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Virtual Power Principle: A Lie Covariant Approach. Applications to
Non-Linear Elasticity, Turbulence, Visco-elasticity

Gilles Leborgne
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Abstract A covariant formulation of the virtual power principle based on Lie derivatives is proposed. The
Lie covariant approach does not require an inner product and the Cauchy deformation tensor to start, but, at
first order in a Galilean Euclidean setting, gives the usual linear results classically obtained with the Cauchy
deformation tensor. The Lie approach may also enable to differentiate a fluid from a solid from an analytical
point of view, and leads to propose a model for hysteresis. In the non-linear first order case we get covariant
models for visco-elasticity, non linear fluids and non linear elasticity which differ from usual models. In the second
order case, enriched modelizations are obtained.

Keywords Virtual power principle - Lie derivative - Visco-elasticity - Non Newtonian fluids - Non linear
elasticity.
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2 Gilles Leborgne

1 Introduction

The starting point is the classical virtual power principle as stated by Germain [4]. This principle is based on
the “frame invariance principle”, cf. Truesdell and Noll [9] p. 43, which is given under the “isometric objectivity”
hypothesis: “Change of frame are related by rigid transformations combined with a time-shift” (p. 41), and “the
units of length and time are kept fixed” (p. 42).

However Marsden and Hughes [6] p. 22 indicate that the considered objectivity should be covariant: “The use
of geometry in attempting to isolate the basic principles that are covariant—that is, that make intrinsic tensorial
sense independent of a preferred coordinate system—automatically clears up several basic issues. For example,
balance of linear momentum does note make tensorial sense as it stands. However, one can make covariant sense
out of balance energy principles with no reference to rigid body motions. That is, the Noll and Green-Rivlin—-
Naghdi program can be done covariantly, although this is not obvious given the existing literature.”

But unlike Marsden and Hughes who use a metric, and the Cauchy deformation tensor C seen as the pull-back
of the metric, in this manuscript there is no use of any metric a priori: It is the objective covariant derivative
of Lie that is used to start. (For the Lie derivative and its interpretation which motivates this manuscript, see
appendix § And for a comparison with the Cauchy deformation tensor, see appendix § @

The presentation is here limited to the affine space R™ to simplify the writings. After recalling the notations
and the classical setting in § [2] and [3] the Lie derivative approach is introduced in § @ The first order, linear,
is given in § and with a Galilean Euclidean setting the classical formulation is recovered. Applications to
Newtonian fluids and elastic solids is proposed in §[6]and §[7] And for solids the Lie approach immediately gives
a linear model for the elastic stress tensor: To be compared with the classical approach where the linear model
is obtained by linearization of the (quadratic type) Cauchy deformation tensor C' = FT.F, see appendix §
Moreover the Lie approach may give a way to differentiate fluids from solids, and thus, in the first order case give
a hysteresis model, see § [B] And the Lie approach may also provide a simple characterization of hyper-elasticity,
see § 0] Then the non-linear first order Lie virtual power principle is introduced in § [I0] It produces models for
non linear first order fluids (possibly turbulence), see § non-linear first order elasticity, see § and Maxwell
type visco-elastic model, see § Then the second order Lie virtual power principle is introduced in § to get
enriched models for non linear fluids, non linear elasticity, as well as second order models with some elasticity
and some viscosity. And a quite long appendix is provided since, to the knowledge of the author, there is no
obvious (short) reference in the existing literature concerning covariant objectivity and Lie derivative for classical
mechanics.

2 Notation

We use := to mean “defined by”. Time and space are decoupled (classical mechanic). The geometric affine
space is R, n = 1, 2 or 3. The associated vector space is also written R" (context removes ambiguities), and
is equipped with its usual topology. And R™* = L£(R";R) is its dual space (the space of linear forms on R™).
A basis (e;);=1,... n is simply denoted (e;). An observer defines a referential R = (O, (e;)) (an origin and a basis,
an origin of time and a timescale being implicit). Let ¢ < t2. The observer locates the particles of an object Obj
with the mapping, called the motion of Obj in R,

[t1,t2] X Oy — R"

n
~ ) 1
(t,PObj) — pr = @(t, PObj) =0+ E .Z‘Zei, ( )
i=1

where p; is to position of Poy; at t in R. For ¢ fixed, let 5,5(P0bj) = 5(1&, Poy;). The configuration of Obj at t is
2 := &(Obj). And let C := Ute[tl tg}({t} X 2t), a subset in the standard Newtonian spacetime.
At t, the geometric space R™ is written Ry (on a differential manifold the tangent bundle T'(2; is considered).
Assuming & is C' in time, the Eulerian velocity field v : (t,p:) € C — ((t,pt), v(t,pt)) € C x R™ is defined by
B(t-+h, Poy) — D(t, Por) 0P

«— 3 il . n
v(t,pe) = lim h = 5 (t. Poy) € R (2)

If no confusion arises then v(¢,p;) is abbreviated as v(¢,p;) (and v(¢,p;) is drawn at (¢,p;)). Assuming @ is C?

in time, the Eulerian acceleration field is defined with p; = &(t, Poy) by v(t,pt) = %ZTf(t, Poy;).

For an C! Eulerian function £ (defined on C), the space differential d€(t,pt) of € at (t,pt) € {t} x 2 is the
differential d&:(p:) of & at pt. (In differential geometry the tangent map TE&; of & is used, where TE:(p:) :=
(pt, dE¢(pt)), that is TE; is the “full notation” of d€;.) And its material derivative %f is its derivative along a
trajectory, that is, is the time derivative of the function ¢t — E(t,i(t, Poyj)) at pr = 5(t7 Poy;); So, %(t,pt) =
%(t,pt) +dE(t,pt).v(t,pt). Eg., v = %
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Let to G]thtg[ be an initial time of computation as set by an observer. The notations of Marsden and
Hughes [6] are used: Capital letters in 2;, and tiny letters in ;. And with ¢ € [t1,t2], let ®L° : 2, — 2 be
defined by @ := &, o (¥4,) "', that is

if pi, = P =®(to, Poy)) then py =&} (P):=d(t, Poyy). (3)
And the motion relative to the configuration 2, is ® : [t1,ta] x ¢, — R™ defined by
(pr =) P(t, P) := &,°(P). (4)

So, Plo (t, P) = 5(75, PObj) = pt when P = 5(t0, PObg)

The Lagrangian velocity V' : [t1,ta] x 2, — R} relative to to is defined by V' (t, P) := 6?;0 (t,P). Let
Vio (P) := V'(t, P). (The mapping Vio : 2+, — R} does not define a “vector field” but a two points (P and p;)
mapping, see Marsden and Hughes [6] (the vector Vio(t, P) is drawn at (t,p¢) since VI (¢, P) = v(t,p¢) is the
tangent vector at p; along the trajectory t — &(t, Poy;) = @ (t, P)).

915?’ will be assumed to be a C? diffeomorphism, and its differential Ftt‘) = d@ﬁ" D 2y — L(RE;RY) is named
the (covariant) deformation gradient between to and ¢. (FttO does not define a tensor but a two points (P and p¢)
mapping, see [6].) Let F' be defined by F'(t, P) := F{°(P).

Let L(E; F) be the set of continuous linear mappings between two vector spaces E and F, and let (-,)g
(resp. (,-)g) be an inner product in Rf (resp. in R}'). The transpose (Flo(P)T € L(RY; &), relative to (-, )¢
and (-,-)g is characterized by ((F/°(P))".wp,, Wp)g = (wp,, F}°(P).Wp)g4 for all Wp € R and wp, € R},
see [6]. And the deformation tensor relative to to, t, (,-)g and (-,-)g is C}° := (F{*)T o Ff* : 24, — L(R};R]),
written C' = FT.F.

