* 2
c’est-a-dire que ((7)2) tend vers zéro quand x tend vers z*.
(a) f(z) = 2® pour x € R®. Un mi- (b) f(z) = sin(z)/z pour =z € (x — a*)
nimum local et global atteint en [2,20]. Un unique minimum glo- A nouveau, un simple changement de variable donne
z =0. bal et trois minimums locaux.
. = ) 4 P L D2 e
F@™ +h) = f@7) + [@)h +=——h"+ o(h7).
N s ott o(h?) est une fonction négligeable devant h? quand h tend vers 0.
=7 Développement de Taylor a ’ordre n
" Considérons une fonction f dérivable n fois en z*. Le développement de Taylor a 1’ordre
g n s’écrit
- F® (@) k
————— T ra = S e ooy
— ! —_———
x . _ Négligeable au
. A . : lyné voisinage de x*
(c) f(z) = e” pour > 0. Un mini- (d) f(z) = z® pour z € IR. ES?éxglga:zlc;i Iv’iirsﬁf;geodyenigle
mum local et global est atteint Pas de minimum local car
enz=0. limg s — oo f(z) = —0c0. ott f*) désigne la dérivée k-ieme de f.

On peut aussi I’écrire

FIGURE 5.1 — Mimimum local et minimum global "

Fla*+h) = Z Tk 4 onm)
P !
o(h™) est est une fonction négligeable devant h™ quand h tend vers 0.

Dans le cadre des démonstrations qui suivent, nous n’aurons besoin que des
développements de Taylor a ’ordre 1 et 2.

19



Points stationnaires

Définition 6. On dit que x* est un point stationnaire si f'(z*) = 0.

Exercice 11. Déterminer les points stationnaires de f(x) = sin(x).
Correction :

f/(x)zoﬁcos(x)zoﬁx:g—i-kw avec k € Z

0
Les points stationnaires de f valent donc xy, = 5—!— km avec k € Z.

sin(x)
0.0 0.5 1.0

-0.5

-1.0

Conditions nécessaires

Théoreme 5 (Condition nécessaire du ler ordre). Soit f une fonction dérivable. Si x*
est un minimum local de f, alors x* est un point stationnaire (et donc f'(x*) =0).

Démonstration. Supposons que x* est un minimum local. D’apres le développement de
Taylor a ’ordre 1, nous avons

f@™+h) = f@") = f(z
Le reste o(h) devient négligeable devant h quand h tend vers 0. Il existe donc un voisinage
V de 0 tel que f'(z*)h > 0 pour tout h € V. Ceci implique que f'(z*) = 0. En effet, si
(f'(@*) >0et h <0)ousi (f'(z*) <0et h>0),alors f'(z*)h < 0, ce qui contredirait
I’hypothese d’'un minimum local.

“Vh + o(h)

O

Théoréeme 6 (Condition nécessaire du 2nd ordre).
dérivables. Si z* est un minimum local de f, alors " (x

Soit f une fonction deux fois

) > 0.
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Démonstration. Supposons que z* est un minimum local. D’apres le théoréme [5, nous

avons f’(z*) = 0, puis en utilisant le développement de Taylor & ordre 2 :
1 x*
fx*+h)— f(z*)= f(z*)h +Mh2 + o(h?)
— 2
=0
1" *
_ f ({E )h2 + 0(h2)
2
1"
Comme z* est un minimum local, il existe un voisinage V' de 0 tel que ! ( )h2 > 0 pour
tout h € V. Ceci implique que f”(x*) > 0. O

Les deux conditions

L f'(z") =
2. f"(z7) =0

sont nécessaires mais pas suffisantes pour que x soit un minimum local. Par exemple, la
fonction f(z) = 23 satisfait ces deux conditions en z* = 0 qui n’est pas un minimum
local.

0 (condition nécessaire ler ordre)

(condition nécessaire du 2nd ordre)

Conditions suffisantes

Théoréme 7 (Conditions suffisantes). Soit f une fonction deuzx fois dérivables. Si les
deux conditions suivantes sont réunies, alors x* est un minimum local.

1. f'(z*) =0 (condition du ler ordre), c’est-a-dire x* est un point stationnaire
2. f"(x*) >0 (condition du 2nd ordre) :

Démonstration. Soit z* vérifiant les deux conditions du théoreme. Nous avons alors,
d’apres le développement de Taylor a l'ordre 2 :

flat 4 1) - 1) = £y h e T2 o)

1 *
Comme o(h?) est négligeable devant %hz quand f tend vers 0, il existe un voisinage

h)—f(x

La condition f”(z*) > 0 n’est pas une condition nécessaire. En effet, la fonction f(z) = x
atteint son minimum en z* =0 et f”(0) = 0.

V de 0 tel que f(z*+ *) > 0 pour tout h € V. Donc z* est un minimum local. [
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fu(xx) >0
! flx*)=0

v

*

X

(a) Conditions suffisantes pour un
minimum local.

& =0

w

*

X

(¢) Un exemple ou z* satisfait
les conditions nécessaires mais
n’est pas un minimum local.

FIGURE 5.2 — Conditions suffisantes d’optimalité et conditions nécessaires

frx) <0

/’E\f’(x*) =0

: y
¥ L4

X

(b) Conditions suffisantes pour un
maximum local.

A

vx, f'(x) = f'(x) =0

N
>

(d) Un exemple satisfaisant les
conditions nécessaires partout
et ou tous les points sont des mi-
nimums locaux.

