1 CONTENTS

Notes de cours de 'ISIMA, deuxiéme année, http://www.isima.fr /~leborgne

Screw theory (torsor theory)

Vector and pseudo-vector representations, twist, wrench

Gilles LEBORGNE

April 12, 2024

A screw (also called a torsor) is an affine antisymmetric vector field in a Euclidean setting. It is called
a twist (or a kinematic screw, or a distributor) when it is the velocity field of a rigid body motion, and
called a wrench when it is the moment of a force field.

To avoid confusions and misunderstandings, the first three paragraphs are devoted to the definitions
of vectors, pseudo-vectors, vector products, pseudo-vector products, antisymmetric endomorphisms and
their representations. The fourth fifth and sixth paragraphs define a screw, a twist and a wrench.
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The notation g := f means: f being given, g is defined by g = f.
V' is a dimension 3 vector space.
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2 1. Dimension 3 vector spaces

1 Dimension 3 vector spaces

1.1 The different H@ in mechanics
1.1.1 Cartesian ]R?

R := (R, +, x) is the usual field, with 0 the + identity element and 1 the X identity element; This 1 is
theoretical: It is not linked to any “unit of measurement”.

Then consider the Cartesian product R x R x R =noted I@?, and the usual operations ¢ + v =
(u14v1, us+ve, us+wvs) and A\@ = (Aug, Auz, Augz) =noted A7 when @ = (u1,ug,u3), ¥ = (v1,vs,v3) and
A € R. It is a real vector space, and (Elzz(l,O,O),E2::(O,1,0),E3::(0,0,1)) is a basis called “the
canonical basis”.

1.1.2 Ms3; the space of real 3 x 1 column matrices

U1
My ={[0] = | va | : v1,v2,v3 € R} is the usual set of real 3 % 1 column matrices. It is a real vector
U3
1 0 0
space with its usual rules, (Cy:=| 0 | ,Cor=( 1 |,Cs:= [ 0 |) =noted (C;) being its canonical basis
0

—_

U1
(the identity element 1 is theoretical: It is not linked to any “unit of measurement”). So [0] = [ v
U3
means U =), v;C;. And My, is isomorphic to I@ Cartesian.
Similarly with transposed matrices and Mz = {[t] : [§] € Ms1} the set of row matrices.

Definition 1.1 A column matrix [0] € Mz is also called a pseudo-vector.

1.1.3 The many V = Rﬁ in mechanics

For a sum to be defined, we need “compatible dimensions” : You don’t add bi-point vectors velocities
with accelerations or forces or moments... Thus we define distinct real vector spaces corresponding to
different dimensions: V4, for bi-point vectors, V¢ for the velocities, Vg, for accelerations, ... However,

to simplify the notations, all these spaces are noted I@? So pay attention to the context.
And, e.g. in Vi, —noted 3 there is no canonical basis: a basis (@1, dz,d3) = (;)i=1,2,3 =noted (@;)
is chosen by some observer, e.g. with ds giving the direction of the vertical at some point on Earth and

with its length being 1 is some unit of measurement (e.g. 1 foot in aviation).

1.1.4 Quantification in V'

V being a dimension 3 real vector space, let v € V.
Quantification. An observer chooses a basis (@;) in V. Hence Jvy,vg,v3 € R s.t. ¥ = E?:1 v;dy;, and
U1
the column matrix [ﬁhaz vy | EMsq is the usual matrix representation of v which quantifies ¥ in the
U3
U1
basis (@;). (And, [¢]jz = | v2 | means ¥ = Z?:l v;d;.)
U3

Let Ms3 will be the space of 3 x 3 real matrices.

Let z(-,-) : V. x V — R be a bilinear form (e.g. a scalar dot product). Quantification: Let [z]z :=

[2(@i, @;)] =125 ="°%d [2(@;,@;)] € Msz; This 3*3 matrix [2]; is the usual matrix representation (quan-

j=1,2

Z?:l v;d; and W = Zle w;d; in V, the bilinearity of
T._

[2]a.[w]z where [0]2 := ([¢])7)" (transposed matrix).

3

2,3
tification) of z(-,-) relative to (@;). So, for all ¥
: T
a

—

o) gives 2(5,0) = Y2, viw2(di, @) = [0

Let L : V — V be an endomorphism (linear map from a vector space to itself). Quantification: Let
L;; be the components of L.d;, i.e. L.d; = Z?zl L;;d;, for all j; The 3 % 3 matrix [L]z := [L;;] € Mss
is the usual representation of L relative to (d;). So, with ¥ = 2?21 v;d;, the linearity of L gives L.0 =
S 1 Lijvdi, ie. [L8))z = [L)ja.[0])a-

ij=1
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3 1. Dimension 3 vector spaces

R’

1.1.5 Our usual affine space R? and associated

Affine setting: R3 is the usual affine space of points representing positions of particles in our classical
3-D world.

Associated setting vector space: ]1@> is its associated vector space made of the bi-point vectors
AB =noted B A for all A, B € R?, and we write B = A + AB.

1.1.6 FEuclidean framework

Choose a unit of measure of length u in our affine space R? (foot, metre...), then make a Euclidean
associated basis (€;)i=1,23 —=noted (€;) in R?: The length of each €; is 1 in the unit u, and the length of
3¢; + 4¢;4+1 is 5 (Pythagoras orthogonality) in the unit u, for all ¢ = 1, 2,3, where &, := €; and & := é.