Remark 2.1 To be able to impose “the same Euclidean basis at two distinct times tg and ¢” (and on two different
tangent spaces) Marsden and Hughes [6] p. 57 use the shifter: In R” it is the mapping S : (P, Wp) € (2, xR —
SP(P,Wp) = (p1,wp,) € 2 x R} where p; = $1°(P) and wp, := Wp (parallel displacement in R"). In
particular, using “the same Euclidean basis at ¢o and ¢’ means using a Euclidean basis (E;) in RY, and the basis
(e;) in R} given by (pt,e;) = Si°(P,E;), so e; = E;.

Representation. Let R}'" = L(R'; R) be the space of linear functions on Ry If (e;) is a basis in Ry, its dual
basis (e') is the basis of RY'" made of the linear functions e’ characterized by e’(e;) = &; (Kronecker symbol).

The e’ being linear, ei(v) is written e’.v for any v € R?. A basis in RY will be supposed Cartesian to simplify.
At to a basis in R} will be denoted (E;) and its dual basis (E). At t in a referential R = (o4, (e;)), a point
Tt .
pt = PL°(P) is located as the bipoint vector ogp; = 0¢®;°(P) = .1 ®;(P)e; in R}, and the deformation
gradient is denoted
n
o (P) = F{*(P) = Y Fj(t,P)e;® B/, [Flge = [F]]. (5)
i, J=1

So, Fi(t, P) = d®'(t, P).E, and with Cartesian bases F'(t, P) = %(t,]v). And [F}(t,P)] = [F{*(P)|g.e =

ddto (P is the Jacobian matrix of I at P relatively to the bases (E;) and (e;). Since ol s supposed
t |E.e t t

to be a diffeomorphism we have d®!* (P)~! = (d®!°)~!(p;) when p; = &L°(P), and we will denote H[(p;) :=

(d®t°) ! (p;). And with the above bases:

n

I j I
H(p) =H"(t,pr) = ) Hj(t,p)Er@e, [Hlor = [Hj]. (6)
Ij=1
3 Classical virtual power principle
We use Germain’s setting, see [4], with no volumic double forces to simplify. Let (-,-)g be a Euclidean inner
product in R}. Let V be a vector space of “admissible velocity fields” (sufficiently regular vector fields for the

mathematical expressions to be meaningful). The virtual power principle connects, at all times ¢, three linear
functionals ¥V — R: The virtual power of external forces

P = [ (tvgdo+ [ @v)do ™
2 082,
where f and g are given vector fields, the virtual power of mass-acceleration

Pa(v) ::/Q Py, V)g dR2 (8)
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where p is the mass density and v = %—‘2’ is the eulerian acceleration undergone by a material with velocity w,
and the virtual power of internal forces

Piv) = [ p(v) 02 ©)
2
where pin¢ is a linear form of v and its differentials. And the principle is: For any v € V,

Pi(v) + Pe(v) = Pa(v). (10)

4 Virtual power principle with Lie derivatives

The virtual power of external forces and of mass-acceleration are used; And the “virtual power of pressure”
Ppres (V) = / p divv df2; (11)
2

is introduced, where p is a differentiable function, and divv is the divergence of the velocity field v. (The virtual
power of pressure will enable a simple formulation for the virtual power of internal forces as is classically done
for Maxwell visco-elastic material, see § Also see §)

And the virtual power of internal forces @ will be used with pin¢ (non linear in general) given with Lie
derivatives as described in § and following: This is the main purpose of this manuscript.

Then the principle of virtual power reads: for any admissible vector field v,

Pi(v) + Ppres(v) + Pe(v) = Pa(v). (12)

5 Lie virtual power of internal forces: Linear first order

(The Lie derivatives in classical mechanics are described in §[C])

5.1 First Order Formulation

First-order conjecture: 1- A material, occupying at ¢ a domain £2; in R™, can be characterized by 3n vector fields
agoj,ao1;,a10; and/or 3n one-forms of, al,, . 2- At ¢, in a referential R = (O, (e;)) and with (¢') the dual
basis of (e;), the measured density of power of internal forces depends on an admissible virtual velocity field v
acting on the material, and reads

n
pintl(v) = Zej.aooj + £veJ.a01j + 6J.£va10j + aéo.ej + a%l.ﬁvej + Evajlo.ej, (13)
Jj=1

where Lyva = % + da.v — dv.a is the Lie derivative of a vector field a, see , and Lva = %—‘i‘ +da.v+ a.dvis
the Lie derivative of a one-form o, see . (For special materials the number of vector fields and/or one-forms
can be chosen to be greater than n the dimension of R".)

5.2 Galilean setting

In a Galilean referential and with a Cartesian basis (e;), we have Lye; = —dv.e; and Lve! = ¢/.dv, and
reduces t0 pint1 (V) = Z;":le].aooj +el.dv.ag; +eJ.(6%;°-7 +dayg;.v—dv.ajgj)+al,.e; —al; .dv.e; + (8321

da%l .v—l—a%l.dv).ej. And the virtual power of the internal forces is assumed to vanish whenever dv = 0 (Galilean

referential). Thus we are left with pint;(v) = Z?zlej.dv.amj — ej.dv.aloj - a%l.dv.ej + a%l.dv.ej, that is,

n
Pint1 (V) = -z, 0 dv, I, = Zau ®e + e; ® o, (14)

{ alj = apglj — a10j,
Jj=1

J_ . J J
a1 = Qg — Qo1

where () is the double objective contraction between the (%) tensors 7, and dv, see 1}
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5.3 Galilean Euclidean setting

In the previous Galilean setting, the basis (e;) is chosen to be Euclidean. Let (-,-)g be the associated inner
product. Then the transposed dv’ of dv is defined (by (dvl.u,w), = (dv.w,u), for any u,w € R?). The

T
internal power being independent of a rigid motion, i.e independent of dv_zdv , {D gives

T
dv +dv’ dv +dvT T, +t1
pintl(v):—gl @f:—g@#:—g@dv, g = %7 (15)

which is a classical expression.

6 Stokes Fluid

The “pressure forces” being taken into account in the virtual power of pressure, see (11), we look at the virtual
internal power of “viscous forces”. Consider a fluid animated with a movement ®, see 1) let p(7) = D(7, Poy;),
and let w(r,p(7)) = g—f(r, Poy;) be its Eulerian velocity, see . Then, with ¢ €]t1, ¢2[ and 7 in the vicinity of ¢,
consider the associated movement &%, see , and its deformation gradient F! = dél between ¢ and 7. Since
el — Ht have 9F° —d Ft
oT (T7 pt) - W(t7 (Ta pt)) we have =H- (7—7pt) - W(t>p(7—)) (T7 pt)'

Eventuality 1. Vector fields a;; characterize the fluid, and the virtual power of internal forces results from
their transport by the flow. Then gives (Galilean setting)

n n
Pint1 (V) = Ze].ﬁvalj =-z,0dv, 7, = _Zalj ®e. (16)
j=1 j=1
Then consider that a Newtonian fluid (which is isotropic) is characterized by the n vector fields given by
ayj(r,pr) = —2u %—T(T,pt).ej when 7 = ¢ (no memory), that is,
ay;(t,pt) = —2pdw(t, pi).e;. (17)
(The matrix [ ]|e = 24 [dw]|e is mTade of the columns —[ay;]je = 2 [37“;]‘,3) Thus, in a Galilean Euclidean
d d
setting, we get [g]|c = ZMM, see , which is the classical model.