Exercice 12. Déterminer les minimums locauz de sin(zx).

Correction : Les candidats potentiels a étre des minimums locauzx sont les points station-

T
naires Ty = 54— km avec k € Z. Nous avons par ailleurs f"(x) = —sin(z) et

si k est impair

f// (-Tk) _ — Sin <g+ k']T) — { ;1 S k est pair

Les minimums locauz sont donc atteints en xy, avec k impair. La valeur de fonction objectif
en ces points est f(—n/2) = sin(—7/2) = —1.

5.2 Fonction convexe

Définition 7. On dit qu’une fonction f : I C IR — IR est
— convexe sur I si
Y(a,b) € 1%, YA €)0,1[, f(ha+ (1 —=N)Db) < Af(a)+ (1—N)f(b)
— strictement conveze sur I si
Y(a,b) € I, a#b, VYA€)0,1], f(ha+ (1 —Nb) < Af(a)+ (1 —N\)f(b)

Une fonction f est concave (respectivement strictement concave) si —f est convexe (res-
pectivement strictement convexe).

fib)
Af{a)+{1—A)f(b)
Slha+ (1 — X))
fla)

a Aa+(l—Mp b

FIGURE 5.3 — Interprétation graphique de la définition d’une fonction convexe
https://commons.wikimedia.org/wiki/File:Fonction_convexe.png

Propriété 7 (Interprétation graphique). Une fonction f est convexe si et seulement si

pour tous points A et B de sa courbe représentative, l'arc AB est en-dessous de la corde
[AB].


https://commons.wikimedia.org/wiki/File:Fonction_convexe.png

5.0

45

15(x)
35

3.0

25
1

FIGURE 5.4 — Un exemple de fonction convexe mais non strictement convexe. Cette
fonction n’est par ailleurs pas dérivable en -2 et 2.

Propriété 8 (Continuité). Une fonction convexe sur un intervalle ouvert I est continue
sur I.

Une fonction convexe sur un intervalle fermé peut étre discontinue aux extrémités. Par
exemple, la fonction f: IR — IR™ telle que f(x) =0 pour z > 0 et f(0) = 0.

Propriété 9. Quelques propriétés supplémentaires :

— Si f conveze et a > 0, alors af est convexe

— La somme de fonctions convexes est convexe

— La somme d’une fonction convexe et d’une fonction strictement convexe est stric-
tement conveze

— La fonction composée de deuz fonctions convezres est convexe :
convezes, alors fog est conveze.

— Une fonction a la fois convexe et concave est une fonction affine (de la forme
ax +b)

si f et g sont

Voici quelques exemples de fonctions convexes et concaves :
— Strictement convexes : 22, e, 1/x pour z > 0
— Convexes mais non strictement convexes : |z|, fonction affine ax + b, fonction
illustrée en figure 5.4
— Strictement concaves : 1/ pour z < 0, /& pour z > 0, In(z) pour z > 0
— Ni convexes, ni concaves : sin(z), cos(z) , 23

22

Fonction convexe dérivable

Propriété 10. Soit f une fonction dérivable sur I.
— f est convexe sur I si et seulement si sa dérivée est croissante sur I.
— [ est strictement convexe sur I si et seulement si sa dérivée est strictement crois-
sante sur I.

On peut utiliser ces propriété pour vérifier que les exemples de fonctions dérivables
données ci-dessus sont bien convexes, concaves ou ni I'un ni Iautre. Par exemple, z*
est strictement convexe car sa dérivée 323 est strictement croissante. De méme, ax + b
est convexe car sa dérivée a est constante (donc croissante).

Fonction convexe dérivable deux fois

Propriété 11. Soit f une fonction deuz fois dérivables sur un intervalle I C IR :
— f est convexe sur I si et seulement si sa dérivée seconde est positive sur I.
— Si la dérivée seconde est strictement positive sur I, alors f est strictement convexe
sur I.

La réciproque n’est pas vraie pour une fonction strictement convexe. Par exemple, la
fonction x* est strictement convexe et sa dérivée seconde f”(x) = 1222 vaut 0 en = = 0.
On peut montrer que si la dérivée seconde est strictement positive, sauf en un nombre
fini de points, alors la fonction f est strictement convexe.

Minimum d’une fonction convexe

Les fonctions convexes sont des fonctions ”faciles” a optimiser en raison des propriétés
suivantes.

Théoreme 8. (admis) Si f est convezxe , alors un minimum local est aussi un minimum
global.

Notons qu’une fonction convexe n’a pas de minimum global si elle n’a pas de borne
inférieure (exemple : —log(x) sur IRY} ).

Théoréme 9. Si f est convexe et dérivable, alors f atteint un minimum global en x* si
et seulement si f'(x*) = 0.

Démonstration. Supposons que f atteint un minimum global en x*, lors z* est aussi un
minimum local et f’(z) = 0.

Réciproquement, supposons que f/(z*) = 0. La fonction f étant convexe, nous avons f’
croissante d’apres la propriété Il suit que f'(x) < 0 pour z < x* et f'(x) > 0 pour
x > x*. Ainsi, f est décroissante pour x < x* et croissante pour x > z*. On conclut que
z* est un minimum global. O

Minimiser une fonction convexe dérivable revient donc a trouver un zéro de la fonction
f’, ce qui peut étre fait par exemple par une méthode de dichotomie.



