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In classical mechanics, there are two objectivities: 1- The covariant objectivity concerns the universal
laws of physics required to be observer independent (true in any reference frame); This is a main topic in
this manuscript. 2- The isometric objectivity concerns the constitutive laws of materials once expressed
in a reference frame.

Covariant objectivity in continuum mechanics follows Maxwell’s requirements, cf. [17] page 1: “2. (...)
The formula at which we arrive must be such that a person of any nation, by substituting for the different
symbols the numerical value of the quantities as measured by his own national units, would arrive at
a true result. (...) 10. (...) The introduction of coordinate axes into geometry by Des Cartes was one
of the greatest steps in mathematical progress, for it reduced the methods of geometry to calculations
performed on numerical quantities. The position of a point is made to depend on the length of three lines
which are always drawn in determinate directions (...) But for many purposes in physical reasoning, as
distinguished from calculation, it is desirable to avoid explicitly introducing the Cartesian coordinates,
and to fix the mind at once on a point of space instead of its three coordinates, and on the magnitude
and direction of a force instead of its three components. This mode of contemplating geometrical and
physical quantities is more primitive and more natural than the other,...”

And see the (short) historical note given in the introduction of Abraham and Marsden book “Foun-
dations of Mechanics” [1], about qualitative versus quantitative theory: “Mechanics begins with a long
tradition of qualitative investigation culminating with KEPLER and GALILEO. Following this is the period
of quantitative theory (1687-1889) characterized by concomitant developments in mechanics, mathemat-
ics, and the philosophy of science that are epitomized by the works of NEWTON, EULER, LAGRANGE,
LAPLACE, HAMILTON, and JACOBI. (...) For celestial mechanics (...) resolution we owe to the genius of
POINCARE, who resurrected the qualitative point of view (...) One advantage (...) is that by suppressing
unnecessary coordinates the full generality of the theory becomes evident.”

After having defined motions, Eulerian and Lagrangian variables and functions, we give the definition
of the deformation gradient as a function. We then obtain a simple understanding of the Lie derivatives
of vector fields which meet the needs of engineers. Then we get the velocity addition formula and verify
that the Lie derivatives are (covariant) objective. Note that Cauchy would certainly have used the Lie
derivatives if they had existed during his lifetime: To get a stress, Cauchy had to compare two vectors,
whereas one vector is enough when using the derivatives of Lie.

We systematically start with qualitive definitions (observer independent), before quantifying with
bases and/or Euclidean dot products (observer dependent). A fairly long appendix tries to give in one
manuscript the definitions, properties and interpretations, usually scattered across several books (and
not always that easy to find).
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A quantity f being given then: g defined by « g equals f » is noted g := f.

Part I
Motions, Eulerian and Lagrangian
descriptions, flows

1 Motions

The framework is classical mechanics, time being decoupled from space. R? is the classical geometric
affine space (the space we live in), and (R3,+,.) = {pg : p,q € R3} ="ritten R3 ig the associated vector
space of bipoint vectors equipped with its usual rules. We also consider R and R? as subspaces of R3, i.e.
we consider R™ and I@", n=1,2,3.

1.1 Referential

Origin: An observer chOOS(ian origin_ O € R"; Thus a point p € R" can be located by the observer
thanks to the bipoint vector Op = & € R” Hence p = O + &, and 7 = Op ="ritten , _ 0,
Another observer ch(£>ses an origin O e R"™; Thus the point p can a_~>1so be located by this observer

with the bipoint vector (5p =7 R"; Sop=0+7= 9] +%, and 7 = 00 + 7.

Cartesian coordinate system: A Cartesian coordinate system in the affine space R” is a set Roary =
(O, (€i)i=1,...n), where O is an origin and (€;) := (€;)i=1,...n is a basis in R™ chosen by the observer.
Thus the location of a point p € R™ can quantified by the observer 37 € R” s.t.

n Z1

p=0+F with F=) w8, ie [Ople=[Te=[ : |, (1.1)

i=1 Th

s A . . .. A . . .
[©]je = [Op]e being the column matrix containing the components x; € R of Op = Z in the basis (€;).
Another observer with his origin O, and his Cartesian basis (l_)'l)lzln make the Cartesian coordinate
system Rcart,b = (Op, (b:)i=1,...n), and gets for the same position p in R,

n - Y1
S . - ~ 7 . A .
p=0y+§ with §=>Y Gb; ie Ol =Wg=1 : | (1.2)

=1 Yn
[gﬂlb [Obp]‘b being the column matrix containing the components y; € R of (’)bp = § in the basis (b;).

And (’)bp Oy %) + Op, ie. y= OO + &, gives the relation between & and ¥ (drawing).

Chronology: A chronology (or temporal coordinate system) is a set Reime = (to, (At)) chosen by an
observer, where ¢y € R is the time origin, and (At) is the time unit (a basis in R).

Referentiel: A referential R is the set
R = (Rtime, Rcart) = (fo, (At), O, (€i)i=1,...n) = (“chronologie”,“Cartesian coordinate system”), (1.3)

made of a chronology and a Cartesian coordinate system, chosen by an observer.

In the following, to simplify the writings, the same implicit chronology is used by all observers, and
a referential R = (Riime, Roart) Will simply be noted as the reference frame R = (O, (€;)) (so := Reoart)-

12
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1.2 Einstein’s convention (duality notation)

Starting point: The classical notation x; for the components of a vector 7 relative to a basis, cf. (1.1).
Then the duality notion is introduced: x; =""€1 2% (enables to see the difference between a vector and

a function when using components). So

n n 1 x
- = i = 5 clas. . dual .
Z= E ;€ = r'e; , and [Tz = : = I (1.4)
=1 =1 T "
N—— —— n
classic not.  duality not.

The duality notation is part of the Einstein’s convention; Moreover Einstein’s convention uses the notation
Sor ate; =Written gig e the sum sign >, can be omitted when an index (i here) is used twice, once
up and once down, details at § A.5. However this omission of the sum sign >  will not be made in this
manuscript (to avoid ambiguities): The TEX-IVTEX program makes it easy to print Y .

Example 1.1 The height of a child is represented on a wall by a vertical bipoint vector Z starting from
the ground up to a pencil line. Question: What is the size of the child ?

Answer: It depends... on the observer (quantitative value = subjective result). E.g., an English
observer chooses a vertical basis vector @; which length is one English foot (ft). So he writes ¥ = x1d;,
and for him the size of the child (size of Z) is x; in foot. E.g. 1 = 4 means the child is 4 ft tall. A
French observer chooses a vertical basis vector b; which length is one metre (m). So he writes & = yll;l,
and for him the size of the child (size of %) is y' metre. E.g., if 1 = 4 then y; ~ 1.22, since 1 ft :=
0.3048 m: The child is both 4 and 1.22 tall... in foot or metre. This quantification is written & = 4 ft
= 1.22 m, where ft means d; and m means b, here. NB: The qualitative vector & is the same vector for
all observers, not the quantitative values 4 or 1.22 (depends on a choice of a unit of measurement).

With duality notation: # = z'@; = y'by, so if 2! = 4 then y! ~ 1.22. o

This manuscript insists on covariant objectivity; Thus an English engineer (and his foot) and a French
engineer (and his metre) will be able to work together ... and be able to avoid crashes like that of the Mars
Climate Orbiter probe, see remark A.17. And they will be able to use the results of Galileo, Descartes,
Newton, Euler... who used their own unit of length, and knew nothing about the metre defined in
1793 and adopted in 1799 in France (after 6 years of measurements), and considered by the scientific
community at the end of the ninetieth century... and couldn’t explicitly use the “Euclidean dot products”
either (which seems to have been defined mathematically by Grassmann around 1844).

1.3 Motion of an object

Let Obj be a “real object”, or “material object”, made of particles (e.g., the Moon: Exists independently
of an observer). Let t1,t2 € R, t1 < to.

Definition 1.2 The motion of Ob in R™ is the map
[thtz] X O@ — R"

3 (t, Ryy) — p = d(t, Ry)) . (1.5)
~—~— —_————
particle its position at ¢t in the Universe

And ¢ is the time variable, p is the space variable, and (¢,p) € R x R™ is the time-space variable. And
® is supposed to be C? in time.

With an origin O (observer dependent), the motion can be described with the bi-point vector

— Ston ~
T = OB(t, Ry) = Op """ F(t, Boy)- (1.6)

But then, two observers with different origins O and O, have different description of the motion. There-
fore, in the following we won’t use ¢. Then (quantification) with a Cartesian basis (€;) to make a
referential R, we get (1.1).

1.4 Virtual and real motion

Definition 1.3 A virtual (or possible) motion of Ol is a function ® “regular enough for the calculations
to be meaningful”. Among all the virtual motions, the observed motion is called the real motion.

13



14 1.5. Hypotheses (Newton and Einstein)

1.5 Hypotheses (Newton and Einstein)

Hypotheses of Newtonian mechanics (Galileo relativity) and general relativity (Einstein):
1- You can describe a phenomenon only at the actual time ¢ and from the location p you are at (you
have no gift of ubiquity in time or space);
2- You don’t know the future;
3- You can use your memory, so use some past time # and some past position py,;
4- You can use someone else memory (results of measurements) if you can communicate objectively.

1.6 Configurations
If ¢ is fixed then (1.2) defines

N {Obj S RM

O : = ~ d Q= ®,(0l). )
' Ry —p=3,(Ry) = (I)(tvi%bj)} an t +(Obj) (1.7)

Definition 1.4 , := &,(Obj) is the “configuration at ¢’ (photo at t) of Obj (range = image of ®;):
Q= {p e R": IRy, € Olj s.t. p= O,(Ry;)} = ®,(Olj) (affine subset). (1.8)

If ¢ is the actual time then Q, is the actual (or current or Eulerian) configuration.
If ¢y is a time in the past then {4, is the past (or initial or Lagrangian) configuration.

Hypothesis: At any time ¢, €; is supposed to be a “smooth domain” in R", and the map Cft is assumed
to be one-to-one (= injective): Obj does not crash onto itself.

1.7 Definition of the Eulerian and Lagrangian variables

e If ¢ is the actual time, then p; = &%(Poz)j) € ) is called the Eulerian variable relative to Ry; and ¢.

o If fy is a time in the past, then p, = By, (Ry;) € €, is called the Lagrangian variable relative to Ry
and . (A Lagrangian variable is a “past Eulerian variable”).

NB: Two observers with two different time origins t, and %’ get two different Lagrangian variables p,
and py;,» while they have the same Eulerian variable p;.

1.8 Trajectories
Let ® be a motion of Obj, cf. (1.5), and Ry € Obj (a particle in Obj = e.g. the Moon).

Definition 1.5 The (parametric) trajectory of Ry, is the function

~ [tl,tg] — Rn,
‘I)Qy” :

~ ~ 1.9
t = p(t) = ®p, (t) := O(t, Ry;) (position of Ry, at t in the Universe). (19)

Its geometric trajectory is the range (image) of 53)@, ie.

geometric trajectory of Ry := {q € R" : 3t € [t1,t2] s.t. ¢ = ‘51%@' )} = Im(&)}%@.) = &)H)b]([tl,tg]). (1.10)

1.9 Pointed vector, tangent space, fiber, vector field, bundle

(See e.g. Abraham—Marsden [1].) In particular to deal with surfaces S in R? (e.g. S a sphere), a tangent
vector to S isn’t simply a “bi-point vector connecting two points of S” (would get “through the surface”).
To define a tangent vector to S, or on S, let p € S, consider a regular curve c¢: s €] —g,e[— ¢(s) € S s.t.
¢(0) = p, and let W(p) := ¢’(0) = limp0 L;C(O): This vector is tangent ot S at p. With all possible
curves, you get all the tangent vectors ot S. And, for all p € S, the tangent space to S at p is

T,S := {set of tangent vectors to S at p} (it is a vector space). (1.11)

E.g., if S is a sphere in R® and p € S, then T},S is its usual tangent plane to S at p.
E.g., particular case: If S = () is an open set in R”, then T),§ =T,Q) = R™ is independent of p.
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15 2.1. The set of configurations

Definition 1.6
The fiber at p := {p} x T,S ={ (p,wp) € {p} x TS}, (1.12)
——

pointed vector
i.e., the fiber at p is the set of “pointed vectors at p”, a pointed vector being the couple (p,w,) made of
the “base point” p and the vector ), defined at p.
Calculation rules in a fiber: if (p,,), (p, W,) € {p} x T,,S and if A € R then
(p, iy + M) = (p, ) + (p, AWp). (1.13)

(You can only add vectors at one point p.)
Drawing: A “pointed vectors (p,,) at p” has to be drawn at the point p in R™. (While a vector @
can be drawn anywhere and is called a free-vector.)
If the context is clear, a pointed vector is simply noted w(p) =" 45i(p) (lighten the writing).
Particular case: If S =  is an open set in R”, then 7,2 = R™ and the fiber at p is {p} x R”.

Definition 1.7
The tangent bundle T'S := | J ({p} x T,,9), (1.14)
peS

that is, is the union of the fibers.

Definition 1.8 A vector field @ in S is a regular function (at least C2 in the following) of pointed
vectors:

~ S =TS
] { (1.15)

p — d(p) = (p,@(p)).

If the context is clear, a vector field is simply noted @ ="""*" 5 (lighten the writing).

2 Eulerian description (spatial description at actual time t)

2.1 The set of configurations

Let ® be a motion of Obj, cf. (1.5), and ©; = ®;(0bj) C R™ be the configuration at ¢, cf. (1.8). The set
of configurations is the subset C C R x R™ (the “time-space sub-set”) defined by

C:

U ({t} x Q) (= set of “time-space positions”)
t€[t,ts)] (2.1)

{(t.p) €ER X R" : 3(t, Ryy) € [t1,12] x O, p = ®(t, By )},

Question: Why don’t we simply use Uy, 1,) Q instead of C = U, 4, ({1} x Q)7

Answer: Ute[tlh] €, is the superposition of all the photos on one image; While C gives the film of
the life of Obj = the succession of the photos £2; taken at each ¢.
2.2 Eulerian variables and functions
Definition 2.1 In short: A Eulerian function relative to Obj is a function, with m € N*|

(2.2)

Sul - C — some tensorial set S
N hp) = &l p),

the spatial variable p being the Eulerian variable. Precisely: A function ful being given as in (2.2), the
associated Eulerian function &ul is the “pointed time-space” function

_ C -CxS
Eul : — (2.3)
(t,p) — &ul(t,p) = ((t,p), &ul(t,p)) = (time-space position , value),

and is called “a field of functions”. So g’@?l(t,p) is the “pointed &ul(t,p) at (¢,p)” (in time-space).
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NB: the range Im(éﬁ) = é{u\l(C) of an Eulerian function &ul is the graph of &ul. (Recall: The graph
of a function f:x € A — f(z) € B is the subset {(z, f(x)) € Ax B} C A x B: gives the “drawing of f”).
And the Eulerian vector field at ¢ is

—~ Qt — Qt x S
Eul; : _ (2.4)
p — Euli(p) = (p, Euls(p)) = (position , value) at t.

If there is no ambiguity, Eul =vritten gy for short.

Example 2.2 &ul(t,p) = 0(t,p) € R = temperature of the particle Ry; which is at ¢ at p = &)(t, R );
Shortened notation of &ul(t,p) = ((¢,p), 0(t,p))- ua

Example 2.3 &ul(t,p) = u(t,p) € R™ = force applied on the particle Ry; which is at ¢ at p. o
Example 2.4 &ul(t,p) = di(t,p) € £(R_;L : R_;l) = the differential at ¢ at p of a Eulerian function 4. am

Question: Why introduce &ul? Tsn't &ul sufficient?

Answer: No: E.g., if 9(t,p) € R3 it the “velocity at t at p” then the function 7 : (t,p) — ((t,p); U(t,p))
is a “vector field” and ¥(¢, p) must be drawn at (¢, p); While ¢(¢, p) (alone) is a “free vector” (can be drawn
anywhere). Moreover (2.3) emphasizes the difference between a Eulerian vector field and a Lagrangian
vector function, see (3.12).

Remark 2.5 The initial framework of Cauchy for his description of forces is Eulerian. .

2.3 Eulerian velocity (spatial velocity) and speed

Consider a particle Ry, and its (regular) trajectory (5%@ it —p(t) = CT)B)@ (t), cf. (1.9).
Definition 2.6 In short: Its Eulerian velocity at ¢ at p(t) = &)%@ (t) is

written 3‘1) . ‘E(H-h, -F)Obj) — 6(157 POZU)

it p(t)) = I, (t) 5 (6 1on) (= Jim - ) (25)

So ¥(t,p(t)) is the tangent vector at t at p(t) = ZI;Q)M (t) to the trajectory &’BM- This defines the Eulerian

C -CxR» _ C - R»
, written (for short) ¢': .

vector field © : -
{(tap) — U(t,p) = ((t, p), U(t, p)) (t.pe) — U(t,pr)

d, dz dz

) = (tpM), o () =UHLED), o = =it (2.6)
the two last notations when an origin O is chosen and #(t) = Op( ) Such an equation is the pro-
totype of an ODE (ordinary differential equation) solved W1th the Cauchy—Lipschitz theorem, see § 5.
(A Lagrangian velocity does not produce an ODE, see (3.21).) ia

Definition 2.8 If an observer chooses a Euclidean dot product (-,-), (e.g. foot or metre built) with its
associated norm |[|.||,, then the length ||U(t,p)||, is the speed (or scalar velocity) of Ry, (e.g. in ft/s
or m/s). And the context must remove the ambiguities: “The velocity” is either the vector velocity
v(t,p) = ‘51%)@/(75) or the speed (the scalar velocity) ||U(t, p)]lq.

Exercice 2.9 Euclidean dot product (-

g, E(t) = Op(t), T(t)

, = (t)” (unit tangent vector), f(t) =
12 (t)lly (speed). Prove : 4(t) = (#"(1), T(t)), =" & (¢) « Tt

.7)
Tz ®llg
t) (= tangential acceleration).

Answer. E.g. 2-D and Euclidean basis: Z(t) = (;c(t)) gives f(t) = (z'(t)? +y'(t)2)%, thus f/'(t) =

y(t)
' W) O +y' Oy () _ F (@) e () Qo [
o) = Fon Similar in n-D. am
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17 2.4. Spatial derivative of the Eulerian velocity

2.4 Spatial derivative of the Eulerian velocity
2.4.1 Definition

For all observers (English, French... (there is no inner dot product here). &ul is supposed C*.

Definition 2.10 The space derivative of &ul at (t,p) € [t1,t2] X ; is the differential d€ul; at p: For all
Wy € R? (vector at p),

L Eul(t, p+hatiy) — Eul(t, p) | written O&ul .
(d&uly(p).wp =) | dEul(t,p). 0, = flzli% W = Tp(t,p).wp. (2.7)

So in € (the photo at t), dul(t,p).w), gives “the rate of variations of &ul, at p in the direction ),”.

E.g., at t, the space derivative dv of the Eulerian velocity field is defined by

p =

lim : — i (p) ). (2.8)

Remark 2.11 In differential geometry (a vector is defined to be a derivation) and f = Euly, (2.7) is
written @(f)(p) = - f (p+hii)p—o: That is @(f) = df.u .
2.4.2 The convective derivative déul.v

Definition 2.12 If ¥ is the Eulerian velocity field, then d&ul.v is called the convective derivative of &ul.

2.4.3 Quantification in a basis: Jacobian matrices

Let f € C*(;R) (scalar valued function), so df € C°(2;R™*) (differential form) and df (p) € R™* (linear
form). Let @ € C°(;R) (vector field). Let (df.u@)(p) := df (p).i(p) (objective value).

Quantification: (&) being a basis in R” (eventually dependent on p), let (usual definition)

of

£ (p) :==df(p).€;, and [df(p)]ie= (%(p) %(p)) = Jacobian matrix of f at p (2.9)

(line matrix because 1t represents a linear form). A Jacobian matrix is subjective (depends on (€;)). This
defines the function 2 8— = df.€; € C°(%;R) and [df]|z € C°(Q; My1).
Thus, with 4 = Zzl:luzez vector at p and with the usual matrix multiplication rule,

n

df (p)-(p) = [df (p)] Z o, P Zu, axz p) " (@grad)f(p),  (2.10)

written df.@ = [df]e.[d]je = 212, 52: up = YU 59{1 —written (7 orad) f € CO(Q;R), where (@.grad) is
CHR) — CO(YR)
f — (Ggrad)f :=df.aq |
Remark: df.@ is objective (value independent of (&;)), so (f[.grzmd)(f) = df.4 is objective; However
(d.grad)(f) is usually used for computational purposes (= [df]|e.[u]|z) which requires a basis (€;). Warn-

the differential operator (#.grad) : {

ing: Moreover the use of the gradient grad in mechanics implicitly means the use of a Euclidean basis.

_ For vector valued functigns f :Q - R_;”, t}le definition of tlle Jacobian requires the choice of a basis
(b;) in R™ (subjective): If f=>""" | f;b;, i.e. f(p) = > iv, fi(p)b; then (above steps with the f;)

[df (p)] o5 = [gicz (p)]iill,.,.,m = Jacobian matrix of f at p, and
=
(@.grad) ;(f) = [df.@l; = > (dfi-@)b; = Y ((d.grad)fi)b; =Y > (u; 5, )b
i=1 i=1 i=1j=1

17



18 2.4. Spatial derivative of the Eulerian velocity

2.4.4 gradf = representation relative to a Euclidean dot product (subjective)

An observer chooses a Euclidean basis (€;) (foot, metre...) and the associated Euclidean dot product (-, -),.
Let Q be an open set in R", f € C'(Q;R) (scalar valued function), and p € Q. Then the (-, -),-Riesz
representation vector of the differential form df (p) is called the gradient of f at p relative to (-,-),, and

named grgmdg flp) € R™: Tt is defined by

Vi € R?, (glr?a'udgf(p)7 )y = df (p).@, written gradf « @ = df @, (2.12)
the last notation iff (-,-), is implicit = imposed to all observer (subjective: foot, metre ?).
Quantification: With @ = Y7 u,& and (2.9), (2.12) gives [gradf]7.[g].[@] = [df].[d@] (more precisely

[df]j-[if]|& = [grad,, f1T.[g]j-[il] ), thus [df]z = [erad, f]T., thus, [g]> being symmetric, [g] z[erad, ]|z =
[df]L., thus [gradgfhg = [g]‘_gl.[df]lg, written (subjective)

e

[grad f] = [g] “.[df]" = [gi] " | (column matrix), (2.13)
of
Oy,

where [g] = [gij]. That is, if gradf = S a;€; then a; = Z?:lgij%.

NB: With duality notations, gradf = St a'é; and (2.13) gives a' = Z?:lgij%: The Einstein
convention is not satisfied (the index j is twice bottom), which is expected since the definition of grad f
depends on a subjective choice (unit of length). In comparison, df = >, g ; dx' satisfies the Einstein
convention (a differential is objective).

Particular case: If and only if (€;) is a (-, -)4-orthonormal basis then [grad f] = [df]*.

Application: The objective first order Taylor expansion f(p+ht) = f(p)+hdf (p).d+o(h) can therefore
be subjectively written:

f(p+hit) = f(p) + herad, f(p) « @+ o(h) (= f(p) +h(lg)"[df]") + i + o(h)). (2.14)

Mind the notations: The gradient grédgf —written o154 f depends on (+,-)g» cf. (2.12)-(2.13); While

(ﬁ.grﬁd) f depends on a basis: Historical gradients notations...

2.4.5 Vector valued functions

For vector valued functions f Q) — R_;", the above steps apply to the components f; of f relative to a
basis (b;) in R™... But, depending on the book you read:

e The differential d f is unfortunately also sometimes ambiguously called the “gradient matrix” (al-
though no Euclidean dot product is required to define df): It could mean the differential... or the Jacobian
matrix... or its transposed...!

e In the objective framework of this manuscript, we will use the differential d f (objective); And
for quantitative purposes, i.e. after an explicit choice of bases (&;) and (l;,), only the Jacobian matrix
[dfhe = [6f‘] will be used (non ambiguous).

Exercice 2.13 Imposed Euclidean framework. Prove (7.grad)7 = %grﬁd(HﬁHQ) + curld A @.

Answer. Euclidean basis (€;), associated Euclidean dot product (,)g ="MteN () and norm |||, =" |||,
7= 3" vié gives ||7]]> = ) o7, thu 8””” 22
81}3 8112 . .

1= 5 — 5 2 .

of curl? is (curl?) 3 3 , idem for (curl?)z and (curl®)s (circular permutation). Thus (first component)
T2 :63

0 0 0 0 . S I JER
(curlé A 7)1 = (a—Z; - a—;}i) 3 — (a—;}; - a—;:)vg, idem for (curl? A #)s and (curlv A v)z Thus (% d(||7]?)
ORI A F)y = 1958 0332 s 22 + Dot — Py — D20, 4 Bohuy = 012 + 08 4052 = (Farad)us
Idem for the other components. un
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19 2.5. Streamline (current line)

2.5 Streamline (current line)
Fix t € R, and consider the photo Q; = ZI;t(Obj). Let p; € Q;, € > 0, and consider a spatial curve in €
at p¢, i.e. s.t.
|—e,e[ = Q
Cp, : and ¢, (0) = p;. 2.15
Pt { s _)q:Cpt(S) pt( ) Dt ( )
So s is a curvilinear spatial coordinate (dimension = length), and ¢,, is drawn in the photo ; at t.

Definition 2.14 ¥: (¢,p) — U(t, p) being the Eulerian velocity field of Obj, a streamline through a point
pr € 4 is a (parametric) spatial curve ¢, solution of the differential equation

%(5) = Uy(cp,(s)) with ¢, (0) = py. (2.16)

And Im(c,,) is the geometric associated streamline (C €2 the photo at ¢).

NB: (2.16) cannot be confused with (2.6): In (2.6) the variable is the time variable ¢, while in (2.16)
the variable is the space variable s.

Usual notation: If an origin O is chosen at ¢ by an observer and Z(s) := Ocy, (s) , then (2.16) is written

—=(s) =T (#(s)) with (0) = Opr. (2.17)
s

Moreover, with a Cartesian basis (€;)) chosen at ¢ by the observer and 7;(Z(s)) = Y ., vi(s)€; and Z(s) =
S wi(s)€;, we get the differential system of n equations in R” (the unknowns are the functions z;)

d .
Vi=1,..,n, dx;(s) = 03 (21(8), .., Tn(5)). (2.18)
Also written p p
arn _ % _ o (2.19)
U1 Un

(meaning: Tt is the differential system (2.18) of n equations and n unknowns which must be solved.)

2.6 Material time derivative (dérivées particulaires)
2.6.1 Usual definition

Goal: To compute the variations of a Eulerian function &ul € C*(C;S) along the trajectory (51%@ of
a particle Ry; (e.g. the temperature, the velocity, ..., of a particle along its trajectory). Consider the
function gp, : [t1,t2] — F (gives the values of &ul relative to a Ry, along its trajectory): For all t € [t1, 5],

9ry (1) = Eul(t, B, (1)) |, written gp, (t) = &ul(t,p(t)) when p(t) := Pp, (t). (2.20)

Definition 2.15 At t at p(t) := 53)@ (t), the material time derivative of &ul is

Dé&ul . &ul(t4h, p(t+h)) — Eul(t, p(t))

o (6p0) =gr, ()| (= lim )

). (2.21)

ie. with &)1’%@ (t) = 6(t,p(t)) (Eulerian velocity), £&ut (¢, p(t)) := 8'S"l( t,p(t)) +d&ul(t,p(t)).9(t,p(t)) (=

limy,_o Sul(t-l-h,p(t—&-i;l))—Sul(t,p(t)))7 ie.
Déul O&ul
= + déul.T|. 2.22
Dt ot ( )
Example 2.16 f € C*(C;R) (scalar valued function), thus % is the scalar valued function given by
Df _ af
=L +df-v 2.23
o s (223)
ie. Dt (t p) a—f( p) + df (t,p).0(t,p) for all (t,p) € C. With a basis (€;) and 7 = Y, v;¢; we get
g{ = —|— > gfl p; =Written %{ + (T.grad) f. ou
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20 2.6. Material time derivative (dérivées particulaires)

Example 2.17 @ € C1(C;R") (vector valued):

Dw 0w
ﬁ = E + dw.v. (2.24)
With a basis (€;) we get Tt = 6“’1 +22; g;"f vjforalli=1,...,n. oa

Exercice 2.18 Let a be a C*! differential form: We have 2 Dr =(2.22) 80‘ + da.¥; Check it with a Cartesian

basis. And prove, for all @,
Da _ D(a.w) Dw

— .= - — 2.25
ot~ bt YD (2.25)
Answer. Cartesian basis (€;), dual basis (me;), ¥ = >_,v;€; and a = 7, a;me; we have Do =%, %t Te; With
a; al _ a7 ;= a [} [T} ,067751 2 ,0671’5@—' —
DDt -2 + do; U = & —‘,—ZJ gzj.’l}j,thlls %—El %7"'@"’2” gTj-Ujﬂ'ei— 82 +Z 2 U =
88—‘;‘ + da.v.
w vector ﬁeld and « differential form, thus a.u is a scalar valued function. Thus % = a(a w) +d(a.w).v =
90 + 0.2 + (da.).b + a.(db.¥) = L2400 + (dat).d + a. 28 + a.(db.¥) = 2240 + a. fg;g Thus 220 =
Dloed) . D3 e, (2.25). o
Proposition 2.19 = is a derivation: All the functions being Eulerian and C*,
e Linearity:
D(&uly + Neul Dé&ul Dé&ul
(Eul, 2) _ L2, (2.26)
Dt Dt Dt
e Product rules: If Euly, Euly are scalar valued functions then
D(Sullé’ulg) D&I,ll D((:'U,ZQ
Euly + Eul . 2.27
Dt Dt 2 + culy Dt ( )
e If paticular W is a vector field and T a compatible tensor (so T.W is meaningful) then
D(Tw DT Dw
(%) _ W4+ T.— (2.28)

Dt Dt Dt’

Proof. Let i = 1,2, and g; defined by g;(t) := &ul; (¢, p(t)) where p(t) = ‘51?»7 (t).
e (g1 + Ag2) = g| + Ag gives (2.26).
e On the one hand (T D) — 6(T'“7) + d(T. u7) U= dT w4+ T. a“’ + (dT.9).% + T.(dw.7), and on the
other hand 2L + T. D;“ = (% + dT 7).+ T.(22 + dw ). Thus (2.27)-(2.28).