The associated Euclidean dot product g.(-,) = (-, ) =201 ey . ]1? X I@ — R (symmetric definite
positive bilinear form) is defined by (€;, €;), = d;; for all 4, j, i.e. [ge]je = I, so, for all o' = Z?:l v;€; and
@ =3 wi,

3
Vot = (0] .[]1z = Z v;w; (Euclidean case). (1.1)
ij=1
The associated Euclidean norm ||.| : RS S Ry is given by ||0]lg := /T e U (= E?j:l v?).
Two vectors ¥, W € I@g) are (-, -)e-orthogonal iff ey w = 0.
The algebraic (signed) volume of the parallelepiped limited by three vectors «, 7, w is detg(d, U, W)
(and the volume is the absolute value |detz(, ¥, w)|) where detz : (R?)‘3 — R is the tri-linear alternated
form defined by detg(€}, €3, €3) = 1. That is, for all @ = Zle W€, U= 2;5:1 Vi€, W = Zle w;€; in V,

detg(@, T, W) = uy (vaws — v3we) + uz(vzwy — viws) + uz(viwe — vawy), (1.2)

i.e. dete(t, U, W) = det ([4]|z [v]je [W]|¢) = the determinant of a 3% 3 matrix M = ([d]jz [v]jz [W])z).
A (-, -)g-orthonormal basis is a basis (b;) s.t. (b;,bj)e = 05, 1.€. b; o bj = 6,5 for all ¢, 7, i.e. [ge]lg =1
A basis (l;z) as the same orientation as (&;) iff detg(gl,gg,gg) > 0. Otherwise it as the opposite
orientation.

1.2 The vector product associated with a basis

Framework: I@? Euclidean with (€;) a chosen Euclidean basis, (-, ), the associated Euclidean dot product
and detz the associated algebraic volume.

VxV =V

Definition 1.2 The vector product x.(-,-) : { noted is the bilinear antisym-
7,7) "2 gy, 7

(U,7) — Xe(u,v U Xe U
metric map defined by
(il e ) o @ = detel(l, 7, 7), Vi € RO, (1.3)

So the components of @ X, ¥ in the basis (€;) are the reals (@ X, U) o €; = detg(, 0, €;) for i = 1,2,3:
U2V3 — U3V

[t e V]jg = | ugvr —wrv3 |, ie.
U1V2 — U2V

) (1.4)
ted €1 U1 U1
ﬁ Xe 17 = (’LLQ’U3 — U3’U2)€1 + (’LL3’U1 — u1v3)€2 + (ul’Ug — UQU1)€3 nO: det( 62 Ug V2 ),
€3 uz U3

the formal determinant being expanded along the first column. So X, is indeed bilinear, easy check, and
antisymmetric, i.e. @ X, ¥ = —U X, u, easy check.
In other words, X, is the bilinear antisymmetric map defined by
Vi = 1, 2, 3, é; Xe €i+1 = é}+2, (15)

where €, := €1 and €5 := é,.
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4 2. Antisymmeltric endomorphism and its representation vectors

Proposition 1.3 For all u,v € V.
1- If i X, 2 = U X, Z for all Z, then @ = v.
2- U X T is (-, -)ge-orthogonal to @ and to ¥.
3- If @ is parallel to ¥ then @ X, U = 0. 3’- If i X, U # 0 then 4 is not parallel to .
4- If 4 is not parallel to U then @ X, U # 0. 4- If i X, ¥ = 0 then u is parallel to .
5- If @ is not parallel to ¥ then the basis (4, 7,4 X, ¥) has the same orientation than (€;).
6- ||& X U||g is the area or the parallelogram (u, ¥) (in the unit chosen for (€;)).

0 0
Proof. 1- (1.4) give [U % €1]je = uz |, similarly [0 x. €1]je = [ wv3 |, thus uz = w3 and uy = vs.
—U2 —V2

Similarly with €5 wich gives u; = v;.

2- (U Xe V) oge U = detz(t, ¥, &) = 0 since detz is alternated, similarly (@ X, ¥) o ¥ = 0.

3- Trivial with . 3’- Contraposition.

4- If @ is not parallel to ¢ then let 2 € V s.it. (@, ,2) is a basis; Hence, detg(@,?,2) # 0, thus
(6 X T) o Z # 0, thus @ x. 7 # 0. 4'- Contraposition.

5- detz(i, T, T X ) = (T Xe T) oge (U X U) = ||& X, ¥]|* > 0 since @ }f 7.
6- If @ is parallel to @ then it is trivial (zero area). Otherwise @ x, @ # 0 thus 0 # detg(i, 7, Hﬁﬁ;jﬁ' )=
eVllge
— U Xe _ — — _ . - — ”Xe* . n
(U Xe T) oge m ||& X Ul = volume of the parallelepiped (#, 7, Hé&#hgﬁ) (height 1). un
Exercise 1.4 (&;) being a (-, -)e-orthonormal basis, define the basis (b;) by by = —@y, by = d@a, by = ds
(change of orientation). Prove:
Xp = —Xq (1.6)
(the definition of a vector product is basis dependent), i.e. ¥ X, W = —7 X, W, for all 7,7 € V.
Answer. gz Xy g 51 = 61 = —CLQ ><a a3 = —52 Xa 53, and gg Xp 51 = 52 = a2 = a3 Xa a1 = —53 Xa 51, and
b1 Xp b2 = b3 =d3 = d1 Xq G2 = —b1 Xa b2, And X, and X; are bilinear antisymmetric, hence an
Exercise 1.5 Check:
@ Xe (T Xe B) = (T o B)F — (@ o0 7)1 (1.7)