5.3 Meéthode de dichotomie

Trouver les zéros d’une fonction est un probléeme classique qui n’est pas pour autant
toujours simple. La méthode de dichotomie permet d’obtenir une approximation dun
zéro (mais pas tous les zéros) d’une fonction continue.

Rappelons le principe rapidement de la méthode de dichotomie. Soit g une fonction conti-
nue sur l'intervalle [a, b] pour laquelle on cherche & résoudre g(z) = 0. Si g(a) et g(b) sont
de signes opposés, alors ’algorithme 3| va fournir un zéro de g(z), ¢’est-a-dire une solution
de g(z) = 0.

Données : a,b, ¢
Résultat : a,b
tant que b—a > ¢ faire
a+b
2 )
si g(a) x g(m) <0 alors
‘ b+ m;
sinon
‘ a < m;
fin

fin
Algorithme 3 : Méthode de dichotomie permettant de trouver un zéro d’une fonction
continue sur un intervalle [a, b]

Si 'on applique cet algorithme & f/, on trouvera donc une approximation d’un point
stationnaire de f, si il en existe un sur lintervalle [a, b]. Si la fonction f est convexe, le
point stationnaire trouvé sera un minimum global d’apres le théoréme [0

Exercice 13. Implémenter l’algorithme de dichotomie en Python et trouver un point
stationnaire de f(x) = e* + 1/x sur Uintervalle [0.1,10]. Ce point stationnaire est-il un
manimum local ? Un minimum global ¢

Correction : Nous avons f'(x) = e* —1/z% et f(z) = e® + 2/2>.

On peut appliquer l'algorithme de dichotomie & [’ car f' continue, f'(0.1) <0 et f'(10) >
0. L’algorithme de dichotomie fournit comme point stationnaire x* ~ 0.703467. Comme
f(x*) = 7.77, le point x* remplit bien les conditions suffisantes du théoréme et est
donc bien un minimum local.

Par ailleurs, la fonction f étant convexe, ce minimum local est aussi un minimum global.

5.4 Fonction unimodale

Les fonctions unimodales constituent une autre classe de fonctions ”faciles” a optimiser.
Donnons tout d’abord une définition intuitive d’une fonction unimodale sur un intervalle
[a, b] pour un probléme de minimisation. Une fonction unimodale est une fonction qui est
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strictement décroissante puis strictement croissante. Il peut ne pas y avoir de phase de
croissance (ou de décroissance). Ainsi, une fonction strictement croissante est unimodale.
De méme, une fonction strictement décroissante sur [a,b] est unimodale. La figure
donne plusieurs exemples de fonctions unimodales.

Définition 8. Soit f : [a,b] — IR une fonction continue. On dit que f est unimodale sur
Uintervalle [a,b] si il existe x* € [a,b] tel que f est strictement décroissante sur [a,x*] et
strictement croissante sur [z*,b].

Le minimum de f sur lintervalle [a,b] est donc atteint en z* et il n’y a pas d’autres
minimums locaux.

Propriété 12. Une fonction strictement conveze est unimodale.

La réciproque n’est pas vraie (voir par exemple les figures [5.5b}, [5.5¢| et 5.5d)).

Dans le TP qui vous sera distribué, plusieurs méthodes sont présentées pour trouver le
minimum de fonctions unimodales.

Pour un probléeme de maximisation, une fonction unimodale pourra étre définie comme
une fonction strictement décroissante, puis croissante.
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(a) fi(z) = z*. Le minimum est atteint

en z* =0 et vaut f(z*) = 0. Cette
fonction est strictement convexe.

()

f3(z) = min(4z,x + 5) pour x €
[—5,7]. Le minimum est atteint en
" = —5 et vaut f3(—5) = —20.
Cette fonction est strictement crois-
sante et strictement concave.

2(x)

14(x)

10

20

10

-10

-20

(b) fa(z) =

VT siz <0et folx) =
Vz st > 0. Le minimum est at-
teint en x* = 0 et vaut f(z*) = 0.
Cette fonction n’est ni convexe, ni
concave.

(d) fa(z) =

w‘
o
o 4
e
w -

—2® pur z € [-3,+3]. Le
minimum est atteint en z* = 3 et
vaut f(3) = —27. Cette fonction est
strictement croissante mais n’est ni
convexe, ni concave.

FIGURE 5.5 — Exemples de fonctions unimodales
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Chapitre 6

Optimisation a plusieurs variables

Nous allons maintenant considérer le probleme de la minimisation d’une fonction a n
variables f : IR" — IR.

e 9)

min  f(z1, -, Zn)
s.c. (21, -+ ,x,) € R"

La fonction f sera appelée la fonction objectif.

En notant z = (zq,- - 7:1071)—'—, ce probléeme de minimisation s’écrit alors
FIGURE 6.1 — Un exemple de fonction & deux variables f(z1,x2)
min f(ac) local min local max saddle point
s.c. zelR"

P e
RN
I
Ry NN

S,
\‘“\‘:’:‘:"t

bk N oo o oa

Les notions de minimum local et de minimum global s’étendent naturellement au cas
d’une fonction a plusieurs variables :
— On dit que f atteint en 2 un minimum global si f(z”) < f(z) pour tout = € R" FIGURE 6.2 — Minimum local (local min), maximum local (local max) et point selle
— On dit que f atteint un minimum local en z* si il existe un voisinage V de x* tel (saddle point)
que f(z*) < f(z) pour tout z € V.
Les figures qui suivent illustrent graphiquement pour des fonctions a deux variables les
notions de minimum local, minimum global et point selle.
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Rastrigin function

50

(0

it
“ “\\\\\:,:f;;;;;g =

29 NI i
) D LSRN
‘ NN RN RS

N

Global Minima

Saddle Point

FIGURE 6.3 — Minimum local (local minima) versus minimum global (global minima)

FIGURE 6.5 — Deux exemples de fonctions a deux variables avec de nombreux minimums
locaux. Il est ”difficile” de trouver le minimum global pour de telles fonctions.