2.6.2 Commutativity issue

Let &ul be C2. The Schwarz theorem tells: d(a(%l) = a(cgi“l) The derivatives commute.

Proposition 2.20

DS o5, DUdea) |, Dé

Dt o Dt TR

in general, (2.29)

i.e. the material time derivative % does not commute with the partial derivation % or with the spatial
derivative d (because the variables t and p are not independent along a trajectory). We have:

Dé&ul O&ul
%) _ PGt | gy 97 g P&ty _ DUEL) et g
ot i ot and Dt Dt (2.30)
O*&ul O&ul o _o(d&ul) | . L
= dﬁ' U+ déul.— TR =~ + d*&ul. U + d€ul.dv.
o5 O(% +déulv) 9wl d(dEul) o Déul d&ul
Ia’r;;fl' % = N e ?tQ + ETamil + dEul.E. And th =d(—— 5 + déul.v) =
( = ) L ddgul). v + deul.di — M + déul.dv, thus (2.30).
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21 2.6. Material time derivative (dérivées particulaires)

Exercice 2.21 If &ul is C? and 1 is O, check D(dgutl'w) = D(d&d) A0+ déul. %f (i.e. £ is a derivation),
and

Dd8ul-6) _ ,08ul &+ 4.2 4 (a(agul).o).@ + d€ul.did.i
Dt at ot (2.31)
B @ OdEul) . o '
= dé‘ul. i + 5 + d*&ul(V, ),
and D2&ul  9%&ul O8ul or
L= T L 9q % F - déul. l + (d(dEul).7).7 + dEul.d7.T
_ dsul. & 0?&ul +d65ul 5 D(dé&ul) p
B Dt o ot Dt
Answer. D(déulb) - _ a(df;il'w) + d(déul.w). 0 = (%iul) U+ déul. % + (d(d&ul).¥). b + déul.dw.v =

Dt
D (gi“l).w + deul.%. And &l € C? and Schwarz give 24D — g(98uly and (dP&ul )8 = d*Eul (T, D),
hence (2.31). And

D&l ., . DBEL 925+ dgul.v) dEul
Dz~ 9w = = ot (T + dEul.o).v
_0%&ul o(déul) - ot O&ul ., 4
= e + B +dgl§+d87 + (d”&ul V).V + déul.dv.v,

Wlth Lod= do 57 (Schwarz), %ﬁ“l) = % + d*&ul.v and d&ul . B¥ = dé'ul.% + d&ul.dv.v, hence (2.32). du

Exercice 2.22 Prove (2.30) with a Cartesian basis (€;).

l i
Argsg:slrer a? _ 5(2Lul +§Z .%il:) _ a;;g;u + Zz g;s;lz. "’Zz %zai;z.av _ a?gul + Zl gtg;ll v+ dEul. 6'0. And
D(Dat{ : = % + 5 811 pob v = Tt + Zgggfng' {; !
Eul 9( 2&u ul i . ) o o
Aud d(5).0 = T, bl = 8, Tt D) = 8 S80S, SR Vw4 T, B )
>, ;”t;;j J + d25ul(17, w) + déul.dv.@. And PUED o = (2B 4 q(dgul).g)ap = 2 i 4 d2&ul (,40) =
2 gz%i w' + d*&ul (v, ). Thus d(LE).& = M W + d&ul.dv.b for all w. La

2.6.3 Remark: About notations

e The notation % (lowercase letters) concerns a function of one variable, e.g. % () = ¢'(t) :=
limy, o g(t+hz)*g(t),
e The notation % concerns a function with more than one variable, e.g. 8&” (t,p) =

. Eul(t+h,p)—&ul(t,p) .
hmh—>0 ( }2 (t:p) )

e The notation DQt (capital letters) concerns a Eulerian function differentiated along a motion.

e Other notations, often practical which are ambiguous if composed functions are considered:

déul(t,p(t)) s Déul d&ul(t, p(t)) , D&Ll
g =9y ()= (6p(t), and —— == I (to) =

o (to, plt)). (2.33)

2.6.4 Definition bis: Time-space definition
Consider the affine time-space R x R™ and a C! function f : (t,p) € R x R — f(t,p).

Definition 2.23 The differential of f is called the “total differential”, or “total derivative”, and noted D f.

So, with R x R™ the associated time-space vector space, if py = (¢,p) € R x R™ and W} = (wp, W) €

R x R™ then we have (definition of a differential) Df(py ). = lims_ %ﬁ—ﬂm% ie.
t+h hw) — f(t
DF(t, p).(wo, @) = lim LU W0 PHIE) = F(t:p) (2.34)
h—0 h
Thus of
(Recall df is the space differentiation, so if (€;) is a Cartesian bas1s then df (t,p) = —( p)dxy + ... +

(t p)dx, and @ =), w;€; gives Df(t,p).u = at L(t, p)wy + E)x L(t, p)wy + ... + amn( ,D)Wy,).
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22 2.7. Eulerian acceleration

Then consider the time-space trajectory

~ {[tl,tﬂ — R x R"
Up, - - (2.36)
t = Up, (1) = (8 Py, (1) (= (& (1))
(So Im(\TJ}?}bj) = graph(&)l?)b]).) The tangent vector to this curve at ¢ is
Up,'(t) = (1,Bp, (1) = (1,5t p(t)) € R x R" (2.37)
where 9(t,p(t)) = %(t) is the Eulerian velocity at (¢,p(t)). And (2.20) reads
Ghy () = (Sul 0 U, )(t) = Eul(Vp, (t)), (2.38)
thus
Gl (1) = D)) T, (1) = 0L (1 (1)1 + (1, (1) 700, p(1)) "2 P21 ), (2.30)

i.e. (2.22): The material time derivative is the “total derivative” D&ul along the time-space trajectory \Tl%,y .

2.7 FEulerian acceleration

Definition 2.24 In short: If EIVDR)@ is C?, then the Eulerian acceleration of the particle Ry; which is at ¢

at p, = O(t, Ryy) is
- = itten 0P
T(t,pe) = By, (8) V=T S (L Fo)- (2.40)

In details: as in (2.3), the Eulerian acceleration (vector) field 7 is defined with (2.40) by

%’(t,pt) = ((t,p¢),7(t, p)) € C x R?  (pointed vector). (2.41)
Proposition 2.25
Dv  ov
~ = — = — H." . 2.42
ol rimlrn + do.v (2.42)
And if ¥ is C? then 5(di Dldi
45 = (8:) + d20.0 + di.di = 1();)) + di.di (2.43)

Proof. With ¢(t) = #(¢,p(t)) = 5%@’(75) and (2.22) we get Y(t,p(t)) = ¢'(t) = %f(t,p(t)). And T

being C2, the Schwarz theorem gives d%qt7 = a(gf)_ un

Definition 2.26 If an observer chooses a Euclidean dot product (-,-), (based on a foot, a metre...), the
associated norm being [|.||,, then the length ||¥(¢,p;)||, is the (scalar) acceleration of Ry,;.

2.8 Time Taylor expansion of d

Let Ry € Ol and t €]tq,t2[. Suppose CT)B)@ € C%(Jt1,t2[;R™). Tts second-order (time) Taylor expansion
of ®p, is, in the vicinity of a t €t1,ta],

i (1) = B, (1) + (=008, (1) + S8, 1)+ of(r—0), (2.44)

l.e. (T_t)Q

5 1t p(t) + o((t—t)?). (2.45)

p(1) = p(t) + (r=)T(t, p(t)) +

3 Lagrangian description = Motion from an initial configuration
Instead of working on Obj, an observer may prefer to work with an initial configuration Q, = &)(to, Ol)

of Olj (cf. elasticity): This is the “Lagrangian approach”. This approach is not objective: Two observers
may choose two different initial times (and configurations).
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23 3.1. Initial configuration, Lagrangian “motion”, Lagrangian variables

3.1 Initial configuration, Lagrangian “motion”, Lagrangian variables
3.1.1 Definitions

Obj is a material object, P : [t1,t2[x Oy — R™ is its motion, Q; = Ci(t, Olj) is its configuration at ¢t. An
observer chooses an “initial time” # €]t1,t2[, hence €, is his initial configuration.

Definition 3.1 The motion of Obj relative to the initial configuration €, = ®(to, Obj) is

(I)to . [tl,tg} X Qtﬂ — R (3 1)
' (t.pr,) = pe=D°(t, py) := ‘T’(tvPObj) when py, = &’(%7130173') : '

pr = ®(t,py,) is the position at ¢ of the particle Ry; which was at py, at to, and py, = D (fy, py,) is its
initial position.

Definition 3.2 fy, p;, and ¢ are called the Lagrangian variables relative to the (subjective) choice ;.
If ¢ is fixed then (3.1) defines
Q, —Q
P - . (3.2)
Pty = pe =P (py) := DO (t,pyy)-
And (3.1) gives ®%(d,, (Rw)) = &)t(PObj), for all Ry; € Obj, thus @) o &, = &y, thus ® is defined by

Pl =Py 0 ((T)to)*l . In particular @) = (@)=L, (3.3)

because B 0 31 = (B 0 (Byy) 1) 0 (Byy 0 (By) 1) = 1.
Hypothesis: For all ty,t €]t;,t5[, the map P : Q, — Q is a C* diffeomorphism (a C* invertible
function whose inverse is C*), where & € N* depends on the required regularity.

Then @ () (py,)) = p1, gives d® (p;).d®Y (py,) =1, i.e.
AP} (pe) = d®Y (p,)~" when  py = DY (py,)- (3.4)

Marsden and Hughes notations: Once an initial time #, has been chosen by an observer, then
this observer writes Plo =written ¢ then p, ="1ten p ¢ Q, (capital letter for positions at t,) and
pe =TI 5 € O, (lowercase letter for positions at t):

p=3(t,P) = B,(P) when P =®(ty,P)=dy(P). (3.5)

NB: e Talking about the motion of a position py, is absurd: A position in R™ does not refer to a
motion. Thus ®© has no existence without the definition, at first, of the motion ® of particles.
e The definition domain Q,, of ®® depends on #: The superscript © recalls it. E.g. a late observer
with initial time t,/ > #, defines ®%" which definition domain is [t1,t2] X Q4,, thus P’ £ ® in general.
e The following notation is also used:
D (t, pr,) = ®(t; %0, Py )- (3.6)

The couple (to, ps,) is “the initial condition”, or t; and py, are the initial conditions, see § 5 (flows).
o If an observer chooses a origin O € R™ then with (1.6) he can also use

- — R > [ - —
x,go:(9]310zgo’fo(to,avto)zXz(ﬁg and & = Op; = g (t,7,) = ¥ = Op. (3.7)

3.1.2 Trajectories
Let (fo,p1,) € [t1,t2] X 4, (initial conditions); Then (3.1) defines
[tl, tg] — R"
(I);Oto : to o to ) (3:8)
t = p(t) =0 (1) == Pp, (t) = °(t,py,) when py = Pp, (to).

Definition 3.3 @Zﬂb is called the (parametric) “trajectory of py”, which means: @?fo is the trajectory of

the particle Ry; that is located at p,, = ®(¢, Ry, ) at tp. And the geometric “trajectory of py” is
(@) = 8 (b t)) = |J (@5 (0} (= Im(3p,)). (3.9)
tefty,ta]

NB: The terminology “trajectory of p,,” is awkward, since a position p;, does not move: It is indeed
the trajectory ®p, of a particle 2y which is at p;, at #, that must be understood.
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24 3.2. Lagrangian functions: Two point tensors

3.1.3 Streaklines (lignes d’émission)

Take a film between # and T (start and end).

Definition 3.4 Let @ be a fixed point in R™ (you see the point @ on each photo that make up the film).
The streakline through @ is the set

Eyr(Q) ={peQ:3r€[to,T]: p=27(Q) = (1)71(Q)}
={peQ:Iuel0,T—t]:p=2LQ) = (27_,) "(Q)}
= | {eomy= | {5

TE[to,T) we[0,T—1p)

(3.10)

= the set of the positions (a curve in R™) of all the particles which were at Q at a T € [to, T.

Example 3.5 Smoke comes out of a chimney. Fix a camera nearby, choose a point @ at the top of the
chimney where the particles are colored. At ¢, start a film and at T stop filming. Then superimpose the
photos of the film: The obtained colored curve is the streakline. .

3.2 Lagrangian functions: Two point tensors

Consider a motion ®, choose (subjective) a fy € [t1, t], let Q= ®(ty, Oly) (initial configuration).

Definition 3.6 In short: A Lagrangian function is a function defined on the set of Lagrangian variables:
It is a function

[t1,t2] X €, — some tensorial set S
Lag™ : t (3.11)
(tapto) — ‘Cag (tapto)a
(A Eulerian function does not depend on any %, cf. (2.2).)
Precise definition: Lag® being defined in (3.11), a Lagrangian function is a function
__ [t1,ta] x Qp —C xS
Eagto : { S N N (3.12)
(t,p) — Lag (t,py) = (¢, pr), Lag” (t,pr,))  when  p; = & (pg,).
And E/agto (t,py,) has to be drawn at (¢, p;) (not at (f, py,))-
Interpretation: (3.12) tells that Lag® (¢, p;,) is not represented at (¢,py,) but at (¢,p;):
—t .
m(Lag ) = {((t,p:), Lag®(t,py,))} while graph(Lag®) = {((t,pr), Lag" (t,pr)); (3.13)
thus o
Im(Lag ) # graph(Lag®) : (3.14)

So a Lagrangian function does not define a tensor in the usual sense. To compare with the Eulerian
function &ul which defines a tensor (in particular Im(&ul) = graph(&ul) cf. (2.3)).

Definition 3.7 (Marsden and Hughes [16].) A Lagrangian function is a “two point tensor” in reference
to the points py, € €, (departure set) and p; € Q; (arrival set) where the value Lag® (¢, py,) is considered
(the value Lag™ (t,py,) is not considered at (, py,)).

Example 3.8 Scalar values: Lag®(t,p,) = ©%(t,p;,) = temperature at ¢ at p; = ®P (p,) = &)(t,PO@-) of
the particle Ry, that was at py, at . (So, continuing example 2.2, ©% (¢, py,) = 0(t, p;).) u

Example 3.9 Vectorial values: Lag®(t,p,) = U™ (t,p;,) = force at t at p, = B (p,,) = 5(t7PObj) acting
on the particle Ry, that was at py, at f. (So, continuing example 2.3, o (t,py,) = U(t,pe).) un
If ¢ is fixed or if py, € Qy, is fixed, then we define (in short)

Qto — S
Lagy (3.15)
P — Lag (p,) = Lag®(t,py,),

fado [t1,ta] — S (3.16)
Wy * t — Lagy, (t) == Lag®(t, p)- .

Remark 3.10 The position py, is also sometimes called a “material point”, which is counter intuitive:
Ry (objective) is the material point, and py, is just its spatial position at & (subjective); And a Eulerian
variable p; is not called a “material point” at t...

By the way, the variable p, is also called the “updated Lagrangian variable”... .
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25 3.3. Lagrangian function associated with o FEulerian function

3.3 Lagrangian function associated with a Eulerian function
3.3.1 Definition
Let ® be a motion, cf. (1.5). Let &ul be a Eulerian function, cf. (2.3). Let ty € [t1, to].

Definition 3.11 The Lagrangian function Lag® associated with the Eulerian function &ul is defined by

’Eag? := &uly o Bl (3.17)

for all t € [t1,t2]. Le., for all (t,py) € [t1,t2] X Uy,
Lag®(t,py) = &ul(t,p;), when p; = ®L(py). (3.18)
Le., for all (t, Ry;) € [t1,t2] x Obj,

Lag® (D(ty, Ryy)) := Eul(B(t, Roy)). (3.19)

3.3.2 Remarks

e For one motion, there is only one Eulerian function &ul, while there are as many Lagrangian func-
tion Lag™ as they are #p (as many as observers): The Lagrangian function Lag® of a late observer
(te’ > to) is different from Lag™ since the domains of definition €, and Qs are different (in general).

e If you have a Lagrangian function, then you can associate the function (similar to (3.17))
Eull := Lagl® o (D)1, (3.20)

but this function depends on # (a priori).

3.4 Lagrangian velocity
3.4.1 Definition

Definition 3.12 In short: The Lagrangian velocity at ¢t at p; = 5(@ Ryyj) of the particle Ry, is the
function .
R x Qto — R?
Vi . 3 3 (3.21)
. ~ . Ry (t—|—h) — (I’I%b, (t)
(t7pto) - Vtﬂ (tapfo) = (DR)@/(t) (: }le )
—0 h
when p;, = 5(1%07]%)@-). Thus Vo (t,py,) = 53),7]’(16) = 3(t, p;) € R? is the velocity at ¢ at p, = &)(t,PObj) of
the particle Ry; which was at p,, = 5(&), Ryyj) at t, tangent to graph(¥) at (¢,p;): Drawn at (¢,p;).
Precisely: The Lagrangian velocity is the two point vector field given by

— R x Q, —C xR}

vto(t7pf()) : = =t t
(tapto) — Vto(tapib) = ((tapt)av (t7pl‘o))7 Whel’l Dt = ) (tapfo)

(3.22)

Remark: A usual definition is given without explicit reference to a particle...: Instead of (3.21),
Ot

Vo(t,py) = W(f,pm)v V(t,pr) € R x Q. (3.23)

3.4.2 Lagrangian velocity versus Eulerian velocity

Let
Vi (py) = VO(t,py), and V2 (1) := VO (t,py). (3.24)

Then (3.21) and (2.5) give, alternative definition, with p;, = (f)(to,%bj) and p, = O(t, R ),

~ ot ~
Vot py,) :=0t,p) (= W(Lpto) = ®p, '(t) = velocity of Ry, at t at p;). (3.25)
Hence
Vio =g ool | : Q, — R (3.26)
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26 3.5. Lagrangian acceleration

3.4.3 Relation between differentials

For C? motions (3.26) gives, with p, = ¥ (p,,),
AV (py) = diy(pe).dY (py,) : Ry — R (3.27)

(The differential dV; is a two-point tensor.) Le., with

Flo = dol WHUCR 1o deformation gradient relative to ) and ¢, (3.28)
AV (pi,) = dy(p).F° (p) | R} — R} (3.29)

Abusively written (dangerous notation: At what points, relative to what times?)

dV = di.F. (3.30)

3.4.4 Computation of ¢y =Written 1, — F.F~ with Lagrangian variables

Start with a Lagrangian velocity ‘7“], then define the so-called Eulerian velocity by, with p; = <I)§0 (Pto )5
7" (t,pe) = V" (t, py,) (3.31)
(so-called Eulerian despite its dependence on #y a priori), i.e. 7% (¢, ®° (py,)) := %(t,pm). Thus

Pl O(dd OF
di' (t, pe).d® (t, py,) = d(W)(tvpto) = %(tapl‘o) = W(t,pm)a (3.32)

with ®% C? for the second equality (Schwarz’ theorem). Thus

to

oF .
div™ (t,py) = W(t,pb).F&’ (t,py,) "', written in short L :=dv = F.F (3.33)

but L thus “defined” is defined at what points? What times? Eulerian? Lagrangian?
NB: Start with Eulerian quantities and use Eulerian quantities as long as possible!, which in particular
say that L = dv doesn’t depend on #y: It is Eulerian.

3.5 Lagrangian acceleration
Let Ry € O, to,t € R, pyy = EI;R)@. (to) and py = E)R)@. (t) (positions of Ry, at tp and ¢).

Definition 3.13 In short, the Lagrangian acceleration at ¢ at p; of the particle Ry, is

T (t,p,) == Op,”(t) when p, = Tp, (to). (3.34)

In other words

I—:to(t,pfo) :=9(t,p) when p; = ®%(¢,p,), (3.35)

where (¢, p;) is the Eulerian acceleration at t at p, = ®(¢, Ry,), cf. (2.40).
Precisely: The Lagrangian acceleration is the “two point vector field” defined on R x €2, by

Tt (t,py) = ((t,pe), Pry," (1)), when p, = (¢, py,). (3.36)

In particular f“’(t,p&)) is not drawn on the graph of [t at (t,py,), but on the graph of 4 at (¢,p;).

ITo get Eulerian results from Lagrangian computations can make the understanding of a Lie derivative quite difficult: To
introduce the “so-called” Lie derivatives in classical mechanics you can find the following steps: 1- At ¢ consider the Cauchy
stress vector t (Eulerian), 2- then with a unit normal vector 7, define the associated Cauchy stress tensor g (satisfying

i= o.7), 3- then use the virtual power and the change of variables in integrals to be back into Q4 to be able to work
with Lagrangian variables, 4- then introduce the first Piola—Kirchhoff (two point) tensor B, 5- then introduce the second
Piola—Kirchhoff tensor 9K (endomorphism in Qy)), 6- then differentiate K in Q, (in the Lagrangian variables although the
initials variables are the Eulerian variables in €;), 7- then back in Q; to get back to Eulerian functions (change of variables
in integrals), 8- then you get some Jaumann or Truesdell or other so called Lie derivatives type terms, the appropriate choice
among all these derivatives being quite obscure because the covariant objectivity has been forgotten en route... While, with
simple Eulerian considerations, it requires a few lines to understand the (real) Lie derivative (Eulerian concept) and its
simplicity, see § 9, and deduce second order covariant objective results.
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27 3.6. Time Taylor expansion of &0

If ¢ is fixed, or if p;, € Qy, is fixed, then define
F0(py) = T0(tpy,), and T (8) = F(tpy). (3.37)

Thus
[/ =Fo®?, and dl}(py) = d7:(pe)-F° (pro), (3.38)
when p; = ®°(p;,) and F{° := d®¥ (the deformation gradient).
Dangerous notation: dI’ = d7.F (points? times?).

3.6 Time Taylor expansion of %

Let py, € €,. Then, at second order,

w5, (7) = @5, () + (@l (1) + 0

ol " (t) + o((r—1)?), (3.39)

i.e.

(1)’

- t

p(r) = p(t) + (r=)V (t,py) + -

NB: There are three times involved: % (observer dependent), ¢ and 7 (for the Taylor expansion). To
compare with (2.44)-(2.45): p(7) = p(t) + (7—)v(t, p(t)) + %V(t,p(t)) +o((7—t)?), independent of t.

T(t,py) +o((T—1)°)  when  p(r)®% (py,)- (3.40)

3.7 A vector field that let itself be deformed by a motion (— Lie)
th —)RZ’)

Pty — Wy (Pyy) == W(to, Py, )
field called the push-forward of Wty by @ (esult of the deformation of 1, by the motion, see figure 4.1):

C R
Wiy - { ¢ (3.41)

Fix ty and let oy, : { } (vector field in €,), and define the (virtual) vector

(t,pe) — Wigu(t, pr) == AR (t, py, )Wty (p,),  When  p(t) = D (2, py,).
Proposition 3.14 For C? motions, we have (time variation rate along a virtual trajectory)
D1
Dt
ie. LWy = 6L where Lyii := 2% — di.ii (= % + du.7 — dv.i) is the Lie derivative of a (unsteady) vector
field i : C — R™ along .

= ATy, (3.42)

Proof. p;, being fixed and d®%(t,p,) =""4en B (1), (3.41) gives Wi« (t,p(t)) = F(t).0y, (p,), thus
2R (6, p(8) = F'(0), (py) = F/(£).F ()™ g (£, p(1) =3 dii(t, p(8)- Wi (1, p(1)), i€ (3.42).

C - Rr
t,pt) — W(t,pt)

W(tp, py,). We will see that Lw(to, pyy) = limy_sy, w(t’p(t))_;fto*(t’p(t)) measures the “resistance of W to a mo-
Wiy (£p(1)) 1y (typ(t)))
)

Interpretation: Let o : {( } be a CY Eulerian vector field, and @, (p;,) =

tion”, see § 9.3.2; In particular the result LzwWy, . (to, Py, ) = 0 is “obvious” (= limy 4,
and tells that @ does not oppose any resistance to the flow.

)

3.8 Examples

Let @ : [ty,£5] X Obj — R™ be a C' motion, ty €]t, [, ® be the associated Lagrangian motion.

3.8.1 Rectilinear motion

The motion of Ry; is rectilinear iff, for all Vty,t € [t1, 2], (o, t) € R,

Op, () = Bp, () + alte,t) B, (to), ie. Pp,(t) — By, (to) || P, (to). (3.43)
And it is rectilinear uniform iff the rectilinear trajectory is traveled at constant velocity, i.e., Vty, t € [t1, t2],
Op, () = Dp, (to) + (t—10) Bpy,," (t0), (3.44)

ie. p(t) = p(to) + (t—to) V' (to, plto)) where p(t) = B(t, Ry;) and V(t,p,,) = Pp,’ (t).
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28 3.8. FEzamples

3.8.2 Circular motion

P = ®(ly, Ry;) € Q, and ®%(t) = ® (¢, P). Choose an origin O in R? and a unique Euclidean basis
(Ey, E,) at all time (in H@), and let 3% (t) = O (t) = x(t )E1 + y(t)Ey. The motion @' is a circular
motion iff, for all ¢, F%(t) = (a+R cos(f(t NE; + (b+Rsin(0(t)))Ey, i.c.

~to (=) =a+ Rcos(0(t))
[Pe®)z = ( y(t) = b+ Rsin(6(t)) ) (3.45)
for some R > 0, some a,b € R, and some function ¢ : R — R: The particle Ry, stays on the circle of

radius R centered at O¢ = <Z> The circular motion is uniform iff Jwy € R, V¢ € [t1,t2], 0(f) = wot

(i.e. 0"(t) = 0).
Thus the Lagrangian velocity of a circular motion is V2 () = (®%)/(¢) = (5%)'(t), i.e. given by

Fo sy . — po'(e) [~ S(O()
7500 = R (i) (3.4
(orthogonal to the radius vector Vlf,‘)( t) is to F5(t)). And the Lagrangian acceleration flté’ (t) is given by
21 g sin(6(t)) 12 [ —cos(6(t))
[FP( )]\ = RO"(t) ( 0s(0(t)) + R(0'(t)) —sin(0(t)) ) (3.47)
Then consider the orthonormal basis (€,(t),€y(t)) given by (normalized polar basis)
S ([ cos(6(1)) S [ —sin(0(2))
[er(t)]‘E ; (sin(@(t)) , and [ee(t)]‘E -\ cos(0(t) ) (8.48)
We get B .
VR =Ry and T'p=R(0"¢e — (0)°€,). (3.49)
Immersed in R?, with Es = E; x Ey and w(t) = 0(t) and &(t) = w(t)Es,
Vi =& x (g% —00¢), and L[l = R(Cclli: & — w?é,). (3.50)

3.8.3 Motion of a planet (centripetal acceleration)

Tllustration: Obj is a planet from the solar system. (€}, €5, €3) is a Euclidean basis fixed relative to stars
where (€7, €5) define the ecliptic plane, (-, -), is the associated Euclidean dot product, ||.|| the Euclidean

associated norm, O the center of the Sun is the origin in R3, R = (O, (&;)), F%(t) = O®%(t). So the
Lagrangian velocities and accelerations are given by
d*®p d>@p

¥ :&(t):@(t)a and  Ap(t) = a2 (t) = 12 ()-

el =5 dt

Definition 3.15 The motion of a particle Ry; is a centripetal acceleration motion iff the motion is not
rectilinear and, at all time, the acceleration vector points to a fixed point F' € R? (focus).

(3.51)

Example 3.16 The motion of a planet from the solar system is an elliptical motion, is a centripetal
acceleration motion, one of its focus being at the center of the Sun. .

Consider a centripetal motion and choose O := F the focus: We have O®p(t ) | Ap(t) for all t, i.e.

@p(t) x Ap(t) =0, Vt. (3.52)
Definition 3.17 The areolar velocity at t is the vector
_ 1. q
2(t) = 5@0() x Vo). (3.53)

Proposition 3.18 If @ is a centripetal acceleration motion, then the velocity never vanishes, the areolar

velocity is constant, i.e. . .
Z(t) = Z(t), Vt, (3.54)

and the motion takes place in the affine plane orthogonal to A (to) passing through F. And the position
vectors sweep equal areas in equal times.
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29 3.8. FEzamples

Proof;2%(t)=(3'53) j%( ) % Vp(t) +@(t) x B2 (t) = Vp(t) x Vi (t) + F(t) xffp(t) = 6+ﬁ6 thanks to (3.52).
Thus Z is constant, Z( ) = Z(ty) for all t. Then (3.53) gives: Zp(t) and Vp(t) are L Z(ty) for all ¢.

Thus if Vp(7) = 0 for some 7 then Z(7) = 0, thus Z(t) = 0 for all ¢, thus @p(t) || Vp(t) for all ¢, thus
Gp(t) || @p'(t) for all ¢, i.e. Fp(t) = f(t)Fp'(t) for all t, thus Fp(t) = Fp(to)eF'®) where F is a primitive
of fs.t. F(ty) =0, thus @p(t) || Gp(to), so OPp(t) || OPp(ty), for all t: The motion is rectilinear, which
is excluded in the definition of a centripetal acceleration motion. Thus the velocity never vanishes.