i
(D wiwi)v2 — (35, wivi)ws
(i1 wawi)vs — (32,2, uivi)ws
Exercise 1.6 Let ¥,w € V. Prove: 7 := ¥ X, W is a “contravariant vector”, i.e. satisfies the change of basis
formula [2] ; = P~'.[2]z where P is the transition matrix from a basis (d@;) to a basis (b;).

uz(viwe — vow1) — ug(vswi — viws)
Answer. [U X (T % W)]je = | us(vaws — vawa) — u1(viwe — vaws)
U1 (’Ugwl — Ulwg) — UQ(1121U3 — ’Ug’wz)

((23_1 Ujw; ) V1 — (Zzzl UiV ) W1 ) .

Answer. g(ﬁ, T Xe W) = [U]%.[g)a.[T xe W]z and g(i, T X W)y = [ﬁ}g[g]g[ﬁ X W]y with (change of basis formulas)
[t]; = P~'.[4]z and [g]; = P”.[g]a.P. So
oo T =Ty (T S T S
9(@, T xe W) = [ [g]5.[7 xe @y = (@7 .P™7)-(P".[g]a-P).[7 e @]z = [@)z .[g]a-P.[T xc @,
for all @, ¥, w, hence [ X. W]z = P.[U Xe W], i.e. [ xe W]y = P~1.[0 X W]5. n

2 Antisymmetric endomorphism and its representation vectors

2.1 Transpose of an endomorphism

V is a dimension n real vector space and £(V;V) is the set of endomorphisms V' — V.

Usual notation for a linear map: L(7) ="°%*d L& hence L.(7 4+ Mb) = L.¥ + AL.@ (distributivity
notation = linearity notation).

Let (-,-)g : VXV — R be a scalar dot product (required to define the transposed). (No basis required.)

Definition 2.1 The transposed of an endomorphism L € £(V; V) relative to (-,-), is the endomorphism
L € L(V;V) defined by, for all 7,4 € V,

(L 0, 0)g = (W, L.0),. (2.1)

Quantification. Choose a basis (&) in V: gives [0]L.[g]z (LT 0] )c = [L.0]L.[g)o[w]e, thus

015 [9)je-[Lg )je-[)je = [0]-[L]{-[9) e [10) e, for all ¥, € R, thus [LgT]\é: 9]z [L] - 9)je-

lert=lle
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5 2. Antisymmeltric endomorphism and its representation vectors

Proposition 2.2 If (-,-), and (-,-), are two Euclidean dot products (e.g. (-,-) built with a foot and
(+,+)p with a metre) then

L =1t noted yr (Euclidean setting) : (2.2)
The transposed of an endomorphism in ]1? Euclidean does not depend on the unit of measurement (foot,

metre, ...) used to build Euclidean dot products.

Proof. (-,-)a and (-,-), are both Euclidean thus 3\ > 0 s.t. (-,-)a = A2(:,-)p, thus (LI .15,7), =
(W, L.0), = N2(W, L.0), = N(L{ 48, 0), = (L 40, 7), for all 7,4 € R?, thus LT .« = LT .40 for all @. du

Quantification, Euclidean setting. (-,-)e-FEuclidean basis (€;), thus [g.]|z = I, thus with (2.2)),

ted
Lg note LT,

L")z =L} ie. (L7)ij=Lj Vi,j (Euclidean setting). (2.3)

e

2.2 Symmetric and antisymmetric endomorphisms
Let L € £L(V;V) and let (-,-)4 be a scalar dot product in V.
Definition 2.3
o Lis (,-)g-symmetric iff L] =L, ie. (L.0,0), = (,L.7)y, VU, 2.0
e Lis (-,-)g-antisymmetric iff L; =—-L, ie (LW, 0)y=—(w, L.v)g, VU, 0.

Proposition 2.4 The space of (-, -)e-symmetric endomorphisms is a vector space. The space of (-, -)g-
antisymmetric endomorphisms is a vector space.

Proof. (L+ M)} = LT+ AM] = (£L)+A(£M) = £(L+AM) with + iff L and M are (-, -)p-symmetric

and — iff L and M are antlsymmetrlc. Thus, vector sub-spaces of L(V; V). .
Euclidean setting: Euclidean basis (€;), associated Euclidean dot product (-, )e. With ( .
e L is BEuclidean-symmetric iff [L”] = [L]z, (2.5)
e L is Euclidean-antisymmetric iff [LT]‘(;/' = —[L]je

2.3 Antisymmetric endomorphism and its representation vectors
Euclidean framework: (€;) is a Euclidean basis and ( -)ge s the associated Euclidean dot product.
Let L € E(@?,@?) be (-,-)e-antisymmetric: (2.6) gives L;; = 0 and Lj; = —Lj; for all 4,5, thus

da,b,c € Rs.t. L.€; = céy —bes, L.€y = —céy —&—aé}, and L.€5 = bé] —aéy. Then define the vector J, € R
by &e 1= aé} + bés + c€3: We immediately have, for all v € V,

LU=03, %, 7. (2.7)
In other words,
—c b a —
[Ljge=| ¢ 0 -a and [Je]iz:= | b give LU=, %X U, YUeR’. (2.8)
-b a 0 c

Definition 2.5 The vector &, is the X.-representation vector of the antisymmetric endomorphism L
relative to the Euclidean basis (€&;).