FIGURE 6.4 — Un exemple de fonction a deux variables convexe, ”facile” & minimiser : un
minimum local est aussi un minimum global
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6.1 Différentiation

Exercice 14. Soit la fonction f(x1,x2,x3) = x1€”2 sin(x3). Quel est le gradient de f ¢
Correction :

La notion de différentiabilité généralise la notion de dérivabilité a des fonctions de plu-
sieurs variables. La fonction f est différentiable en un point x si il existe une approxima-
tion linéaire de la fonction f au voisinage de x. Pour simplifier I’exposé de ce cours, nous

e”2 sin(z3)
supposerons que toutes les fonctions considérées sont deux fois différentiables.

Vi(z) = | z1€2sin(z3)

x1e*2 cos(x3)
6.1.1 Gradient
Le gradient de f, noté V£, est la généralisation de la dérivée & une fonction & plusieurs Exercice 15. Soit la fonction f(z) = ||z||* (norme euclidienne). Montrer que V f(z) =
variables : 2x.
of
8561
Vf= :
af 6.1.2 Courbes de niveau
oxy,
of On appelle courbe de niveau l'ensemble {(z1, - ,z,)|f(z1, -+ ,2n) = a} ol & est une
Rappelons que D désigne la dérivée de f par rapport a la variable x;.
L

constante. Sur les cartes IGN représentent par exemple, les courbes de niveau représentent
I’altitude en fonction de la latitude et de la longitude.
Le gradient définit un champ de vecteurs comme représenté sur la figure [6.6] Le gradient

en un point indique la direction vers laquelle la fonction f augmente le plus (localement).
Sa norme indique I'intensité de cette variation locale.

XA AN
\\\<_4.
S LA A
\\\$4’I/////{4L
N A I B
A U R, IX/K{‘*\\!\\
N A S R T B
N A B RN N
DA 2 R T T RN
LA R 2 B UGN
Ly v = < 4 7 ¢ (A a a A a
R T I R A N e T U
VT 4 4« « = ~ ~ | v v = &= » > >
y » 4 <« = ~ v W 4 A 7 ¥ v v ¥
y o4 - = NP A Y AV 4 4
N N R

FIGURE 6.6 — Gradient pour une fonction a deux

variables (figure tirée de Wikipedia,
article ”Champ de vecteurs”)

Propriété 13. Le gradient en x est orthogonal a la courbe de niveau en x et pointe vers
la région ot la valeur de f est la plus grande.
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f(z) =«

fl@)>a

Examinons le cas particulier des courbes de niveau d’une fonction quadratique.

6.1.3 Fonction vectorielle

Une fonction F : IR"™ — IR est appelée fonction vectorielle car elle transforme un vecteur
en un autre vecteur. Une telle fonction est définie par ses p composantes Fi,-- - , F), allant

de IR" dans IR.
T Fl(xla"' 73771)
Tn Fp($1,"' 7xn)

Le gradient d’une fonction vectorielle est définie comme la matrice n x p dont les colonnes
sont les gradients des fonctions Fj.

VF(z) = [VFy(z) VFy(x) ... VF,(x)]

On définit par ailleurs le jacobien comme étant la transposée du gradient :

VFl(IC)T
VFQ(I')T

Jp(z) = VF(z)" =
VE ()T
Exercice 16. Soit la fonction vectorielle F : IR> — IR® telle que
1 — To

2x1 4+ 3o
T1X9

F(I’l,l'g) =

Donner le gradient et le Jacobien de F.
Correction :  Nous avons F(xy,z2) = (Fi(z1,72), Fa(xy,2), F3(z1,72)) "
Fl(iﬂl,fﬂg) =1 — T, FQ(I’l,SUQ) = 21’1 -+ 31’2 et Fg(.Tl,l'g) = T1T2.

avec
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VF(z) = [VFi(z) VFy(z) VFs(z)] = ( 12 ”)

-1 3 T
1 -1
Jp(x)=VF@)"' =2 3
X2 T

6.1.4 DMatrice hessienne

Nous allons généraliser la notion de dérivée seconde & une fonction a plusieurs variables
f :IR™ = IR. Remarquons tout d’abord que Vf : IR" — IR" est une fonction vectorielle.
On appellera hessienne le gradient du gradient de f :

Vif=V(Vf)
o) ()
o1 Oxy,
#r o
0z? 0x10x,
o i
02,011 0z?

Ainsi, la hessienne de f, notée V2 f(x), est la matrice des dérivées secondes de f :

o f
8331'833j 3 .
1<i<n,1<j<n

XN, 1) >

Vif(z) = (

0% f 0% f
axﬁmj 8l‘j 8.’11‘1‘
vérifiées dans ce cours). La hessienne est donc une matrice symétrique.

Nous savons que

(sous certaines conditions que nous supposerons

Exercice 17. Soit la fonction f(x1,xs,23) = x1€*2sin(x3). Donner la hessienne de f.