And ﬁp X Ap = Ggives ‘_/;:; 3 (QBP X pr) =0= det(V}:, ﬁp, A:D) = (‘7}3 X QEP) . A}D = Z- AID, thus A’p(t) 1
Z(ty) for all t. And the Taylor expansion gives @p(t) — @p(to) = Vi (to)(t—to) + f::to Ap(T)(t—7)2dr L
Z(fo) for all ¢, thus the motion lives in the plane @p(fo) + Vect{Z(t)}T. And Ap(t) is a vector at ®p(t)
and points towards the focus F, thus F®p(t) L Z(ty), thus the affine plane passes through F.

The area S(t, h) swept by gp between ¢ and t+h is, at first order, the area of the triangle whose sides
are Pp(t) and gp(t+h) (“angular sector”):

S(t,h) = ||S(t,h)|| with S(t,h) = %@’p(t) X @p(t+h) + o(h). (3.55)

We want 22 (¢, h) = 0 for - any (admissible) fixed h, i.e. S(t,h) = S(to, h) for all h.
We have @p(t+h) = Gp(t) + @p'(t)h + o(h) = @p(t) + Ve (t)h + o(h), thus

25(t,h) = @p(t) x (Bp(t) + Vp(t)h + o(h)) + o(h) = @p(t) X Vp(t)h + o(h). (3.56)

And S(t,0) = 0, thus w = 15p(t) x Ve (t) + o(1), thus

o8 1 _ oz, (354) 2 a8
S (,0) = 2 (1) x Th(t) = Z() “2 Z(t) = 22 (10,0) (357)
And S%(t,h) = S(t, k)2 = ||S(t,h)||2 = S(t, h) « S(t, h) gives
a(8)? B a8 = d(9)? B
o (t,h) =2 %(t h)«S(t,h), thus on (t,0)=0 (3.58)
because S(t,0) = 0. Thus the function ¢t — S(¢,0) is independent of ¢: The position vectors sweep equal
areas in equal times. ==

Interpretation. (Non rectilinear motion.) The area swept by @p(t) is, at first order, the area of the
triangle whose sides are gp(t) and gp(t + 7) (“angular sector”). So, with 7 close to 0, let

o 1. .
Si(1) = 5ép(t) x gp(t +7), and  Si(r) = 15:(m)1]; (3.59)
the vectorial and scalar areas. With @p(t+ @p(t) + Vp(t)T + o(7) (Taylor) we get

T) =
Su(r) = 590(t) x (Tolt)r + o(r), (3.60)

Since S(0) = 0 we get M = 15p(t) x Vi (t) + o(1), then

ds 1 q . -
2 (0) = 580 (1) x Vo(t) = Z(t) = Z(to), (3.61)
T 2
thanks to (3.54), thus
dS, . dS,
5 (0)=—2(0),  Vtelt,T], (3.62)

that is, the rate of variation of S; is constant. And with ||S;(A7)||2 = (S:(AT), Si(AT)) we get

d||Si |1 ds;
5 (A7) =2(——(A7), Si(aT)), (3.63)
so, since S;(0) = 0, .
%(0) =0. (3.64)

So the function ¢ — |5, (0)||2 = S,(0)? is constant, thus ¢ — S;(0) est constant, and dd—s;t(O) is constant.
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30 3.8. FEzamples

Exercice 3.19 Give a parametrization of the swept area, and redo the calculations.

Answer. Let

r(t) = llee @], 0() =pt)OP  (angle), (3.65)
then
r(t) cos(0(t))
ep(t) = | r(t) sig(@(t)) . (3.66)
Thus
B ' (t) cos(0(t) — r(¢))0'(t) sin(0(¢))
Ve(t) = | v/ (t)sin(0(t) + r(t))0' (t) cos(6(t)) (3.67)
0
With (3.53) we get
o 1 0
Z(t) = 3 0 . with 72(£)0'(t) = r*(t)#’ (to) (constant), (3.68)
()6 (t)

cf. (3.54). A parametrization of the swept area is then
~ (10,1] x [to,T] — R® . pr(t)cos(6(t))
A: { . } , A(p,t) = | pr(t)sin(6(t)) | . (3.69)
(pt) — Alp,t)

Therefore, the tangent associated vectors are

oA r(t) cos(0(t)) oA pr’ () cos(0(t) — pr(t))6’ (t) sin(6(t))
o= rsm@) |, 200 = | o ()sin(600) + o) D eos0) |, (370)
P 0 ot 0
hence the vectorial and scalare element areas are
04 0A 0
d = (5 x 50 )dpdt = 0 . do = pr’0 dpde. (3.71)
P ¢ pr20’ dpdt
Therefore the area between % and ¢ is
1 t t
A(t) = At) + / / pr*(7)0' (1) dpdT = 1 / r(7)%0 (1) dr. (3.72)
p=0J 1=ty 2 T=ty
Hence .
A'(t) = r(t)%0'(t) = r(t)?0' (to) (= constant = || Z(to)|), (3.73)
cf. (368) I.l
Exercice 3.20 Prove the Binet formulas (non rectilinear central motion):
1 dt o z3 1 d*:
2 _ 2f @y N2 __“o(t r >
Vet = 23 (5 +()?) @, Telt)=—"2(S+ 2 ) e, (3.74)
for the energy and the acceleration.
Answer. Proposition 3.18 tells that ® is a planar motion. With (3.65) and €,(t) = (Z?r?((g((::))))> we have

@(t) = r(t)é-(t) (in the plane). Let &(t) = (_ sin(6(t)) ), thus

cos(6(t))
) = 0@ )+ r0 2 (1) = v (6 (1) + (00 (060 (1).

And €-(t) L éy(¢) gives
VE() = (r'(1)* + (r()6' (1))*.

Since 6'(t) # 0 for all ¢ (non rectilinear central motion) Let s(A(t)) = r(t). Let us suppose that 6 is C', thus
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31 4.1. Definitions

0" >0o0r 0 <0,and 6 : ¢t — 0(t) defines a change of variable. And

And (3.73) and 0'(t) = TZ,Z—(Ot) give

2000)) = (s (ON2-Z0_ 42 B0 _ SO 1 e (dE NP
Thus 7(t) = s(0) and % := 2 give the first Binet formula. Then
(0) = " (08-(1) + 7' (0 57 (1) + (' (06 (8) + r(00" () 1) + ()6 (1) 2L (1),
with % || €9, and %(t) = —0'(t)é-(t), and & L T (central motion), we get
L(t) = (r" () = r(8)(8' (£)*)ex (0).
And ) i
(1) =S O (1) = ' (0) 5 = z% =25 (0),

thus 21 ) pi

(0 = 20 (0)8/ () = — 205 T2 0),
which is the second Binet formula. un

3.8.4 Screw theory (= torsors, distributors)
See https://perso.isima.fr/leborgne/IsimathMeca/torseur.pdf

4 Deformation gradient F' := d®

~ Rx Oy — R" ~
Motion ® : ~ , Q := ®(t, Obj) configuration at t. Fix fy,¢ in R, and let
(t7POl?j) — Dt = q)(t7PObj)
Qto — Qt
Pl ~ " ~ supposed to be a C! diffeomorphism. Notations
P = Plto, Bory) — pe = 2 (p1) = (¢, Loy

for calculations (quantification) to comply with practices:

1- Classical (unambiguous) notations as in Arnold, Germain: E.g., (;) and (b;) are Cartesian bases
resp. in ]l_é’tz and R?, @, (py,) = > Wei(Py ) € Hi’té, We(pe) =, wyi(pe)b; € RP. And

2- Marsden-Hughes duality notations: Capital letters at ty, lower case letters at t, (E;) and (é;) are
Cartesian bases resp. in @Tté and R?, W(P) = S, WI(P)E; € Rg, @(p) = >, wi(p)e; € Ry

4.1 Definitions
4.1.1 Deformation gradient F
Q, — LR RY)

)

Po — F(py) = d®Y (py,)
ant deformation gradient between ¢, and ¢”, or simply the “deformation gradient”.
The “covariant deformation gradient at p;, between #, and ¢”, or in short “the deformation gradient

at py”, is the linear map F}°(p,) € E(]RZ;; R?). So, for all i, (py,) € @g (vector at py,),

Definition 4.1 The differential dd =written pfo . } is called “the covari-

- D (pry+hily, (py,)) — PP (p itt - itten
FE (o) ) o= i 2P ld) Z R | (00 () ) B () (41)

vector at p; = ®P(py). See figure 4.1. Marsden-Hughes notations: & := @, F := d®, P := p,,
W (P) := W, (py,), p = ®(P), thus

F(P)T(P) = lim ®(P+hW (P)) — B(P) | written .7 (p) N 5 ()

h—0 h (4.2)
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32 4.1. Definitions

Slto /_m

Figure 4.1: Cf. (4.1). @, = W is a vector field in Q. Consider the integral curve of W = w0, in Q,
i.e. the (spatial) curve cq, : 5 — py, = ¢ (8) in Qg s.t. ¢, (8) = Wy, (cg (). Tt is transformed by ®% into
the (spatial) curve ¢; = ® ocy, = 5 — pr = c4(8)=P (¢4, (5)) in Qy; Thus the tangent vector at ¢; at p; is
i’ (8) = d®P (py,).ci,'(5) = dDP (py, )Wy, (piy) =Y Wiy« (t,p¢) (push-forward of ;, by ®°).

NB: The “deformation gradient” F{® = d®X is not a “gradient” (its definition does not need a
Euclidean dot product); This leads to confusions when covariance-contravariance and objectivity are at
stake. It would be simpler to stick to the name “F° = the differential of ®°”, but it is not the standard
usage, except in thermodynamics: E.g., the differential dU of the internal energy U is not called “the
gradient of U” (there is no meaningful Euclidean dot product): It is just called “the differential of U”...

4.1.2 Push-forward

th —)@g

Pty — Wiy (Pyy)
vector field (), () in Q; defined with p; = ®¥ (p;,) by

Definition 4.2 Let W, : { } be a vector field in Q. Its push-forward by ®¥ is the

(it (pr) =) ()i, () 1= FL () (pr)s L. ((p) =) ©.V(p) o= F(P)IW(P)  (43)
with Marsden notations and p = ®(P). See figure 4.1. That is
Biy 4 = (B0, By, = (FI2.y) 0 ()71, ie. W, = O W := (FW)od L, (4.4)
We have thus defined . by

Wi (£, P(1)) := Wy 14 () = F (L, pry) Wiy (pr,)  when  p(t) = ®(t,py ). (4.5)
4.1.3 F is a two point tensors
With (4.1), “the tangent map” is defined by

Flo.

A {Qto — O x L(RY;RY) n

P — F%(py) = (pe, F°(py,)) when py = @2 (py,).

Definition 4.3 (Marsden-Hughes [16].) F/° is the two point tensor deformation gradient, referring to
the points p;, € Qy, (departure set) and p; = O (p,) € Q (arrival set where Wy, «(t,pi) = F/° (py, ) By, (1, )

is drawn). And in short Fjo =Written ph s said to be a two point tensor.

Remark 4.4 The name “two point tensor” is a shortcut than can create confusions and errors when
dealing with the transposed: F}° is not immediately a “tensor”: A tensor is a multilinear form, so gives
scalar results (€ R), while F(P) := Fjo(P) ="ritten p, ¢ LR ;RY) gives vector results (in RY).
However Fp can be naturally and canonically associated with the bilinear form Fp € L(RP*, Ry ;R)
defined by, for all ip € I@g and ¢, € R?*, with p = &% (P),

ﬁp(fp,l_[p) = gp.Fp.ﬁp (E R), (47)

see § A.14, and it is Fp which defines the so-called “two point tensor”.
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33 4.1. Definitions

NB: The confusion between the linear function F}°(p;,) = Fp and the bilinear form fpto = Fp produces
errors: E.g. a transposed of a linear form (Fp is not (directly deduced from) the transposed of the
associated bilinear form ﬁp ! So be careful with the word “transposed” and its two distinct definitions: The
transposed of a bilinear form b(-, ) is intrinsic to b(-,-) (is objective), given by b” (i, w) = b(w, @), while
the transposed of a linear function L is not intrinsic to L (is subjective), given by (L4, @), = (L., @)p
where (-, )4 and (-, ), are inner dot products (additional tools) chosen by Human beings (L” should be
written L, ). (Details in § A.9.2 and § A.12.1). ..

Remark 4.5 More generally for manifolds, the differential of ® := ®% at P € Q, is F(P) := d®(P) :

TPth — Tth
- . with p = ®(P). And the tangent map is
W(P) — wW.(p) :=d®(P).W(P)

PW(P)) = T®(P,W(P)) := (p,d®(P).W(P)) = (p,é(p)), where p =&y (P).

4.1.4 Evolution: Toward Lie’s derivative

C={J{t} x %) >R

Consider a Eulerian vector field  : , e.g. a “force field”. Then, at

(t,p) — w(t,p)
Q, — RY

consider Wy, : ~ .
Py = Wiy (Py) 7= W(lo, Py )

}. The push-forward of @, by ®¥ is, cf. (4.3)-(4.5),

Wi (£, p()) = Fy* (i)W, (Py),  where  p(t) = D (t,py,)- (4.9)

See figure 4.1. Then at ¢ at p(t) we can compare w(t, p(t)) (real value of @ at ¢ at p(t)) with Wy« (¢, p(t))
(transported memory along the trajectory). Thus the rate, without any ubiquity gift,

W(t, p(t)) — Wi« (t, p(2)) _ actual(t, p(t)) — transp. mem.(t, p(t)) is meaningful at (¢, p(t)). (4.10)

t—1p t—1
When ¢t — t# this rate gives the Lie derivative Lzw (the rate of stress); We will see at § 9.3 that

LzW = %f’ — dU.w, the dv term telling that a “non-uniform flow” (dv' # 0) acts on the stress.

4.1.5 Pull-back
Formally the pull-back is the push-forward with (@)~

Definition 4.6 The pull-back (®)*w; of a vector field @, defined on §; is the vector field defined on Q,
by, with p, = (2£) 7! (p1),

@ 4 (p) = (D) Wi (py) = ()7 (pe)-@e(ps),  written W*(P) = F~(p).ai(p) (4.11)
by Marsden. Which defines @; by @y (to, ps,) := w5, ,(pt,) = (F)Y=(py) . (py).

We however need to give full explanations:
Q, —Q Q —Q

Plo . o ! o gives (®)~1 . ! N for—1 ;
P = pr =2 (py) pe = P = (2F) (pe)

And p, = (2P) " H(pr) = (D) H(@F (py,)) gives I = d(®) ™ (py)-dPY (py,) = d(®£) ™ (pe)-F° (1),
which defines

O - L(E ]
(Ff)™' i= d(®l) " - { ' (totfl o) o (4.12)
pe — () (pe) :== F°(py,) -
Marsden notation:
F~'(p)=F(P)™' when p=®(P). (4.13)

33



34 4.2. Quantification with bases

4.2 Quantification with bases

(Simple Cartesian framework.) With Marsden notations: (E;) is a Cartesian basis in R_%, (&) is a
Cartesian basis in R, o is an origin in R” at ¢, ®% ="ritten ¢ supposed C and ¢ : Q;, — R is its
i-th-component in the referential (o, (€;)):

p=®(P)=o0+ ngi(P)gi. (4.14)

Let (%?i] (P) := d¢'(P).E; = Fi;(P); Then, (&) being a Cartesian basis, with F = d® we get

. n . Lo n 8@1 .
F(P).E; = izzl(dap’(P).EJ)ei = 2 o7 (P)é;,
In short: . 4
_, " op* . oy’ . .
FE; = 2 gx7 G te [Fligqg = [8XJ] = [Fljz4 (Jacobian matrix). (4.15)

We recover: If W = > w Eje I@g is a vector at P then, by linearity of differentials,
dOW = FW =Y F;W’e, e [FW]z=[F|z.W]z (4.16)

(128
i=1

more precisely: F}°(P).W(P) =" Fi(P)YW’(P)&;.
Similarly, for the second order derivative d2® = dF (when & is C?): With U = Z'}ZlU‘]EJ we get

o n . n 92, ~ n ~ ) ~ _

ToxXK
i=1 PR 0X 70X =1
(9" (P)] 5 = [%(P)] j=1.n being the Hessian matrix of ¢ at P relative to the basis (E;).

. . . S = F) P
Remark 4.7 J,j are dummy variables when used in a summation: E.g., df.W = Z?ZlejWJ =
SaLw? = BALwe = SLwt + 2L w? 4 L. (there is no uppercase for 1, 2...). And
Marsden—Hughes notations (capital letters for the past) are not at all compulsory, classical notations
being just as good and often preferable (because they are not misleading). See § A. .

4.3 The unfortunate notation d7 = F.dX
4.3.1 Issue
(4.3), i.e. W.(p) := F(P).W(P), is sometimes written

dZ = F.dX : “a very unfortunate and misleading notation” (4.18)

which amounts to “confuse a length and a speed”... E.g. you see: “(4.18) is still true if [|dX|| = 1”... while
dX is supposed to be small...

4.3.2 Where does this unfortunate notation come from?

The notation (4.18) comes from the first order Taylor expansion ®(Q) = ®(P) + d®?(P).(Q—P) +
o(]|Q—P||), where P,Q € Q, i.e., with p = ®P(P) and ¢ = ®?(Q) and h = ||Q—P||,

q—p=F(P).(Q—P)+o(h), written 6% = F.6X + 0(6X), (4.19)
or pg = F(P)@ + o(h). So as @ — P we get 0 = 0... Quite useless, isn’t it?
While P
% _pp).Y (1) is useful: (4.20)

As Q — P we get @, = F(P).W which relates tangent vectors, cf. (4.3) and figure 4.1. Details:
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35 4.8. The unfortunate notation dZ = F.dX

4.3.3 Interpretation: Vector approach

. . [817 82] — Qt() . . to
Consider a spatial curve ¢, : in ), cf. figure 4.1. It is deformed by @ to

s — P:=c¢y(s)
: o [s1,82] — € :
become the spatial curve defined by ¢; := ®,° o ¢y, : f in Q;. Hence,
s = pi=ci(s) = PP (e, (9)).
relation between tangent vectors:

dey z dX
— — =F— 4.21
ds ds ds’ ( )

(5) = d®P(cy, (s))%(s), written %(s) = F(X(s))cil—)s((s), written

Blit you can’t simplify by ds to get dZ = F.dX: Tt is absurd to confuse “a slope %(s)” and “a length
X =p—¢q"

NB: Hd;;“ ()| =1 %(s)” = 1 is meaningful in (4.21): It means that the parametrization of the spatial
curve ¢, in Qy, uses a curvilinear parameter s such that [|c,/(s)|| = 1 for all s, i.e. s.t. [|[Wp|| = 1 in

figure 4.1. You cannot simplify by ds: ||dX|| = 1 is absurd together with dX “small” cf. (4.19).

4.3.4 Interpretation: Differential approach
In fact (4.18) is a relation between differentials... if you adopt the correct notations: With (4.14),
T = op = 02 j - Z<Pi(P)€i vritten Zwi(P)é}, with ¢ witten ;i (function of P). (4.22)
i=1 i=1
Thus, with (dX7) the (covariant) dual basis of (E;) we get the system of n equations (functions):
n 1
dp'(P) =Y1)_, 2% (P) dX’
dd=F, ie. ,  written d¥ = F.dX, (4.23)
dg"(P) = Yoy 5% (P) dX”

this last notation being often misunderstood?: It is nothing more than d® = F' (coordinate free notation).

4.3.5 The ambiguous notation d;i" = Fd)?

The tricky notation dif = F.dX gives the unfortunate (misunderstood) notation dZ = F.dX , and then
d7 = L.d7 where L=F.F1. (4.24)

Question: What is the meaning (and legitimate notation) of (4.24)?

L]
Answer: d¥ = L.d7 means

D,
Dt

= dU.y+ | = evolution rate of tangent vectors along a trajectory (4.25)

see figure 4.1. Indeed, Wy« (t, p(t)) =42 F(t, )Ty, (p1y) = F{° (pt, )W, (pr,) gives

W to . to L
D00 1 (1)) = 22 0, ) () = 2 (1,90) FE () e 1, ()

at
= (dUdy,0 ) (L, p(L))

(4.26)

cf. (3.33). In particular ¢t = ¢, gives Dg’;’* (to, pyy) = di(to, P, )-We, (p1,) = the evolution rate of the tangent

vectors Wy, (py,) € @% at py, along “the trajectory of p;,”.

28pivak [22] chapter 4: Classical differential geometers (and classical analysts) did not hesitate to talk about “infinitely
small” changes dz’ of the coordinates z?, just as Leibnitz had. No one wanted to admit that this was nonsense, because
true results were obtained when these infinitely small quantities were divided into each other (provided one did it in the
right way). Eventually it was realized that the closest one can come to describing an infinitely small change is to describe
a direction in which this change is supposed to occur, i.e., a tangent vector. Since df is supposed to be the infinitesimal
change of f under an infinitesimal change of the point, df must be a function of this change, which means that df should
be a function on tangent vectors. The dX; themselves then metamorphosed into functions, and it became clear that they
must be distinguished from the tangent vectors 8/90X;. Once this realization came, it was only a matter of making new
definitions, which preserved the old notation, and waiting for everybody to catch up.
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36 4.4. Change of coordinate system at t for F

4.4 Change of coordinate system at t for F

Pio € oy P = PP (p1y) € U, W(pyy) € RY, (pe) = FL (pyy)- W (py,) € RY,

4.4.1 Change of basis system at ¢t for F

At 1ty in I@% a past observer used a basis (@;). At ¢ in @?, a first observer chooses a Cartesian basis

(g0]d7i) and a second observer chooses a Cartesian basis (I_)'Hew,i), and P = [P,;] is the transition matrix
from (Doid,i) 0 (Dnew,i), 1-€- bnow,j = oy Pijboa,i for all j. Let W € B} and @ = F.W € Rp. Change of
basis formula:

[ = P—l.[w]lgl , thus [F. W]‘ B = P‘l.[F.W]‘gdd, (4.27)
thus [F]ldjnm.[vf/ha =P [Flg5 . [W]|g. True for all W, thus
_ p-1 .
[Flas, =P " [Flas,, | (4.28)

Remark 4.8 (4.28) is not [L] |, = P~*.[L]jqq-P, the change of basis formula for endomorphisms, which
would be nonsense since F := F{°(p;,) : I@g — R? is not an endomorphism; (4.28) is just the usual change

of basis formula [IU]“; = P*I.[u_)']lg y for vectors of in R} (contravariant vectors). ua
new Ol

4.4.2 Change of basis system at ¢, for F

At tin ]l_éf an actual observer used a basis (57) He wants to compare results of two past observers at #:
The first used a Cartesian basis (dua,;) and the second used a Cartesian basis (Gpew,i). P = [Pi;] being

the transition matrix from (@oi;) t0 (@new.i), for any W e R,

Wliaew = P~ [Wlia - (4.29)
And FW = jj’.W gives [FW]‘E# = [FW] Ehus (Flig, 5 Wiap = [Flig 5 Wliagy, hence
[F]‘dner.P_l,[W]‘aOId = [F]Iddd,l;'[w]‘aold’ for all W. Thus [F]‘dnevv’ap_ = [F]‘doldvg7 thus

[Fla. 5= Fliz 5P (4.30)

This is the change of basis formula for linear forms (covariant vectors), which is expected since here F is
considered to be a linear function that acts on vectors in R} .

Exercice 4.9 Detail the matrix calculation which gave (4.30) with Marsden’s notations.

Answer. Let F.E_:dd“] =5 Fc';”,é}- and F.EW,J =>. Fi 7€, and W = > Ws Ede =>,W; EW J, and
Q=[Q) =P s0 Wz  =QWlg, ,ie W) =3, QWS for all J. Thus FW =¥, F ;W&

DTk Fﬁ,JQi(Wlf(é} together with FW = Dok FjﬁKWo &, for all W, thus > n,JQK = F(f’K for all z,K, thus
[F]|E,,ﬂu,§-@ = [F]\Edd,a- o=

4.5 Tensor notations: Warnings

As already noted, cf. (4.7), the linear map F = d® := d®P(p;,) € E(@g,@?) is naturally canonically
associated with the bipoint tensor F € E(@?*,@g;ﬂ%) defined by, for all (¢, W) € R?* x I@Z),

F(,W) :=(.(F.W). (4.31)
Quantification: With § 4.2 (Marsden notations), with (dX7) in R’%* the covariant) dual basis of (E})
and with F.E; = S 18XJ€1 cf. (4.15), we immediately get
F = zn:ai‘ﬁé@dx" (4.32)
52, 0X7 Z . ‘

Indeed, with (dz?) in R?* the covariant) dual basis of (&), da*.(F.E,) = da®.(3, gXigez) =
k i . — i
Y, 28 dak e, = zi o0 6k = %2 and (X, 2858 © dX7)(da*, Ey) = ¥, 225 (8.da*)(dX 7 Ey) =

g g)f, ske] = 8X : Equality for all &, /.
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37 4.6. Spatial Taylor expansion of F

Similarly, d2¢(E;, Ex) = % gives d?¢p' =" W dX7 ® dX*¥, and
- 2 - ertten 2 i 8290i J K
i=1 i=1 i, J,K=1
" n (4.33)
ie. dE(U,W)=dF(U,W)=> d*"(U,W)b = 627QPUJWK5-
g 9 - 9 - I T T J K (N
i=1 i,J,K:laX 0X

Warning 1: The tensor notation can be misleading, e.g. if you use the transposed, see remark 4.4. So,
you should always use the standard F.E; = >_1"._| F";&; notation (vector value); And avoid the use of F,

_ ~ 3,j=1
i.e. of F(£,W) (scalar value).

Warning 2: You can’t use E; instead of X7 in (4.32), i.e. you can’t use F = Y oig 5))% & ® E instead
of F in (4.32), because there is no canonical natural isomorphism between R™ and R™* (if you do then
you contradict the change of basis formulas).

Warning 3: In some manuscripts you find the notation F = d® ="'t & @ V. It does not help to
understand what F is (it is the differential d®), and must be avoided as far as objectivity is concerned:

o It could be misinterpreted because in mechanics V f is often understood to be a vector (contravariant)
while the differential df is covariant (unmissable in thermodynamics because you can’t use gradients).

e A differentiation is not a tensor operation, see the fundamental example S.1; So you should use the
usual notation d® (i.e. d®(.) = >, dy'(.)€; with a basis (&;) in R?), and never use ® ® V.

e Similarly you should use the usual notation d?® (or d?®(.,.) = Y d?¢'(.,.)€; with a basis (&;)
in ]1@?), and never use @ Vx ® Vx.

4.6 Spatial Taylor expansion of F
® = PP is C° for all #),t, and F = d®. Then, in Q,, with P € Q, and W € R} vector at P,
O(P+hW) = &(P) + h F(P).W + & dF(P)(W, W) + o(h), and

F(P+hW) = F(P) + hdF(P).W + h—z d>F(P)(W, W) + o(h?). (4.34)

4.7 Time Taylor expansion of F

o0 is C%, pr = p(t) = U (t,py,) = O (1), V%(t po) = B (tpy) = U(t,p) = B(t, @0 (t,py,)) (La-
(t, D% (t, pry)

“(t,p

grangian and Eulerian velocities), A% (,p; ) = 8t2 2 (t,py) = F(t, p(t)) = ) (Lagrangian and

Eulerian accelerations), and F(t,p;,) = d®*(t,py,) = F,> (t). Hence

to to Ppto _,
70 = 22 1) = 280 1) = a(P ) 0,py) = a7 (1) = AL F (1), (435

. 2 Ity 2 to 2pto N
10 = 20 ) = PO 1) = a0 (1) = dAS(py) = d (L) F (). (430

(In short ' = dV = di.F and F = dA = d7.F). Thus

wo (t+h) = Fyo (1) + hdVie () + h; dAY, (1) + o(h?)

, (4.37)

_ (1 Rt p1) + 2 d(1, (1)) Ff (1) + of?).

NB: They are three times involved: t and ¢+h as usual, and t; (observer dependent) through F
and V%, as in (3.39).
Particular case: ¢ =1 then F}? (ty) = I and

- hZ
Fp (to+h) = 1+ hdV,° () + o AR (to) + o(h?)
2

, (4.38)
- (I + hdi(to, py,) + - di(to,pfo)) +o(h?).
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38 4.8. Homogeneous and isotropic material

Exercice 4.10 Directly check that (short notation) F' = dv.F gives F" = d7.F.

Answer. F'(t) = di(t,p(t)).F(t) gives F"(t) = 299 (¢ p(t)).F(t) + di(t,p(t)).F’(t) with 2Y9 — 45 — d45.7,
cf. (4.39), thus F(t) = (d7 — dv.d0)(t, p(t)).F(t) + dv(t, p(t)).du(t, p(t)).F(t) = dy(t, p(t)).F(t).
Remark 4.11 v = %f + dv.7 is not linear in U. Idem,
Dy ov ov D(dv)
dy=d d(= +dv.7) = d— + d? dv.dv (= dv.dv 4.39
7= d() = d(G; +di0) = d + 0.5+ didi (= =5 + didd) (4.39)
is non linear in ¥, and gives F;‘t’o (t) = (¥ + d*6.7 + dv.dv)(t, py).Fo ° (t), non linear in 7. .

4.8 Homogeneous and isotropic material

Let P € Qy, and F(P) := d®®(P); Suppose that the “Cauchy stress vector” f;(p;) a t at p, = ®°(P)
only depends on P and on F(P) (the first gradient at P), i.e. there exists a function fun such that

fi(p) = fun(P, F(P)). (4.40)

Definition 4.12 A material is homogeneous iff fun doesn’t depend on the first variable P of flfn, ie.,
iff, for all P € Q,,
fun(P, F(P)) = fun(F(P)) (= fi(pt))- (4.41)

(Same mechanical property at any point.)

Definition 4.13 Choose a Euclidean dot product, the same at all time. A material is isotropic at P € €2y,
iff fun is independent of the direction you consider, i.e., iff, for any rotation Ry, (P) in R},

fin(P, F(P) = fun(P, F(P).Ry(P)) (= fi(p1)). (4.42)
(Mechanical property unchanged when rotating the material first.)