Proposition 2.6 The representation vector &, (of L) is not intrinsic to L. In particular if (b;) is another
(-, -)e-Euclidean basis which orientation is opposed to the orientation of (€;) then

Wy = —We. (2.9)
Proof L.7 =, % Uad U=y Xp U give e Xe T = Ty Xp T, thus (Je Xe U) oge Z = (@p Xp U) o Z, thus
gives dete(we, = det; (&, U, 2) = —detg(&s, U, 2), for all v, 2, thus de = —s. un
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6 3. Antisymmetric matrixz and its pseudo-vector representation

2.4 Interpretation (7/2 rotation and dilation)

Consider lblb and let we 1= ||Je|le = Va? + b2 + 2.

a —b —ac
Proposition 2.7 Let [53]‘5 = w% b |, [l_)'lhg = ﬁ a |, by =0by x. by = \/ﬁi —be
c 0 a® + b?

Then (51, 52,53) is a direct orthonormal basis, and

0 -1 0 cos(3) —sin(3) 0O 0
Ly=we |1 0 0] =we|sin(f) cos(§) 0], [deJy=we|0]. (2.10)
0 0 0 0 0 0 1

So L.7 rotates a vector & = vyby +vaby € Vect{by, by} through an angle % radians in the plane Vect{br, bo}
and dilates by a factor we : L.l_fl = wegg and L.gg = —wegl; And it kills the third component : L.gg =0.

Proof. detg(gl, b, 53) > 0: easy calculation. And P = ([51]|5 [52]‘5 [53]‘€) (the transition matrix from

(€;) to (b)) gives [L]lg = P71[L]z.P (change of basis formula for endomorphisms). And here P! = P
(change of orthonormal basis): We get (2.10). n

3 Antisymmetric matrix and its pseudo-vector representation

3.1 The pseudo-vector product

Here we are in the matrix world. Only the canonical basis in Ms; is considered.

o Mz x Ms1 — Msy

X . o L O
([, [0]) — x ([a], [v]) = [a] x [7]

Definition 3.1 The pseudo-vector product is the map

defined by
o U2V3 — U3V2 U1 (%1
[@] x [U] = | ugvy — uqvs when [d] = | us and [0]=|[ v2 |, (3.1)
U1V — UQV1 us U3
O
and the column matrix [u@] X [7] is called the pseudo-vector product of [@] and [7].

—

o
In other words [@] x [¢] := Hlé e, mlé where (C;) is the canonical basis in Ms;.

3.2 Antisymmetric matrix and its pseudo-vector representation

Let M € Ms3 be an antisymmetric matrix, i.e. there exists a,b,c € R s.t.

0 —c b - a o O
M=|¢ 0 —a]. Thus [w]=1]0 gives M.[0] = [w] X [7] (3.2)
b a O c
for all [¢] € Ms1. The pseudo-vector (the column matrix) [8] € Mes; is called the pseudo-vector repre-

sentation (column matrix representation) of the matrix M.

3.3 Pseudo-vectors representation of an antisymmetric endomorphism

Euclidean framework: (€;) is a Euclidean basis and (-, ), is the associated Euclidean dot product.

Let L € E(]l?; ]I?) be (-, -)e-antisymmetric. Hence [{Je X 17]@ [L.V]|e = [L]je-[0]|e gives, with db
and M = [L]¢,

[@e % e = B % [7e where 8] = @] (3.3)

Definition 3.2 The matrix [8] := [We]je € M3y is the pseudo-vector representation of L relative to (€;).
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7 4. Screw (torsor)

4 Screw (torsor)

4.0 Reminder

Let 2 be an open set in R3.

. . L~ Q0 =0 xR3
e A vector field in R3 is a function @ : ~
A = T(A) = (A, @A)

being a “pointed vector at A”, or “a vector at A”. Drawing: #(A) has to be drawn at A, nowhere else. To

}, the couple @(A) = (A, i(A))

compare with a vector U € Rﬁ which can be drawn anywhere (also called a free vector).
The sum of two vector fields 4, @ and the multiplication by a real A are defined by, at any A € Q,

G(A) + B(A) = (A, i(A) +w5(A)), and Ai(A) = (4, Ai(A)) (4.1)

(usual rules for “vectors at A”). To lighten the notations, 5(A) =noted 7(A) (but don’t forget it is a
pointed vector).

The differential of a O vector field i : Q — Q x I@ at a point A is the “field of endomorphisms”
di - Q = Q x L(RY;R%) defined by dif(A) = (A, dii(A)) (an endomorphism at A) where dii(A) is the
differential of @ at A. So @(B) = @(A) + dil(A).AB + o(||AB||). And dii ="%d 4g.

Q) *)QXR?

