Lie derivative

G. Leborgne

www.uca.fr

February 24, 2021

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $1 \, / \, 8$

Table of contents

- \bullet Motion
- Push-forward
- \bullet Lie derivative: Definition, interpretation
- Comparison with the Cauchy deformation tensor
- Dot product and loss of (covariant) objectivity

Motion

Let Obj be a "real" object made of particles P_{Obj} . Let \mathcal{R} be a referential. **Definition:** A motion is a map $\widetilde{\Phi}: \begin{cases} \mathbb{R} \times Obj \to \mathcal{R} \\ (t, P_{Obj}) \to p = \widetilde{\Phi}(t, P_{Obj}) \end{cases}$ that locates a particle P_{Obj} in \mathcal{R} .

Notation: The Eulerian velocity field \vec{v} is defined by:

if
$$\underbrace{p = \widetilde{\Phi}(t, P_{Obj})}_{\text{position of } P_{Obj} \text{ at } t}$$
 then $\underbrace{\vec{v}(t, p) := \frac{\partial \Phi}{\partial t}(t, P_{Obj})}_{\text{velocity of } P_{Obj} \text{ at } t}$ (1)

(日) (월) (불) (불) 불

Notation: $\Omega_t = \widetilde{\Phi}(t, P_{Obj}) = \text{configuration at } t \ (= \text{the photo of } Obj \text{ at } t).$ Notation: τ being close to t, let

$$\Phi_{\tau}^{t}: \begin{cases} \Omega_{t} \to \Omega_{\tau} \\ p_{t} = \widetilde{\Phi}(t, P_{Obj}) \to p_{\tau} = \Phi_{\tau}^{t}(p_{t}) := \widetilde{\Phi}(\tau, P_{Obj}). \end{cases}$$

(See figure page 4.)

figure

• $p_t = \tilde{\Phi}(t, P_{Obj}) = \text{position of a particle } P_{Obj} \text{ at } t, \text{ and } \vec{v}_t(p_t) = \text{velocity of } P_{Obj} \text{ at } t.$

- $c_t = a$ line in Ω_t passing through p_t , and $\vec{w}_t(p_t) = tangent$ vector at p_t .
- $c_{t*} := \Phi_{\tau}^t(c_t) =$ the transported line by the motion, $p_{\tau} = \Phi_{\tau}^t(p_t)$.

• $\vec{w}_{t*}(p_{\tau}) = d\Phi_{\tau}^{t}(p_{t}) \cdot \vec{w}(p_{t}) = \text{tangent vector at } c_{t*} \text{ at } p_{\tau} = \text{the push-forward}$ by Φ_{τ}^{t} . In short:

$$\vec{w}_{*} = F.\vec{w}_{*}$$

• So: $\vec{w}_{t*}(p_{\tau})$ results from a "strain" (a motion): Not linked to a constitutive law (not linked to a "stress").

Push-forward

• Let
$$c_t : \begin{cases} \mathbb{R} \to \Omega_t \\ s \to p_t = c_t(s) \end{cases}$$
 be a curve in Ω_t (so *s* is a space curvilinear coordinate, not a time coordinate), and let (see figure page 4)

 $\vec{w}_t(p_t) := (c_t)'(s) = \text{tangent vector to } \operatorname{Im}(c_t) \text{ at } p_t.$ (2)

• Let $c_{t*} := \Phi_{\tau}^t \circ c_t : \begin{cases} \mathbb{R} \to \Omega_{\tau} \\ s \to p_{\tau} = c_{t*}(s) := \Phi_{\tau}^t(p_t) \end{cases}$ be the transported curve by the motion Φ_{τ}^t , and let (see figure page 4)

$$\vec{w}_{t*}(p_{\tau}) := (c_{t*})'(s) = \text{tangent vector to } \operatorname{Im}(c_{t*}) \text{ at } p_{\tau}.$$
(3)

• **Definition:** The vector field \vec{w}_{t*} (defined in Ω_{τ}), which is the result of the deformation of \vec{w}_t by the motion, is called the push-forward of the vector field \vec{w}_t by the motion Φ_{τ}^t .

• Let $F_{\tau}^t = d\Phi_{\tau}^t$ (deformation tensor); Then $c_{t*}(s) := (\Phi_{\tau}^t \circ c_t)(s)$ gives

$$\vec{w}_{t*}(p_{\tau}) := F_{\tau}^t(p_t).\vec{w}_t(p_t) \quad \text{at} \quad p_{\tau} = \Phi_{\tau}^t(p_t).$$
 (4)

This is the "push-forward by a motion formula" for vector fields.

Lie derivative: Definition, interpretation

• Let $\vec{w}(t, p)$ be a ("force") vector field defined at any time t and any point $p \in \Omega_t$ (so \vec{w} is a Eulerian vector field).