E.g. if a;; = ajqj, that is, if pigc1(V) = Z?Zlejﬁvawj, see and , then the power is measured by
the observer with the projections e’. (And if a;; = agy;, that is if ping; (v) = Z?Zlamj.ﬁvej, then the power
is measured with the ¢/ immersed in the flow: will be used with the non linear approach.)

Eventuality 2. One-forms characterize the fluid, and their transport by a flow v give the internal power.
In particular in a Galilean Euclidean setting with a Euclidean basis (e;) in R}, gives pint (V) = —1, 0 dv

where 7. = *Z?Zlei ® ali. Here o/l = —2u e dw = 72udwi, and [zl]‘e is the matrix made of the lines

. 1 .
7[a110]|e = QH[dehe'

7 Linear elasticity

Consider an elastic solid animated with a movement 5, see , let to €]t1,t2], let @' be the associated movement,
see and , and let Ftt‘) = d@f“ be the covariant deformation gradient between ¢ and ¢.

Eventuality 1. One-forms characterize the elastic material (Germain’s point of view see [3]), and their
transport by the flow gives the internal power. Then gives (Galilean setting)

n n
Pint1(V) = Zﬁvazl.ei =-1,0dv, 7, = —Zei ® af. (18)
=1 i=1

Then consider that an isotropic elastic solid is characterized by n one-forms aﬁ on {2 that are push-forwards of
one-forms ajy, on 2, see , that is, with p; = #L°(P) and H}*(p) = (F[°(P))" ",

ai(t,pi) = ale, (P).H (pr). (19)
Then 7, (tpe) = 3" (e; ® aly, (P)).H™(t,p); And with (E;) a Cartesian basis in R}, choose af;, =
E" (isotropic material), so that, with (@), () = =20 (e ® EY.H"(t,p;) = — k=1 Hf(t,pt)(ei ®

EY(Ep®e) = — o H(t,pr)e; ® €, that is,
n

;1(t7pt) = — Z H}(t,pt)ei ® ej, and [;1]\9 = —Qﬂ[HtO]‘e’E. (20)
ij—1
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: : : : : : . S H"]je e +H"][¢ 5
So, in a Galilean Euclidean setting, with (E;) a Euclidean basis, we get [g]‘e = —2p————5—==, see (15),
classical expression for small displacements, except fo_r the trace part, see §[I]

E.g. if o] = o], that is if ping, (v) = Z;-Lzlﬁvoejlo.ej, then the power is measured by the observer with the
Euclidean projections along the e;. (And if o] = agy, that is if pine1 (v) = D27 ag,.Lve;, then the power is
measured with the e; immersed in the flow; It will be used for visco-elasticity, see )

Eventuality 2. Vector fields characterize the solid, and their transports give the internal power. In particular
in a Galilean Euclidean setting with a Euclidean basis (e;) in R}, gives

n
Pint1(V) = -7, 0dv, 1, = —Zalj ®e. (21)
j=1

Then suppose that the a;; are the push-forwards of vector fields aji,(P) see , that is, with p; = @io (P),
ay;(t,pt) = F/°(P).a;i,(P). Then T, (tpe) = —F'o(t, P).>"% a1, (P)®¢’. With a Euclidean base (E;) in Rf;,

then for isotropic homogeneous elasticity we may choose a;;, = —21E;, then, see :
n
t j ~ ot
7, (tp) = F°(,P).Y Ej@¢, and [r]je = 2i[F*]pe. (22)
J=1

T
o] = 2,&%, classical expres-

Thus, in a Galilean Euclidean setting, with (E;) a Euclidean basis, we get
sion for small displacements, except for the trace part, see §[I]

8 Fluids vs solids, and hysteresis

For a Stokes fluid, a modelization with vector fields can be considered, see . And for an elastic solid, a
modelization with one-forms can be considered, see (18). Thus fluids would be differentiated from solids in a
non-algebraic way. And “mixed linear materials” could be considered with

n n
Pint1(V) = clzej.ﬁvaloj + CQZﬁvaﬁo.ei =-az 0 dv — co 0 dv, (23)
j=1 i=1
the last equality in a Cartesian setting where T, = —Z?Zlaloj ®e’ characterizes the fluid part, B = —Z?Zlei ®

06?10 characterizes the solid part, and c;, ca € R. This could model simple visco-elasticity or hysteresis.

9 About hyper-elasticity

Hyper-elasticity aims to find a “stored energy function” see Marsden and Hughes [6] (“énergie volumique des
déformations élastiques” see Germain [5]). The classical starting point is a Euclidean setting and the Piola—
Kirchhoff tensor K = Jg.FfT, simplified notation of FK!*(P) = Jf“(P)g(t,pt).(Ftto(P))fT, where pr =
®l°(P), J = det(F), F~ " is the inverse of the transpose, ¢ is the Cauchy stress tensor at (¢,p¢) built from the
Cauchy stress vector at (¢,p¢) and the unit orthonormal vector n(t,pt) to 082 (depends on the metric). Thus
FK measures the force “per unit of undistorted area” (by change of variables in the integrals). And the material

is said to be hyper-elastic if FK'(t, P) = " (t, F'(t, P)) and if there exists a function W' s.t., with ,
[ﬁ\(to] = [8(,;/1\)720] This derivation in terms of the components of the two-point tensor F' is quite intriguing
(see [6]). !

With the Lie derivative approach, and the introduction of the virtual power of pressure, see (11)), the "hyper-
elastic potential" for isotropic homogeneous elasticity can be considered to be simply th" = 2/145?’: Then
AW/ = 2jiF}°, and then [z,(t,pe)]je = [dWto(t, P)lge = 2/[Fto (t, P)]|g,e» SeC . But the preference may
go to

Wi = 2() T 2 — 1y, (24)

so that dW° (py) = —2fiH}° (pt), and [z, )]e = [thtO]le,E = —2ﬂ[HfO]|e,E, see . Here 7 (t,.) and awype,
in , are defined at p¢, and Wf“ refers to the past (values at to from (2;) which is the usual approach of
Galilean or general relativity.
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10 Lie virtual power of internal forces: Non linear first order

is enriched: 1’- The material can be characterized by the preceding fields and by n vector fields a;1; on {2
and/or n one-forms o, on 2. 2- For a velocity field v, at ¢, we get the density of the power of internal forces
(first order nonlinear)

n
DPint 1n(V) = pintl(v) + Zﬁva'{l-ﬁvej + Lvej-ﬁvallj- (25)
j=1
In a Galilean setting, the assumption of zero internal power if dv = 0 gives with :

dod,
ot

; 9
+dod | v+ ol .dv).(—dv.ej) + el dv.( ai

Pintin(¥) =z, 0.dv + L

v —dv.ajy;).

In , in addition to pintl(v) = -1, 0 dv, it appears:

Bau]

the non-linear term —(dall.v).dv.ej + e].dv.(dallj.v), non-linear in v and dv,

and the non-linear term —oﬂll.dv.dv.ej — e’.dv.dv.ayyj, non-linear in dv.dv.