A i(A) = (A, 1(A))
dil is uniform, i.e. s.t., for all A, B, dii(A) = di(B) =" di, so s.t., for all A, B € R,

?

e An affine vector field i : { } is a vector field s.t. @ : Q@ — R” is affine, i.e. s.t.

@(B) = (A) + di. AB. (4.2)

4.1 Definition (Euclidean framework)

Euclidean framework required: (€;) is a chosen Euclidean basis in I@ (+,-)ge is the associated Euclidean
dot product, %, is the associated vector product, and the transposed of an endomorphism L is L7 cf. .

Definition 4.1 A screw (a torsor) is the name given to an affine Euclidean antisymmetric vector field.

| o fosaxE o .
So a screw is a function § : s.t. d§ is uniform and, with &, the X.-
A = §(A) :( ,5(A))
representation vector of ds cf. , for all A, B € Q
O
5(B) = 5(A) + @ x. AB |, so [5’(3)]\5:[§<A>]\g+[8}x@hg, (4.3)
- a 0 —c b 50
with [0] = [Je]jg:= | b | when [d5]z= | ¢ 0 —a |. Abusively written 5(B) = 5(A) +w X AB.
c -b a 0

Definition 4.2 e The vector &, € Rﬁ is the “resultant vector” of the screw § relative to (€&;).
e The matrix (the pseudo-vector) [8] [Je]je is the “resultant” of the screw 5 relative to (€;).
e 5(A) is the moment of the screw §at A € Q2 (or moment of the torsor §at A).
o If =0 then §is a degenerate screw (a degenerate torsor).
e A constant screw § is non degenerate screw s.t. §5(A) = §(B) for all A, B € Q (i.e. s.t. &, = 0).

e The “reduction elements” at A are [8} = [We]|e and [5(A)]|¢ (column matrices) relative to (€;),

, 8(A4))-

L

&G

written as the couple of matrices ([8}, [5(A)]je) abusively written (

Exercise 4.3 Let S be the set of the screws 5: Q — Rﬁ Prove: S is a vector space.

Answer. If 51,5, € S and A € R then §1+A3> is affine antisymmetric: Indeed, at B, (51+A52)(B) = 51(B) +
A52(B) = (51(A) + dsi. x@) + A(52(A) + d3%. zﬁ) (814+A52)(A) + (d3i+Ad%) zﬁ with d3+Ad% antlsymmetrlc
since d3 and d% are; Thus §1+\5> € S (affine with Ly x5, = ds+Ad% linear antisymmetric). an
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8 4. Screw (torsor)

Exercise 4.4 Let 3 be a screw and @, its resultant vector. For all A € R and A, B € R3, prove:

S(A+ Xde) =5(A), and §(B) ee e = §(A) ¢g & ( = constant). (4.4)
(Hence the definition: sin, := S§(A) e @e is called the (scalar) invariant of the screw.) And prove:
3(B) eg AB = 3(A) o zﬁ, called the equi-projectivity property. (4.5)
Answer. Let B = A+ A&, s0 AB = \@., thus 5(B) =& 5(A) + @, x. (\3e) = 5(A) + 0, i.e. (£.4)1.
And & Xe 1@ orthogonal to both &, and zﬁ, thus l) gives (4.4))2 and ll un
=3 o7
Exercise 4.5 Fix a point A € R3. Define f4 : R* xR =& by §(B) := Z+ W X AB for all
(Z,0) — 5= fa(z,0)

B € R3. Prove that f4 is linear and bijective (is one-to-one and onto).

Answer. Linearity: fA((Z1,1171) + )\(22,162))(.3) = fA(51+AZQ7131+>\162)(B) = Z14+)M% + (U71+AU72) Xe ﬁ =
B+t X AB + NZo+is xe AB) = (fa(Z1, 1) + Ma (22, 52)) (B). ) )
One-to-one: fa(Z,w) =0 iff Z+ @ xc AB = 0 for all B, in particular B = A gives Z= 0 and then @ = 0.
Onto: Let 5§ € S, §(B) = §(A) + @ xe AB, and take Z = 5(A) and @ = @..
Exercise 4.6 Write x.=X, s =-¢, J.=@. Let 51,52 € S, §1(B) = 51(4) + & x AB and §3(B) = §2(A) + W2 %
AB. Define the screw (81, 82) by (51, 52)(A) = &1 « §2(A) + Tz « §1(A). Prove (51, 52) is constant.
Answer. @« 5(B) + @2 « 51 (B) = @1 « (52(A) + @2 x AB) + @ » (51(%+031 X AB) = @1 » 82(A) + @2 « 51 (A) +
B1 e (@2 x AB) + @z« (@1 x AB), with @ « (@2 x AB) + @2 « (&1 x AB) = deta(@1, @2, AB) + dete(@2, @1, AB)
hence = 0, thus @y gz(B) + o e §1(B) =(Jp » gg(A) + o e gl(A), for all A,B. iy

4.2 Central axis

Let §: Q — I@? be a screw, §(B) = §(A) + Je X, /ﬁ), cf. .

Definition 4.7 The central axis (or instantaneous screw axis) of a non constant screw (i, # 0) is
Ax(3) ={CeR®:50) || &} ={C €eR*:INER, 5(C) = A} (4.6)

called the set of central points. NB: Here 5 is affine thus  is implicitly extended to the whole R3, thus
a point C' € Ax(8) might be outside of .