Definition 4.14 A material is isotropic homogeneous iff it is isotropic and homogeneous.

4.9 The inverse of the deformation gradient

Qy, —Q Q = Q
o ‘ Lol © b and (@10 d)(P) =P,
P —»p=9(P) p = P=3d""(p)

Thus d®~*(p).d®(P) = I, where p = ®(P), and, with F{° = F = d® is the deformation gradient,

F~lp) =dd ' (p) =d®(P)"* = F(P)" " (4.43)

Let ® = ®°. Wehavefbs{

This define the two point tensor Hf° = (Fj°)~1 =written f py

Q — LRYRY)

H:=H! (4.44)
p = Hp) = F'(p) = (F(P))""| when p=a(P).
Full notation: H{°(p) = (F{°)~1(p) := (F{*(P))~!. So, for all @W(p) € R} vector at p € Qy:
H(p).i(p) = F~(p).w(p) = F(P)"'.b(p), in short H.b=F " a7, (4.45)

With H = H[, this defines, with p, = ®*(t, P),
C={Jdt} x Q) — LEHRY)
Hb . t (4.46)
(t.pe) — H*(t.pi) == H (p) = (F°(t, P))™
NB: H looks like a Eulerian map, but isn’t: H% depends on a initial time ¢, and is a two point tensor

(starts in @?, arrives in I@%) We will however use the material time derivative % notation in this case,
that is, we define, along a trajectory t — p(t) = ® (¢, P),

fo to to to
DI opte)) o= 20 0, pte)) -t (4, p0) 01 p(0), e Dot = 02

which is the time derivative ¢/(t) of the function g : t — g(t) = H™(¢,p(t)) = H(t,®% (¢, P)).

+dHY. 5, (4.47)
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39 5.1. Introduction: Motion versus flow

Hence, with p(t) = ®% (¢, P) and H'(t,p(t)).F'(t, P) = I,, written H.F = I, we get

DH Ja DH
DH oy g 9F 0, thus |— = —H.dv

Dt ot Dt ’ (4.48)

since 2L (¢, P).F~1(t,p(t)) = di(t,p(t)) cf. (4.35).

Exercice 4.15 With @, (¢, p(t)) = F(t, P).W(P), i.e. H(t,p(t)). @« (t, p(t)) = W(P), when p(t) =
Pl (t, P), prove (4.48).
Answer. 259 (t,p(t)) = di(t, p(t))- @i (£, p(t)), cf. (4.25); And (H' i,.) (1, p(t) = W(P) gives 22 G, +

Dt

Ho Btox _ o Thus 222 @, . + H©.d.i,. = 0, thus 22 = —[.d5.

Exercice 4.16 Prove: Hj° = H{° o H}' and DHO (t,p(t)) = Hffl’(jz)tl).Dgtt1 (t,p(t)) for all t,t; with
= O (pry)-

Answer. We have @?(pto) = @il (@ﬁol (pt,)), cf. (5.17), hence F,f0 (pyy) = F,f1 (ptl).Ftt‘f (py), thus Ftt0 (pto)71 =

Ff(po) " F (pe) 7 e HP(pe) = HE(pey)-H{ (p(1)), thus, H(t,p(t)) = H(pey)-H" (t,p(t)), thus

DEC (1 p(1)) = H (pey)- 2B (1, p(1)).

5 Flow

5.1 Introduction: Motion versus flow
e A motion  : (t, Rowj) = pr = 5(1&, Ryy) locates at ¢ a particle Ry, in the affine space R”, cf. (1.5),

and the Eulerian velocity field ¢ is deduced: ©(t,p;) := %(t Ry;), cf. (2.5).
e A flow starts with a Eulerian velocity field #, and the motion is deduced by solving the ODE
(ordinary differential equation) 42 (¢) = #(t, ®(t)) with initial conditions.

5.2 Definition

R xR"” — R»
Let v': x ~ be a unstationary vector field, e.g., a Eulerian velocity field which definition
(t,p) — (t,p)

R — R"
domain is C € R x R™. We look for maps ® : which are locally (i.e. in the vicinity of
t —p=3°(t)
some t) solutions of the ODE (ordinary differential equation)
dd . . dp .. . e, . .
E(t) = 0(t, ®(t)), also written E(t) = o(t,p(t)), or dt( ) = 9(t, Z(t)) (5.1)
where Z(t) = Op(t) after a choice of an origin. Le. ®'(t) = ¥(t, ®(t)), or p'(t) = (¢, p(t)), or Z'(t) =
d dx
0(t, Z(t)). Also abusively written dit) = 9(t,p) or d—f = (¢, T).

Definition 5.1 A solution ® of (5.1) is a flow of ¥; Also called an integral curve of ¥ since (5.1) also
reads ®(t) = ['_, #(r, ®(r))dr + D(t1).

Remark 5.2 Improper notation for (5.1):

dp itten dp(t) .
E(t) e i (= (t,p(t)))- (5.2)
Question: If the notation d’:i—(tt) is used, then what is the meaning of W?

Answer: It means, either %(f(t)), or %(t) = %(f(t))%(t): Ambiguous. So it is better to use
& (1) and to avoid dp(t). oa
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5.3 Cauchy—Lipschitz theorem

Let (to, p,) be in the definition domain of ¥. Purpose: Find ® solution of “the ODE with initial condition

(to, py,)7, L€ 8.8,

C;—(f(t) =0(t, ®(t)) and P(th) =py, In a vicinity of . (5.3)

The couple (ty, py,) is the initial condition, and the values # and p;, are the initial conditions.

Q is an open set in R™ s.t. its closure {2 is a regular domain, and ||.|| is a norm in R".

Definition 5.3 Let t1,t, € R, t; < to. A continuous map @ : [t1,ts] x Q — R™ is Lipschitzian iff it is
“space Lipschitzian uniformly in time”, i.e. iff

3k >0, Yt € [t1,t2], ¥p,q € Q, [[0(t, q) — (L, p)|| < kllg —pll, (5.4)

ie. ||0:(q) — F:(p)|| < kl|lg — p||- So, W < k, for all ¢t and all p # ¢: The variations of ¥ are

bounded in space, uniformly in time. (In particular implies that ¥ is continuous.)

Theorem 5.4 (and definition (Cauchy—Lipschitz)) If 7 : [t1,t] x @ — R" is Lipschitzian and
(to, Piy) €]t1,t2[x €2 then there exists € = ey, p, > 0 s.t. (5.3) has a unique solution ® :Jto—e, to+e[— R":

do ;
(O =0(t,2(1) and (i) =p,. and P RE X (5.5)
Moreover, if T is C* then @;?to is CF+1,
Proof. See e.g. Arnold [2]. In particular ||¥]|e = sup [|5(t, p)||gr (maximum speed)
- tElto—e,to+el, pEQ
exists since ¥ € C° on the compact [ti,ts] x ), see definition 5.3, hence we can choose ¢ =
min(ty—t1, ta—tp, %) (the time needed to reach the border 92 from py,). ==

We have thus defined the function, also called “a flow”,

{]tl,tQ[X]tl,tQ[X Qto —Q
D : . (5.6)
(t7t07pf{)) —p= q)(t7t07pt0) = (P;)Oto (t) ert:ten (I)(t7t07p1‘0)
And (5.5) reads
0P . .
o Lito,py) = U(t, @t t0,pw)),  with (to3to, pyy) = Poy- (5.7)
And we have defined the function, also called “a flow”,
to—¢e, to+e] x Q, — R”
ot || b . . (5.8)
(t7pt0) —Pp= P (tapto) = cbpto (t)
And (5.5) reads
o™ = to to
W(tvpfo) = U(t, 2" (t,py,)), and D°(to,py) = p- (5.9)

Other notation: @y := O, i.e. By (py,) := PP (pyy)-

Corollary 5.5 Let €, be an open set s.t. Qy, CC § (i.e. there exists a compact set K € R" s.t.
Y, C K C Q). Then there exists ¢ > 0 s.t. a flow ®% exists on |t{y—e, to+e[x Yy, .

Proof. Let d = d(K,R"—Q) (la distance of K to the border of . -

Let ||T]|oo :=  sup  ||3(¢,p)||re (exists since & € CY on the compact [t1,ts] x Q).

tE[t1,t2],pEQ

Let € = min(ty—ty1, t2—1o, ﬁ) (less that the minimum time to reach the border from K at maximum
speed ||v]|oo)-

Let p;, € K and t €]ty—e,top+c[. Then @?@ exists, cf.theorem 5.4, and H(I);Om (t) — <I>;0t0 (to)||rn <
[t —to| sup,ejgy—c to4[(|[(25, ) (7)[|r») (mean value theorem since, ¥ being C°, ® is C*). Thus ||®f, (t) -
@g’m (to)||rr < [t — to| ||v]]oo, thus @g’fo (t) € Q. Thus @g’m exists on Jtp—e, fo+e[, for all py, € K. =

Remark 5.6 The definition of a flow starts with a Eulerian velocity (independent of any initial time),

and then, due to the introduction of initial conditions, leads to the Lagrangian functions ®% cf. (5.8).
Once again, a Lagrangian function is the result of an Eulerian function. un
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5.4 Examples

Example 1 R? with an origin O, Euclidean basis (€1,é), Q = [0,2] x [0, 1] (observation window),
p € R?, Op =written z — 28, 4 yéy =Vrten (g 0yt = —1,ty =1, ty €]t1, 2], a,b € R, a # 0, and
vl (t,a,y) = ay,
u(t,p) =4 : (5.10)
v (t, x,y) = bsin(t—tp).
(b = 0 = stationary case = shear flow.) Z(f) = <zo , B(t) = (;8) O (t) and (5.9) give
0
9T by = o (b2 (), (1)) = ay(t
E()_v(vr’c( )7y( ))_ay( )7 aj(to)_l‘o,
g with ) (5.11)
—1(t) = v (t,2(1), y()) = bsin(t—to) yro) = o
e 5E 0 (v + 1) (1—1o) — absin(i—1)
to z(t) = xo + a(yo + b)(t—tg) — absin(t—ty
=0 0oy (y(t):yo+b—bcos(t—t0) . (5.12)

Example 2 Similar framework. Let w > 0 and consider (spin vector field)

Wt 2, y) = (‘c:;y) —w ((1) ‘01) <;> WD G ). (5.13)

. _ 5 5 L [ xo=rpcos(wly) . t .
With ro = /x5 + yg and 0y s.t. T = (yo — rosin(why) )’ the solution @ of (5.9) is

S _ Dok (t) = 14, cos(wt)
#(t) = Op(t) = 0%, (1 ( e g (5.14)
(t fo) Ul(tax(tva)ay t IO —wWy t 930 ox = =3
Indeed, <3y(t 7o)) — \ Wt a(t, %), y(t, 7o) wa t ) ) thus 5i(t 7o) = —wy(t,Zo)
and %(t,zo) = wx(t, 7o), thus %(t, 7o) = —w?y(t, 7o), hence y; Idem for x. Here di(t,z,y) =

0 -1 cosT —sinZ\ . . . . .
wiy o) =9l 2 = | is the 7/2-rotation composed with the homothety with ratio w.
sing  cos g

5.5 Composition of flows

Let ¥ be a vector field on R x € and @f,go solution of (5.5). We use the notations
pr = O (1) = Py py, (1) = B (P) = Pty (1) = D (8, 11,) = P(t 0, 1y )- (5.15)
5.5.1 Law of composition of flows (determinism)
Proposition 5.7 For all ty,t1,ts € R, we have (determinism)
Dy o @0 =D, Qe Py, 0 Pyyity = Pryste (5.16)
(“The composition of the photos gives the film”). So, with py, = @ (py,) = P41 (Pro),

t = P (pr) = PR (Pr), L€ Py = Puyr, (P1) = Prosty (Pr)- (5.17)

Thus
d®gL (pr,).dPE (pry) = AP (i), 6. dPyyr, (p1,)-dPt, 100 (Pry) = APyt (1) (5.18)

Summary: The following diagram commutes:

Dty Pty

to t1
o i, D411, Pty
ie.

Dt, Dty
3

Dty Dto

D1yt
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42 5.5. Composition of flows

Proof. Let p;, = @, (t1). (5.9) gives

ddh
o) = ar el (0). | . t
d(I)tl with by, = (I)pto (tl) = (I)pltl (tl)
Pt — 1
2 (1) = (1, Bl (1),

Thus @?{0 and <I>‘,f71t1 satisfy the same ODE with the same value at ¢;; Thus they are equal (uniqueness:
Cauchy-Lipschitz theorem), thus )} (t) = ®}, (t) i.e. 3 (pr,) = P (py,) when py, = D (py,) = 1 (pyy),
which is (5.16) for any ¢ = t5. Thus d®}L (L (py,)).d®Y (py,) = AP (py,), i-e. (5.18). oa

Corollary 5.8 A flow is compat1ble with the motion ® of an object Obj: (3.3) gives <I>t1 o <I>t° = (D, 0
(By,) 1) 0 (By, 0 (D)) = By, 0 (By,) " = D10, that is (5.16).

5.5.2 Stationnary case

Definition 5.9 ¥ is a stationary vector field iff Y = 0. Hence (¢, p) —Wwritten (), and the associated
flow @, which satisfies

oo o = to

OO (1.p) = H(@°(t.p)) = p) when po = B9(t,py) (5.19)

is said to be stationary.

Proposition 5.10 If ¢ is a stationary vector field then, for all ty,t,,h when meaningful (i.e. t; close
enough to ty and h small enough),
(I)to

;) to+h> ie. Puynit, = Prothitos (5.20)

ti+h

ie. <I)§1+h(q) = (1)24-}1(‘1)’ ie. ®(t1+h;tr,q) = P(to+h;to,q) for all ¢ € Oy (see corollary 5.5). In other
words,

(I)?ii};l (I)?i’ ie. Pugnitgrn = Piyitos (5.21)

ie. @?iﬁ;( )= <I>'g (q), i.e. ®(t1+h;to+h,q) = ®(t1;t,q) for all ¢ € .

Proof. Let g € Qy,, a(h) = @2, (q) = @ (to+h) and S(h) = @', (q) = P! (t1+h).

Thus o/(h) = dq)éﬂ (to+h) = U(to+h, @2 (to+h)) = (PP (to+h)) = T(a(h)) (stationary flow), and
B'(h) = L2 (t1+h) = G(t1+h, @ (t1+h)) = T(®L (t1+h)) = T(B(h)) (stationary flow).

Thus a and B satisfy the same ODE with the same initial condition a(0) = 8(0) = gq. Thus o = .
Hence (5.20). Thus, with h = t;—1f, i.e. with ¢; = fo+h and tp+h = t1, we get (5.21). n

Corollary 5.11 If ¥ is a stationary vector field, cf. (5.19), then
A2 (pi,)-U(pey) = U(pe)  when  p, = Y (pyy), (5.22)

that is, if ¥ is stationary, then ¥ is transported (push-forwarded by ®) along itself.

Proof. (5.17), to = t1+s and t; = ty+s give O} +q(<I>ttg+s(ptO)) = @ . (py,), and ¥ is stationary, thus
Plo (@24_?( ) = <I>§°1+S(pt0), Le. @(t1;t0, Pty p,, (fo+5)) = Pry p,, (t1+5), thus (s derivative)

(thtﬂ (b(tO+S to, pﬁ))) to, P4 (t0+8) (bto,;ﬂtol(tl—i_s)?

thus d®} (@(to+s;t0, Pty ))-U(to+5, Pty py, (fot8)) = T(t1+5, Piy p,, (t1+5)). Thus with s = 0, and ¥/ being
stationary, dq)?i ((I)(t(), tOvplb))'ﬁ((I)to,prO (to)) = ,U((bto,pto (tl)), thus (522) =n
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43 5.6. Velocity on the trajectory traveled in the opposite direction

5.6 Velocity on the trajectory traveled in the opposite direction

n . . t [to, t1] — R"
Let ty,t; € R, t1 > ty, and p;, € R™. Consider the trajectory Q>pt0 : b p(t) = 0 (1) [ So py,
Pty

ddlo
is the beginning of the trajectory, ps, = ®{° (py,) the end, ¥(t, p(t)) = —3(t) being the velocity.
Define the trajectory traveled in the opposite direction, i.e. define

\I/tl . { [t07t1] — R”

Py u — q(u) = \Ilztjtl (u) := @;}’to (to+t1—u) = @g)to (t) =p(t) when t=t+t1—u.

(5.23)

In particular ¢(to) = V! (to) = @ (t1) = p(t1) and q(t1) = V}} (t1) = @, (to) = p(to).-

Proposition 5.12 The velocity on the trajectory traveled in the opposite direction is the opposite of
the velocity on the initial trajectory:

dvt
ﬁ(u) =q(u) = —p'(t) = —0(t,p(t)) when t=tly+t;—u, (5.24)
’ to ives 2V7 @5y 7 fo
Proof. ¥} (u) = P (to+t1—u) gives —(u) = ——5>(to+t1—u) = —v(to—i—tl—u,(I)ptO (to+t1—u)) =
—(t, @y, (t)) when t = to+t1—u.

5.7 Variation of the flow as a function of the initial time
5.7.1 Ambiguous and non ambiguous notations

Let ®: (t,u,p) € RxRxR"™ — &(¢,u,p) € R" be a C! function. The “numbered partial derivatives” are

d(t+h — P(t
00 (t,u, p) = lim L0 ) = O p) (5.25)
h—0 h
O(t,uth,p) — ®(¢
o0 (t, 1, p) = lim touFp) = O p) (5.26)
h—0 h
D(t hw) — (¢
e (1, u, p).8 = dD (L, u, p).iF — lim S B PTHE) = ®(w,p) (5.27)
h—0 h
for all 1 € R" vectors at p (space differentiation).
When the name of the first variable is systematically noted ¢, then
i 0P ambiguous 8®(t u p)
o1 (t,u, p) “E (¢t Buous T ) 5.28
1 ( ,U,p) at ( ,U,p) writing 8t ( )

NB: This notation can be ambiguous: What is the meaning of %—‘f(at,p)? In ambiguous situations, use

9% (t,u,p)

the notation 919, or (if no composed functions inside) use ==z~ _ (so t is the derivation variable,

lu=
and after the calculation you take u = t).

When the name of the second variable is systematically noted u, then

written O® ambiguous 8@(16, u,p)
ou ( 't p) writing ou (5 9)

aQCI)(tv u, p)
NB: Idem this notation can be ambiguous: What is the meaning of g—i(u, u,p)? In ambiguous situations,
02(t,u,p)
ou [t=u"
When the name of the third variable is systematically a space variable noted p, then

use the notation do®, or use

i i P mbiguous 0P t, R
93D(t, u, p) "E 4D (¢, u, p) " i(t,u’ ) ambigte s 00 (t, u, p)

8p p writing 8p ’ (530)
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5.7.2 Variation of the flow as a function of the initial time

The law of composition of the flows (5.17) gives g(u) := ®(¢,u, P(u, to, po)) = ®(t,%0,po), thus ¢'(u) =0,

thus
82(1)(t7 u, (I)(ua tprO)) + 83(p(ta u, q)(ua thp()))'al(I)(u7 t07p0) = 07

5.31
e, 028(t,uplu)) = —dB(t,u,p(w)Twp(w) when p(w) = Dlutopo)
In particular u = &y gives, for all (%, po) € R? x €,
0P i, o, -
(OB ) 0y0(0,t0,p0) = APt t,0) T, ). (532)
dd(t
In particular (M =) a®(to,t0,po) = —(to, Po)-

dto =ty
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Part 11
Push-forward

6 Push-forward

The general tool to describe “transport” is “push-forward by a motion” (the “take with you” operator),
cf. § 4.1 and figure 4.1. The push-forward also gives the tool needed to understand the velocity addition
formula: In that case, the push-forward is the translator between observers. The push-forward can also
be used to write coordinate systems. As usual, we start with qualitative results (observer independent
results), then quantitative results are deduced.

6.1 Definition

(Simplified framework.) £ and F are affine spaces, E and F are the associated vector spaces equipped
with norms ||.||g and ||.||F, dim E = dim F' = n € N* (finite dimension), & and Ur are open sets in the
affine space £ and F, or possibly in the vector spaces E and F', and

\P:{ug = Ur

is a diffeomorphism, (6.1)
pe = pr=TY(p) }

i.e. a C! invertible map which inverse is C'.

Definition 6.1 ¥ is called a push-forward, and ¥ —! the pull-back (push-forward with ¥—1). See fig. 6.1.

Us / v w“nmﬁm‘\> Ur

W (pr)

/ pr = ¥(pe)
/ Im(ce.)
Im(cg)
Figure 6.1: c¢ : s = pe = ce(s) is a curve in Ue. Push-forwarded by ¥ it becomes the curve ce. :== Wocg
in Ur. The tangent vector at pe = cg(s) is We(pe) = ce’(s), and the tangent vector at pr = cr(s) =
U(cg(s)) is Wes(pr) = cx'(s) = d¥(pe).We(pe). Other illustation: See figure 4.1.

Example: ¥ = & : Q, — €, the motion that transforms €y, into Q, cf. (3.2).
Example: ¥ : Ugp — Up a coordinate system, see example 6.12.
Example: ¥ = O; : Rg — Ra, a change of referential at ¢ (change of observer), see § 10.

NB: ¥ being a diffeomorphism, U= (U (pe)) = pe and pr = ¥(pe) give dV 1 (pr).d¥(pe) = I.

6.2 Push-forward and pull-back of points
Definition 6.2 If pc € £ (a point in Ue) then its push-forward by ¥ is the point
pr=|V.pe = V(pe) | = pex € Ur, (6.2)
see figure 6.1, the last notation if ¥ is implicit. And if pr € Ur then its pull-back by W is the point
= Upr = U ) | = prt €l (6.3)
We immediately have ¥* o U, = I.

The notations , for push-forward and * for pull-back have been proposed by Spivak; Also see Abraham
and Marsden [1] second edition who adopt this notation.
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6.3 Push-forward and pull-back of curves
Leth:{]_e’s[ - U }beacurveinb@.
s — pe = ce(s)

Definition 6.3 Its push-forward by W is the curve

|—e,e] = Ur
U,ce :=Vocg: written (6.4)
s = pr=Vace(s) :=W(ee(s)) =" ceuls) (= ¥(m)),
where U, ce =written cex when W is implicit. See figure 6.1. This defines
‘F(] - 536[;%) - ]:(] 7678[;1/{}—)
W, written (6'5)
ce = Uu(ce) =Tocg "= Uyce = cen.
] - & 5[ — Z/{]: . .
Let cx: is a curve in Ur.
s — pr=cr(s)
Definition 6.4 Its pull-back by ¥ is
] — &, 5[ — Z/tf
Urcr =0 loce . wiitten ) (6.6)
s =2 pe=Vx(s) =V (cr(s)) = cxr(s) (=¥ " (pr)).
We have thus defined
F(CH ] —e,eliUs) = F(CH(] —e.eitk)
v written (6'7)
cr = Uer) =0 locy =" Urer = cxt.
6.4 Push-forward and pull-back of scalar functions
6.4.1 Definitions
—-R
Let fe: % (scalar valued function).
e — fe(pe)
Definition 6.5 Its push-forward by W is the (scalar valued) function
1 {UJ: — R ( )
U, fe:=feoU™": . 6.8
pr = W felpr) = felpe) "™ feu(pr) when e =97 (pr),

(noted fe,. when U is implicit), i.e. U, fe(U.pe) := fe(pe), or feu(pes) = fe(pe) when pe, = ¥(pe). We
have thus defined
{ F(Ue;R) — F(Ur;R)
v, :

fo = fr = Wa(fe) = feo U™ T g g

Notation W, (fe) = W, fe because W, is linear: ((fe + Age) o Y"1 (pr) = (fe + Age)(pe) = fe(pe) +
Age(pe) = (fe 0 T~1)(pr) + Mge 0 T~ 1) (pr) gives Wa(fe + Age) = Wu(fe) + AV (ge).

(6.9)

Ur — R
Let fr: { > (o) } (scalar valued function).

pr = [F
Definition 6.6 Its pull-back by ¥ is the push-forward by 1, i.e. is
U — R ( )
U*fr:=froW: . 6.10
pe = U fr(pe) = frpr) "5 7' (r) when pr=U(p),
ie. U fr(U*pr) := fr(pr), i.e. fr*(pr*) := fr(pr) when pr = ¥*(pr). We have thus defined
FUsiR) — F(lk;R)
v * * written o . (6'11)
fr =W (fr)=fr" = fro¥ ="V fr.

We immediately have ¥* o U, = ] and U, o ¥* = J (the first I is the identity in F(U;R), the
second 7 is the identity in F(Ur;R)).

Warning: We used the same notations ¥, and ¥* for the push-forward and pull-backs of points, of
curves and of functions: The context removes ambiguities.
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47 6.5. Push-forward and pull-back of vector fields

6.4.2 Interpretation: Why is it useful?

E.g.: Let P : R x Obj — R™ be a motion of an object Obj. An observer records the temperature 6
C={J{t} xxu) —-R
t

(t,p) —0(t,p)
scalar valued function, cf. (2.2). Then he chooses an initial time fy, considers the associated motion ®%
Qto — R
Pty = 04 (py,) == 0(to, py,)
The push-forward of 0, by ®% is (®X),0;, := 0, o (P1°)~! defines the “memory function”

at all t € [to,T] and all p € Q; = ®(t, Obj); He gets 6 : a Eulerian

cf. (3.1), and considers 6y, : { } (snapshot of the temperatures at #y in ).

Qt — R

. . (6.12)
pt = (@)ubi (pt) := 04, (py,) when p; = & (py, ),

(D)0, : {

And he writes (®%),.6,, (p,) =""t%" g, . (t,p;), so the memory transported is at ¢ at p; (along a trajectory)
by
01+ (, p(t)) = Oy (P1o)- (6.13)

Question: Why do we introduce 6;,, since we have 6,7

Answer: An observer does not have the gift of temporal and/or spatial ubiquity; He has to do with
values at the actual time ¢ and position p; where he is (Newton and Einstein’s point of view). So, when
he was at % at p;, the observer wrote the value 04, (py, ) on a piece of paper (for memory), puts the piece of
paper is his pocket, then once at ¢ at p(t) = ®* (¢, py, ), he takes the paper out of his pocket, and renames
the value he reads as 6. (t,p;) because he is now at ¢ at p;. And, now at ¢ at p;, he can compare the
past and present value. In particular the rate

0(t,p(t) — Oty (t, p(t)) _ actual(t, p(t)) — memory, (t, p(t)) (6.14)

t—% t—1
is physically meaningful for one observer at ¢ at p; (no ubiquity gift required). For scalar value functions,

we get the usual rate M‘W —> sty B2(to, pry)- Tt it isn’t that simple for vector valued functions
(the limit ¢ — #, defines the Lie derivative).

6.5 Push-forward and pull-back of vector fields

This is one of the most important concept for mechanical engineers.

6.5.1 An elementary introduction (approximations)

Consider two points pe, ¢ € Us and their push-forwards by ¥ cf. (6.2): pr = pe. = ¥(pe) and g = qes =
U(g) in Ur. The first order Taylor expansion gives

(U(g) —U(pe) =) qr —pr =d¥(pe).( —pe) +o(lle — pelle), (6.15)
Le. pFqf = d¥(pe) EE + o(||[pE@ || ), i.e.

FE E¢
w2l ) e o (6.16)

The definition of the push-forward fo vectors is obtained by “neglecting” the o(1) (limit as ¢¢ — pe):

Definition 6.7 If wg(pe) € E is a vector at pg € U then its push-forward by W is the vector
Wr(pr) =VIen e, (pr) ="IHen U Ge (pr) € F defined at pr = pe. = V(pe) € Ur by

@ (pr) = oibe (pr) = | - (pr) 1= AV () e (pe) | (6.17)

6.5.2 Definition of the push-forward of a vector field

To fully grasp the definition and to avoid interpretation errors as in § 4.3 (the unfortunate notation
dZ = F.dX), we use the definition: “A vector” is a “tangent vector to a curve” (needed for surfaces):
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48 6.5. Push-forward and pull-back of vector fields

—e,el — . :
o Let c¢ : } [ U be a C! curve in Ue. Its tangent vector at pe = cg(s) is
s = pe =ce(s)
. s+ h)—ce(s
Te(pe) = ce'(s) (= ,{lg}) el (6.19)

Im(ce)

see fig 6.1, which defines the function wg : { } called a vector field along Im(cg) C Ue.

pe — we(pe

e The push-forward of c¢ by W is the image curve cg. = Uocg (the curve transformed by W) cf. (6.4);
Its tangent vector at pr = cg«($) is

Wex(pF) 1= ces' (s) = d¥(ce(s)).ce’(s) = d¥(pe) e (pe) where pe = ce(s). (6.19)
Thus we have defined the vector field W, along Im(cg,) called the push-forward of wg by U:
Definition 6.8 The push-forward by ¥ of a C° vector field g : {% ” ]% } is the vector field
e — we(pe)
. . Ur — F
T e (W) = ) e )| ) when = W),
see figu. 6.1, the notation wg, when W is implicit. In other words,
U g = (dV.abg) o UL, (6.21)

C®Us; E) — C®°UFr; F
This defines the map U, : e H) (ﬂf ) . R .
We — VU, (Wg) = Vg = Wes

Warning: Same notation ¥, as in definition 6.5: The context removes ambiguities.