11 Non Newtonian fluids 1

2n vector fields a;; and a;1; characterize a non linear first order fluid (non Newtonian, turbulence type model?).
Then, with and 7 = *Z?:lalj ® e,

Pint1n (V) = —1, @dv+z 11J®e + (dayy;v) @ €l) @ dv — (ag; ® ') @ (dv.dv). (26)

And (for matrix computation) with T, = —Z;L:lanj ® el we get
8*11 (27)
Pint1n (V) = -1, 0 dv —( 5t +d7' fdv.;u) 0 dv.
(The expression in parentheses, that is *11 + dT —dv. Ty is not a Lie derivative of T,, see : Here it is

the Lie derivative of the vector fields auj that are con51dered )

12 Non linear elasticity 1

2n one-forms a{ and 0‘{1 characterize non linear first order elasticity. Then, with and T, = —Z?Zlej ® a{,
- oo’ ; ;
Pint1n(V) = =7, 0 dv — Z(ej ® ( 8;1 +dad; v+ al,.dv)) 0 dv. (28)
j=1

And (for matrix computation), with 7 = Z;L 1€ ® ozll we get

or
Pint1n(V) = — 7, O dv—( 5;1 +dr, .v+1,  .dv) (adv. (29)

or
(The expression in parentheses, that is 5+ dgll.v + ;Il.dv, is not a Lie derivative of T,, see 1) Here it is

the Lie derivative of the one-forms aﬁl that are considered.)
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13 Visco-elastic fluids 1
Galilean Euclidean setting. The classical model for a visco-elastic fluids of Maxwell reads

dv +dv’

, (30)

1]

+ ALy =p

where 7 is a stress tensor, v the velocity field of the material, A an elasticity constant, |4 a viscosity constant,
and LyT a Lie derivative. And the pressure p is classically introduced with 1 . In , the derivative of Lie
Lyt is considered with the velocity v of the material (not a virtual veloc1t and can the Jaumann or the
upper-convected or the lower-convected Lie derivative, see ., Or can be a hnear combination of such tensors to
improve the numerical results (which otherwise are not convincing), even if such a linear combination is absurd
as far as objectivity is concerned (addition of vector fields and one-forms).

A possible covariant model could be, with v a virtual velocity,

n

) n ) or
Pint1n (V) = Ze].ﬁvalj + Zﬁvoﬂll.ﬁvej =-7, 0dv—( 5;1 +dr.v+1,,.dv) 0 dv, (31)
j=1 j=1

obtained by using the Lie derivatives of vector fields for the fluid part and the Lie derivative of one forms for
the elastic part, see and , the last equality being given in a Galilean setting with T, = *Z?Zlalj ®el,

see , andr =30 e ® aly, see the last term in .

14 Lie virtual power of internal forces: Second order

1) is enriched with vector fields a;,; and one-forms a;cy and the second ordre Lie derivatives
ade-Lv(Lvej), Ev(ﬁva%) €5, Eva12 Lyv(Lve;j), Ev(ﬁvam) Lve;, Ev([lvam) Lv(Lvej), and
ej-ﬁv(»cvaOQJ) EV(L"VeJ) 2205 Lyvel ﬁV(EVa12]) ['v(['ve ) »CanIJ: »Cv(ﬁvej) L:V(LVaQQ])

And, with , the measured power density of the internal forces reads:

Pint2 (V) = Pint1, (V) + Zthe above second order terms. (32)

The second order Lie derivative of a vector field w is Ly (Lvw) = atz >+ 2d —2dv. 8w +dw %—;’ - M W+

(d*w.v).v+dw.dv.v—2dv. dw V- (d*v.v).wtdv.dv.w, computed with (63| . And the second order Lie derlvatlve
of a one-form a is Lv(Lva) = +2d8°‘ v+28(’ dv+da Sr+a. 8dv +d%a(v,v) +da.(dv.v) +2(da.v).dv +
a.(d®>v.v) + (audv).dv, computed with

(Generalization: Higher order Lie derivative can also be considered.)

15 Non Newtonian fluids 2

E.g. is enriched to get e.g. (“one pure second order fluids”)

n

pmt2 Z Valj + £v6 Evallj + 8 ,Cv(l:vagoj). (33)

(And for a “pure fluid” any other Lie derivative of vector fields can be added.)
Galilean setting: The internal power vanishing if dv = 0 and % =0, we get

ov j Odv

20
pintz( )* plnt1n ZQGJ dv j +e J dagoj E)t —e .W.aQOj (34)

+ ej.dagoj.dV.V — 2¢’ .dv.dazoj.v - ej.(dQV.V).agoj + ej.dv.dv.agoj,

which is a “non linear second gradient” (non Newtonian) expression. With 7 = Z?:ﬁ‘lj ® e/ and E, =
Z?Zlagoj ® e/ we obtain (for matrix computation with the generic notation D,ﬁ%’; = %—f +dT.v):
odv

Pinta (V) = Pint 1 (V) — (gz 0%, +d*v.v — dv.dv) + da,, E 4 27 0 dv) (35)
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16 Elasticity 2

E.g. is enriched to get e.g. (“a pure second order elastic material”)

n

Pinta(V) = > _Lvai.e;+ Lyvoal, Lve; + Ly(Lvabo).e; (36)
=1

(And for a “pure elastic material” any other Lie derivative of one-forms can be added.)
Galilean setting: The internal power vanishing if dv = 0 and % =0, we get

ov ;  Odv
Pint2(V) = Pint1n (V) + 22 a0 dv.e; + daby. TR a%o-ﬁ-ei (37)

+ dago.(dv.v).ei + 2(dabo.v).dv.e; + abg.(d*v.v).e; + (aby.dv).dv.e;,

which is a “non linear second gradient” expression. With x, = —>71" e ® abg, we get (for matrix computation):
odv 2
Pinta (V) = Dint1n (V) — (,k; 0(—— 5 +d*v.v +dv.dv) + dk,. E —|—2— 0 dv) (38)

Dv

With the Eulerian acceleration v = 5y = % + dv.v, that gives dy = % + d?

v.v 4 dv.dv, we have

Pint2(V) = Pint1n (V) — (Fu 0 dv+de, v+ 2 20 dV) (39)

(For comparison purposes, the second-order Taylor development of the Cauchy tensor C' = FT F in the neigh-
borhood of to reads C* (to+h, P) = (I + h (dv + dv’) + 22 (2dvT .dv + dvy + dvT))(to, P) + o(h?).)

17 Visco-elasticity 2

Second-order visco-elastic materials (not purely fluid or elastic) can be obtained with other Lie combinations.

A Tensors and objective contractions

Let E be a finite dimensional (to simplify) real vector space, and let E* := L(E;R) be the dual space of E (the space of
linear functions). An element ¢ € E* being linear, £(v) is written £.v, for all v € E. Let E** := L(E*;R) be the bidual
of E,and let J1 : v € E — v = J1(v) € E** be defined by v({) := £.v for all £ € E*. Then J; is a natural canonical
isomorphism, see e.g. Spivak [8], where canonical means that the definition only uses the constant 1 which is the identity
element in multiplication and is the “simplest possible” (quite blurry), and natural means that J; is independent of the
observer. Thus E and E** are identified, and v = J1(v) is written v = v. And, by linearity of v, v(£) is written v.£ or v.£.
(There is no natural isomorphism between E and E*, see e.g. [8] An isomorphism exists but depends on an observer, e.g.
depends on a basis, or e.g. depends on an inner product see and (| .