Proposition 4.8 Let 5 be a non constant screw. Let O € R3. Define the point Cy € R3 by

1
OCq = Fe % 50), ie. Coi=0+

0= TET Be % 5(0). (4.7)

|0 |2
Then
1- Cp € Ax(5), and
Ax(8) = Cy + Vect{d.} (affine straight line). (4.8)

2- § is constant along Ax(S): For all C € Ax(3), s(C) = 3(Cy).

3- C € Ax(8) iff C = argminacgs ||5(A)||e (i.e. iff ||S(C)||c = mingegs ||5(A)]|c).
3= ||3(B)|]e > ||5(O)]le for all C € Ax(5) and all B ¢ Ax(3).

4- For all B € Q and C € Ax(S),

§(B) = 5(C) + @ % CB € Vect{@,} &+ Vect{@,}* (orthogonal sum), (4.9)

sum of the translation 5(C) along the axis and of the rotation-dilation J. X, CB in Vect{d.}+.

Proof. 1- 5(Cy) = 5(0) + De X OCy = 5(0) + Je % (W(Ee X §5(0)) = 5(0) + Hcﬁi\lz (De oge 5(0))De —
mHJJ’eHzé’(O) = m(&ie e 5(0))d, is parallel to &, thus Cp € Ax(S).

Then 5(Co + AG.) = §(Cp) + 0 for all A (because &e X, & = 0), thus Ax(5) D Cj + Vect{w, }.

It B ¢ Co+Vect{@, }, then CoBB }f @e, i.e. Ge e CoB # 0, thus §(B) = §(Co)+@Fe % CoB € Vect{@. } &+
Vect{@, }* with 0 # & x. CoB, thus 5(B) J @, hence B ¢ Ax(5). Thus Ax(5) = Cp + Vect{@, }.

2- 5(Co + \&.) = 5(Cp) + @e e (A&e) = 5(Cp) + 0, thus 5(C) = 5(Cy) for all C € Cy + Vect{d, }.

3-If B ¢ Co+ Vect{@.} then ||5(B)|? = [|5(Co) + Fe Xe @HE > ||5(Co)||? (Pythagoras since
5(Cy) || &e is orthogonal to de %, CyB).

4 5B) =E3 5(Cy) + @ . CoB with §(Co) || Ge and @, xe CoB L @..
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9 5. Twist = kinematic torsor = distributor

Exercise 4.9 How was the point Cp in (4.7)) found?

Answer. If 5(0) || &e then take Co = O. Else a drawing encourages to look for a Co = O + a@. x. §(O)
for some a € R because OCj is then orthogonal to Vect{@.}. Which gives 5(Co) = 5(O) + & % OCy =

F(O) + Fe xe (e xe 5(0)) = 5(0) + (Pe o 5(0))Ge — a||@e||?5(0). Hence we choose o = I\wiHQ: We get
3(Co) = W(J}e o 5(0))de parallel to dJe, thus Cy is in Ax(5): We have obtained |) oh

Exercise 4.10 Let 57 and 5> be two non constant screws s.t. @1 + @2 # 0. Find the axis of §:= 5, +55.

Answer. 51(B) = 51(0) + Gu1 xc OB and 52(B) = 52(0) + Gz x. OB give (5148)(B) = (5.(0) + 5(0)) +

(G14G2) xe OB. Thus Ax(51452) = C + Vect{@1+@} where C : E20 4 (67 557 @ @2) % 5(0).
1+W2
Exercise 4.11 Let 5§ be a screw and @, its resultant vector. Definition:
. . WDe De . . .
Sinv 1= (S(B) g Al )||u_} I is called the vector invariant of the screw, (4.10)
Le. Finy = B :j'; )% where we = ||e||. Prove: §(B) is independent of B and
if C' € Ax(5) then 5(C) = §iny, thus 3(B) = §iny + @e % OB, VB € R®. (4.11)

Answer. 5(B) sx @e = Sinw, scalar invariant of the screw cf (4.4]) independent of B). And 5(B) = 5(C)+d. x.CB
with §(C) || @e and @e xe CB L e, thus Siny = (5(C) o 125 ) 5 = 5(C).

5 Twist = kinematic torsor = distributor

5.1 Definition

Let (€;) be a Euclidean basis and x, ="°ted x_

Definition 5.1 A twistﬂ (or kinematic screw or distributor) is the name of the screw which is “the
Eulerian velocity field of a rigid body”.

- [to, T] x Obj — R3
So, let Obj be a rigid body, Foy, its particles, ® : ~ its motion
- (t, Fory) — p(t) = (¢, For,)

(where tg,T € R and to < T), and Q, := ®(¢, Obj) C R? its position in R? at ¢.

Its Eulerian velocity field ¥ is defined by ¥(¢, p(t)) := %—‘f(t, Poy;) when p(t) = d(t, Poy;).

Fix t and let @(t, p(t)) ="°%d F(p).