Remark 6.9 Unlike scalar functions, cf. § 6.4.2: At #, at p;, you cannot just draw a vector Wy, (py,)
on a piece of paper, put the paper in your pocket, then let yourself be carried by the flow ¥ = @?
(push-forward), then, once arrived at ¢ at p;, take the paper out of your pocket and read it to get the
push-forward: The direction and length of the vector @y, . (¢, p;) are modified by the flow (a vector is not

just a collection of scalar components). u
Exercice 6.10 Prove:
c¢" () = dig (pe)-We (pe), (6.22)
and
dig.(pF).d¥ (pe) = d¥ (pe).die (pe) + d*W (pe).we (pe), (6.23)
and
ces''(s) = dibg.(pr) De.(pr) (= d¥(pe).c2"(s) + d*V(pe).cg'(s).c¢'(s)). (6.24)
Answer. ¢¢'(s) = we(ce(s)) gives ¢’ (s) = dig(ce(s)).c¢'(s), hence (6.22).
Wew (VU (pe)) = dP(pe).We (pe) by definition of We., hence (6.23).
cr(s) = U(ce(s)) gives cx'(s) = d¥(ce(s)).cz'(s) = dVU(ce(s)).We(ce(s)) = Wex(cr(s)). Thus cx”(s) =
(d*U(ce(s)).c2'(s)).c¢' (s) + d¥(ce(s)).c2" (s) = dibe«(cr(s)).cF'(s), hence (6.24). un

6.5.3 Pull-back of a vector field
Z/{]-' - F

pr — Wr(pr)
push-forward by ¥~!, i.e. is the vector field on I defined by

Definition 6.11 If wr : { } is a vector field on Ur, then its pull-back by W is the

U — FE
Uiy — - - tton _ . (6.25)
e = | W () = AV (pr) i (o) | @ (), when pr = ().
In other words,
Uy = (AU agz) o U VN 5, (6.26)
And we immediately get
U*oW, =1 and PY,oU¥*" =1, (6.27)

because U* (W, 0 ) (pe) = d¥ 1 (pr). Vb (pr) = dV 1 (pr).dV (pe) . We (pe) = We (pe). Idem for W, o U*,
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49 6.6. Quantification with bases

6.6 Quantification with bases
6.6.1 Usual result
(@) is a Cartesian basis in E, Oz and (b;) are an origin in F and a Cartesian basis in F, pe € U,
n 1 ()
pr=U(E) = Or + > i) b, ie. OrpFlg=| : |- (6.28)
=t n (pe)

And d¥(pe).() = Zl(d@bz(%)())gu ie. dU(pe).Wg = Zi(d@/}i(pg).w'E)gi for all wr € E. Thus, if &g is
a vector field in U and We = Y, w;d;, we get W,be(pr) = dV (pe).We(pe) = iy (v (pe)Be (pe)) b =

—

> j=1w; (pe) (dui(pe).a@) b = szzlg—f;(pg)wj (pe) b, so (matrix calculation)
(W.die (pr)] 5 = [d¥ (pe)] 7 5- (e (pe) ) jas (6.29)

where [dU(pe)] ; 5 = [dvbi(pe).d;] —written [g%(pg)] is the Jacobian matrix.

6.6.2 Example: Polar coordinate system

Example 6.12 Change of coordinate system interpreted as a push-forward: Paradigmatic example of
the polar coordinate system (model generalized for the parametrization of any manifold).
Parametric Cartesian vector space R x R ="1tten R2 — {7— (7 §)}, with its canonical basis (a1, da),

and ¢ = rd; + 0dy =" (1.0), s0 [qljz = (g) Geometric affine space R? (of positions), p € R?,

associated vector space R_é, O € R? (origin), ¥ = O_]>9, and a Euclidean basis (51, 52) in R2. The “polar

. : , @i xR CR? — R?
coordinate system” is the associated map ¥ : P defined by
q=(r,0) —7=¥(q) =Y(r0),
- o . a7 . ~ x =rcosf
Z=U(7):=rcos@b; +rsinfby, ie. [x]lgz (y_rsine)' (6.30)
R — R

s — Czi(s) = q+ sa; }7
and its tangent vector at ¢g,(s) is €z,'(s) = d; for all s. This line is transformed by ¥ into the curve

. R — R?
‘Ij*(Cq,z‘) —Uo Eq‘,i _written Czit . .
s —cgi(s) =¥(q+ sd;)

The i-th coordinate line at ¢'in ]RE (parametric space) is the straight line &, {

} (in particular ¢z ;(0) = Z). So

[Ocz.1(s ]“; = (%:j:z)) Z?ﬁg) (straight line), and [Ocza(s ]‘5 = (ZZ?E((ZE;) (circle), (6.31)

and the tangent vector at cz;(s) is cz/(s) ="'t G, (%) (push-forward by ¥), so

U(r+h,0) — U(r,0) 0T

14(Z) == V,a1 (%) = dV(§).d1 = lim W = }lllg%) - = E((T)’ 6.32)
S o (q+hdz) —V(q) .. Y(r,0+h)—V(r,0) OV ’
(o4 (Z) := U, da(Z) = dV(§).d2 = lim N = }lllg%) W = %(cf)
So . . . .
a1.(Z) = cosOby +sin by  and 2. (Z) = —rsin by + r cos Oby (6.33)

vectors at & = U(g), i.e.

an@ls=(Gnp) ad @l (). (634

sin 6 rcosf

The basis (@14(Z), da2« (Z)) is called the basis of the polar coordinate system at Z (it is orthogonal but not

orthonormal since ||@.(&)|| = r # 1 in general); And [d¥(q)] ; ; = 2 (@) = (15H @) [55@)) =

([51*(5)]|g [G2x (f)]‘g) = <z?§z ;2:190) is the Jacobian matrix of ¥ at ¢ considered at & = U(g).
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50 6.6. Quantification with bases

And the dual basis of the polar system basis (@1.(Z), d2.(Z)) is called (dgi(Z),dg2(Z)) (defined by
dq;(%).djs(T) = 6i), 8

1 1
dg1 (%) = cosOdxy +sinfdzy and dge(¥) = - sinfdx, + - cos 0 dxs, (6.35)

e. [dg: (% )]| = (cosf sind) and [dga (f)]‘g =—1(sinf cosf) (row matrices: rows of [d\I/(q")]IT;E) n

Remark 6.13 The components 'yfj(_') of the vector dd;.(Z).d;«(Z) € R? in the basis (@;x(¥)) are the
Christoffel symbols of the polar coordinate system (with duality notations as it is usually presented):

i (2).3 (F) = Y 75 (8) Gk (F). (6.36)
At & = U(q), with @;.(Z) = d¥(§).d;, i.e. (djx 0 ¥)(9) = a Y we get

8%V L & &
9 0q (d)zdai*(x).aj*(x), SO Yij = Vy4 (6.37)

A}, (7).8: (T) =

for all 4, j (symmetry of the bottom indices as soon as U is C?).

= ’731- And %%(CD =

—7r and ’}/%2 =0. m

Here for the polar coordinates, 2 o Y (7) = cosBby + sinfby gives %23'(6') = 0, thus 7}, = 7%, = 0,
and aea Y () = —sinfb; + 0089b2 = 1d5,.(7), thus 712 =0=13 and 7y}, = 1

—rsinfby + 7 cos Oby gives 892 V() = —rcosOby — rsinOby = —ray. (&), thus v,

Remark 6.14 The (widely used) normalized polar coordinate basis (71 (%), 7i2(Z)) = (@14(F), +d2+(T))
is not holonomic, i.e. is not the basis of a coordinate system (and its use makes higher deriva-

tion formulas complicated). Indeed 7io(Z) = 22 (%) gives dita(Z).71(Z) = (d(2)(Z).711(Z))d2«(F) +
1dd,. ()71 (%), and 71 (F) = @1.() gives dnl( 7).72(Z) = dai.(Z )(% 1*), thus dria(Z).11 (%) —

dity(B).i5(F) = (d()(@).i(¥)d2e(F) # 0, since L = (22 + y*)72 gives d(3)(D).i(F) =
(—z(z2+92)"2 —y(a+y2) 7). Z?jz = L (—rcos?0 —rsin®0) = = £ 0. L

Remark 6.15 (Pay attention to the notations.) Let f : § € ]R?, — f(@) € R be C2. Call g its push-
forward by ¥, ie. g: 7 € R? — g(Z) = f(¢) € R when Z = ¥(3). So f(§) = (9o ¥)(3) and

& (@).3; = dg(V(@)-d¥().3; = dg(F).;. (). (6.38)
With df (¢).d; =" OL(q) and dg(7).b; ="t D2.(7) and @;.() = d¥(9).G; = 3, 5% (), we get
ﬂ _ 39 R @ wrltten 39 "

(0= 3 5 @55 @ E G @ (6.39)
. . T . . o N g mgnsﬁ . @ =\ means 8(90\11)
Mind this notation!! g is a function of Z, not of ¢, so ¢ (Z) o (q), i.e. e (Z) o0 ———=(J)...
which is [df (§)] = [dg(Z)].[dY(])... n
Remark 6.16 Then (with f and ¥ C?)
8551' _ meansaa(goqj) N
~(7) = (@) = d(dg.@s)(7).dV(q).d; = d(dg.ds)(T).dj- ()
y oy (6.40)
N = N = (= — S o = o written 629 —
= (A (). () o) + @) (0 (7)) " S 3,
So ,
89 2\ MEANS ;12 o o o o n@_,k_._._,
o " 9@ (00,8500 + 3 (Pl @), (6.41)

and Bg?q] (;v) is not reduced to d?g(Z)(a@;. (¥), @;«(Z)) (the Christoffel symbols have appeared), first order

derivatives W being still alive (contrary to %(f) = d2¢(Z)(b;, g]) with a Cartesian basis (b;)).

NB: The independent variables r and 6 don’t have the same dimension (a length and an angle): There
is no physical meaningful inner dot product in the parameter space R2 R xR ={(r,0)}, but this space
is very useful... (As in thermodynamics: No meaningful inner dot product in the (T, P) space.) oa
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7 Push-forward and pull-back of differential forms

Setting of § 6.1. The set of vector fields on U is called I'(lk).

7.1 Definition
U — E* = L(E;R)

pe — ag(pe)
ag(pe) is a linear form on E. Precisely: A differential form on U is a field of linear forms, i.e. a function

U — U x E*
Qg
e — (pe,oe(pe))

Definition 7.1 In short: A differential form on U is a function ag : , i.e. s.t.

} (looked at at the point pc). And

Q' (Ue) = the set of differentials forms. (7.1)

U —F

Consider a differential form ag € Q! (Ue) and a vector field g : R
e — We(pe)

} . The push-forward

by W of the scalar valued function

U —R

fe = ag.we : {pg — fg(pg) = (a’tﬁg)(pg) = Oég(PS)-YI}'E(PS)-
is, cf. (6.8) with pr = ¥(x),

VU, (ag.e)(pr) = (agle)(pe) = e (pe) - We (pe)
= ag(pe).dV(pe)™ " . dU(pe).De(pe) . (7.2)

—Written g e (pr) =wes(pF)

And U1 (W (pe)) = pe gives dU Y (pr).d¥(pe) = I, i.e. d¥(pe)~t = dVU ! (pr). Hence (compatibility):

Definition 7.2 The push-forward of a differential form ag € Q' (lf) is the differential form in Q! (Ur),
when pr = U(zs),

Ur — F* = L(F;R)

QL (Ur). _
pr o= ’ V.oe(pr) = as(Ps).dW*l(pf)‘ €V (Ur) (7.3)

(If you prefer, W, ag(pr) = ae(pe).d¥(pe)~t.) (And U,ae =10 op when W is implicit.) In other
words, W,ag(pr) = ag (P (pr))-d¥ " (pF), Le.

U,ag := (ag o U™ H.d0~ 1 (7.4)

(Warning: Once again, we used the same notation U, as for the push-forward of vector fields and
functions: The context removes ambiguities.)

Hence, for all @r : Ur — R", when pr = U(pe) and @ = We, (pr) = d¥ (pe).de (pe),

((agie)«(pr) =) ass(pr)Wex(pr) = ae(pe) We(pe) (= (as.de)(pe)), (7.5)
or
(Viae)(pr)dir(pr) = as(pe). (Vadir) (pe)- (7.6)
In particular if ag = df (exact differential form) where f € C!(Ue;R), then
d(V.f) = V. (df). (7.7)

(This commutativity result is very particular to the case a@ = df: In general d(V,.T) # U,(dT) for a
tensor of order > 2, see e.g. (8.20)).

Remark 7.3 We cannot always see a vector field (e.g. we can’t see an internal force field): To “see” it we
need to measure it with a well defined tool, the tool being here a differential form; And the definition 7.2
is a compatbility definition so that we can recover the push-forward of the vector field. .
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52 7.2. Incompatibility: Riesz representation and push-forward

Definition 7.4 The pull-back of a differential form aF € Q(Ur) is, with pr = ¥(pe), the differential
form

— L(E;R
U ar : % i ) € QN Ue). (7.8)
pe — Var(pe) == aF(pr)-d¥(p)
In other words,

U*ar := (aF o ¥).d¥. (7.9)

(For an alternative definition, see remark 7.5.)

And we have

U*oW, =] and VY,oU*=1. (7.10)

Indeed ¥* (U, ag)(pe) = Viae(pr).d¥(pe) = ag(pe).dV 1 (pr).d¥(pe) = ag(pe). Idem for ¥, o U* = .

Remark 7.5 The pull-back ar* can also be defined thanks to the natural canonical isomorphism

L(E;F) = L(F;E") | . . . .
given by L*(ﬁp)uE = ép(LuE) for all (UEHEF) S EXF*, and L*(KF) = EFL

L - L*
is called the pull-back of ¢p by L. In particular with {p = ar(pr) and L = d¥(p) we get
d¥(pe)*(ar(pr)) = ar(pr).d¥(pe), ie. (7.8). v

7.2 Incompatibility: Riesz representation and push-forward

A push-forward is independent of any inner dot product: It is objective. Subjectivity: Here we introduce
inner dot products (-,-), in £ and (-, ), in F, e.g. Euclidean dot products in I@Z) and R (foot? metre?),
because some can’t begin with their beloved Euclidean dot products.

Let ag € Q' (L) and call 87 := U, a¢ its push-forward by U:

Br(pr) = ag(pe).d¥(pe)~" when pr = U(p). (7.11)

Then call d4(pe) € E and b (pF) € F the (-, -)g and (-, -)n-Riesz representation vectors of ag and Sr: For
all @g € I'(Ue) and all Wr € T'(Ur),

ag. i = (L_L'g,’ljg)g and [r.dr = (Eh,u?;)h. (7.12)
This defines the vector fields @, € I'(L) and by, € T'(Ur).

Proposition 7.6 Although fr = V.ag, we have by # W.d, in general: Indeed we have

bn(pF) = AW (pe) ™" iy (pe)

# d¥(pe).dg(pe) in general (7.13)

(unless d¥(pe)~1 = dV(pe), i.e. dV(pe)T.d¥(pe)~! =1, i.e. unless ¥ is “a rigid body motion”).

So the Riesz representation vector of the push-forwarded linear form is not the push-forwarded rep-
resentation vector of the linear form push-forwarded.

This is not a surprise: A push-forward is independent of any inner dot product, while a Riesz repre-
sentation vector depends on a chosen inner dot product.

So, as long as possible (i.e. not before you need to quantify), you should avoid using a Riesz repre-
sentation vector, i.e. you should use the original (the qualitative differential form) and delay the use of a
representative (quantification with which dot product?) as late as possible.

Proof. Recall cf. (A.47): The transposed of the linear map d¥(pc) € L(E; F) relative to (-,-), and (-, )y
is the linear map d\I/(pg)Z;h € L(F; E) defined by, for all @g € E and Wr € F vectors at pc and pr,
(d¥ (pe) jp W, g ) g = (Wr, AV (pe). e )p- (7.14)

If (-,-)q4 and (-, -);, is imposed to all observers, then d\I/(pg)Zh =written g (5 )7, Tt is the case here. (7.12)
gives, with pr = U(pe),

(dg(pe), ie)g = ae(pe)de = (Br(pr).d¥(pe)).de = Br(pF). (AP (pe).de)
= (bn(pr), d¥ (pe)-tie)n = (A9 (pe)" by (pr), iie)g,

true for all dg, thus dy(p) = AW (pe)T by, (pr), thus (7.13). ia

(7.15)
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8 Push-forward and pull-back of tensors
To lighten the presentation, we only deal with order 1 and 2 tensors. Similar approach for any tensor.

8.1 Push-forward and pull-back of order 1 tensors

Proposition 8.1 If T is either a vector field or a differential form, then its push-forward satisfies, for
all ¢ vector field or differential form (when required) in Ur,

(U, T)(€&) =T(V*), written U, T(.)=T(¥"), (8.1)
ie (U.T)(pr).&(pr) = T(pe). U*E(pe) when pr = Y(pe). Similarly:
(T (&) =T(V.8), written U*T()=T(¥,.), (8.2)

ie. (W) (pe)&(pe) = T(pr)-Vul(pr) when pr = V(pe).

Proof. e Case T = ag € Q(U) (differential form = () tensor), then here f = uwr € T'(Ur)
and we have to check: (V.ag)(pr)Wr(pr) = as(pe). V*ir(pe), ie. (ag(pe).dV—t(pe))br(pr) =

ag(pe).(d¥ 1 (pe) B (pr)): True.
o Case T = wg € I'(Ue) (vector field ~ a () tensor), then here ¢ = ar € Q'(Ur) we have to
check: (U,dg)(pr).ar(pr) = We(ps).¥*(ar)(pe), where we implicitly use to the natural canonical iso-
E — E*

o written
w —w =

%f(?f)(‘ll*ﬁs)(m) = U (o) (pe) e (pe), ie. aF(pr).(d¥(pe)-de(pe)) = (oF(pr).d¥(pe)™").de)(pe) -
rue.

For (8.2), use ¥~ ! instead of W. ..

morphism J : _'} defined by w(¢) = £.ad for all £ € E*. So we have to check:
W

8.2 Push-forward and pull-back of order 2 tensors

Definition 8.2 Let T be an order 2 tensor in . Its push-forward by W is the order 2 tensor W, T in Ur
defined by, for all &1, & vector field or differential form (when required) in Ur,

VT (&1, €2) = T(V&, W7Ep)  written  W.T(,-) = T (W™, U™), (8.3)

Le. W, T (pr)(&1(pF), S2(pF)) := T(pe) (&1 (pe), ¥ E2(pe)) when pr = U(pe).
Let T be an order 2 tensor in Ur. Its pull-back by ¥ is the order 2 tensor *T in U4 defined by, for

all &1, & vector field or differential form (when required) in U,
U*T(&1,&2) =T (Vi&1, Ui&o) written U*T(-,.) :=T (U, U,.), (8.4)

Le., W*T(pe)(&1(e), &2(pe)) = T(pr) (V&1 (pF), Vi2(pF)) when pr = U(pe).
Example 8.3 If T € T9(U) (e.g., a metric) then, for all vector fields @y, Wa in Ur,

T, (@, @) & T(@,*, @) = T(d\I/_l.wl,d\IJ_l.u?Q), (8.5)
L., T () (1 (1), 0 (p)) = T(pe) (AU (1)1 (pe), AU ()T (pr)) when pr = W(pe).
B Expressmn with bases (@;) in E and (b;) in _f?*' In short we have (Ty);; = T.(bi,b;) = T(b;*,b;*) =
BT b5 = (5[], T)- [T (@], 15 [b]15) = (@], T.1T]ja.[d¥] 5)s;, thus
T.)5 = [d\ml T ] (8.6)

which means (9.7) ()5 = (@) ) " AT (0¥ (e )" when pr = W),
Particular case of an elementary tensor T' = a1 ® ag € Ty (U ), where aq, as € QY (Ue), so T (i1, iiz) =
(Oél X 042)(171,172) = (051.7._[1)(0[2 UQ) For all wl,’UJQ S F(Z/[}‘)

L L\ (83 iy (76 - .
(a1 ® ). (1, @) "= (@1 © o) (@, @) = (a0 (2.@) = (Qrs-) (ae-i), (8.7)
thus
(1 ® @)y = Q14 @ Q24 (8.8)
(And any tensor is a finite sum of elementary tensors.) un
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54 8.3. Push-forward and pull-back of endomorphisms

And for the pull-back: For all vector fields 1, 4o in U,

T (i, i) = T(dr,lizy) = T(dW. iy, dV.id). (8.9)

Thus
P,oU*=] and VY oW, =1. (8.10)

Indeed (W, o U*)(¢) = € and (U* o U,)(&) = & give (W, o U*)(T)(&1,&2) = W (VUH(T))(&, &) =G
U*(T)(U*Ep, U Ey) =89 T(W, U ¢, U, . U*E) = T(&,&). Idem with U* o .

Example 8.4 If T € T} (U ) then for all vector fields @ € I'(Ur) and differential forms 8 € Q! (Ur),
T.(B8,%) = T(B*,@*) = T(B.d¥, d¥ " .7), (8.11)

i.e., Tu(pr)(B(pr), w(pr)) = T () (B(pr).d¥ (pe), AV (pr).w(pr)) when pr =V (pe).
For the elementary tensor T = @ ® a € T{(Ue), made of the vector field @ € T'(l) and of the
differential form o € Q! (U): For all 8,w € Q' (Ur) x T'(Ur), in short,

(i ). (8,0) (@ 0 )57, @) = (@87 (0.0") =@ B)0nd) = (@ ©a)(B,5), (812
thus
(TR a)s = Uy @ y. (8.13)
Expression_‘ with bases (@) in E and (b;) in F: In short we have (Ty)i; = T*(bi,l;j) =
T(U(b'), U (b;)) = (¥ (6))[T].[97(5,)] = [b')-[AW].[T).[d% ). [b5] = ([dP).[T].[4¥ "))y, thus
[L.]5 = 4] 5 7] o [d0) (8.4
which means [(\P*T)(p]:)]lg = [d\Il(pg)]‘a,g.[T(pg)]‘d.[d\I/(pg)]l_a’lg when pr = U(pe). -

8.3 Push-forward and pull-back of endomorphisms
We have the natural canonical isomorphism

- {L(E;E) — L(E*, E;R) 5.15)

L - T, =J(L) where Tp(a,d):=a.Lid, VY(a@) e€FE" XxE.
Thus W, Ty (m, @) = T (U m, U @) = (*m).L.(V*&F) = m.dV.L.dU " 15, thus:

Definition 8.5 The push-forward by ¥ of a field of endomorphisms L on lf is the field of endomorphisms
U, L = L, on Ur defined by

U.L=|L, =dV.L.dv""
ie., L(pr) = d¥(pe).L(pe).d¥ ' (pr) when pr = ¥(pe).

(8.16)

Thus with bases we get [L*]“; = [dV] . 7 [L]ja- [d®] !

| “as in (8.14)".

|~7

So Ty, = @ ® « and L.iiy = (a.tip)i for all @y € T'(Ue)). Thus L.l = d¥.L.dVLady = dV.L.ady*

Example 8.6 Elementary field of endomorphisms L = (J2) (7 ® «), where i € T'(E ) and « € QY(E):
(2" )dV. G = (cvai2) s for all @y € T(E), thus (Tr). — @ ® a..

Definition 8.7 Let L be a field of endomorphisms on Ur. Its pull-back by ¥ is the field of endomorphisms
U*[L = L* on U defined by

VL =L =
Le., L*(pe) = dU~ " (pF).L(pF).d¥(pe) when pr = ¥ (pe).

(8.17)

8.4 Derivatives of vector fields

@ € T'(Ue) is a C* vector field in Us), pe € Ue, so dii : Ue — L(E;E) (given by dii(pe).w(pe) =
limp_s0 “(”g+hw(}‘f))_”(pg) for all @ € T'(Ue)). Thus its push-forward:

((dit)x =) V,(dit) = dV.di.dV ! (8.18)
e. (did).(pr) = d¥(pe).di(pe).d¥(pe) " when pr = ¥(pe).
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8.5 VU,(du) # d(¥.u) in general: No commutativity

Here @ is C?, @ € T(Ue), pr € U, pr = W(zx), 50 o) = A (i) i(ge) = (A (" (). (AT (pr)),
and, for all @ € T'(Ur),

(0. @)(pr) w(pr) = (d*V(pe)-(d0 ™" (pr)- @ (pF))) dlpe) + ¥ (pe).-di(pe).dV " (pF)-G(pF),  (8.19)
with W, (dit)(pr) = d¥(pe).dii(pe).dV 1 (pF), thus, in short,
d(V @) .0 = W, (dit) & + d*V(V*0, @) # V,(dif) in general. (8.20)

So the differentiation d and the push-forward ., do not commute, unless V¥ is affine.

8.6 Derivative of differential forms

Let a € Q' (k) (a differential form on ). Its derivative da : Ue — L(E; E*) is given by da(pe).u(pe) =
liny, o 2P —ale) ¢ g for all @ € D(l), ie., for all @y, @2 € D(Ue),

(dod(ge) i (pe)) il () = lim 2T PTLPE))-To(pe) — (o)1 (pe)) Walre) - (8.21)

h—0 h

With the natural canonical isomorphism L(E; E*) ~ L(E, E;R), cf. (U.17) with E** ~ E, we can write
da(pe) (@1 (pe)) o (pe) = dev(pe) (@ (pe ), o (pe ), e

da(ﬁl).ﬁg = dOé(’lIh 172) (822)
Thus the push-forward W, (do) =""ite0 (dq), of da, is given by, for all @y, W, € I'(Ur), in short,
(dov) (W1, Wa) = da(dT, W), (8:23)

)13( ) Wa(pr) = (dolpe e)-dV (pr). @1 (pF))-d ™ (pr) o (pr).

i.e., with pr = ¥(pe), (da).(pr
Wo) = d? f(dP ™y, AV by) (= & f (i}, @3)).

)«
In particular, (d?f). (0

(P

8.7 V,.(da)# d(V.«) in general: No commutativity

Here W is C?, @ € T'(Ue), pe € U and pr = VY(pe). We have V.a(pr) = a(p).dV i (pr) =
a(U=L(pr)). d\I' Y(pr), thus, for all @, € T'(Ur),

d(v.a) (pr)- 1 (pr) = (da(pe)-dV ™" (pr) w1 (pF)).dY ™ (pF) + alpe).d* 0~ (pF) 01 (pr) € F*,  (8.24)
thus, for all @y, ws € T'(Ur), in short
d(1h, ) (W, We) = da(d¥ ™ by, U 4y 4+ a.d* U (), Wy) # da(w;, W) in general. (8.25)

So the differentiation d and the push-forward , do not commute, unless ¥ is affine.
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Part 111
Lie derivative

9 Lie derivative

9.0 Purpose and first results
9.0.1 Purpose?

Cauchy’s approach may be insufficient, e.g.:

e - Cauchy’s approach needs to compare two vectors deformed by a motion, thanks to a Euclidean
dot product (-, ), and the deformation gradient F'; Recall, the Cauchy deformation tensor C'is defined by
comparing (i, W), and (U, W, ), where @, = F.« and W, = F.« are the deformed vectors by the motion
(the push-forwards): We have (i, W), — (4@, W), = ((C —I).4,wW),. It is a quantitative approach (needs
a chosen Euclidean dot product: foot? metre?).

- Cauchy’s approach is a first order method (dedicated to linear material): Only the first order Taylor
expansion of the motion is used: Only d® = F is used (the “slope”), not d*® = dF (the “curvature”) or
higher derivatives (the use of F7 is an obstacle).

While:

e - The Lie derivative Lz of a vector field @ measures the resistance of one vector field @ submitted
to a motion.

- Lie’s approach “naturally” applies to non-linear materials thanks to second order Lie derivatives
which uses the second order Taylor expansion of the motion (no F7).

- Lie’s approach is qualitative. So no Euclidean dot product are required to begin with. (Be reassured:
The quantification in a Galilean Euclidean framework for the first order approximation will give the usual
results of Cauchy’s approach.)

- In a non planar surface S, you need the Lie derivative if you want to derive along a trajectory.

(Cauchy died in 1857, and Lie was born in 1842.)

9.0.2 Basic results

With ¢ the Eulerian velocity of the motion:
The Lie derivative Lz f of a Eulerian scalar valued function f is the material derivative

Dy
Lzf = —. 9.1
=2 91)
The Lie derivative Lz of a Eulerian vector field « is more than just the material derivative %f’:
Dii
Lo = ?‘: — i, (9.2)

the —dv.w term telling that the spatial variations dv of ¥ act on the evolution of the stress.
(9.1)-(9.2) enable to define the Lie derivatives of tensors of any type and order (consistency results).

9.1 Definition

The motions considered will be supposed regular (at least C! .

9.1.1 Issue (ubiquity gift)...

The motion @ : [t1,5] x Obj — R™ is supposed to be regular, #(t,p(t)) = %—‘;I;(t,PObj) is the Eulerian

velocity at t at p(t) = ®(t, Ry, ). Recall: If &ul is a Eulerian function then its material time derivative is
m Eul(t+h, p(t+h)) — Eul(t,p(t))

% (,9(0)) = lim &d(np(T)T) :tgul(tm(t)) (= lim X ). (9.3)

Issue: The difference &ul(r,p(7)) — Eul(t, p(t)) requires the time and space ubiquity gift to be computed
(two distinct times ¢ and 7 and positions p(t) and p(7)).
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57 9.1. Definition

9.1.2 ... circumvented

To compare Eul(T,p(7)) and Eul(t, p(t)) along a trajectory, you need the duration h = 7—t to get from ¢
to 7 and to move from p(¢) to p(7). So, for a Ry, you must:
o At t at p; = ®p, (1), take the value &ul(t,p;) with you (for memory),

e move along the trajectory &)&y from (t,ptzif%,y (1)) to (T, przé&y (t+h)); Doing so the value &ul(t, p:)
(you carry with you) has been transported, so has become

(®L),Euly) (p(r)) " gul,, (r,p(r))  (push-forward by the flow). (9.4)

e Now that you are at (7,p(7)), you can compare the actual value &ul(7,p(7)) with the value
Euly (T, p(7)) you arrived with (the transported memory) see fig. 9.1, and the difference

Eul(1,p(7)) — Eulys (1, p(7)) (9.5)

is meaningful for a human being because no gift of ubiquity required.