Let E and F' be two finite dimensional real spaces, and dunE = n and dim F' = m. Let L(E; F) be the set of linear
mappings from E to F. Let (a;) be a basis in E. Then a linear map L € L(F; F) is characterized by the vectors L.a;. Let
(b;) be a basis in F, and let (b*) be its dual basis. And let Lii be the components of L.a; in the basis (b;), that is,

Laj=Y % L'b;, so L =b"(Lay). (40)

i=1j=1

And we write
m n . .
L=>>"L'bi®ad. (41)
i=1j=1

This is coherent with the usual tensorial product: Let L(F*, E;R) the space of bilinear forms on F* x E. If (vp,lg) €
F x E*, then their tensorial product vy ® £g is the bilinear form in L(F*, E;R) defined by (vp ® {g)(lp,vE) =
VF(fF)ZE(VE) = ZF(VF)ZE(VE) thanks to [J1, that is (VF ®ZE)(£F7VE) lp.vE) (KE.VE). And we have the natural
canonical isomorphism Jo : L € L(F*, E;R) — L = J2(L) € L(E; F) defined by, see [8],

Y(fp,u) € F* x B, fp.(Lu):=L({p,u). (42)

Thus if L = Y7, >0 Lib; ® o/, then L', = L(b,a;), then L’; = b’ .L.a; where L = J; (L), which gives (40). And
[LZ ] is the matrlx [L]ja,b of Le L(E;F) as Well as the matrix [L]‘a b of L € L(F*, E;R) when L = Ty NL L), relatlvely to

the bases (a;) and (b;). And in any case, the Einstein convention is satisfied. In this manuscript this is applied e.g. with
the deformation gradient L = F/°(P) = dqsio (P) : R} — R} represented with bases in , thanks to Ja.
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And, with J2, we have then defined the contraction of a bilinear mapping Le L(F*, E;R) with a vector u € E: The
definition being L.u := L.u when L = J{l(L).
Let r,s € Ns.t. r+s > 1. The set LT(E) := L(E*,...,E*,E, ..., E;R) of R-multilinear forms is called the set of uniform
N — N —

r times s times
tensors of type (:) on E. And LZ8(E) := R. An elementary uniform tensor in L7 (E) is a tensor u1 ® ... @ ur @ 1 ® ... ® s,
where u; € E** and ¢; € E*, which value on (m1,...,my,v1,...,vs) € (E*)" x E® is (u1.m1)...(ur.mz)(€1.v1)...(4s.Vs).
And with u; = J1(u;) this tensor is written u; ® ... @ ur @ 41 ® ... ® Ls.
If Ly € L5} (E) and Ly € £L52(E) then their tensor product is the tensor L1 ® Lo € ﬁ:ii:z (E) defined by:

(L1 @ La) (81,1, ooy £2,15 ey WL 1, ooy U 1y o) 5= L1 (€11, eyt 1, ) L2 (£2,1, 0y U2 1, 200). (43)

IfLi € LIN(E), Ly € LI2(E), L€ LY(E) = E*, u € LL(E) = E**, u= J1(u) € E, and u written u, the objective tensor
contraction of L1 ® £ € L]}, (E) with u® Ls € L2TY(E) is defined by

~ ~ L ~ -~ - + o
(L1®6).(u® L2) == (b.u) L1 ® Lz € LT T2(E). (44)
And the objective tensor contraction of L; ® u with £® Ly is defined by (L ®u).(® La) = (u.f) Ly ® Ly = (¢.u) L1 ® Lo.

The objective double tensor contraction @Lfor compatible tensors, results from the simple contraction applied twice.
E.g. the double objective tensor contraction of L1 ® £1,1 ® u1,2 and £21 ® uz,2 ® Lo is defined by

(Z1 ®0,1Q0ui2) Q(21Qu22® Zz) = (u1,2.02,1)(f1,1.u2,2) L1 ® Lo. (45)

Representation with a basis (e;) of E. E.g. with S, T € L}(E), S =37_,S%e;®¢/ and T =37 Tje; @ e/, we get

n n
ST= > SiTFe;®e/, and S QT =Y SiT/, (46)
i,5,k=1 i,j=1

that is S () T = Tr(S.T) (the trace of S.T considered to be an endomorphism thanks to J2), which value is independent
of the chosen basis (Einstein convention is satisfied). Thus, ifu € E, £ € E*, T € L1(E), then (u®¢) ( T = £.T.u; With
a basis (e;), and u= 37 ju'e;, £ =30 L', T =37 Tje; ®@e/, we have (u®/() O T =LTu=37,, 6T ul.

Let A= [A;] and B = [B;} be two square n x n matrices. The double matrix contraction of A and B is defined by:

A:B:= Y AiBl (47)
i,j=1

This is not an objective contraction (the Einstein convention is not satisfied). E.g. A = [S]|e and B = [T} give [5]c :
[T]‘e = A : B, value that depends on the choice of the basis. To be compared with S () T = AT : B, see 1}

Let & be an affine space and F be the associated vector space. Let £2¢ be an open set in . Let F(f2¢;R) be the set
of real valued functions on 2¢. A tensor of type (:) on 2¢, see Abraham and Marsden [I], is a mapping T: pE N —
T(p) = (p, T(p)) € ¢ x LL(2¢) that is F(2¢; R)-multilinear; That is, for all f € F(2¢;R) and all z1, z2 vector fields or
one forms on {2¢ where appropriate, we have

T(...,le + z2, ) = fT(...,Zl, ) + T(...,ZQ, ) (48)

(That is, for all p € ¢, T(p)(..., f(p)z1(P)+22(p),---) = f(p) T(P) (..., 21(P), ---) + T (P)(..., 22(p), -..).) If there is no ambiguity
then T is simply written T. The set of tensors of type (7) on £2¢ is denoted T7 (£2¢). And T (£2¢) := F(£2¢;R). Example:
T (£2¢) is identified with the set £21(£2¢) of one-forms on £2¢, and T (£2¢) is identified with the set I'(£2¢) of vector fields
on 2¢ thanks to Ji. Counter example: A derivation operator V is R-linear, but is not F({2¢;R)-linear because is not
satisfied since V(fz1) = (Vf)z1 + f(Vz1) # f Vz if f is not constant (V is not a tensor but is a spray, see [1).

Note that the initial concept is “vector fields”; Then “one-forms” are introduced, which are functions of vector fields;
And then “tensors” are introduced, which are functions of one forms and velocity fields.

For a complete mathematical introduction (with differential geometry) see e.g. Spivak [8], Abraham and Marsden [IJ,
Arnold 2], Marsden and Hughes [6].

B Push-forward and pull-back

Push-forwards and pull-backs enable to define, among others, the velocity addition formula, objectivity, and Lie derivatives.
We follow Abraham and Marsden [I], here in a simplified affine framework.

Let £ and F be affine sets, and let E' and F' be the associated vector space supposed to be normed, let 2¢ and 2 be
open sets in £ and F, and let ¥ : 2¢ — 25 be_a diffeomorphism. In this manuscript E and F are finite dimensional, and
v will be either a motion 4530 1 24y — 2, see , or a translator ©; : Rg — Ry, see .

The push-forward of a function fg : 2¢ — R by ¥ is the function Ws fe = fe. : 27 — R defined by fe. := fe o (¥)71,
so, with pr = l[/(pg)7

fex(pF) = fe(pe)- (49)
The pull-back of a function fr : 2 — R by ¥ is the function ¥*fr = (O~ 1. fr = fF, that is fx = fr oV, so

I5(pe) = fr(pr) when pr = ¥(pg).
Let

ce : {181782[ - G (50)

s — pg = ce(s),
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be a regular curve in £2¢. The push-forward of cg by ¥ is the curve Wice = cg, defined by cg. := ¥ o cg, that is,

) Is1,s2] — 2F
‘e { s o pr = ceals) = W(ee(s) (= Wipe)). G0

Let cr : s €]s1,s2[— cr(s) € £2F be a regular curve. The pull-back of ¢z by ¥ is the curve U*cr = c% := (¥~ 1).cr, that
isch=v"locg.