Correction :

0 e®2 sin(x3)
e"2sin(x3) 1€ sin(xs)
e®2 cos(x3) w1€%2 cos(xs)

e®2 cos(x3)
x1€%2 cos(x3)
—z1€%2 sin(x3)

Vif(z) =



6.1.5 Développement de Taylor

Le développement de Taylor se généralise a des fonctions a plusieurs variables. Nous
noterons d = (dy,- -+, d,) une direction et ¢ un réel.

Pour une fonction différentiable, le développement de Taylor a 'ordre 1 s’écrit
flz+td) = f(z) +td"Vf(x) +o(t).

Pour une fonction différentiable deux foi , le développement de Taylor a 1'ordre 2 s’écrit

flx4td) = f(z) +td"Vf(x)+ t;dTVQf(x)d + o(t?).

6.1.6 Regles de différentiation
On peut établir les regles de différentiation suivantes :

1. V(A) =0 avec A matrice (n x p)

2. V(af) =aVf avec a un réel et f: IR" — IRP

3. V(fi+ f2) =V f1 + Vfy avec f1 et fy allant de IR dans IRP
4

. Si B est une matrice (p x n), alors
V(Bz) = B'
5. Fonction affine avec a un vecteurs colonne de IR" et b € IR :
\Y (aTJ: + b) =a

Ce résultat se déduit des propriétés[i] [3] et [4

6. Forme quadratique avec A matrice carrée (n X n)

V(zTAz) = (A+AT)z  (=2Ax si A est symétrique)

Reégle de chainage

Soit h: IR™ — IRP et g : IRP — IRY. Soit ¢ = g o h leur composition :

¢(x) = g[h(x)]
Alors
V() = Vh(z)Vg[h(z)]
Exercice 18. Soit f(z) = ||Ax — b||? (norme euclidienne) ot A est une matrice (p x n)

et b un vecteur colonne de IRP. Montrer que V f(z) = 2AT (Ax —b) et V2f(x) = 24T A.

Exercice 19. Soit f : IR" — IR, t € IR et d € IR". Soit la fonction 6(t) = f(z + td).
Montrer que
0'(t) = d"Vf(z+td)

T + tdy

Correction : Nous avons 0 = f oh avec h(t) = z + td = : . De plus Vh(t) =
T, + td,

(di,--- ,dn) =d". En utilisant la régle de chainage, il vient

0'(t) = Vh(x)Vf[h(z)] = d"Vf(z + td)

6.2 Formes quadratiques

Une forme quadratique ¢(z) est un polynéme & plusieurs variables ne comprenant que
des termes de type x;x; de degré total égal a 2. Voici quelques exemples :

q(x1) = 32}
q(z1,m2) = 222 — 322 + Tw120

q(z1, 0, x3) = 227 — 3235 + 23 + 62109 + 20103 — STow3

Une forme quadratique de degré n peut s’écrire sous la forme
q(z) =z Az

2
= E auT; + 2 E Qi TiT 5
%

1<i<j<n

ou A est une matrice symétrique d’ordre n.
Par exemple, nous avons pour les exemples ci-dessus :

2 7/2\ [x1
207 — 323 + Trizs = (21 22) (7/2 3) (@)

2 6 1
227 — 313 + 22 4 3w 20 + 22123 — SToT3 = (:c1 33'2) 6 -3 -—5/2 (?)
1 -5/2 1 2
6.3 Matrices définies positives

Définition 9 (Matrice définie positive). Soit A une matrice carrée d’ordre n. On dit que
— A est définie positive (A >0) si

Ve e R,z # 0,2 Az >0



— A est semi-définie positive (A >0) si

Vo e R,z Az >0

11

Exercice 20. Soit A = (0 1

> . Montrer que A est définie positive.

11
.TTAIE = (xl ;[;2) <0 2> <i;) = .Z‘% + x129 + 21‘3 = (2171 + 0.5172)2 + 17556%

qui est strictement positif si (x1,x2) # 0.

Théoréme 10 (Admis). Soit A une matrice carrée symétrique d’ordre n. Alors
— A est définie positive si et seulement si les valeurs propres de A sont strictement
positives
— A est semi-définie positive si et seulement si les valeurs propres de A sont positives

6.4 Conditions d’optimalité

Définition 10. On dit que x* est un point stationnaire si V f(z*) = 0.

Théoréme 11 (Condition nécessaire du ler ordre). Soit f une fonction différentiable.

Si z* est un minimum local de f, alors V f(x*) = 0.

Démonstration. En observant le développement de Taylor a l'ordre 1 en z*, il faut
nécessairement, pour que z* soit un minimum local, que d' V f(x*) > 0 pour toute direc-
tion d. Ceci implique que V f(z*) = 0. O

Théoréeme 12 (Condition nécessaire du 2nd ordre). Soit f une fonction deux fois
différentiables. Si x* est un minimum local de f, alors V?f(x*) est semi-définie posi-
tive.