Figure 9.1: (9.5) with &ul = @ a (Eulerian) vector field. At ¢, let wy : py € Qy — Wi(py) := W(t, py) € R?,
and consider its integral (spatial) curve c; : s = pr = c:(s) € Qy, L.e. s.t. ¢/ (s) = We(ce(s)). This curve
c; is transported by ®% into the (spatial) curve ¢; = ¢ = ®L oy 1 s = pr = ®L(ci(s)) € Qr; And
e (8) = d®L(p).d(s) = dPL(py).We(pr) = Wy (T, pr) is the tangent vector at ¢, at p, (push-forward).
And the difference W(7, p;) — Wi (7, pr) can be computed by a human being, i.e. without ubiquity gift.

9.1.3 The Lie derivative, first definition

The “natural” definition is given when you arrive with your memory:

o At 7 <t at p(1) = p; = ®p, (1), take the past value &ul(r,p(7)) (memory), then

e transport it with you along the trajectory 5@,} . At t at p(t) the transported value is (®]).&ul, (p(t)) =
Eulr.(t,p(t)) (push-forward along the trajectory), and

e now, without any ubiquity gift, you can compare this value with the actual value Eul(t, p:):

Definition 9.1 The Lie derivative Lz&ul of an Eulerian function &ul along @ is the Eulerian function
Lz&ul defined by, at t at p; = ®p,, (1),

. Euly(p) — (@i_h)*é’ult_h(pt) present — memory transported
m

LzEul(t,pe) = 1 = lim
h—0 t—7 h—0 t—r7 (9.6)
o Eul(p) — (B)).Eul(p) (Bl Eul)( )
Tt t—T1 Tt t—T1
E.g. with &ul = W a vector field,
Iy - dé‘r T)* _’T T
Lot pr) = lim 22Pt) = 427 (pr)-Gr(pr) (9.7)
Tt t—T1

Remark 9.2 Precise definition (as in (2.3)): With C = Useity 15 ([t 22] x€2) and (9.6), the Lie derivative

i L~ C -CxsS ]
of the Eulerian field of functions &ul : i
(t,pe) — ((t,pr), Eul(t, pr))
. C -CxsS
Lizéul : - (9.8)
(tvpt) — ‘C’Ugul(typt) = ((t7pt)7£175ul(t7pt))
And Zgé/'t?l(t,pt) =written £ogul(t, p;) to lighten the notation. oa
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58 9.2. Lie derivative of a scalar function

9.1.4 Second (equivalent) definition

Differential geometry books: The Lie derivative is defined with pull-backs:

o At t+h at p(t+h) = ®(t+h, Ry;), take the value &ul(t+h, p(t+h)) with you,

e go back (in the past) along the trajectory E)B)ly: At t this value was (®!, ,"Eulyip)(pe) = Euly (¢, pr)
(pull-back along the trajectory),

e then compared it with &ul(t,p;) (no ubiquity gift required):

Definition 9.3 The Lie derivative of a Eulerian function &ul along a flow of Eulerian velocity ¢ is the
Eulerian function £z&ul defined at (¢, p;) by

(PLY*Eul, (pr) — Euly(py) (Euly ), — Eul)(t, pr)

Lzul(t,pr) = 71_11)1’}‘ p— (= }{1_}0 - ). (9.9)
In other words, let
g(1) = (®7)"Eul+(pr) (9.10)
(function defined along a trajectory which satisfies g(t) = Euly(p;)). Then Lz&ul is defined by
_ . q)t *
Lz&ul(t,p) :==g'(t) (= lim 9(r) = 9(t) written (@) 8l (p) ). (9.11)
Tt T —1 dr |r=t

E.g. with &ul = w0 a vector field,

Ao (py) " iy (pr) — Wi(pr) .

‘Cﬁw(t7pt) = 71_11})% P

(9.12)
Proposition 9.4 (9.6) and (9.9) are equivalent.

Proof. 1- Vector fields. From (97) W (pt)— dd; t (pr)- Wr(pr) _ ch)T(pT) wT(pT) We(pe) _ dq)T( ) Wr(pr)— do! (pt) wt(pt)

T—t
because p; = @] (p,) = 7 (PL(p;)) gives [ = d‘I)T(pT) d<I>f (pt) And “Product of limits = limit of prod-
Be(pe) =d®y (pr) T (Pr) _ T iy " Wr (pr)=d®; (pe) Wi (pt)

ucts”, thus lim,_;

t—T : T ‘r—t
From (9.12). d‘l’tf(pf)’l'f*f*)‘wt(“) = AL (py) L B )= ) E R Thyg fipy, 00 (o) ()
I.lim,_,, Br(pr)=d® (pt) . Same result. Thus (9.7) < (9.12).
2- Similar for any tensor: (9.6) and (9.9) are equivalent. ia

9.2 Lie derivative of a scalar function
Let f be a C! Eulerian scalar valued function. With (®1="), f,_4(p;) =©10 f, 1 (p(t—h)), (9.6) gives

_Dbr|_of
af—ﬁ = 5 + df .. (9.13)

f(tapt) — f(tfhap(tfh)) ie. L

So, for scalar valued functions, the Lie derivative is the material derivative.
(Details: limp,_,o f(t,pt)*f(t}:h,p(t*h)) f(tfh,p(tfl;))ff(upt

) — Jimy 0

= limy, f(t+h’1’(t+:))*f(t,pt) )

Proposition 9.5 L;f = 0 iff f is constant along any trajectory (at t at p; the real value = the memory
value), i.e. iff f(t,p(t)) = f(to, py,) when p(t) = ®©(t,py,) (i.e. iff f is unchanged along the flow):

Lyf=0 <= V7€ [to,T], (97,)fe(p-) = f(t,p(t)) when p, = @7 (p). (9.14)
Proof. Let p(t) = <T>(t,PObj) = p; for all ¢, so p(7) = :I;(T, Ryj) =pr = ‘I’§+h(Pt) = ‘I)t(r Dt)-

e If fr = (BL, )« frr then fr(pr) = fo(ps), thus lim, _,, JO2EDT W) _ o 50 DI

=: If Df = 0 then f(¢,p(t)) is a constant function on the trajectory ¢t — CT)(t, Ry ), for any particle Ry,
so f(r.p(7) = f(t,pe) when p(r) = Dy (pe), Le f(7,pr) = (D4 p)s fi(pr)-

Proposition 9.6 If f is C? then (commutativity)

Lz(df) =d(Lzf). (9.15)
(Only true for scalar valued functions, see e.g. (9.20) and (9.49).)
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59 9.3. Lie derivative of a vector field

Proof df is a C* thus d? f symmetric (Schwarz’ theorem) thus with a little advance see (9.44), Lz(df ) =
DUD o qf.5 = 290 4 2 f(7,.) +df .47 and d(Lgf) = d(2L +df.7) = 29 4 @2 f(7,.) + df.dF give (9.15).

Exercice 9.7 Prove: Lz(Lzf) = gi{ = %tf + 2d( ) U+ d?f(0,7) + df (4 U 1 dv).

Answer. See (2.32). .

9.3 Lie derivative of a vector field
9.3.1 Formula

Proposition 9.8 The motion is supposed C? and 1 is a C' (Eulerian) vector field. We have

D 0w
W = — — dU.W B — — dv.aw. 1
LW D dv.w =5 + dw.v — dv.w (9.16)

So the Lie derivative is not reduced to the material derivative 2 Bt U (unless di/ = 0, i.e. unless ¥ is uniform):
The spatial variations dv' of ' influences the rate of stress: U tries to bend W (which is expected).

Proof. Let g(7) =19 d®t (p,) =1 .6(7, p(r)). Thus thus @(7,p(7)) = d®(, p¢).G(7) and (9.11) gives

=g = Xm0 g0 +des) @0 o
P Gy T B FHp) L)
Thus 22 (t, p,) = dvi(t, p;).@(t, pe) + I.L50(t, pt), thus (9.16). o
Quantlﬁcatlon: Basis (€;), =), vi€;, W =), w;&, dv.€; = Zij v;|;€i, d.€j = Zij w;);€;; Then
Lyl = awl € + Z w;)|V;€; — i V| W; €5 (9.18)
i=1 ij=1 ij=1
So, with [-]:= [z,
o] = (20) e fi]| (= (2] + [at.6] — [a5) ). (9.19)
(And [dw.v] = [dw].[].) Duality notations: Ly =, 85‘)’5 €+ 5 wlijvj@ =2 v‘ijwjé'i.
Proposition 9.9 For C? vector fields (no commutativity in general):
d(Ly W) = Ly(dwb) + d*T(., W) (# Li(dD) in general). (9.20)

Proof. (Result given now because it is important). d(Ls0) = d(%E + diw.v — dv.@) = dZ2 + d*w(., ) +
d.di — d?¥(., ) — dv.di. And dii being a endomorphism, (9.58) gives Ly(diw) = a(dw) + d*(., T) —
dT.dw + dib.dv # d(Lyd). .

9.3.2 Interpretation: Flow resistance measurement
Proposition 9.10 ®% is regular motion and 1 is a vector field.
Ly =0 <= Vte(t,T], W = (B°).t,. (9.21)

That is: 22 = dg.1if < the actual vector w(t, p(t)) is equal to F{° (py, )Wy, (pr,) = Wi (¢, p(t)) the deformed
vector by the flow. See figure 9.1. So: The Lie derivative LzW vanishes iff & does not resist the flow (let
itself be deformed by the flow), i.e. iff W(t,p;) = Wiy« (t,pe) for all t and all p; € .

Proof. We have Ly = 2% — dif.1if and 6F (t, py) = di(t, p(t)).Fl (ps,), cf. (3.33). Let p(t) = ®°(py,).
< Suppose @(t,p(t)) = Ft"(t,pa,) @(i0,py).  Then Di(t,p(t) = 25 (tpy)D(to,

Dt
(to, pp) =

(dT(t, p(t)-F{° (p)-(Ff* (piy) " At p(t))) = du(t, p(t))-@(t, p(t)), thus By — dvai =0, ie. Ly = 0.

= Suppose 27 = diii. Let f(t) = (F{°(py,))~"w(t, p(t)) (pull-back); So w(t, p(t)) = F(t, py)- f#)
and DIt p(t) = 252(¢, Poo)- Ft) + FP(py)-f'(t) = di(t,p(t).F(py,).f(t) + Fto(pfo) fe) =
du(t, p(t)).w(t, p(t)) +Ft0(pt0) F'(t)=hve- DB (¢ p(t)) + Fj* (py,)-f"(t) for all t; Thus F(py,).f"(t) = 0,
thus f’( t) = 0 (because ® is a diffeomorphism), thus ( )= f( ), i.e. Wy = (®°), i, for all t. un
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9.3.3 Autonomous Lie derivative and Lie bracket
The Lie bracket of two vector fields ¢ and w is

[0, 0] == d.7 — do.d """ L0, (9.22)

v
And L% = [v, @] is called the autonomous Lie derivative of @ along . Thus

ow ow

— + [,0] = = + L7 9.23
5 T0wl =50+ (9.23)
Remark: £ is generally used when ¥ et @ are stationary vector fields, thus does not concern objectivity:

A stationary vector field in a referential is not necessary stationary in another (moving) referential.

,Cq-;w =

9.4 Examples
9.4.1 Lie Derivative of a vector field along itself

(9.16) gives
Liv = —. (9.24)

In particular, if 7 is a stationary vector field then L7 = 0 (= [0, 7]).

9.4.2 Lie derivative along a uniform flow

Dw ow
dv =20 Lyl = — — +du 9.25
U = w= 0 (= ey + du. 7). (9.25)
Here the flow is rectilinear (dv = 0): there is no curvature (of the flow) to influence the stress on .

Moreover, if @ is stationary then Lz = dw.v = directional derivative of @ in the direction .

9.4.3 Lie derivative of a uniform vector field

ow

di =0 = Lzu =5 dv.aw, (9.26)
thus the stress on @ is due to the space variations of ¢. E.g. is @ is stationary then LzwW = —dv.0.
9.4.4 TUniaxial stretch of an elastic material
e Strain. With [OT"]EZ [th: (‘;5), with € > 0, t > ¢, p(t) = ®% (¢, P) and [7]jz = [Op(

[ = (;) - (if) +E(t—to) ()0() - (X(”g(t‘t‘)))). (9.27)

Y
. o X —t —5 0\ .
e Eulerian velocity 9(t, p) = = 5+5(t to) t,p) = 1+€(6*t0) 0 (independent of p).

0 di(
e Deformation gradient (independent of P), with si° = &(t—ty):
1+kP 0 1 0
to _ to t — to
F° =do2(P) = ( 0 1)—[4—@ (0 O)' (9.28)
So FT = F here. Infinitesimal strain tensor:
10
Py =re-T=np (o) =zt (929
o Stress. Constitutive law = Linear isotropic elasticity:
A2p 0
a?(pe) = ATr(g?)] + 2pg = rf’ ( 0 H A) =gl (9.30)

S, A2 A2 =
Ti(pe) = g 71 = K (( + u)m) — (t—to) (( + M)m) _ 7. (9.31)
e Push-forwards: Ty, (p;,) = 0, thus Ft()+h(pt{)).ft(, (p,) = 0.
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61 9.4. FEzamples

e Lie derivative (rate of stress at (ty, py,)):

Tt(pt) — Fp (pto)'fto (Pt) _ (AM-2p)nq
o1 (to, ) = Jim r— =& T ) (9.32)
e Generic computation with ,Cgf = %—f + dT.7 — dv.T: (9.31) gives W g( )‘JFQN ) and
= = e O (A+2p) ! £(t—t) (A+2/~L) -
dT' = 0 and dv;.T; = (Hf(é to) O) L(t—to) ( 2 ) = Tre-t) ( 0 ) In particular,

. . - 1
dv(ty, py,).T (to, pt,) = 0. Thus LzT (to, p,) = & <(A+A27’;‘2 " ) = rate of stress at (fy, py, )-

9.4.5 Simple shear of an elastic material

Fixed Euclidean basis (€1, 2) in R? at all time. Initial configuration Qto = [0 L ] [0, Lg]. Initial position:
[0P): = [Opy)z = [X]e = <§£> —written ¥ Position at t: p, = B = [Op(t)]z ="ritten 7.
Let £ € R*, and
1 to

S_(r=¢ &XY)\ _ (X+L0—0)Y _ (X +r7Y

Z= (y_WQ(t7X7Y) =y =y where k1 = &(t—tp). (9.33)
e Deformation gradient (not diagonalizable):

to
d@?(P):(é “{ ):Fttﬁ, thus F° — I = xl (8 é) (9.34)

e Lagrangian velocity V% (p, ) = (SY) = V(py,)- Thus dV,(p;,) = <8 g) =dv.

e Eulerian velocity: @ (p;) = V, (p,) = (gy> U(p¢). Thus dty(p:) = (8 g) = dv.

o Infinitesimal strain tensor:

=gh, (9.35)

F(P) =1+ (F(P)-D)" _ s (0 1
e (P) = 2 :2<1 0)

e Stress. Constitutive law, usual linear isotropic elasticity (requires a Euclidean dot product):

a(t,pe) = NTe(eP) ] + 2pe® = pury’ (? é) =g (9-36)

Cauchy stress vector T'(¢,p;) (at t at p;) on a surface at p with normal 77 (p) = (?LQ) =1

2 2 -
T:(p:) = giﬂ.ﬁ = pkle < Zl> = p&(t—to) < Zl> =T(t) (stressindependent of p). (9.37)

2
) = pé < Zl> (rate of stress at (o, py,))- (9.38)
— = — 2 —
e Generic computation: L£5T = 9L + dT.¢ — di.T. (9.37) gives %—f( ) = ué < Zl> and dT' = 0 and
. o . 2
dv.T(ty) = 0. Thus LT (to, pyy) = p& ( Zl )

9.4.6 Shear flow
Stationary shear field, see (5.10) with a = 0 and # = 0 (or see (9.33) with £ = A):

v (@) = Ay, 0 A
v(x,y) = dv(z,y) = . 9.39
(@) {m’y)_ov @n=(g o) (9.39)
S 0 ~ . : . S o —Ab
Let (¢, p) = ) = W(to, pt,) (constant in time and uniform in space). Then Lzw = —dv.df = 0

)

measures “the resistance to deformation due to the flow”. See figure 9.2, the virtual vector W, (¢,p) =
d®(ty, py, ). W(to, pr,) being the vector that would have let itself be carried by the flow (the push-forward).
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62 9.5. Lie derivative of a differential form

wig R Wt

[
Py VR

Figure 9.2: Shear flow, cf. (9.39), with « constant and uniform. Lzw measures the resistance to the
deformation.

9.4.7 Spin
Rotating flow: Continuing (5.13):

- _ 0 -1 T S _ 0 -1y
v(x,y)-w(l 0 ) (y)’ dv(m,y)-w(l 0 ) = w Rot(7/2). (9.40)
In particular d2¢ = 0. With @ = W, constant and uniform we get
LWy = —di(p). Wy = —w Rot(m/2) .0y (L (Z) = ). (9.41)

gives “the force at which w refuses to turn with the flow”.

9.4.8 Second order Lie derivative

D2 _Dw D(dv) e o
Lz(Lzw) = D 2405~ W+ dU.dU.a
0w ow ow ov ov (9.42)
= —+2d—.U—2dV.— + dW.— — d—.0
o T U T T e T e
+ (dP0.9).0 4 dib.dv.T — 2dv.dib.T — (d*0.0).40 + dv.dv.ab
Answer. b
L D(Led) . o DB —dva@) . pa
Lz(LzwW) = 5 dv.(LzwW) = — dv.(ﬁ dv.)
D&% D(v) . . D& D& ..,
= Dr " pr W duE - dv.ﬁ + dv.dv.,
with (2.30)-(2.31)-(2.32). i

9.5 Lie derivative of a differential form

When the Lie derivative of a vector field «w cannot be obtained by direct measurements, you need to use
a “measuring device” (Germain: To know the weight of a suitcase you have to lift it: You use work).

Here the measuring device is a differential form a. With 0 is a vector field f = a.¥ is a scalar function,
thus Ly(a.d) =013 Pt _ Da g1 o DT g

D D@
Li(ad) = ﬁ‘;‘.w + o.d.F + a.% — andiab (9.43)

‘)(Lf;Oé)’LI)‘ :a.ﬂf;’lf)
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63 9.5. Lie derivative of a differential form

Definition 9.12 The Lie derivative of a C' differential form « along ¥ is the differential form Lza
defined by

D
ﬁga*?(z—i-ozd *g—?—kdav—kadv (9.44)
i.e., for all vector field w,
D
£~au7—%w—i—ad@'ﬂi:%—?w—i—(dav)w—i—ade (9.45)

This definition immediately gives (9.43) (i.e. (9.44) is a compatibility definition):
Corollary 9.13 Lj; satisfies the derivation property:

Eg(Oz.?ﬁ) = ([:1706)117 + a(ﬁglﬁ) (946)
Remark 9.14 Equivalent definitions: With (9.9), g(7) = (®L)*ar(p) = ar(p.).d®Pi(p) =
Ot(T,p(T)).d(I)t(T, pt) and
_ t\* _ . t*
Loalt,p) = g (t) = tim L =90y (Pr)7ar(pe) = ar(pr) written d(®rar (pe)) (9.47)
Tt T—t Tt T—1 dr [T=t

Indeed g(7) = a(7, p(7)).d®" (7, p;) gives ¢/ (1) = B2 (7, p(7)).dPL (pe)+a(r, p(7)).dV*(r,p;), hence ¢/ (t) =

Dot p(t)).] + a(t,p(t)).dv(t, p,).I, and (9.44) is recovered. oa
Exercice 9.15 Prove: If f is C? (so a = df is exact and C'), then

d
Loldf) = g{ Dty ), (9.48)

Le. Lo(df).w = 29 5 1 d(df.5).0 = 29 5 + (d(df).F).T + df.(d5D), for all .
ot ot
d(

Answer. d(df) = d*f is symmetric (Schwarz), (d(df).w).
(d(df).0) a8 + df .5 =52 29 o5 4 (d(df).B).T + df.(dv.p) = 24D *+ d(df 7).

Exercice 9.16 Prove: If a is C? then

Lz(da) # d(Lza) (no commutativity). (9.49)
Answer. d(Lya) = d(22 + da.t+ a.dv) = 282 + 0.5 + a.dv + da.dv + a.d?7.
And with a little advance see (9.63), Lyda = 222 + d’a.7 + da.dV + dv*.de.
Quantification: Relative to a basis (€;) and with [-] := [],
Do .
[Laa] = [57] + [a].[d7] = [ ] [da.v] + [a].[d0] - (row matrix). (9-50)
Thus 9
— — SR IR - -
[Lya.d] = [Lya).]W] = [at] 0] + [dod). [0 + [o]. [dY].[w]. (9.51)
Exercice 9.17 Prove (9.50) with components. And prove [da.7] = [§]T.[da]? (row matrix), thus
[da.).[w] = [0)T.]da] T[] = [@]T.[da].[0].
Answer. Basis (€;), dual basis (me;), thus (9.44) gives [Lza] = [22] 4 [a.d]. Let a = Y, aimes,
U o= ), vi€i, dU = ), v;;€; ® me; (tensorial writing convenient for calculations), i.e. [dv]jz = [vy;], thus
a.di = Zij awiuwej, thus [o.dv)|x, = [&]|x,.[dV]|e (row matrix). And da =}, @) jTei @ mej, i.e. [dajr, = [a);],
gives da.V = 7,5 0|jvjTe; = D, ViQj|;Tej, and [da.v]|,, is a row matrix (da.v is a differential form), thus
[da.v]|x, = [17]‘6 [dahﬂe (Or compute (da.v).w = 37, a;)vwi = [w] [da]e.[V])e = [ﬂﬁ[da]ﬁe[qﬁ]‘g) u

Exercice 9.18 Let a be a differential form, and let oy (p) := a(t,p). Prove, when ®% is a diffeomorphism,
Lya=0 <= Vtet,T], a; = (®°).ay. (9.52)
Le.: 22 = —q.di <= ay(pr) = auy (p,)-F° (pr,) ™" for all ¢, when p, = @ (py,).

Answer < I a(p(t) = aw (o) F* (p) ™", then alt, p(t)).FO(t,py) = o (py), thus 2 (¢, pe).F{ (p) +
at(pe).2 (t pi) = 0, thus 22(¢,p()).F° (py,) + cu(pe).do(t,pe). F° (p,) = 0, thus Lza = 0, since @ is a
d1ffeomorph1sm

=: If B(t) ==

(@1)s o (Pig) = 0 (p(t)).F{° (1) (pull-back at (to,py)), then B(t) = a(t, p(t)).F (¢, py,), thus
B'(t) = B (t,pe).F (p ) =

) + a(t, ) dii(t, pi)-F{* (py) = 0 (hypothesis Loa = 0), thus B(t) = Blto) = ary (pr,)- o
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64 9.6. Incompatibility with Riesz representation vectors

Exercice 9.19 ¥ and « being C?, prove:

82a 301 . 3a (% 6‘dv

+ (d*a.0).7 + do.(d0.7) + 2(do.).dT + a.(d*0.7) + (o.dv).dv.

Answer.

Ls(Lya) = Ly (‘Zf:) + Li(da.T) + L(o.dD)

o Oa _  da d(da.v)

_ 0 g0 L Oa O(c.d)

+ d(da.?).0 + (do.¥).dT +

+ d(a.db).T + (0.dF).dv

ot? ot’ ot ot ot
_ % N d% o %? i + ‘9570‘. +da ‘g;’ (P.5).5 + do.(d5.5) + (do.).d7

+ % dv + a 85; + (dow.?).dv + a.d*0.7 + (o.d?).dv
:%+2d%—?“+2%—ad +da%+(d ¥).0 + da.(d. )+2(dozv)dv+a%

+ o.(d*3.7) + (a.dD).dT.

9.6 Incompatibility with Riesz representation vectors

The Lie derivative has nothing to do with any inner dot product (the Lie derivative does not compare
two vectors, contrary to a Cauchy type approach).

Here we introduce a Euclidean dot product (-,-), and show that the Lie derivative of a linear form «
is not trivially deduced from the Lie derivative of a Riesz representation vector of « (which one?). (Same
issue as at § 7.2.)

Let a be a Eulerian differential form. So «(t,p) € R™* (linear form); Call dy(t,p) € R its (-, -)g-Riesz
representation vector:

Vi, ol = (dg, W), (= dg e W), (9.54)

(The Eulerian vector field @, is not intrinsic to a: @, depends on the choice of (-,-), cf. (F.12)).
Proposition 9.20 For all v,w € @",

Da
Dt

Da, -

= (T2, ). (9.55)

—>, W)y, (da.¥).d = (ddy.U,w7),

Thus

Lo = (Lydy, W), + (dg, (dv+dv").a5),, thus ’E g # (Lyly, W)y ‘ in general. (9.56)

So Lyd, is not the Riesz representation vector of Lz (but for solid body motions). (Expected: A Lie
derivative is covariant objective, see § 11.4, and the use of an inner dot product ruins this objectivity.)

Proof. A Euclidean dot product g(-,-) is constant and uniform, thus o.i = (@,, W), gives :
L G it 5 = (% )+ (dy, 20),, with a.28 = (G, 20 thus we are left with 22.@
for all w. And
2- d(o.w).¥ = d(dg, W)y.v for all ¥, %, thus (da. v) + a.(dw.¥) = (ddy.v, W)y + (dg, dW.V),, with
a.(dw.7) = (dg, dW.V),, thus we are left with (do.v). = (ddgy .V, W)g.
Da

oa —
= (%,w)g,

Thus 2¢.4 = (52, 10),.
Thus (E o) = % G+ o.dvd = (D @)+ (a@y, do.d), = (Do Gg+dT.dg, ) g+ (diT .Gy, ), =
(Lyiy + dv.dg, W)y + (d] g, D), ua

Remark 9.21 Chorus: a “differential form” (measuring instrument, covariant) should not be confused
with a “vector field” (object to be measured, contravariant); Thus, the use of a dot product (which one?)
and the Riesz representation theorem should be restricted for computational purposes, after an objective

equation has been established. See also remark F.12. .
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65 9.7. Lie derivative of a tensor

9.7 Lie derivative of a tensor
The Lie derivative of any tensor of order > 2 is defined thanks to
Lz(T®S)=(L;T)®S+T® (LyS) (derivation formula). (9.57)

D((22)*Ty) (pyy)

(Or direct definition: LT (to,ps,) = o ‘t:to).

9.7.1 Lie derivative of a mixed tensor

Let T,, € T(Q), and T}, is called a mixed tensor; Its Lie derivative, called the Jaumann derivative, is

_ DT,
T Dt

T,
AT Ty, + Tpy.dV | = = + AT — dV. Ty + Tp.d. (9.58)

T,
LaTm ot

—

Can be checked with an elementary tensor 7' = @ ® a: we have d(@® a).¥ = (dw.¥) @ a + W ® (da.¥) and

(VD) ®a = dv.(T®a), and W (e.dv) = (F®a).dv, thus (9.57) gives Lz(1®a) = (L) ©a+d@ (Lya)
=90 @ o + (di.7) @ o — (dT0) ® @ + 0 ® 22 + 07 @ (da.¥) + 0 @ (a.d)
= 99 4 (i @ a).0 — dU.(d @ a) + (@ @ a).dv.
Quantification. Relative to a basis (€;):
DT, oT,, q ~ ~

[£6Tm) = [F52] = 0] (Ton] + [T [d0] = [S52] + [Ton] [7] = [40] [T + [Tl ] (9.59)
The signs F are mixed because of the covariant and the contravariant constitution of 7,,,. “Mixed” also
refers to the up and down positions of indices with duality notations: T, = szleijé} ®el.
Exercice 9.22 Prove (9.59) with T, = szleijé'i ® el

Answer. dT,, = Zijk
A6 T =3 VR T8 @ €7, T dt = 3

i - j k- i > — i = ] —
T jju€; @ €’ @ e, U= 3, v'€, dU = 32, v[;& ® €, thus dTm.0 = 37

i k2 o i T _ aT?;
T'rvjei @ e’ And S =30 5

i k. J
ijkTJ\kv € ®e,

z J L]
ijk e; Re g [ 1]

9.7.2 Lie derivative of a up-tensor

If L € L(E; F) (alinear map) then its adjoint L* € L(F*; E*) is defined by, cf. § A.13,

VmeF*, [L*m:=m.L] ie, Vm,de(F*xE), (L*.m).i=m.L.i. (9.60)

(There is no inner dot product involved here.) In particular, do™.m := m.dv.

Let T, € TZ(f2), and T, is called a up tensor; Its Lie derivative, called the upper-convected (Maxwell)
derivative or the Oldroyd derivative, is

DT,
LT, =

—dv. T, — T,,.dv™ | = oL,

dTy. v — dv. T, — T,.dv". .61
Di 5 + U — dv U (9.61)

Can be checked with an elementary tensor 7' = ¢ ® W and Lz(4 ® W) = (Lz1) @ @ + 4 @ (LzW0).
Quantification. Relative to a basis (€;):

DT,

[‘CﬁTu] = [ Dt

| — [d¥].[T,) — [T).[dv]". (9.62)

n

“up” refers to the up positions of indices with duality notations: T, = >, jleijé} ® €.

Exercice 9.23 With components, prove (9.61).

T, _ AT > o > _ ij 2 o2 ok 2 R A R J iy 3
Answer. Gt =37, oo €i®€), dTu = 3, T/ 6:®e;®e”, U= 37, v'€, dv = 3, vj;&i®e’, di" =37, vj e’ ®€j,

ij i
— i) k= ] — . ki = — — ik J 3 — [ ]
thus dT0,.0 = 32, Tv & @€, di.Tu =32, v, TV € @ €, Tu.dv™ = 32, ;) T v} e’ @ €. .
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66 9.7. Lie derivative of a tensor

9.7.3 Lie derivative of a down-tensor

Let Ty € T9(2), and Ty is called a down tensor; its Lie derivative, called the lower-convected Maxwell
derivative, is

DT, o,
LTy = Ttd + TydV + di* Ty | = aTd + dTy.7 + Ty.div + di* T, (9.63)

Can be checked with an elementary tensor T =4 ®@ m and Lz({ @ m) = (Lzl) @ m + £ & (Lym).