The body being rigid, ¢ is affine and antisymmetric (is a screw called a twist): so, cf. (4.3) with
& := &, for all p,q € Qy,

—

(q) = T(p) + & x P (5.1)
Definition 5.2 & is the vector angular velocity, and w := ||J|| is the angular velocity.
Thus if ¢ € Ax(7) (so ¥(c) is the velocity along Ax(¥)) then (orthogonal decomposition of ¥(q))
Vg e Qy, ¥(q) =1(c)+ & x g € Vect{@} &t Vect{@}*. (5.2)
5.2 Pitch
Definition 5.3 For a non constant twist (w # 0), the pitch is, for ¢ € Ax(7),

|[F(e)]] noted o _ linear speed

p:i=27 (5.3)

w angular speed’
In other words, ¥(c) || & gives ¥(c) = hd and p = 27h.
It is the “thread pitch” or a nut (or of a screw), i.e. the distance from the crest of one thread to the
next, or from one groove to the next. (The pitch vanishes for a pure rotation defined by ¥(c) = 0.)

IDefinition of a twist by R.S. Ball [I]: “A body is said to receive a twist about a screw when it is rotated about the
screw, while it is at the same time translated parallel to the screw, through a distance equal to the product of the pitch
and the circular measure of the angle of rotation; hence, the canonical form to which the displacement of a rigid body can
be reduced is a twist about a screw.”
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Exercise 5.4 Recall the definition of the angular speed (w here), and explain the pitch.

R cos(wot)
Answer. 1- Plane motion immersed in R®: #(t) = [ Rsin(wot) | where w € R* (with prop. [2.7); Eulerian
0
—sin wot .,
velocity 9(t,7(t)) = 7'(t) = Rwo | cos wot = Ruwot(t) where u(t) = H;’EE;H (unit tangent vector). Defini-
tions: wp is the angular speed and &y = the angular velocity, so 9(¢, 7(t)) = &o x 7(t); It gives ([5.2) when
¥(c) = 0 and & = 7(t)
z(t) = R cos(wot) 0 R cos(wot)
2- The pitch is given by the helix #(t) = | y(t) = Rsin(wot) | = | 0 |+ Rsm(wot) , sum of a translation
z(t) = at at
along the vertical axis and of a plane rotation in the horizontal plane. Its projection on the horizontal plane (cf. 1-)
is periodic with period i—g (because wo(t + i—’;) = wot + 27), and the pitch is p = 2(¢t + Z—g) —z(t) = a— = the
0
distance “between two grooves of a screw”. This corresponds in (5.2)) to ¥(c) = | 0 |, so ||¥(c)|| = a = linear
a
. o a _ o lIF@I _ linear speed .
speed (speed along the axis), so p = 27 oo =2mit =2m angular speed” un

Exercise 5.5 1' gives the “equiprojectivity property™ @(p).pg = = (g ).Pg. Prove it starting from ||p()q(¢)||. =
constant (rigid body) for all particles Poy, Qoy € Obj where p(t) = ®(t, Poy) and q(t) = ®(t, Qoy ).
(t,

Answer. Choose a O € R%. let p(t) = ®(t, Poy) and q(t) = ®(t, Qo). Thus dtp(t)q( j L0q(t) — LOp(t) =
(t,q(t)) — @(t,p(t)). And ||p() @l = ( (t 5 )Q(ﬂ)g = constant, thus 7 (p(t 5717 ®)g(t)g = 0 =
2(%p(t)q(t3,p(t)q(t;)g, thus 0 = (9(¢, q(t)) — )),p(t)q(t))y (equiprojectivity property). oa

5.3 Pure rotation

—

Definition 5.6 A pure rotation is a non constant twist ¥ s.t. Jcg € R?, @(c) = 0.
Hence such a cg is € Ax(¥), cf prop. 3, so, for all ¢ € R3,
q) = Be Xe @¢ with &, # 0. (5.4)
(So here #(q) L @, for all ¢ € R® and Ax(%) = ¢ + Vect{d.}).

Exercise 5.7 Prove: A twist ¥ is the sum of a pure rotation and a translation.

Op and call U; the

Answer. With ¢(p) = 9(0) + Je Xe O_};: Call ¥, the pure rotation defined by ¥ (p)
translation defined by v:(p) = ¥(O). We have (v; + v,-)(p) = ¥(p), for all p, hence v =

@1

Up +
Exercise 5.8 Fix (&;), write xc = x and &e = &, let 91 (q) = &1 x &1¢ and v2(q) = &2 X C2¢-

1- Suppose Ax(71) || Ax(2), axes disjoint, and & +@ # 0. Find Ax(#)+7,) and prove that ©)+: is a pure
rotation.

1- Suppose Ax(71) || Ax(#2), axes disjoint, and & +@z = 0. Prove that @14 is a translation.

2- Suppose Ax(?1) }f Ax(¥2) and the axes intersect at only one point O. Find Ax(¥1+72), and prove that 7+
is a pure rotation.

3- Suppose Ax(71) }f Ax(v2) and the axes don’t intersect. Find Ax(014%2), and prove that ¢145 is not a pure
rotation. Give a “simple” particular ¢y € Ax(U1+12).

Answer. The notations tells: ¢1 € Ax(¥1), c2 € Ax(172) (h+72)(q) = &1 X C1q + o x G2¢ for all q.