• **Definition:** With \vec{v} the velocity field of the motion, cf (1), the Lie derivative $\mathcal{L}_{\vec{v}}\vec{w}$ of \vec{w} along \vec{v} at t at p_t is, with $p_{\tau} = \Phi_{\tau}^t(p_t)$,

$$\mathcal{L}_{\vec{v}}\vec{w}(t,p_t) = \lim_{\tau \to t} \frac{\vec{w}_{\tau}(p_{\tau}) - \vec{w}_{t*}(p_{\tau})}{\tau - t}$$

- Interpretation: At τ at p_{τ} the numerator gives the difference between
 - \rightarrow the true value $\vec{w}_{\tau}(p_{\tau})$ of \vec{w} at τ at p_{τ} , and
 - → the virtual value $\vec{w}_{t*}(p_{\tau}) = F_{\tau}^{t}(p_{t}).\vec{w}_{t}(p_{t})$ (the push-forward), cf (4): If \vec{w} had allowed itself to be distorted by the flow (had not resisted the flow), then $\vec{w}_{t*}(p_{\tau})$ would have been be the value of \vec{w} at τ at p_{τ} .

Hence, $\mathcal{L}_{\vec{v}}\vec{w}$ gives "a rate of stress on \vec{w} " due to the flow.

• Computation:

$$\mathcal{L}_{\vec{v}}\vec{w} = \frac{D\vec{w}}{Dt} - d\vec{v}.\vec{w} \quad (= \frac{\partial\vec{w}}{\partial t} + d\vec{w}.\vec{v} - d\vec{v}.\vec{w}).$$

(The spatial variations $d\vec{v}$ of \vec{v} influence "the stress on \vec{w} ": Expected.)

Comparison with the Cauchy deformation tensor

• Let $F_{\tau}^t := d\Phi_{\tau}^t = \text{written } F = \text{the deformation gradient between } t \text{ and } \tau$. Let $(\cdot, \cdot)_g$ be a Euclidean dot product in \mathbb{R}^n . Let $C := F^T \cdot F = \text{the Cauchy-Green deformation tensor.}$ Let \vec{u}_t, \vec{w}_t be vector fields at t. So:

$$\begin{aligned} (\vec{u}_{t*}(p_{\tau}), \vec{w}_{t*}(p_{\tau}))_g &= (F(p_t).\vec{u}_t(p_t), F(p_t).\vec{w}_t(p_t))_g \\ &= (C(p_t).\vec{u}_t(p_t), \vec{w}_t(p_t))_g, \end{aligned}$$

which is compared with $(\vec{u}_t(p_t), \vec{w}_t(p_t))_g$ (the value at t), that is, in short,

$$\vec{u}_* \bullet \vec{w}_* - \vec{u} \bullet \vec{w} = (C - I).\vec{u} \bullet \vec{w}.$$

Thus C enables to compare the relative deformation of <u>two</u> vectors which have <u>let themselves be deformed</u> by the motion (since we used the push-forwards $\vec{u}_* = F.\vec{u}$ and $\vec{w}_* = F.\vec{w}$).

• The Lie derivative $\mathcal{L}_{\vec{v}}\vec{w}$ of a vector field \vec{w} measures the resistance of <u>one</u> vector field \vec{w} submitted to a motion: It seems suitable for the measurement of the stress due to a flow. Moreover $\mathcal{L}_{\vec{v}}\vec{w}$ is objective covariant.

And $\mathcal{L}_{\vec{v}}\vec{w}$ does not require the use a priori of some dot product (Euclidean or not), which is the Cauchy–Green tensor approach, since here there is no comparison between two vectors \vec{u} and \vec{w} : Just one vector \vec{w} (and a motion).

Dot product and absence of objectivity

• There is no natural canonical isomorphism between \mathbb{R}^n and its dual $(\mathbb{R}^n)^* = \mathcal{L}(\mathbb{R}^n; \mathbb{R})$: A linear form (covariant) cannot be identified with a "Riesz representation vector" (contravariant).

NB: A Riesz representation vector is obtained thanks to the use of a dot product. Eg, with a Euclidean dot product, a Riesz representation vector depends on the chosen unit of measure (meter? foot?) with which the Euclidean dot product was made: So a Riesz representation vector is not (covariant) objective (it depends on a choice of an observer).

• A Riesz representation vector is not compatible with push-forwards: The push-forward of a linear form (covariant) is not represented by the push-forward of its Riesz representation vector (contravariant).

• A Riesz representation vector is not compatible with the use of the Lie derivative: The push-forward of the Lie derivative of a differential form (covariant) is not represented by the push-forward of its Riesz representation vector field (contravariant).