Démonstration. En observant le développement de Taylor a l'ordre 2 en z*, il faut
nécessairement que d' V f(z*)d > 0 pour toute direction d, ce qui revient & ce que V2 f
soit semi-définie positive . O

Théoréme 13 (Conditions suffisantes). Soit f une fonction deuz fois différentiables. Si
les deux conditions sutvantes sont réunies, alors x* est un minimum local.
1. Vf(z
2. V2f(x

*) =0 (point stationnaire)

*) > 0 (hessienne définie positive)

Démonstration. En observant le développement de Taylor, les conditions ci-dessus im-
pliquent immédiatement que z* est un minimum local. O

Exercice 21. Soit f(z1,72) = 100(z2 — 2%)? + (1 — 1)?. Déterminer les points station-
naires, les minimums locauz et les minimums globaux de f.
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Correction : Calculons le gradient de f :

Vf(x) = (4()0x1(x2 —2?) +2(z, — 1))

200(xg — 2?)

Viz)=0ez=(1,1)T

Le point * = (1,1)7 est donc le seul point stationnaire.
—400z2 + 120027 +2 —400z
2 _ 2 1 1
Vi) = ( —400z, 200 )
D’ou
200y w2 802 —400
Vf(m)_vf(gc)_(—zxoo 200

On a alors Trace(V2f(z*)) = A1 + A2 = 1000 > 0 et det(V2f(z*)) = A A2 = 400 > 0, ce
qui implique que les valeurs propres A1 et Ao sont strictement positives. La hessienne est
donc définie positive en x* et x* est un minimum local.

On remarque par ailleurs que f(xy,z2) > 0 pour tout (x1,x2) € IR*. Comme f(1,1) =0,
on peut conclure que ¥ est un minimum global.

6.5 Fonction convexe
Définition 11 (Ensemble convexe). Un sous-ensemble C' de IR" est un ensemble conveze
81

Y(a,b) € C?,

YA€)0,1, Aa+(1—-AbeC

La figure [6.7] donne des exemple d’ensembles convexes et non convexes.

e )O

Convexe Non convexe

FIGURE 6.7 — Ensembles convexes ou non

Définition 12 (Fonction convexe). Une fonction f : IR" — IR est convexe sur un en-

semble convere C de IR" si

Y(a,b) € C?, VYA€)0,1], f(Aa+ (1 —A)b) < Af(a)+ (1 — ) f(b)



La figure [6.8] représente une fonction convexe & deux variables.

it
SRR
SRR

FIGURE 6.8 — Un exemple de fonction a deux variables convexe, ”facile” & minimiser : un

minimum local est aussi un minimum global

Une fonction f est concave si —f est convexe. La notion de stricte convexité est définie
de maniere similaire avec une inégalité stricte.

Définition 13 (Fonction strictement convexe). Une fonction f : IR" — IR est strictement
convexe sur un ensemble convere C de IR" si

Y(a,b) € C?, VYA €)0,1], f(Aa+ (1 —Nb< Af(a)+ (1 —N)f(b)
Quelques exemples de fonctions convexes :
— f( ) =a'x+ a (fonction affine)

f(z) = 2T Hz (fonction quadratique) avec H matrice carrée semi-définie positive
— f(z) = e®) ol ¢ est une fonction convexe
— f(x) =|]z||, ou || || est une norme vectorielle quelconque
— f(x) =afi(z), on fi est convexe et a > 0
— f(z) = fi(z) + fo(x ) ou fi et fy sont deux fonctions convexes
— f(z) = max{f1(z), fo(x)}, ou f1 et fo sont deux fonctions convexes.

Propriété 14 (Convexité et hessienne). Soit f une fonction deuzx fois différentiable.
Alors f est convere si et seulement si la hessienne V2 f(x) est semi-définie positive pour
tout € IR".

Propriété 15 (Stricte convexité et hessienne). Soit f wune fonction deux fois
différentiable. Alors f est strictement convexe si la hessienne V2 f(x) est définie posi-
tive pour tout x € IR™.

Théoréme 14 (admis). Soit f une fonction convexe. Alors un minimum local est aussi
un minimum global. Si, de plus, f est strictement conveze, il existe alors au plus un
minimum local.

Théoreme 15 (admis). Soit f une fonction conveze et différentiable. Alors x* est un

minimum global de f si et seulement si V f(x*) = 0.
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6.6 Fonction quadratique

Une fonction quadratique est 'extension & IR™ d’un polynoéme du second degré. Elle peut
s’écrire sous la forme 7 Az +b' z + ¢ avec A matrice symétrique, b € IR” et ¢ € IR. Voici
des exemples de fonctions quadratiques dans IR? et dans IR

flxy,29) = x% + 23:3 —3r1T9 + 71 — 829 + 2

fzy, 0, 03) = 23 + 205 — 235 — 31129 — 27123 + 42023 + T2y — 879 + 23 + 1

Une fonction quadratique est donc la somme (pondérée) de termes quadratiques z;z;, de
termes linéaires x; et d’une constante.

Pour simplifier les résultats qui suivront, nous écrirons une fonction quadratique sous la
forme

1
flx) = ExTA:c —b'z+ec

Grace aux regles de différentiation, nous pouvons aisément calculer le gradient et la hes-
sienne d’'une fonction quadratique.

Vi(x)=Ax —b
Vif(z)=A

Ainsi, si A est définie positive (et donc inversible), la fonction f est strictement convexe
et possede un unique minimum solution de

Viz)=0& Az =nsx=A"'D

Notons au passage que minimiser la fonction quadratique f revient alors & résoudre le
systeme linéaire Ax = b.

Lorsque A est semi-définie positive mais pas inversible, alors la fonction f est convexe et
tout point stationnaire est un minimum local et global.