We use the definition of a vector field given by the tangent vectors to a curve (see e.g. [I] for equivalent definitions).
For a regular curve cg as in , its tangent vector at pg = cg(s) is

we(pe) = ce'(s). (52)

That defines the vector field wg on Im(cg). The push-forward of wg by ¥ is the vector field Vuwe = we, on Im(cgy)
made of the tangent vectors to the push-forward curve cg,, see , that is, we. (pr) := ce’(s) when pr = cex(s). So,
since gives cex'(s) = d¥(cg(s)).ce’(s), with pr = ¥(pg) we have

wex(pr) = d¥(pe).we(pe). (53)

(That is, wegs = (d¥.wg) o Q’/‘l.) And a family of regular curves in {2¢ gives a vector field wg on 2¢ and its push-forward
we. on 7. The pull-back of a vector field wr : 27 — F by ¥ is the vector field V*wr = w¥ := (U~ 1).wzx, that is,
with pr = ¥(pe),
wi(pe) = d¥(pe) ' wr(pF). (54)
The push-forward of a one-form ag € E* by ¥ is the one-form ¥*ag = ag, defined with fe = ag.wg, and ;
So, with pr = ¥(pe),
ag.(pF) = ag(pe).d¥ (ps) " (55)

And the pull-back of a one-form ar € F* by ¥ is the one-form ¥*ar = (¥ ~1).ar = a’, that is, with pr = ¥(pg),

ax(pe) == ar(pr).d¥(pe). (56)

This pull-back can also be defined thanks to the natural canonical isomorphism L € L(E;F) — L* € L(F*; E*) defined
by L*({r).ug = Lr.(L.ug); So L*(lr) = Lr.L; And L*({r) € E* is denoted £}, and named the pull-back of £F by L. So
that £3, = {p.L. And is obtained with £r = ar(pF) and L = d¥(pg), and £}, = ar(pF)* is denoted o’ (pg).

Let Te be a (1) tensor on £2¢, with 7, s > 1. Its push-forward by ¥ is the (7) tensor W.Tg = T« on 25 defined by

Tesl(@1F, s rFs WiF, oy WsF) = Te (O] s s O 5, Wi, oy Wo ). (57)

Let Tr be a (]) tensor on 25, with r, s > 1. Its pull-back by ¥ is the (7) tensor T4 on £2¢ defined by

TE(Q1g, oy Qrg, Wig, oy Weg) = TE(Q18xs oy Qrgn, Wik, oy Wags)- (58)

C Lie derivatives: Introduction and interpretation

(Classical mechanics.) Let & be a motion, see , v be the associated Eulerian velocity, see , t,7 € R, L the associated
motion, see and (3)), and F! = d®L. With reference to §[B| let ¥ = &L, Q¢ = 24, 2F = 2, pg = pt and pr = pr =
&L (pt). If fr : 2 — R is a function then its pull-back (®L)*fr = fi* is given by fi*(pt) = fr(p-). If wr is a vector
field in 2. then its pull-back (¥L)*w, = wt* is given by wt*(p;) = Fi(pt)~'.wr(pr). If ar is one-form in 2, then its
pull-back (®L)*a,; = al* is given by al*(p:) = ar(pr).FL(pt). And we define f(t,p:) := fi*(pt), wi(t,pt) := wi*(pe),
and aX(t,pt) = al*(pe). B

The Lie derivative of a real-valued function along the flow of velocity v (or along the motion @) at (¢, p:) is defined by

Ly f(t,pe):= lim f7(t.pe) = f(tpr) 0

—t T—1

Thus, with pr = &L (py),

Lof(tpe) = lim =FT =

Df
= —(¢, . 60
o (tp) (60)
Interpretation: An observer does not have the gift of spatial and/or temporal ubiquity, thus cannot trivially compare
values at a two distinct points or instants: He needs time (from ¢ to 7) and a displacement (from p; to pr) to compare
f(r,pr) and f(¢,p¢) (to compute the difference f(7,pr) — f(¢,pt)). So is a computation consequence of (59).
The Lie derivative Ly w of a vector field w along the flow of velocity v is defined by

L Wit —wi(t,

and the difference w'*(¢,p:) — w(t, p) is computed at a single time ¢ and at a single point p; (does not require ubiquity).
In R™, Ly w is equivalently defined by

. w(r,pr) — wi(r,
Low(t,pt) = 71_1Lnt ( pT)Tit ( pT). (62)

Interpretation: E.g. in R” with (62): at 7 and p-, the numerator w(7,p;) — wi (7, pr) compares the true value w(7,pr)
of w at (7,pr) with the value wi(r,p;) which corresponds to “the vector that would have let itself transported by the
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w(r,pr)=wi(7,pr)
T—1

motion” (the push-forward). So the Lie derivative £ w(¢, pt), which is the limit of the rate , measure the

“resistance” of w “submitted to the motion &” (“submitted to the flow”). The Lie Virtual Power Principle proposed in this
manuscript is based on this property. (For comparison with the classical approach see § @})
And (61)) gives:
Dw ow
Lyw=— —dvw (= —
Dt ot

Indeed with p, = &L (pt) and g : 7 — g(7) = ddL (pt) " L.w(r, pr) we have Lyw(t, pt) = g'(t), see ; And d®t (1, pt).g(T) =
w(7,pr) leads to d%(f, pt).g(1) + dP (1,p1).g" () = %—"T"(T,pT), therefore with 7 = ¢ we get dv(t,pt). w(t,pt) +g8'(¢) =
DD—"t"(t,pt), thus . Note that, for a vector field w submitted to the flow, the term —dv.w in L, w takes into account the
influence of non uniform flows v (flows s.t. dv # 0) on w.

The Lie derivative Ly a of a one-form « along the flow of velocity v is the one-form deduced for example from and
with the derivation property Ly (a.w) = Lya.w + a.Lyw. Thus

+ dw.v — dv.w). (63)

D 0
Lyo = ?j +adv (= 8—? + da.v + a.dv). (64)
The same result is obtained with the mathematical definition Ly a(t, pt) := limr ¢ %__ta(t’p‘).
And for tensors of order 2, km € T{(§2;) (mixed), ky € TZ(2:) (up) and kg € T9(82;) (down), the generic derivation
property Ly(a®b) = (Lya) ® b+ a ® Lyb (or definition with pull-backs) gives

Dkm

Lykm = TT + Km.dv — dv.km € TE(2¢) (Jaumann),
Dk

Lyky = DTU — Ry (dV)* —dv.ky € TE(2:) (Maxwell upper-convected), (65)
Dkg

Lykg = TT + kg.dv + (dv)* kg € T9(2¢) (Maxwell lower-convected),

17}
where, for o, € T} (£2;), the adjoint tensor om* € T} (£2¢)" is defined by om*(u,£) = om (£, u), and % = % +de.v

(generic notation).

Although an Eulerian velocity field v is not objective, see § [G] and we have: If T is an objective tensor, then its
Lie derivative £, T is an objective tensor; see e.g. Marsden and Hughes [6] p.101. (But partial derivatives and material
derivative are not objective in general.) Here objectivity refers to “covariant objectivity”, see .