Quantification. Relative to a basis (€;):

DT,

[LaTa] = [Tt} + [T4).[d0] + [do)" . [T). (9.64)
“down” refers to the down positions of indices with duality notations: Ty = >_;',_ Tj;e' @ ¢/.
Exercice 9.24 With components, prove (9.64).
Answer. % =24 ag—t”ei@)ej, dla =3 Tijne' @’ @e", 7 =3, v'é;, di = 24 Ufjél-@ej, vt =32, Ufiei®€j,
thus dT4.7 =Y, Tiypv*e’ @ €, Ta.dv =3, Tivfie’ @ &, dv* Ty =3, v Trje’ @ . oa

Example 9.25 Let g = (-,-), € 79(52) be a constant and uniform metric (e.g. a unique Euclidean dot

product at all ¢). Then % =0, thus Lzg = 0 + ¢.dv + dv*.g, thus [Lzg] = [g].[dV] + [dV]T.[g]. oa
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Part IV
Velocity-addition formula

10 Change of referential and velocity-addition formula

f(t,z) will be written f;(x) when ¢ is fixed. M, is the space of n * 1 matrices (column matrices).

10.0 Issue and result (summary)
10.0.1 TIssue

Issue: The velocity-addition formula is usually written (classical mechanics)

—

U4 =Up + U, i.e. absolute velocity = (drive+relative) velocities, (10.1)

4 and @ being measured by an observer A in his referential R4 = (Oa, (4;)) and @ being measured by an
observer B in his referential Rp = (Op, (B;)). This “obvious” relation (10.1) is problematic (inconsistent)
in general, e.g. it caused the crash of the Mars climate orbiter probe. E.g.

e U4 and up are given relative to the basis ([fi), e.g. in foot/s, chosen by the “absolute” observer,

e Uiz is given relative to an another basis (B;), e.g. in metre/s, chosen by the “relative” observer;
Thus, in (10.1), s + 9p adds metre/s and foot/s... relative to different bases..., Absurd. (If you prefer,
U4 — Up = U with ¥4 — Up and U given in two different referentials.)

Issue: An explicit link is missing between R4 and Rp (the “obvious” implicit relation).

10.0.2 Summary: Absolute and relative motion...

An object Obj is made of particles Ry;. Its motion in “our classic affine Universe”, independent of the
observers, is _ _
D : (t, Rywj) € [t1,t2] x Obj — position p, = p(t) = ®(t, Ry;) € R™. (10.2)

At t at p, = O(t, Ry, ), the (Eulerian) velocities and accelerations are

9%

. b . 92D .
o(t,pt) = E(t’PObj) and J(t,p) = W(t’PObj) € R~ (10.3)
Two observers A and B quantify the motion in their referentials:
X . . N —_— .
Absolute motion: @4 : (¢, Roy) — Za(t) = Ga(t, By) = [0a®(t, PObj)]\x‘Y = Tt € My,
_ ; (10.4)
Relative motion: @p : (¢, POb_g) — Zp(t) = gp(t, POb]) = [OB(I’(th)bj)]‘g = Tpr € My,
TA1t IB1t
where @4 (t) = Tar = : and Zp(t) = Ty = : are the column matrices in M,,; defined by

_ xA:Lt _ IBnt .
Oa®(t, Ryy) = > jxainA; (for A) and Op®(t, Ryj) = Y. @paB; (for B). The absolute and relative
velocities and accelerations are (Eulerian type matrices)

Lo 0% S oy 0 @a .
Ua(t, Tar) == ——(t, Royj) = [U(t7pt)]|g> Ya(t, Tar) = —5- (¢, Boy) = [’Y(tapt)]‘g,
;ﬁ gj y (10.5)
Tt Tpe) = (6 Boy) = [0t p0] 3, Tt @) = 55 (8 Boy) = Bt 2], -
10.0.3 ... The translator © and the “good” velocity addition formula...
At t the translator ©; : M,;; — M, links the quantified positions by A and B:
Tap = @t(th) when @4 = @A(t, P)Ob]) and Zp; = @B(t, Po@) (10.6)
Which defines © : [t1, 2] x My — M,1 by O(t, 2p(t)) = Za(t), i.e.
| Gat, Ruy) = Ot @ (t, Boy) | (10.7)
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68 10.1. Absolute and relative referentials

Thus
[%) 00 . 0
Sr Ry = @ Ry) + dO( @t By)- Sl (LRy) . (108)
————

absolute velocity va(t,Za:)  drive velocity Up(t,Za¢) relative velocity translated for A: . (t, Za¢)

This is “the good velocity-addition formula 44 = ip + U« to be used by A™

’ Ua (t, fAt) = Ups (t, fAt) + ’UB*(t, fAt) ., where 173*(t, fAt) = d@(t, th).ﬁB (t, th), (10.9)

i.e. Absolute velocity = Drive velocity + Translated relative velocity.

10.0.4 ... and the “good” acceleration formula

(10.8) gives,
o 9’ 00, .
Ya(t, Zar) = —5 (¢, Tpe) + d(—) (¢, Toe)- Ut (Tne)
ot 8(d0) ot (10.10)
T (t, Zpe) + d°O(t, T1) . Ui (Tp:e)) .Ut (Tpe) + dO(t, Tpi) Ve (Tpe)

which is “the good acceleration-addition formula to be used by A™ At ¢ at Za; = O4(Zpt),

+(

|Tae =i +ct + i}y ie. (10.11)
Absolute acceleration = (Drive 4+ Coriolis + Translated relative) accelerations, (10.12)
where
29
Vpi(Zar) := (t Zpy) = drive acceleration,
VBt (Zar) := d +(Zt).¥B(Zp:) = relative acceleration translated for A, (10.13)
00

Yoi(Zar) = 2d——(t, Tp).Upe (Tpt) + d*O¢(Tpt) (Ut (Zp¢), Upt (Zp:)) = Coriolis acceleration

ot (t,
(in fact called the Coriolis acceleration when R4 is Galilean). And %(t,fm) = Up(t, ©(Zpt)) gives
d22(t,&p) = dip(t, £ar).dO:(Tp:). In classical mechanics: ©; is affine thus d?0©, = 0 and d22(t) =
d’UDt.d@t and

Coriolis acceleration: "’y’Ct(fAt) = 2dUpt. U« (Zat) ‘ (10.14)

10.1 Absolute and relative referentials

Classical mechanics: Time and space are decoupled, observers A and B use the same time unit and origin
(to simplify the notations).

e The “absolute” observer A chooses at ¢ four positions OAt, PA1t, PA2t, Pase in the Universe R™ s.t. the
bi-point, vectors Aqt = OAtpAzt make a Euclidean basis in R3. He has built at ¢ his absolute referential
Rar = (Oar, (Air)). And A is “static in his referential”, so he writes Ray = Ra = (Oa, (4;)).

E.g., at all ¢, Oy, is the position of the center of the Sun in the Universe, (fflt) = (Oatpair) is a
Euclidean basis fixed relative to stars and built with the foot.

e The “relative” observer B chooses at ¢ four positions OBt,pBu,pBgt, pp3t in the Universe R™ s.t. the
bi-point, vectors Blt := Opppiy make a Euclidean basis in R3. He has built at ¢ his relative referential
Re: = (O, (B lt)). And Rp; is seen as a “rigid object extended to infinity”. And B is “static in his
referential”, so he writes Rp: = Rp = (Op, (BZ))

E.g., at all ¢, Op; is the position of the center of the Earth in the Universe, (ézt) = (Optppit) is a
Euclidean basis fixed relative to the Earth and built with the metre.

1 0
. . = 0 = : . .
e M, is the vector space of n x 1 real column matrices. Ey1 = | . |, ..., E, = | * | make its canonical
0 1

—

basis (E;). So [Au] x = [Ai] z = Ei = [Bil 5 = [Bul 5 in Ms:.
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69 10.2. Motions of Obj and Rp in our classical Universe

10.2 Motions of Ob and Rp in our classical Universe

The motions are C?, Obj is an object made of particles Ry;, and Rp is (assimilated to) an object made
of particles Qg,. Their motions in the Universe are

~ [tl,tg] X Oly — R"
D ~ (10.15)
(t, Rw;) — p(t) = ®(t, Rw;) = p+ = position at ¢ of the particle Ry,
~ [tl,tg] X RB — R"
: N (10.16)
(t,Qrs) — q(t) = Pry(t, @ry) = q: = position at t of the particle Qr,.
The associated Eulerian velocities and accelerations [t1,ts] xR™ — R” are given by
. 0% B 20
’U(t7pt) = 7(1&7]30@') and 7(t7pt) YO (t PObJ) (10'17)
ot ot

. 0P ; 0%®
s (1,00 = 5 (1,Qr) and i, (100) = T (1, Q) (10.18)

10.3 Absolute and relative motions

10.3.1 Absolute and relative “motions” of Ol

(10.15) stored by A and B gives the “absolute” and “relative” motions of Obj (matrix valued)
[t1,t2]x O — My

Ba : B ; — ) (10.19)
(t, Boyy) — Za(t) =| Ga(t, Boy) := [Oa®(t, Boy)] 5 | = Zae,

[tl, t2] X Ob] — Mnl

@ : ) ; —— ) (10.20)
(t, Roy) — Zp(t) =|&(t, Roy) == [OpR(t, Boy)], 5 | = Tt

The associated Eulerian “absolute” and “relative” velocities and accelerations [t,ta] XM, — M, are
given by

L 03, . 0?

Ua(t, Zay) := %(t,Pabj) and  Ya(t, Zay) := BtﬁA (t, Ry ) (10.21)

oL ) R . 0?

Tt i) i= o (b Roy) and Ta(t, i) i= a;’;B (t, Boy)- (10.22)
Exercice 10.1 Prove: tj(t,Z4:) = [0(¢, pt)]‘ Up(t, Zpe) = [V (t,pt)hg

And a(t, Zat) = [Y(t, pe)] x and VB (t, Tpe) = [ (t,p)l 5

~ ~ ~ -_—
Answer. ﬁ(t,pt) = ?‘T(f(m R)l?]) = limp 0 ¢<t+h7%@27¢<t7%) = limp o 24, %@)@}ft-i-h, B)bj)

_ - Oad(t+h, 7 — [Oa®(t, ¥
And @a(t,Ry) = [Oa®(t,Ry)) z gives 9% (t, By) = limh—)()[ AP (t+ I?»J)MAh [Oa®(t Ry iz _

e ——
[P, ¢ = 150 o)) 1

limy, 0 = [U(¢, pt)], 7 as wanted. Idem for 44 and B. n
|A 7

Exercice 10.2 t is fixed, p € R" (point), Z4 := [O_A;)]VY € My, @ € CY(R";R") (vector field), and
ia(%a) = [U(p)) 5 Prove: [dil(p)] 5 = diia(Za), ice. diia(Ea).[] 5 = [dii(p)] z.[i] 5 for all & € R™.

Answer. p+hd € R" is stored by A as [OAp + hw] = [OAP]M + h[@_}]m = @ +_h[>u_1’]|g €
U A (Za+h[d a Opp+hd], 7)—14 O, -
Mo Thus dﬁA(fA)-[’Lﬁhg = limyo @A (Ta+h| ]h| i)~ @a(Fa) — limyo A([Oap ]‘,2) A([Oap]| 7) _

[@(p+h)], z—13(p)], 1

E = [limy, o ZEHD=IW) o = [dii(p) 5], 5 = dii(p)], 5[], 5, true for all w.

limp—o

Exercice 10.3 Call ); the transition matrix from (/th) to (ézt) at t. Prove T4y = [OAOBt]VT + Q:.7Bt.

Answer. The fYn and ézt are bipoint Vectors in the same vector space ]RT:3 cf. § 10.1, so it makes sense to speak of a
transition matrix. Change of basis formula: [OBtpt]‘A = Q. [OBtpthB, thus Za: = [OApt]‘g = [040gt +OBtpthA' =

[OAOBt]‘A [OBtpthA = [OAOBt]|A + Q. [OBtpt]|B [OAOBt]‘A + Q+.TBt. un
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70 10.4. The translator O

10.3.2 Drive and static “motions” of Rp

(10.16) stored by A and B gives the “absolute” and “relative” motions of R which are called the “drive”
and the “static” motions (matrix valued):

[t1,t2] X R — Mp1

@p - —— (10.23)
(t,Qrs) — b (t) = | Pp(t, Qry) = [OaPry (t, Qrs )] 5 | = Ut

Rp — M
@s —_— (10.24)
Qra — s =| Fs(Qrs) = [0, (¢, Qry)] 5 | = U5

(@5 is independent of ¢ since Qg, is fixed in Rp), and the associated Eulerian “drive” and “static” velocities
and accelerations [t1, ta] X My — Mp1:

p(t,ipt) = &'OD(t Qr,) and Fp(t,9pt) = 86t2 (t,Qry), (10.25)

Us(t, ) =0 and Fs(t, %) =0. (10.26)
Exercice 10.4 Why introduce g5 (static)?

~4>
Answer. You can’t confuse a particle Qg, with its stored position ¥ = Fs(Qry) = [OB%(t,QRB)hg = the

|

matrix stored by B. In particular the stored position by A at ¢ is gp: = [OaDr; (¢, QRB)]M # s in general. oh

10.4 The translator O,
10.4.1 Definition

Definition 10.5 At ¢, ©; : M,,; — M, is the inter-referential function from Rz to R4 which translates
(which links) the positions stored by B into the corresponding positions stored by A: For all Qr, € Rp,

&pt(Qrs) = O(Fs(Qry ), 1€ bt = O(Ys), (10.27)
—_—> —_—
Le. [Oa®r, (1, Qry)] 5 = O[O PR, (1, Qry)] 5)- SO

(o = 01065 | (10.28)

. Y1 Mp1 — My
O, :=@proPg I (10.29)
Us = e = O(ik) = @pe(Fs (1))

In other words, at ¢, the translator ©; is defined such that the following diagram commutes:

i.e.

il = Ps(Qr, ) = the stored position of Qr, at t in Rp

¥s

Qr. € Ri o, (10.30)
&pi
It = Ppt(Qrs) = ©1(¥s) = the stored position of Qr, at ¢ in Ra4.
E.g., if Qo, is the particle in Rp which is at ¢ at Op; the origin chosen by B, i.e. s.t. Opg; = ‘iRB (t,Qog),

then
Upt = [0aOBt], 7 = ¢pi(Qos) = ©,(0) = the position of Qo, stored by A at t. (10.31)

E.g., for a particle Ry; € Obj which is at t at p, = <I>(t Ryj): With 4y = [OApt]‘g and Tp; = [OBpt]‘g
(positions as stored by A and B), we have Za; = ©4(Zp), i-e. Gar(For;) = O¢(Ppe(Fon;)). Thus

B =0ro o] (03

In other words: If QRB € Rp is the particle in Rp which is at ¢t at ¢; = p, then Zar = Fpi(Qrs) = Ubt
and Tp; = Js(Qrs) = Us, and gy = =(10.27) O+(s) gives Tay = O4(Tpe).
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71 10.4. The translator ©y

10.4.2 O, is affine in classical mechanics

Classical mechanics: Each observer can choose the same “time independent Euclidean basis at all points”.

Proposition 10.6 O, is affine at all t, i.e., for all {jso, 51 € My,1 and all u € R,

O ((1—u)Pso+u ifs1) = (1—u)O¢(gso) + u O (¥s1), (10.33)
ie.
O (Yso+u (Y51 —8s0)) = O (¥so) + u (O4(¥s1)—O¢(¥s0))- (10.34)
Le.
dO(tso) = d@t(ﬁ) written d®©; is independent of isq. (10.35)
So, with §pio = O¢(¥s0) and §pu = O(ifs1),
Ype1 = Ypto + dOy.(Ys1—Tso)- (10.36)

Le., at t, for all positions qo;, q1; € R (our affine Universe),
[QOtQIt]M‘ = d@r[thmt]‘g- (10.37)
Proof. Consider two particles Qpo, @1 € Rp. Their positions at ¢ are qo; = ‘T)Rgt(QBO)a G = S)RBt(QBl)

in R™. Consider the straight line
+(u) = qot + u Jorqii- (10.38)

=)

For all p € R?, pg;(u) = pdot + u Jorqi; = Pdo; + wpqi; — updot, thus

T

[0aq:(u] s = (1—u)[Oaqor) 5 + v [Oaqut], 1
4 |4 U Gith [Oaall (Wl x "E" 0:(10pa: () 5). (10.39)

[OBgi(u)] 5 = (1- )[OBQOt]|B +u OBQlt B>

thus
(1-u)04([Opa0r), ) + u©:([0part] 5) = ©4((1-0)[Opaor 5 +u [Oparr] ), (10.40)

thus (1-u)O(is0) + uO¢(is1) = Oi((1—u)iso + uys1) for all iso,9s1 € My, thus O, is affine.
Thus (10.36), thus thl — thO = d@t.(ﬂgl—y_:qo) when :ltho = ®t gg()) and :lthl = ®t<gSI) thus (1037)

with 275'0 = [OBth]‘é and g:gl = [OBC]M]‘B‘ which give jlth() = [OAQOt]\A and 7 Ypt1 = [OAQU]‘A m

|

10.4.3 The differential dO,: Push-forward

Definition 10.7 Let ¢p: = O+(gs) € M,1 and ws(gs) a vector at ¢ in My1. The push-forward @t (4p+)
of Iﬁs(gjg) by @t is

st (o) = A (G6)- s (), ie. si.([Oagr) 5) = 49u([Opar] 5) s ((Opai), ) (10.41)
for all ¢; € R3. (Recall: dO(¥s).ws(¥s) := limy_o 9t(§s+hﬁs(h@7s))—@t(375) ).
In particular when O, is affine:
| st (Gr) = dO s () |, ie. Tsi ([Oaar), 7) = dO4Ts((Opa1), ). (10.42)

10.4.4 Translated velocities for A

The translated relative velocities and accelerations at ¢ are the push-forwards of vz; and Yg; by ©y:
Ut (Zar) := dO(Zpt).Upi(¥p:) and  Ypux(Zar) 1= dOy(Z¢). Vi (ZB1) (10.43)
when Za; = ©¢(Zp:). In particular when ©; is affine:

ﬁBt* (fAt) = d@t‘fl_}'Bt (th) and ;);Bt* (fAt) = d@t~’73t (th). (1044)
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72 10.5. Definition of ©

10.4.5 Translated basis for A: [Ejt]lg = d@t.[éjhﬁ = d@t-[f‘fjhg

= s

. . by A as: [BjthA’ = [OBthjt]‘A'v

Bj; = Oppgjy is stored . . Thus
by B as: [Bj] 5 = [Opps;il 5

10.37 =, —
U 40,(0). B 5 =

[Ejt]lA | gives “the basis (B;) of B as stored by A at t”. (10.45)

(With the push-forward notation: [B’jt]g = ([Ej]‘B)t*.) And [B}-]g = [/_fj]g (= Ej the j-th canonical
basis vector in M,,1), thus

-,

[Ejt]g = th(O).[z‘Tjhg . 50 dO;(0) is the transition matrix from (A4;) to (B;) for A, (10.46)
i.e. the j-th column of d©,(0) stores the components of Ejt in the basis (A4;) for A.

10.4.6 dO,T.dO, = \2I

Recall: (,) = ( )B (Euclidean framework).  A\%§;; = )\Q(B'm]_?jt)B — (B’it7§jt)A _
(B ”]|A[ ]521045 B ] .de,".de,B i3> thus
1
de,".do, = X’1, ie. dO, ' = Fd@ﬂ (10.47)

10.5 Definition of ©
10.5.1 Definition
Definition 10.8 The translator from B to A is the function © : [t1,t2] x M,,; — M,,1 defined with (10.29)
by O(t, %) := O+(s), i.e., for all Qr, € Rp and all ¢,
O(t, #s(Qrs)) = Pp(t, Qrs), e O(t, %) = ip(t) (10.48)
~—> %
when g5 = [OpPr, (t, Qr,)] 5 = #5(Qrs) and iip(t) = [OaPr, (t, Oy )] 7 = P (t: Qry)-
E.g., O(t,0) = [0405(t ;]IX gives at any t the components of Op(t) := Op; stored by A.

Remark 10.9 The translator © looks like a motion, but is not: A motion gives at ¢ the position of
one particle in one referential; While © connects two referentials: It connects at ¢ the stored “matrix
positions” of one particle by two observers: It is an “inter-referential” function. (It is a motion in M,

but not a motion of physical particles.) un

10.5.2 The “O-velocity” = the drive velocity
Definition 10.10 The “©-velocity” and “©-acceleration” vg, Yo : [t1,t2] X Mp1 — M, are defined by

00 0?0

vo(t; Ot 3s)) == - -(t,45) and Je(t, O(t 1)) = 55 (t, 45) (10.49)

. . . . R . 2 . . .
(Eulerian type), i.e. To(t, 9n(t)) == G2 (t, %) and o (t, 4b(t)) = G2 (¢, 7s) when gip(t) = O(t, 7).

* Up(t, ipt) = Vo(t,Upt), so -

® Ip(t,Ubt) = Ye(t,Ubt), Yo =

Proposition 10.11

(10.50)

Proof. 7p(t,Qr,) ="V O(t, & (Qr,)) gives %Lf( Qrs) = 57 (t,@(Qry)), Le. Tp(t, A (t, Qrs)) =
To(t,O(t, Fs(Qry)))s L-e. (10.50); when §ip(t) = Fn(t, Qry) = ( 5s(Qry))- Idem with 2.
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73 10.6. The velocity-addition formula

10.5.3 d%—? versus dip

9O (t,4s) =109 G5y (O4(3)) gives d92(t, %) = dipe(ipe)-dO:(fs) when §p; = ©O(s). And
Ut (Tar) = dO1(Zpt).Upt(Zpt) (translated velocity), thus
90, . .. . oL R . .
da(t,th).UBt(I’Bt) = dUDt(xAt)-UBt* (I’At) when TAt = Gt(th)- (1051)

In particular when ©; is affine, then dO©.(%) = d©; and d(%—?)(t,gjfg) 57 (t) is independent of s,
thus dip (7p) =102V d%(t).d@fl is independent of jp;, thus

ditpe(Ype) = dip;y  when ©, is affine, (10.52)
then, when Za; = O4(Zp:),
e, . L. S
da(t)-UBt(xBf) = dUDt.UBt*(JJAt). (1053)

10.6 The velocity-addition formula
(10.32) gives

Pal(t, Ioy) = O(t, Gp(t, Ior)). (10.54)
Thus 8 96 9
SEA(t, By) = (1, Gt Boy)) + dO(t, @t Boy))- 2 (1, Royy) (10.55)
ot ot ot
Ut (Zac) Q0005 (Fae) = O (Fme)- e (Te) " T (ar)

i.e. 6At(fAt) = ﬁDt(fAt) —+ gBt*(fAt),i.e.

’UAt = Up¢ + Upix | = the velocity-addition formula for A,

(10.56)
i.e.: absolute velocity = (drive + translated relative) velocities.
In particular when ©; is affine: For all py,
[0 (pe)]| 5 = [URa, (Pe)]| 5 + dOw[Te(pe)] 5 | (10.57)
10.7 Coriolis acceleration, and the acceleration-addition formula
(10.55) gives, when Za; = O4(Z5;),
0?3, 02 00 0B
—(t, ;) = —(t, 7 d—(t, Zpt).—— (t, Pop;
o2 ( ) Obj) 12 ( 7th)+ ot ( ath) ot ( ) Ob])
Fat(Zat) Yot (Zat)
a(doe) . o . . OF3 O N
+ ( ot (t, Zpe) +d Gt(th)«W(ta -POl)j))~W(t7 o) + d9t($3t)~w(t7 Fony)
VB« (Tat)
(10.58)
Thus, with the Coriolis acceleration at t at Z4; defined by
Yor(Zae) = 2dipy(Tar). Upex (Zar) + d*O¢(Tpe) (Ue (Tpe ), Tt (Tpe)) (10.59)
we get
Yat(Zar) = Tpi(Tar) + You(Zae) + T (Tar), (10.60)
i.e.
Yar = Ypt + Yot + YBes | = the acceleration-addition formula in Ry : (10.61)
absolute acceleration = (drive + Coriolis + translated relative) accelerations. (10.62)
Particular case ©; affine: d?©; = 0 and diip;(T'a;) =1052) g3, . thus at ¢,
For(@ar) = 2dipy Upes (Far),  and | Jor = 2diips Uy | (10.63)
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10.8 With an initial time (Lagrangian variables)
Let #,t € R. Consider the Lagrangian associated function ®% with the motion ® of Obyj:
Q, —Q
ol . ~ L ~ (10.64)
=P (lo, Bonj) — pe = O (py,) == P, Boy)-

And, with Zay = @Ga(t, Ry) = [OApt]M‘ and T, = @Gp(t, Ruj) = [OBpt]|§7 define the “matrix motions”
(I)Zot : /\/Ln,l — ./\/L,Ll and (I)g)t : anl — anl by

O, (Fary) = Far (= [0a®(t, Roy)) 1 = [0a® (pi,)] 1 = Pae (Poy));
(10.65)
O, (Tp1,) = Tp (= [Op®(t, Boy)] 5 = (02 (p1,)], 5 = Poe(Roy))-

And O©4(Zpt) = Tay, i.e. O Bt(;vBto)) (I)At(xAto) with Zas, = Oy, (Zpt, ), thus

O 0 By, = DY, 0Oy, |+ Mut = M. (10.66)

In other words, the following diagram commutes:

Tpt, = P (to, L) T = P, (Tpi,) (10.67)

- to
y 5

Ry € Ol O4, O,

@Ato
(I>f0
Zat, = Pa(to, Ponj) = O (Taty) A By = N, (Tar,) = O(Tpe).

Thus, for any vector field @y, in Rp,

A0, (Tp:) - AR, (Tpe,)-Unt (They) = A}, (Zar,) -dOy, (Tt )- Uty (Tpr,) - (10.68)
—_——
(translation at t) (deformation from tp to t)  (deformation from ¢ to t) (translation at to)

Exercice 10.12 Redo the above steps with Rp instead of Obj.

Answer. Consider the Lagrangian associated function @&t with the motion &WB of Rp:

QRBto =R" — QRBt =R"
(I)E)Bt . _ o - (1069)
Gty = PRy (to, Qrg) — @t = Pppy (1) 1= Prs (£, Qrs ),
then define the “matrix motions” &9, : My,1 — My1 and @Y, : M,y — M, by
to (= — i _ & _ to — 3
{ O, (Fpr0) = Gor (= [OaBr (, Qs )] 5 = (04D, (P 5 = P0r (@ ), 070
8 () =B (= [OpPry (t, Qry )] 5 = (08, (410)) 5 = F5(Qry)),

Thus g@s is a time-shift, which is also abusively noted ®%, = I (algebraic identity). So with ©:(%) = Jp: we get
@t( (i) = (I)g)t(ﬂmo), with ¢¥pio = Oy (¥s), thus

(0,00l = @8, 004, |: Muy = M (10.71)

(also abusively written ©; = CI)tO 0 Oy). In other words, the following diagram commutes:

95 = Ps(Qry i = @ (Qry (10.72)
—» ®Y = time shift

QRBGRB

q>t0
yDtO = Bty (Qrys *> Yot = Gt (Qry P, (Fp10) = O (iks)-

And (10.71) gives, for any g5 = @s(Qry) and all vector field ds (static in Rp), with ¥ = Oy, (Us),
A0 (%) . dOQ(%k)ds(fk) = d®p, (Fpo) . dOy, (1s)-Tis (1fs) - (10.73)
~—— —_—— —_—— —_
(translation at t) (time shift from # to t)  (Drive motion from ¢y to t) (translation at #)
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75 10.9. Drive and Coriolis forces

10.9 Drive and Coriolis forces
10.9.1 Newton’s fundamental principle: requires a Galilean referential

Second Newton’s law of motion (fundamental principle of dynamics): In a Galilean referential, the sum
f of the external forces is equal to the mass multiplied by the acceleration:

f=m7 (in a Galilean referential). (10.74)

Question: And in a Non Galilean referential?
Answer: You have to add “apparent forces” due to the motion of the non Galilean observer, because
the motion of an object in our Universe does not care about the observer’s motion.

10.9.2 Drive + Coriolis forces = the fictitious (inertial) force

The “absolute observer A” chooses a Galilean referential R4; Newton laws (10.74) is quantified by A at ¢

ss, with py = ®(¢, Roy;) € R™ the position in the Universe of a particle Ry,

—

[fe(pe)], z = m [Ve(pe)] 5, written Fae(@ae) = mAar(@Fa) | (€ M) (10.75)

N o P o e N N N
when Ty := [OAPt]\g; Jat(Zat) == [ft(pt)]\j and Yar(Zar) = [%(Pt)hj-
For the “relative observer B” and is referential Rp, with £4; = O(Zp:), the acceleration addition
formula (10.61) gives fa¢(Za:) = mdO:.Vp(Tpt) + mYpi(Zar) + mYce(Zae) for A, thus for B:

dO; 1 fai(Zar) = mAp(Tae) + mdO; L Ay (Far) + m dO; L Fou(Tay) - (10.76)
N——
G mApt*(Tpt) myct* (Tpe)

(We use an affine ©, to lighten the notations.) Here dO; '.fa¢(Za) = d@t_l.[f;(pt)]‘g =(1041)
[f: ()], 5 —written £ (22.) is fi(p;) as quantified by B at ¢ (= pull-back by ©,).