Lorsque A n’est pas semi-définie positive, il n’y a pas de minimum local d’apres les
conditions nécessaires.
. s, . L. 1 2 2 \
Exercice 22. Déterminer les minimums globauz de f(x1,x2) = —(axi + fx3) — 1 0t «
) 9 1 2

et B sont des réels.

Correction : Calculons le gradient et cherchons dans un premier temps les points station-

naires.

vrtone = ("3, )

— Si o = 0, pas de point stationnaire et donc pas de minimum local d’aprés les
conditions nécessaires d’optimalité. 1l n’y a donc pas non plus de minimum global.

— Sia#£0 et B#0, il existe un unique point stationnaire (1/c, O)T

— Sia#0 et =0, tous les points (1/a, x2), avec o € IR, sont stationnaires.



Supposons dans la suite que o # 0 et étudions la convexité.

V2f(x1,x2) = (g g)

— Sia >0 et p >0, alors la hessienne est définie positive et f est strictement
, - . . ) T . -
conveze. L’unique point stationnaire (1/a,0)  est donc 'unique minimum global.
— Sia <0 ou B <0, alors la hessienne n’est pas semi-définie positive et il n’y a pas
de minimum local ou global
— Sia>0 et =0, alors la hessienne est semi-définie positive et la fonction f est
conveze. Tout point stationnaire (1/a, ;vg)T, avec xo € IR, est un minimum global.

Courbes de niveaux

Considérons une fonction quadratique a deux variables strictement convexe. On peut
montrer que les courbes de niveau sont des ellipses, centrées sur le minimum global x*,
d’axes orientés par les vecteurs propres (normés) g; et ¢o de A. Le rapport des longeurs
des axes est lié aux valeurs propres A1 et Ay de A :

Longeur axe 1 | A2

Longueur axe 2 A\ M

xz A

6.7 Meéthodes de descente

Définition 14 (Direction de descente). Un vecteur d de IR™ est une direction de descente
pour la fonction f au point x si

Vf(x)Td<o.
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Soit d une direction de descente et ¢ un réel positif. On suppose t suffisamment petit pour
que 'approximation du premier ordre suivante soit valable :

f(x+td) = f(z)+td" Vf(z).
<0

On a alors f(z 4+ td) < f(x) et on a amélioré la fonction objectif.

Les méthodes de descente sont des méthodes itératives pour la minimisation des fonctions
différentiables dans lesquelles une direction de descente est choisie a chaque itération a
partir des informations locales. Le schéma général est donné ci-dessous :

Initialisation. Choisir un vecteur intial zo € IR".

Itération k .
— Choisir une direction de descente dy
— Choisir un pas de descente t; > 0
— Calculer un nouveau point

Tpq1 = Tk + trdy,

6.8 Méthode du gradient

La méthode du gradient est une méthode de descente consistant a choisir comme direction
de descente celle de plus grande pente, a savoir la direction opposée au gradient :

dp = =V f(zr) = —gk

ou gi, désigne le gradient de f au point zy. On pourra aussi utiliser une version normée
de la direction de descente : d, = —gi/||gk||-

L’algorithme [f]illustre une implémentation possible de la méthode du gradient. Reste dans
cet algorithme & définir le critere d’arrét et la méthode de sélection du pas de descente.

Données : f,xg,¢
Résultat : =
Initialisation : x < z;
tant que Critére d’arrét > € faire
Calcul de la direction de descente : d < —V f(x);
Calcul du pas de descente t ;
Calcul du nouveau point : = < = + td ;
fin
Algorithme 4 : Méthode du gradient



6.8.1 Critere d’arrét

Plusieurs criteres d’arrét peuvent étre utilisés, par exemple :
IVf(zr)ll <€
1 (@pi1) — flae)| < e

[Te41 — x| <€

lzk41 — 2kl

[l

6.8.2 Sélection du pas de descente

On peut sélectionner le pas de diverses manieres. Voici quelques exemples.

Pas constant

La méthode & pas constant (t; = t) est trés simple. Cependant, si le pas est trop grand
la méthode peut diverger. Si le pas est trop petit, la vitesse de convergence va étre tres
lente.

Pas décroissants

On va choisir une suite de pas décroissants, satisfaisant les deux conditions suivantes

ty, — 0
k—o0

oo
Z tr = +0o0
k=0

La derniére condition garantit que la suite (t;) ne converge pas vers un point non sta-
tionnaire.

Pas optimal

A Titération k, le pas optimal est le pas ¢, qui minimise la fonction
0(t) = f(xx + tdy).
D’apres ’exercice nous avons
0'(t) = d Vf(xy + tdy).
En particulier,
0 (t) = dy. V f (w, + trdy)
= di Vf(@ps1)

=d}, g+1.

(6.1)
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Si t; minimise la fonction 6(t), alors ¢’(t;) = 0. Il suit que d] grt1 = 0 et ggpi1 est
orthogonal a di. Nous pouvons alors énoncer la proposition suivante.

Proposition 3. Si t, minimise la fonction 0(t) = f(xk + tdy), le gradient giy1 au point
Tpy1 = Tk + tpdy est orthogonal a la direction dy,.

Cette proposition implique que les directions successives de la méthode du gradient sont
orthogonales si les pas t; sont choisis de maniere optimale. La direction de plus grande
pente peut donc étre trés mauvaise en ce qui concerne la direction du minimum. La figure
illustre le déplacement en zigzag de la méthode du gradient (avec pas optimal) vers
la solution optimale.