D Lie derivative versus deformation tensor

The deformation tensor C = FT.F between to and t is used to measure the relative deformation between two vectors
thanks to the use of two Euclidean inner products, (-,-)g at to and (-,-)g at ¢ (see e.g. Marsden and Hughes [6]): With
P € 2, pt = B}°(P), F{°(P) := d®,°(P), C{°(P) = (F,°(P))T.F{°(P), W(P) € R, and wi.(p:) = F,°(P).W(P) the
push-forward of W; by dﬁﬂ see , we have :

(Wi (pt), W2 (pr))g = (C}° (P).W1(P), W2(P))g- (66)

This value is compared with (W1(P), W2(P))¢ in classical mechanics. N.B.: The deformation tensor C' compares two
vectors that have let themselves deformed by the flow, see , since w1, and wa, are the push-forwards by the flow.

While the Lie derivative of a vector field w measures the resistance of a single vector field w submitted to a flow, see
interpretation of , and does not require a priori the use of inner products (Euclidean or not) since there is no comparison
between two vectors.

E Change of Riesz representation vector

The Riesz representation theorem is often implicitly used in classical mechanics under isometric objectivity hypotheses
(see § . Unfortunately this causes problems since covariance cannot be confused with contravariance. E.g., Misner,
Thorne, Wheeler [7] box 2.1: “Without it [the distinction between covariance and contravariance|, one cannot know whether
a vector is meant or the very different geometric object that is a 1-form.”

Let E be a normed vector space and E* the set of linear continuous functions E — R. There is no natural canonical
isomorphism between E and its dual E*, see e.g. Spivak [8], but if an observer introduces an inner product then an
isomorphism (depending on the observer) is obtained:

Theorem E.1 (Riesz representation theorem) If (-,-)y is an inner product in E so that E is a Hilbert space, then
Vee E*, Wy E, VYweEE, (w=(ly,w),. (67)

Moreover ||[€4]lg = ||¢]|g*. And the vector £y is called the Riesz representative vector of the linear form £ relatively to the
inner product (-,-)g, or the (-,-)g-Riesz representative vector of L.

Proof: If £ = 0 then €4 = 0. If £ # 0, choose a v ¢ Kerl = {v € E : £(v) = 0} = £71({0}) (closed sub-space since

¢ is continuous). Let vo be the (-,-)g-orthogonal projection of v on Kerl, and let n = ﬁ (a ||-||g-unitary vector

normal to Ker?). Then take £, = £(n)n to get and [|£4]|g = SUP||w|| =1 [¢.w]| (||¢|]|g*) thanks to the Cauchy—Schwarz
inequality. And uniqueness is trivial.



VPP: Lie Covariant Approach 13

Corollary E.2 (Change of Riesz representation vector) Let £ € E*. Let (-,-)a and (-,-)p be two inner products, and
let £, and €y, be the (-,-)a and (-,-)p-Riesz representative of £. Then

Yw e E, (Lo, W)a = (€p, W)p. (68)
Proof: For all w, gives L. w = (£q,W)q and L.w = (€, W)y, thus .

Ezample E.3 Let (-,-)q be the Euclidean inner product built with the English foot (ft) and (-,-); be the Euclidean inner
product built with the meter (m). We have 1 ft = u m with g = 0.3048. And (-, )y = p2 (-, )a (and ||.||s = pl|-||a), thus
gives (L4, W)q = p2(€y, w)q for all w, therefore:

) (69)

and the vector £, is u? times smaller (more than ten times smaller) than the vector £,. So the Riesz representation vector
depends on the choice of the inner product (an inner product is a measuring tool, and a change of tool changes the result).

F Incompatibilities with Riesz representation vectors

We have just seen that the Riesz representation vector depends on the observer, see e.g. . But we also have e.g.:

1- Incompatibility with push-forwards. Let a be in (R}, )* and let ax = oa.FttO_1 € (RP)* be its push-forward by 4530,
see . Let (-,-)g and (-,-)g be inner products in R and RY. Let ag € Ry and a.g € R} be the (-,-)g and (-, )g-
Riesz representation vectors of a and «., see . And let ags« € R} be the push-forward of ag by @io, see . So,
with p = ®0(P) and wp € R}, we have (aug(p), Wp)g = ax(p).wp = (a(P).F/°(P)~ V) .w, = a(P).(Fo(P)~t.wy) =
(aq(P), Flo(P) Yowp)g = (Ftt0 (P)~T.ag(P),wp)g, true for all w,,, thus

ag(p) = F{*(P)".ag(p). (70)

S0 auyg is not the push-forward of o, that is oeg(p) # Ffo (P).ag(p), unless 45%0 is the motion of a solid. Thus the Riesz
representation vectors should not be used if push-forwards of one-forms are needed.

2- Incompatibility with Lie derivative. Let 8 be in (R})*. Let (-,-)g be an inner product in R}, and let B4 be the
(+,-)g-Riesz representation vector of 8, that is B.w = (84, w)4 for any w. Then we have Ly 8.w # (LyBg,W)g, unless & is

the motion of a solid, that is we have %f.w + B.dv.w # (DD—’B;’, W)y — (Bg,dv.w)g in general. We have:
LyvBw = (LvBg, W)g + (Bg, (dv + dvT).w)g (71)

DB,

; Dp —
since 5y .w + B.dv.w = (—p;

of one-forms are needed.

,W)g + (Bg,dv.w)g. Thus the Riesz representation vectors cannot be used if Lie derivative

G Velocity addition formula

(This § is needed to define objectivity, see the next §.) Classical mechanics setting. The observers use the same time
scale. An observer A defines a referential R4 = (O4, (A;)) and an observer B defines a referential Rg = (Op, (B;)), with

(A;) and (B;) Cartesian bases. They observe an object Obj in a time interval [t1,t2]. Let @4 : [t1,t2] x Obj — R4 and

Pp : [t1,t2] X Ohj — Rp be the motions of Obj as described by A and B, and let v4 and vp be the associated Eulerian
velocity fields, see and , that is,

n n
pat = Pa(t, Poy) = Oa + Y _z'y, A, pt = P5(t, Poy) = Op + Y a3 Bi,
i=1 i=1
B (72)
0D 4 0P
val(t,pat) = W(Lpo@)v ve(t,pet) = Tf(t’ Poy;).

Let Objp be the object used by B to define his referential (e.g. Objp = Earth). Let Wy ¢ [t te] X Objg — Ra and

@B : Objgp — Rp (static) be the motions of Objg described by A and B, and let w4 and wpg be the associated Eulerian
velocity fields, see and , that is,

=Us(t,Qovi) = Oa + > vl A, - =N
qar = Ya(t, Qopse) = Oa ;ym i @ = ¥s(Qovs) = Op + > _ysBi, 3)
=1

oy,
wa(t,gat) = aif(tyQObjB)v wg(t,gg) = 0.

For t fixed, let 5At(PO}?j) = 5,4(1‘, POly‘) and éBt(PObj) = éB(t, Pog?j), and ﬁAt(POly‘) = @A(t, PO@')-

The mapping 5A7 ffA in R4 and 53, @B in Rp are motions: They are defined by one observer in his referential. The
translation mapping at ¢ from B to A (the translator) is the “inter-referential” diffeomorphism ©; := W4 o !I/B_I, and we
denote

R — Ra

o, : no L 74
U a5 = Op £ S WbBi — aas = Oulan) = Oa + 3 Wiy As (74)

i=1 i=1
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50, Yar(Qovsp) = O1(¥B(Qow;p)) for all Qovs € Objp: If a particle Qoy;p of Objp is located at gz = ¥(Qos;B) € Rp by
the observer B, then the observer A locates Qo n at t at ¥a(Qov) = qar = Ot(qg) € Ra. E.g. ©+(Op) is “the position
of Op in Ry at t”; And thus the push-forward dO©.(Op).B; of B; by O is “the basis vector B; as seen by A at ©(0Op)”
(see § [B] with the diffeomorphism ¥ = ©; and cg = the i-th coordinate line in Rp).