1- Here 0o = A& with \ ;é —1 thus (171+172)( = W1 >< ﬁ+A(ﬁ )\—f—l UJ1 X )\+1Cj+ )\+1ﬁ Hence
choose ¢y € R? s.t. A+1m + )‘Hch = 0 (barycentric point on the straight line containing ¢; and c): We get
#(co) = 0 and Ax(#1+72) = co + Vect{@1+@s}. Remark (on barycentric points): We have &7¢6 = x5 cics, thus
co in between c; and ¢ iff 0 < %H < 1,1i.e. iff A > 0, i.e. iff &1 and &2 have the same orientation.

- (01+02)(q) = (01+02)(p) + (G1+d2) X PG = (U1412)(p) + 0 for all p, q, so U1+ is constant; Suppose
Jg € R® s.t. (1 +12)(q) = 0: Hence & x (ﬁ}—&—( w1 ) X G0 = 0 thus @1 X ¢1¢5 = 0 thus &1 || €1¢3, absurd because
the axes are parallel and disjoint. Thus @+ # 0.

2- Take cy=c2=0, thus (t1+02)(q) = (J1+T2) X (7}, thus (7 +02)(0) = 0 and Ax(#h+02) = O + Vect{@1+@a}.
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11 6. Wrench = static torsor

3- Here & := @i +@2 # 0 and (4.7) tells that co defined by @163 = Fpd X (Ti+2)(c1) = [Fp@ X Ga(c1) =
A @ X (@2 x ced), de

cies = TGIE ||2 (( e CoCt )Do — (& ege J2)E2C ) (5.5)

is in AX(’(71—|—172), SO AX(171—|—172) =co + Vect{wl—l—wg}.
In particular, choose ¢; and cs s.t. ¢1¢s 1 @y and L W2, i.e. the segment [c1, c2] is the shortest segment joining
Ax(%1) and Ax(@>). Thus c1es € Vect{(?n,(ﬁz}l and 163 L @1+&2. Thus

cich = f%czc , and &cb = et + et = (1 — w||°ge||02J2) 5C1. (5.6)
In particular co is in the straight line containing ci,c2. Thus ¥i(co) = &1 X €ic6 = _wu.wﬁwl X CQCi and
172(00) = Wy X m = (1 — QH.SEHS )w2 X Czﬁ Thus (U1+U2)(Co) = ( Tﬂ?wl + (1 — JHQH‘QE )W2) X Cz—cf And &1
and o are independent thus & and & are independent, thus & eg W2 # 0 and (— D‘ |'§H‘§2 @1+ (1— H H2 2)dy) # 0,
together with (— H H‘;z 51+(17%) 2) L @ct # 0; Thus (1+02)(co) # 0, thus 7+ isn’t a pure rotation. s

6 Wrench = static torsor

6.1 Definition

Let (&) be a Euclidean basis and x, ="°ted

X.

Definition 6.1 Let Py € R? (e.g. the position of a bolt). Let Pre R3 and let f(IDf) be a vector at Py
interpreted as a force at P The moment Mﬂ(Po) called the torque at Py applied by the force f (Pf) is
- - N
NIdPy) = F(P) x PR, (€ Vect{f(Py), BTL}). (6.1)
The “moment arm” at Fp is the distance between the straight line Pﬂ—i— Vect{ f ( )} and Py, i.e. the
distance between Fy and its orthogonal projection on Pr+ Vect{f (Pf)}

Definition 6.2 If Q is a set in R? then the wrench due to f(P];) is the screw ]\Z/f: Q— Iﬁ? defined by:
For all P € Q, B . .
MHP) = f(F;) x PP (= PP-x f(Py)). (6.2)

—

(Pf) is the resultant vector of the wrench, and Mf(P) is the moment at P. (So Mf(Pf) = 0 and
Ax(Mg) = Py + Vect{ f(Pp)}).

Remark 6.3 So: A torque MJ;(PO) is used to screw a nut which is at Py. A wrench ]\fo gives the torque
Z\_J'f(P) on any point P in R? due to f(Pf) at Pr. .

6.2 Couple of forces and resulting wrench

Consider two vectors (forces) ﬁ(Pfl) and fé(PfQ) at two distinct points Py, and P,.

Let Py = P, + Pfl—Pf: (the midpoint, e.g. Py is the position of a nut holdlng a car wheel and P, and
Py, are the ends of a lug wrench used to unscrew the nut, drawing)). So sz Py = —Pf1 Py. And suppose
that fs (P,) = —fi (P,) and fl(‘Pfl) 1 PflPo (drawing). We get: The sum of the torques at Py is

o o - o o —_ o -
M(PO) = Mfl(PO) +Mf2<P0) = fl(Pfl) X ‘Pfl‘PO +f2(B¢2) X PO‘Pf2 = 2f1(‘Pfl) X ‘Pfl‘PO (63)

(expected result).
More generally, let 2 be the segment [P, Ff,] and P € [P, Fp,] (so P = P, + APy, Pr,). We get the
wrenches Mﬁ and ]\Zf;“ defined in [P}, P;,] and their sum:

— — — — — —_— - —_ -
N(P) := (M, +M)(P) = fi(Py,) x Po P+ fo(Py,) x PP, = fi(Pr,) x Py, = constant (6.4)

(independent of P); In fact, the “moment arms” d(P, F;,) and d(P,P,) (“one short and one long”)
give (6.4). This wrench M is a constant screw along [Py, , Py,].
More generally 2 is extended to R3: we also get 1} The wrench M is a constant screw in R3,
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