C

X1

FIGURE 6.9 — Comportement de la méthode du gradient pour une fonction a deux va-
riables. Les ellipses représentent des courbes de niveau et le minimum est au centre de la
plus petite ellipse.

En général, le pas optimal ne peut pas étre déterminé de maniere exacte et on doit recourir
a une méthode d’optimisation numérique a une dimension.

6.8.3 Convergence vers un point stationnaire

On peut montrer que la méthode du gradient (avec pas constant, décroissant ou optimal)
converge vers un point stationnaire sous certaines hypotheses relativement techniques
(voir par exemple Bertsekas|[2016]). La convergence peut néanmoins étre lente en pratique.
Voici un exemple de résultat de convergence.

Proposition 4 (Admis). Soit la méthode du gradient xy1 = xp — txV f (k). Supposons
que f est conveze, admet un minimum et que, pour tout x,y, il existe L > 0 tel que

IVf(z) = Vi)l < Lz -yl

Alors xy, converge vers le minimum de f si ty k—) 0 et ZZOZO ty = +oo.
— 00



6.8.4 Cas des fonctions quadratiques

Nous allons nous intéresser dans cette section au cas particulier d’une fonction quadra-
tique :

1
f(z) = §$TA:,E —b'x+e,

Vf(x)= Az —b.

Nous supposerons que A est une matrice symétrique définie positive d’ordre et donc que
f est strictement convexe.

Considérons la méthode du gradient avec pas optimal. La direction choisie est donc dy =
—gi avec g = V f(x). Comme vu en équation (6.1]), nous avons

0'(ty) = di V f(xy + trdy)
=d} [A(zy, + trdy) — b]
=d} [Azj, — b+t Ady)
= dj, [g, + tiAdy]
= d g + trdy Ady,
= —gn gk + tegs Agi

11 suit
T
0/(ty) = 0 & t) = 269
9r Ag
Récapitulons les différentes étapes a l'itération k :
— Calcul du gradient : g, = Az — b
— Direction de descente : dy = —gy
-
— Calcul du pas de déplacement optimal : ¢, = qu Ik
9k Agi,

— Nouveau point : zp1 = z + trd
On peut par exemple utiliser un critere d’arrét su le gradient

IVF(zi)l® <esgign<e

Nous pouvons ainsi écrire un algorithme de descente de gradient avec de simples calculs
matriciels (voir algorithme [5)).

6.9 Méthode de Newton

La méthode de Newton est une méthode de descente consistant a sélectionner comme point
suivant celui qui minimise I’approximation quadratique de f autour de zj. Supposons que
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Données : A, xg,¢
Résultat : =
initialisation : z + zg, g + Azg — b ;
tant que g'g > ¢ faire
g < Ax — b;

9'g

9" Ag’
T—T—t*xg;

fin
Algorithme 5 : Méthode du gradient avec pas optimal pour une fonction quadratique
strictement convexe

t 4

x), soit connu et que 'on cherche x minimisant I’approximation quadratique de f autour
de xy, :

fl@) = flax) + (z — 2x) TV f(a) +%(1v — ) "V f(zx)(z - 2x)) +ol||lz — zx )

g(x) : fonction quadratique

Afin de minimiser g, cherchons son gradient en utilisant les regles de différentiation :
Vy(z) = Vf(xk) + V2 far)(z — 1)

Si I'on suppose que la matrice V2 f(xy,) est définie positive, alors la fonction g est stricte-
ment convexe et atteint son unique minimum lorsque le gradient s’annule :

-1
Vy(z) =0 z=a, — (V2f(zx))  Vf(k)
La méthode de Newton est donc une méthode de descente avec

t, =1
d = — (VQf(fEk)f1 Vf(xk)

Cette méthode converge rapidement mais le probleme réside dans 1’évaluation de dy.

Exercice 23. Montrer que la méthode pure de Newton converge en une itération pour
une fonction quadratique définie positive.

Pour une fonction a une variable, la méthode de Newton consiste a calculer la suite de
points

_ fak)
f/,(xk-)

Tk4+1 = Tk



6.10 Meéthode du gradient conjugué pour des fonc-
tions quadratiques

Définition 15. Soit A une matrice symétrique définie positive. Deux vecteurs non nuls
x ety sont dits conjugués par rapport a A si xT Ay = 0.

Nous allons considérer une fonction quadratique sous la forme

1
fz) = 53:—'—141‘ —b'z+e

L’algorithme du gradient conjugué présentée ci-dessous construit une suite de directions
conjuguées.

Entrées zg, A, b

Initialisation gg = Azg — b, dg = —go

Itération £ >0 .
— Calcul du pas de déplacement optimal :

_ gidx
d7 Ad,

t =

— Nouveau point :
Tyl = T + trdy

— Mise a jour du gradient :
Jkt1 = Az — b

— Mise a jour de la direction de descente :
g, = SenAde

dy Ady,
di+1 = —gk+1 + Brdy

Théoréme 16. Pour une fonction quadratique strictement convezxe, la méthode du gra-
dient conjugué converge vers le minimum global en au plus n itérations.

6.11 Problemes de maximisation

Si I'on s’intéresse a des problémes de maximisation, tous les résultats précédents se trans-
posent aisément en notant que maximiser f(z) revient a minimiser — f(x).

On dira que z est un maximum local (respectivement global) de f si et seulement si = est
un minimum local (respectivement global) de f.
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