With define O : [t1,t2] X R — Ra by O(t,q5) := O(gz). And define the “©O-Eulerian velocity” at gaz € Ra by:

woltas) = 2 (has) if a1 = O1an). (75)

Note that we looks like a Eulerian velocity but is not since © is not a motion (6; is an inter-referential mapping).
. . T 4 4 8~
Interpretation of weg: With Ws(t,Qous) = O(t,¥B(Qovir)) and g = ¥B(Qovjp) we get %(t,QObjB) =
%—?(t,qg), thus, with and we have
wa(t qar) = we(t, qar), (76)

equality in R4; And the “O-Eulerian velocity” weg(t, qa;) is the Eulerian velocity w 4(t,q4¢) of the particle Qoyjp € Objp

that is at t at qa; = @At(QObjB) =0O¢(q) € Ra.
Velocity addition formula. We also have ®4; = 6 o $p;, that is, with , pat = O¢(ppt) (inter-referential

relations between positiorjs at t). So 5,4(15, Poy) = @(t,[iB(t, Poyi)), and with pgy = {53(26, Poy;) we get (t7 Poy) =
%f(?(t,th) + d@(t,th).aéif(t, P()(y'), that is, v4(t,pat) = wo(t,pat) + dO(t,pe). v (t, pBt), that is with 7

vat(pas) = VBi«(Pat) + Wai(par) where v (par) := dOt(ppt)-vBi(PBt)- (77)

This formula is the velocity addition formula. Interpretation: At ¢, if A is the “absolute observer” and B is the “relative
observer” then the formula reads: “(v4; the absolute velocity) = (vp:. the relative velocity translated for A) + (wa¢ the
velocity of the coordinate system of B in R4)”, equality in Ra.

H Covariant and isometric objectivities

(Mainly from Marsden and Hughes [6].) Setting of the previous §.

Definition H.1 Let ug; be a vector field in Rp at t as described by the observer B. Let ugy, be its translation for A, that
is, the push-forward of ug; by O: (s0 upi«(par) = dO+(pBt).-upt(pet) when pay = O+(pst), see ) Then upgy, is called
the objective transform of ugy by ©;. More generally, at ¢ the objective transform of a tensor Tz in Rp is its push-forward
TBix by Ot.

Definition H.2 Consider “a quantity” that can be described as a vector field by any observer, quantity written u. At ¢,
A describes u as the vector field ug; in R4, and B describes u as the vector field ug; in Rp. Then u is (covariant) objective
if and only if, for all ¢ and all observers A and B, ug; is the objective transform of ug; by ©¢, that is,

UAt = UB¢x- (78)

In other words, u is objective iff, for all ¢ and all observers A and B, whenever g4; = O:(gg) we have uai(gar) =
dO¢(gz).-upt(gp). Similarly, a tensor T is objective iff T4, = Ty for all ¢ and all observers.

Counter-example: a velocity field v is not objective, see (77): wa; # 0 in general. So the objective vector fields in the

definition refer7 e.g., to the “force fields” f of Newton’s fundamental law > f = m~y where v = % (acceleration).

Definition H.3 To work in an objective covariant framework means to consider any diffeomorphism ©; (any translator).

Definition H.4 To work in an “objective isometric” framework means to only consider observers A and B using a unique
metric (-,-)g (isometric setting), that is, to only consider the ©; that are isometries relatively to one chosen inner prod-
uct (+,-)g (and (Ot.u1,O¢.u2)g = (u1,u2)y for any ui,uz). (And in classical mechanics the chosen metric (-,-)y is often
assumed to a Euclidean metric.)

E.g. an English observer using feet and a french observer using meters have no choice but to use covariant objectivity
if they want to communicate (they use different metrics). And in general relativity “objective isometry” is meaningless.

I About elasticity and classical formulations

The appendix follows Germain [B], apart from the remarks where Tr(F') is replaced by det(F).
e In Ry . The abbreviated notations C' = FT_.F (deformation tensor) and F = % (Green-Lagrange tensor) stand for

to _
the endomorphisms in RY. relative to to, t and P € ¢, defined by C{°(P) = F{°(P)T.F{*(P) and El*(P) = <=0~

where Iy, is the identity in R . The classical isotropic homogeneous elasticity is e.g. stated as,

g = ATr(E) I +2ukFE, (79)
abbreviated notation for the endomorphism gio P) = )\Tr(Efo(P)) I+ QMEZO (P) in RY,.

I

T
Small deformations: The linearization E = = F+2F

— I gives (linear elasticity)

F+FT

a~=ATr(e) I +2pg, e= 5

I. (80)
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But ¢ has no functional meaning because F;°(P) : R} — Rp, F{°(P)T : R — R}, and I = I1, stays in R} , so that the

t tg T
F,°+F° . . . . . . s
sum —tt I3, is not a function (and Tr(e) has no functional meaning either), unless the shifter is introduced, see

remark and/or is considered in the matrix sense after having chosen a unique Euclidean basis at to and t.

Remark relative to the introduction of the virtual power of pressure : Relatively to Euclidean bases, the volume
change at P € (%, is J = det(F) = (det(C))%, where J, F and C stands for J/°(P), F{°(P) and C/°(P). And for
small displacements Tr(C — I) ~ det(C) — 1: Indeed with an orthonormal basis of diagonalization of C we have [C] =
diag(14€1, ..., 14+¢€5), and then Tr(C) = n+ >, &; and det(C) = 1+ >, &; + o(e) in the neighborhood of ¢ = 0 where
e = max(|g;|). So Tr(E) = Tr(c;)_” ~ det(g)_l. Then, for small displacements, can be replaced by

A
a= E(det(C)fl)IJru(CfI). (81)
And det(C) = det(FT.F) = det(F)?, and det(F)? — 1 = (det(F) — I)(det(F) + I) ~ 2(det(F) — I) for small displacements.
Then a pressure term can be considered with .

e In R?. Instead of the deformation tensor C' = FT.F we may prefer to use the Finger tensor b= F.FT, and more
precisely its inverse Qil = HT.H where H = F~!. Unabbreviated notation: At t and p; = @iO(P), H:O (pe) = FttO(P)*1
and (Q;O)_l(pt) = H/°(p)T .H!°(p;). And instead of the Green-Lagrange tensor, we may use the Euler—Almansi tensor
defined by
Li=b"" 1, —HTH

2 2

L—(6'0) " (py)
I E— 1

; (82)

a=

simplified notation of the endomorphism gio (pt) =
A wER,

n R}. The classical elasticity is then e.g. stated as, with

g = ATr(a) I +2pua, (83)

to compare with . And here g () dv is meaningful (double objective contraction in R}). For small displacements, and
T
for matrix computation, (} yields [a] ~ [I] — % (linearization), and reads (linear elasticity)

H] + [H]T
o] = ATe(la]) T+ 2pla] with [a) = 1] - (DAL (34)
Since [Fto(t, P)] — [I] = [I] — [H'(t,p(t))] + o(t—to) if p(t) = D' (t, P), we get back to (80). And, as for (8I)), instead
of we can consider, for small displacements,

o= (1~ det(o™ ) I+ (I~ b7, (85)

(Or with (1 — det(H)) instead of Tr(I — H).) And a pressure term can be considered with (TI)).
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