Definition 10.13 For B at ¢ at p;, with Zg; = [OBtpthgi

e Quantification of f,;(pt) by B: th(th) = d@fl.fAt(fAt) (= fAt*(th)).

e The drive force: fp(Tp:) := —mdO, ' Fpu(Zar) (= —mYp*(Tz:)). (1077
e The Coriolis force: foy(Zp:) i= —mdO; ' For(Zar) (= —mFer™ (Fne)). '
e The fictitious force = the inertial force := ( J%Dt + ﬁCt)(th).

(The pull-backs by ©;.)

Then (10.76) is the fundamental principle quantified for B (living in a non Galilean referential):

Fe(@ne) + fope(Tpe) + foce(Tpe) = mTp(Tp:) |, (10.78)

i.e. for B at ¢: The (external + drive + Coriolis) forces = m times the acceleration.

10.10 Summary for a “merry-go-round”

. Referentials.

Galilean referential. Observer A chooses a referential R4 = (Oa, (ffl, ffg)) where Oy is the center of the
merry-go-round and (A}, A,) fixed on Earth is an horizontal Euclidean basis. And (-,-)4 and ||.||4 are
the associated Euclidean dot product and norm. R4 will be considered Galilean with an approximation
“good enough” for a usual merry-go-round (for a more precise result, you can apply next §).

Relative referential. Observer B chooses a referential R = (Op, (él, ég) where Og = O4 and (él, gg)
fixed on the merry-go-round is an horizontal Euclidean basis. And (-,-)p and ||.||p are the associated
Euclidean dot product and norm.

For A, Rg is Rp; = (OBt,(§1t7§2t)). For B, R4 is Ra; = (OAt,(Elt,A'gt)). And the bases being
Euclidean, ||.]|4 = A||.||z and (+,-)a = A2(-,-)p where A > 0. E.g. (+,) 4 is built with the foot and (-,-)p

is built with the metre, A = 5ot (because 1 f6=0.3048 m).
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76 10.10. Summary for a “merry-go-round”

2. Motions, velocities, accelerations. Given in (10.15)—(10.18), here with [t1,t2] = [0, t2].

3. Absolute and relative motions, velocities, accelerations. cf. (10.19)-(10.22).

4. Drive and static motions, velocities, accelerations.

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

%
Static motion (in Rp), cf. (10.23)—(10.25): Consider a particle Qr, € Rp s.t. OpPg,(t,Qr,) =
Rp(Qry ) (cos(fgr, )B + sin(Ogx, )B5), the position of Qg, is stored by B as the matrix

Q) = (000t 0 1o = R (@) (Son) ) =5 = (). (1079

~4>
so with Rp(Qrs) = [|Op®Pr, (t, @rs)|| 5 the distance from Op and g, €] — 7, 7] the angular position

in RB.
Drive motion (in R4): With w the angular velocity of Rp in R4 supposed constant to simplify, we get

Op®(t,Qr,) = Ra(Qrg ) (cos(wt+bly, VA, + Sin(wt—&-QQRB)Eg), and the position of Qg, is stored by A as
the matrix

olt.0r,) = (0380.Q, )1 = Ba(@e,) (Snics T ) =m0 = (1220)). (a0so)

M 11 lace t by t— d wt by 6(¢).) And (ch f unit of t) R =
( ore generally, replace ¢ by tp and wt by 6(t).) And (change of unit of measurement) Rs(Qrs;)
1OA®(t, Qrs)lla = Al|O@(t, @rs )l B = ARB(QR; )

Drive velocity:

i (t, i (1)) = 515 (1) = wRa (@) (Zi?ﬁi@iﬁ) —w ()

(8 ) wo=(2 ) o,

so it is a rotation of angle 7 times ¢jp(t) times w. So, with the chosen origin O4 at the center of the merry-

do-round, 9p (¢, 9p(t)) L 4p(t), and the velocity ¥(t,q) = &%?B(t, Qrs) of the particle Qg, is orthogonal

(10.81)

0
to Oaq; the radial position vector. Immersed in R3, o (¢, 4 (¢)) = dp X yp(t) where dp =w | 0
1
Differential of the drive velocity: i, (7) =(10-81) (2 Ow> .Y gives
o . e 0 —w . 0 -1 written
(dop(t,y) =) dip(§) = (w 0 ) =w <1 0 > = dip (10.82)
(time and space independent). Immersed in I@, dUp.W = & X 0.
Drive acceleration = centripetal acceleration toward Og:
R N . N (10.81) _, 0 —w R t o
Torlioe) = Tt () "L G (1) = a(0) =~ (P10 = g
v 0 upz(t) (10.83)

= dip.Up(t,ipt) = w (_UZ)Dl?g)) -

Its magnitude is w?Ra(Qr,). And the minus sign in (10.83); tells that it is centripetal (from gjp; toward
the center); Interpretation: A particle glued on Rp is not ejected from Rp despite rotation. Immersed
in B, 7pi(ifoe) = & X 0t(ilpe)-

Centrifugal force in Ry felt here by a particle of mass m fixed on Rp at t at ¢; s.t. [m}lg = yp¢: The
retaining force (because the particle is glued on Rp) is, Newton’s principle,

UVp2 (t)

le(t)> L e (Upt)- (10.84)

retaining force(t, iipt) = myp:(Upe) = m dip . Up (¢, Upt) = mw <
It is centripetal because ¥p(t, ¢p¢) is. And the centrifugal force is the opposite (it is the “felt force”):

centrifugal force(t, gp:) = —m dip.Up (t, Ypt) = mw (_UUD?g)) . (10.85)
D1

Immersed in R3: = —m & X Up¢(§pt)-
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5.1.

5.2.

1.1.

i 10.11. Summary for “Sun and Earth” (and Coriolis forces on the Earth)

Translator from B to A.

Defined by ©:(%s) =01027) ¢, In particular @t(ﬁ) =0 (null matrix) because Oy = Op. And O is affine
(classical mechanics).

d©: Characterized by d©,.[B;] 5 =1"%) [By) 1. With Rp(Qr,) = ||Billz = 1 we have Ra(Qr,) =
|| Bil] i = A (change of unit of measurement) and

= = 1
) and [Bu]lg = d@t.[Bﬂ‘g = d@t. (O),

cos(wt)

® e, =0 gives [Blth,ci =A (sin(wt)

o= — sin(wt < < 0
o g, =7 gives [Bal ;= A ( c?s?fﬁ))) and [By] ;= dO.[Ba] 5 = dO. (1) Thus

- cos(wt) — sin(wt)
O, = A (sin(wt) cos(wt) ) (10.86)

— —

= the transition matrix from ([éit]‘g) = ([Biljg) = (Bi) = ([Ji}lg) to ([éit]|g) in M,1: The expected
rotation matrix expanded by A (change of unit of measurement).
Coriolis acceleration.

N N 10.63 S S N i - —
FYCt(xAt) ( = ) 2 dUDt.’l}Bt*(iBAt) =2 d’UDt.d@t.UBt(l’Bt). (1087)

In particular, a particle fixed on Earth (tp; = 0) is not subject to a Coriolis acceleration (Yo; = 0), which
is obvious since then 44 = Up.
Coriolis force:

diip;.dO; = A <O 01) . (COS(M) Sin(“’t)) — (Sm(“’t) COS(“’”) — dO,.dip;  (10.88)

1 sin(wt)  cos(wt) cos(wt)  —sin(wt)

(the matricies commute: Composition of “rotations around (_)3’, which read Mwe'Z et = \wellztwt) =
Aw et et5). Thus dO; . Yo (Zar) = 2 dips.Upe (Zp:), and (10.77) gives

2 o oo o vpa(t P

Iot(@pt) = —2m dipy.Up(Te) = 2mw <_5;((1)) (L tge(ZBe)), (10.89)
pointed vector at Zp; orthogonal to Uz:(Zp:). Immersed in R_'?’, _fT];eCt<th) = —2m& X Upt(Tpt)-
Drive force: ( : :

- 10.77 1. . .(10.83 1oL L

fBDt(th) = —m d@t 1.7Dt(xAt) = —m d@t 1.dvpt.vpt(xAt), (1090)

. ~1 _(10.86) 1 cos(wt)  sin(wt) TN I
with dO; 3 <—sin(wt) cos(wt) )" Immersed in R3, fpp:(Zpt) 2mdO; " .(J X Upt(Tpt)).

Inertial force: . .
(fct + fope) (@) = —m dip,. (2UBt(th) + de)t_l'ﬁDt(fAt))' (10.91)

Immersed in ]R?:’j’ (fréct + f_‘éDt)(th) = —mwA (2 gBt(th) + d@til.UDt(fAt)) .

10.11 Summary for “Sun and Earth” (and Coriolis forces on the Earth)

Simplificaions: The Earth is a spherical rigid body Rp which rotates around its South-North axis fixed
relative to stars (no precession nor nutation), and its center rotates around the Sun.

. Referentials.

Absolute Galilean referential. Observer A first chooses a referential Ras = (Ous, (/Yl, ffm /YL;)) where Ogg
is the center of the Sun and (A'h 14'2, fl},) a Euclidean basis fixed relative to the stars with ffg along the
rotation axis of the Earth and oriented from the south pole to the north pole. And (-,-)4 and ||.]|4 are
the associated Euclidean dot product and norm.

Because it takes more that 365 days for the center of the Earth to complete a rotation around the Sun,
the motion ¢ — O4(t) = O of the center of the Earth will be considered “rectilinear at constant velocity

in a short interval of time”, “short enough” for the computation of the Coriolis acceleration to be “accurate
enough” (simplifies the calculations). Hence Observer A writes Oa; = O4 and Ry = (Oa, (41, As, As)).
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1.2.

1.3.

78 10.11. Summary for “Sun and Earth” (and Coriolis forces on the Earth)

Relative referential. Observer B chooses a referential Rg = (Op, (él, B, ég)) with Og = O4 = the center
of the Earth and (Bi, By, Bs) a Euclidean basis fixed on the Earth with Bs along the South-North axis
and oriented from the south pole to the north pole. And (-,-)p and ||.||p are the associated Euclidean
dot product and norm.

For A, Rp is Rp: = (OBt,(élt,égt)). For B, R4 is Ra; = (OAt,(Elt,A'Qt)). And the bases being
Euclidean, ||.|[a = A||.||[s and (-,-)a = A?(:,-)p where A > 0. E.g. (-,-)4 is built with the foot and
(-,-)p is built with the metre, A = 5ot (because 1 ft=0.3048 m). In particular Bs = AAj; because
|Bs||p = 1 = ||As||a = A|| 45| = || A 3|5 and same direction and orientation.

2. Motions, velocities, accelerations. Given in (10.15)...(10.18).

3. Absolute and relative motions, velocities, accelerations. Given in (10.19)...(10.22).

4. Drive and static motions, velocities, accelerations.

4.1.

4.2.

4.3.

44.

4.5.

4.6.

%
Static motion (in Rp). Consider a particle Qr, € Rp at distance Rp(Qr,) = ||Os®(t, Qr,)||5 from Op,

at longitude 0q, €] —m, 7| and latitude ¢q., € [~75, 5]: Its position is stored by B as the matrix
— cos(blr, ) cos(gr, ) Ys1
s = [Op®(t, Qrs )15 = P5(Qry) = Bp(Qry) | sin(fpr, ) cos(vor,) | = | us2 | - (10.92)
Sin(g@QRB ) Ys3

(E.g. on Earth Rp(Qgr,) ~ 6371 km.)

%
Drive motion (in R4). With w the angular velocity of the Earth in R4 and Ra(Qr,) = ||Oa®(t, Qry)l| 4,
the position of Qg, is stored by A as the matrix

- cos(wWt-+boy, ) COS Yoy, yp1(t)
o (t) = [Oad(t, O ) 1 = Folts Ore) = Ra(@ry) | sin(eot+0gny ) cosm. | = [ upa(t) | . (10.93)
Sin Py, yps(t)

(The latitude is constant and on Earth R4(Qr,) = ARp(Qr,) =~ 20902 231 foot).
Drive velocity:

— sin(wt+bgy, ) COS PQr, —ypa(t)
Ut b (t)) = iip (t) = wRA(Qr,) | cos(Wi+ipe,) cos oy, | =w | ypi(t)
0 0 (10.94)
0 —w O 0
= w 0 0 .gD(t) = LUD X gp(t), where QD =w| 0
0 0 O 1

So, with ¢, = ®r, (£, Qr,), the velocity T, (t,q;) = B%’B(L Qr,) of the particle Qg, is a pointed vector
at ¢, orthogonal to @ = wAj, thus in the (z,y)-vectorial plane.
Differential of the drive velocity: (10.94) gives @ip: () = dp X ¥/, thus dip(§) = &p x . =" dijy - with

0 —w 0
dip=dpx.=|lw 0 0 (time and space independent). (10.95)
0 0 0

Drive acceleration = centripetal acceleration of a fixed point on Earth: w being constant,

(10.94) 11 ! 2 yDl(t)
Yot Upt) = "Tp (t) = dp X Yp (t) = &p X Upe(Upt) = dtp.Upe(Ypt) = —w* | ypa(t) | - (10.96)
0

So its magnitude is w? R4 (Qr, ) cos(PQr, ). The minus sign tells that it is centripetal relative to the Earth
circle parallel to the equator (a particle glued on the Earth is not ejected from the Earth despite rotation).

Centrifugal force felt by a particle of mass m fixed on Earth: It is —m times the centripetal acceleration
Yp(t,4pt) in Ra:

centrifugal force = —myp (¢, Upt) = —mp X Upt(Upr) (= —m dip.tp(Ypt))- (10.97)

On the Earth, the gravity force mg directed toward the center of the Earth is large compared to
—mAp(t, ypt) (we are not ejected from the Earth because w is small enough and § strong enough).
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5.2.

9.

79 10.11. Summary for “Sun and Earth” (and Coriolis forces on the Earth)

Translator.
Defined by ©,(gs) =(1927) 7,,. In particular ©,(0) = 0 (null matrix) because Oy, = Op,, with ©, affine.
— - - —_—
Calculation of dO,. Given by dO,.[Bi] 5 =""*) [By] ;. With ||Op®(t,Qr,)llp = Rp(Qrs)=1, so
~—>
[|Op®(t, Qrs)||la = Ra(Qrs)=A (change of unit of measurement), and

. . cos(wt)
® o, =0 and ¢g, =0 give d@t.[Bl]Ié = [Bu]‘g =\ | sin(wt) |,
0
. . — sin(wt)
® O, =5 and g, =0 give d@t.[Bg]‘é = [Ba] g =A| cos(wt) [,
0

—

0
° HQRB =0 and PQr, = % give d@t.[Bg]‘é = [Bgthg = [)\Ag]‘g = )\[Ag]‘g =A (1) . Thus

cos(wt) —sin(wt) 0
dO; = A | sin(wt) cos(wt) 0 ]. (10.98)
0 0 1

It is the expected transition matrix from ([B;h 5) to ([Elt]‘ ) (with the change of unit of measurement).
Coriolis acceleration.

Yot (Zar) = 2 dpt.Upe (Zar) = 2 diip:.dOy .U (Tpt)

- ~ - . L 10.99
= 2Wp X U« (Zar) = 2dp X (dOy.Up:(Tpt)) ( )

E.g. a particle fixed on Earth (Uz:(#p:) = 0) is not subject to a Coriolis acceleration (Yo¢(Zat) = 0),

Ll

which is obvious since then v4 = vp and Y4 = Vp.
Coriolis force: We have
—sin(wt) —cos(wt) 0
dipt.dO; = dO;.dUps = Aw | cos(wt) —sin(wt) 0 (the matrices commute), (10.100)
0 0 0

thus '?Ct (fAt) :(10'87) 2d®t.dﬁDt.ﬁBt (th); And ,f;Ct (th) :(10'77) —m d@til.?ct (fAt), thU.S
foct(Zpe) = —2m dip:. s (T:) = —2mdp X Uge(Tp:)- (10.101)

Thus ﬁ;c,g(fgt) is a pointed vector at #p; orthogonal to Up:(Zp:) and &Wp (so in particular in a plane
parallel to the equatorial plane). And fgoy(Z5¢) vanishes for a particle fixed on the Earth (Zp; = 6).
Drive force:

> (077 1 e e o o
fept(ZBt) B e, Y Ype(Ear) = —m dO; " .dip Upy (Far) (10.102)

cos(wt)  sin(wt) 0 .
with d@t_lz(lo‘%)% —sin(wt) cos(wt) 0 |. Le. fept(Zp:) = —mdp X (d@fl.UDt(fAt)), cf. (10.100).
0 0 1

Inertial force: . B
(fce + fope)(@5¢) = —m@p X (QﬁBt(th) + d@fl-ﬁDt(fAt))- (10.103)
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80 11.1. “Isometric objectivity” and “Frame Invariance Principle”

11 Objectivities

Goal: To give an objective expression of the laws of mechanics; As Maxwell [17] said: “The formula at

which we arrive must be such that a person of any nation, by substituting for the different symbols the

numerical value of the quantities as measured by his own national units, would arrive at a true result”.
Generic notation: if a function z is given as z(t, ), then z,(z) := z(¢,x), and conversely.

11.1 “Isometric objectivity” and “Frame Invariance Principle”

This manuscript is not intended to describe “isometric objectivity”:

“Isometric objectivity” is the framework in which the “principle of material frame-indifference” (“frame
invariance principle”) is settled, principle which states that “Rigid body motions should not affect the
stress constitutive law of a material”. E.g., Truesdell-Noll [25] p. 41:

« Counstitutive equations must be invariant under changes of frame of reference. »
Or Germain [12] :

« AXIOM OF POWER OF INTERNAL FORCES. The virtual power of the "internal forces" acting on a
system S for a given virtual motion is an objective quantity; i.e., it has the same value whatever be the
frame in which the motion is observed. »

NB: Both of these affirmations are limited to “isometric changes of frame” (the same metric for all), as
Truesdell-Noll [25] page 42-43 explain: The “isometric objectivity” concern one observer who defines his
Euclidean dot product and consider only orthonormal change of bases to validate a constitutive law.

If you want to interpret “isometric objectivity” in the “covariant objectivity” framework, then “isometric
objectivity” corresponds to a dictatorial management: One observer with his Euclidean referential (e.g.
based on the English foot), imposes his unit of length to all other users (isometry hypothesis). (Note:
The metre was not adopted by the scientific community until after 1875.)

Moreover, isometric objectivity leads to despise the difference between covariance and contravariance,
due to the uncontrolled use of the Riesz representation theorem.

Remark 11.1 Marsden and Hughes [16] p. 8 use this isometric framework to begin with. But, pages 22
and 163, they write that a “good modelization” has to be “covariant objective” (observer independent) to
begin with; And they propose a covariant modelization for elasticity at § 3.3. .

11.2 Definition and characterization of the covariant objectivity

Consider a regular motion ® of an object Obj, p; = &)(t, Ryj) € R™ the position at t of a particle in our
Universe, 2; = ®(t, Obj) the configuration at ¢, and C = Usefa,o ({4 x €2¢) the set of configurations.

Consider two observers A and B and their referentials Ry = (O, (4;)) and Rp = (Op, (B;)). E.g.,

—

(A;) and (B;) are Euclidean bases in foot and metre, (-,-)4 and (-,-)p is their associated Euclidean dot
products. And O is the translator, cf. (10.27).

Let Za; := [m]‘g € M1 and Zp; = [O.Tp:]lg € M,1, the stored components of p; relative to the
chosen referentials, M,,; and M, being the spaces of n * 1 matrices.

11.2.1 Covariant objectivity of a scalar function

C -R
Let f: be a Eulerian scalar valued field of functions (e.g. temperature field). And
<t7pt) - f(t7pt)

I RxM,; — R and [ - RxM,; - R
) G Ew) = falt, ) = f(tpr) POV (4 Es) — fa(t @) = f(tpr)

Definition 11.2 f is objective covariant iff, for all referentials R4 and Rp and for all ¢,

fae(Zat) = fBe(@pe) when Zay = O4(Tpy), (11.1)
i.e. far = fBis is the push-forward of fp; by Oy cf. (6.8).

Remark 11.3 NB: If e.g. f gives temperatures, then we supposed that f4; and fp; gives values in the
same unit, e.g. Celsius, because it is the covariant objectivity and the isometric objectivity which are at
stake: We are only interested in the changes of referential characterized by the translator © : Rg — Ry
which links positions between two referentials cf. (10.27). oa
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81 11.2. Definition and characterization of the covariant objectivity

11.2.2 Covariant objectivity of a vector field

; C —»R" : ;
Let w . be a Eulerian vector field (e.g. a force field). And Wy
(t,pe) — (L, pe)
RxMp1 — Moy . RxM,1 — My
- - - - and Wp : R - ~ . are the quan-
(t,Zas) — Walt,Zar) := [W(t,pe)] 5 (t, %) — Wp(t,Tpt) := [W(t,pt)] 5

tifications of @ by A and B, wWa(t, Za;) and Wp(t, ;) being the column matrices of the components
of W(t,p;) in R4 and Rp.

Definition 11.4 0 is objective covariant iff, for all referentials R4 and Rp and for all ¢,
Wat(Zar) = dO(Zpe) Wt (Zp:) when Zay = Oy(Zpy), (11.2)
i.e. Way = Wpys is the push-forward of Wg, by ©; cf. (6.20).

Example 11.5 Fundamental counter-example: A Eulerian velocity field is not objective, cf. (10.56),

because of the drive velocity 7p # 0 in general. un
Example 11.6 The field of gravitational forces (external forces) is objective covariant. ua

Remark 11.7 Recall: “Isometric objective” implies
e The use of the same Euclidean metric in Rp and Ry, i.e. (+,-)a = (-, ") B,
e The motion &)RB of Rp in Ry is a solid body motion, and
e O, is affine (so d?©; = 0 for all t).
e Covariant objectivity implies isometric objectivity, the converse is false. .

11.2.3 Covariant objectivity of a differential form

C - R™
Let a : be a Eulerian differential form (a measuring device). And ayx
(t,pe) — a(t, pe)

RXM—H —>./\/L,7,1 and an - RX/\/Lnl —>Mn,1
_ - B - - _
(t,Zar) — aalt,@as) = [Ot(t,pt)]g (t,Zpt) — ap(t,¥pt) = [Oé(tapt)]g
tifications of @ by A and B, a4 (t, Za¢) and ap(t, Zp:) being the row matrices of the components of a(t, p;)
in RA and RB.

} are the quan-

Definition 11.8 « is objective covariant iff, for all referentials R4 and Rp and for all ¢,
aAt(fAt) = aBt(th).d@t(th)71 When fAt = @t(th). (113)
i.e. @a; = apys is the push-forward of ap; by ©, cf. (7.3).

NB: (11.3) and (11.2) are compatible: If « is an objective vector field and if « is an objective differential
form, then the scalar function «.w is objective:

aAt(fAt)'wAt(fAt) = OéBt(th)~wBt(th) (: (a(tapt)'u_j(tapt))? (11-4)

—

since aAt(fAt)-wAt(fAt) = (OéBt(th)d@t(th)il)-(d@t(th)-wBt(th)) = aBt(th)-wBt(th)-

11.2.4 Covariant objectivity of tensors

A tensor acts on both vector fields and differential forms, and its objectivity is deduced from the previous §.
So, let T be a (Eulerian) tensor corresponding to a “physical quantity”. The observers A and B
describe T" as being the functions T4 and 7.

Definition 11.9 T is objective covariant iff, for all referentials R4 and Rp and for all ¢,
Tat(Zar) = This(Zar) (11.5)

i.e. T4y is the push-forward of T; by ©;.
(Recall: TBt*(fAt)(Oél(fAt)a ceey ”(171 (fAt)) = TBt(th)(Oél*(th), veny u_)'l*(th)))
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82 11.3. Non objectivity of the velocities

Example 11.10 (Non covariant objectivity of a differential dw) Let @ be an objective vector
field, seen as Wy by A and @Wp by B; So wWar(Za;) =112 dO,(Zps).Wp: (L) when Zay = O;(Zp;), thus

dibipg (T4:).dO (Tp;) = dOy(Tp;).db s (Tpi) + (2O (Tps) Wi (Tpt)), (11.6)

hence

A (Tar) = dO(Tps).dibps (Tp:).dO(Tps) ™ + (d*O4(Zp¢). Wt (T:)).dO (Tpe) !

- . oo (11.7)
7é det(th)~det(th)~d@t(th) ! when d2@t 7é 0.

Thus dw is not covariant objective in general. However in classical mechanics for “change of Cartesian
referentials” O is affine, so d20, = 0, and in particular ditf is objective when 0 is. Similarly

(d War(Tar).dO(Tpy)).dO (Tpy) + diiar (Tay). d29t(th)

(11.8)
= dOy(Tp).d*Wp(Tpe) + 2 d*Oy(Zp:).dB i (Tpe) + d*Oy (Tp) Wi (Tpe),
thus d?w is not covariant objective in general (but if ©; is affine then d? is objective if 1 is). ..
11.3 Non objectivity of the velocities
11.3.1 Eulerian velocity ¥: not covariant (and not isometric) objective
Velocity addition formula: With Up..(Zat) = dO¢(Zpt).W(Zp:) when Za; = O4(Tpt), cf. (10.56),
Ua¢(Tar) = Uew(Tas) + Upe(Tar) (11.9)

# Upe(Zae) when  pg(Za;) # 0,
thus a Eulerian velocity field is not covariant objective (and not isometric objective).
11.3.2 dv¥ is not objective
The velocity addition formula (ta; — Up¢) (Zar) = Ui« (Zar) = dO(Tpt).Upt(Zp:) when T4, = ©,(Zp;) gives
d(Tar — Tp¢)(Zaz).dO(Tps) = dO(Tpy).dUp: (Tpt) + d* O (Tpt). Ut (Tpe), (11.10)
thus dv is neither covariant objective nor isometric objective, especially because of dijp:
ding (Zay) = dipy(Za;) + dUBes (Tay) + d2Oy(Tpy).Upe (Tp:).dO (T5,) ™1 # dUpey(Zay) in general. (11.11)

Exercice 11.11 Prove that d?¥ is “isometric objective” when 5725 is a rigid body motion.

Answer. (11.8) with @4 — Up instead of Wa, and ¥p instead of Wg give, in an “isometric objective” framework,
d? (Tar — Upt) (Zar) (@Bts, Bpie) = dOy (Zp:).d> Ui (Zp: ) (Ui, Tp). (11.12)

Here d*#ip; = 0 (rigid body motion), thus d*7 is “isometric objective”. .

Exercice 11.12 Isometric setting. Prove, with Q; the (orthonormal) transition matrix from (4;) to (B;):
[d7,], 5 = Qe-ldT] z-Q7 ' + Q'(1).Q; ", written  [L] 5 = Q.[L] +Q" +Q.Q. (11.13)

(Used in classical mechanics courses, to prove that dv isn’t “isometric objective” because of Q.Q*".)

Answer. #,t € R, pto = D(lo, Ry), pr = D(t, Ryy) = P (py,), B(t,ps) = %—%(t,}%)bj), and F{°(py,) = d®p (py,).

So #(t, ® ( 0)) = i 52 (t,pyy), thus di(t,p.).Fyo (t) = f () And (4.28), with Fjo ="Ten p o gives
[F®))a, .5 = Q )[F(t>] o 00 thus [F'()] 7, 5 = Q'(1).[F(D)] 5, Q-IF' (1)), 4 Thus [di(t, pt)hB =
[Fé?o’()Fi;()} = [F, ()]‘B-[ wWls = (Q®)[F®)]4, g+Q()[ ‘Oz, - F ()}_ SR =
QM)W +QM).IF ()] 4, & lF ()],‘;O,A-Q(t)*:Q’(t)-Q() + Q(t).[dV(t,p)] & () '. And cf. (3.33). o
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83 11.4. The Lie derivatives are covariant objective

11.3.3 dv + dvT is “isometric objective”
Proposition 11.13 If &, is a rigid body motion then dv, + dvl is “isometric objective”
diiny + dit, = (digs + dik,)«. (11.14)

(Isometric framework: The rate of deformation tensor is independent of an added added rigid motion.)
Proof. Q.Q" = I gives @.QT + (C.Q.QT)T = 0, then apply (11.13). u
Exercice 11.14 Prove that Q = M is not isometric objective.

. >, >, >, diig,—dvT, dTpe—di s dipy—dvp, AT g, —dTh .
Answer. (11.11) gives diif, = dvp,. + dipy;, thus “AL AL — S8t Chee 4 SDL-CD1 o OBt SRt even if
L]

= p ¢ — AT, R . . R
is a solid body motion (then de—d1 — G is a rotation times a dilation). -
2

11.3.4 Lagrangian velocities

The Lagrangian velocities do not define a vector field, cf. § 3.2. Thus asking about the objectivity of
Lagrangian velocities is meaningless.

11.4 The Lie derivatives are covariant objective

Framework of § 10. In particular we have the velocity-addition formula us; = U« + Ups in R4 where
ﬁBt* (fAt) = d@t(th).ﬁBt(th) and th = et(fAt); cf. (1056)

The objectivity under concern is the covariant objectivity (no inner dot product or basis required).
The Lie derivatives are also called “objective rates” because they are covariant objectives.

11.4.1 Scalar functions

Proposition 11.15 If f be a covariant objective function, cf. (11.1), then its Lie derivative Lzf is
covariant objective:

ﬁgA fA = @*(ﬁgB fB), ie. ,CgAfA(t,fAt) = ,CgB fB(t,th) when Za; = @t(th); (11.15)
ie., BIA(t Bay) = BB (t, Epr), Le. (B + dfata)(t, Ear) = (Y2 + dfp.Tis) (¢, Fp).-

Proof. Consider the motion ¢t — p(t) = ®(tRy;) of a particle Ry, and Z4(t) = [Oap(t ]IX and Zp(t) =
[OBp(ti]lg. With f objective, (11.1) gives fp(t,@5(t)) = fa(t,©(t, Tp(t))) (= fa(t,Za(t))), thus

D - 0 - R 09, - S
DIa 1 1)) = 202 (1, 20(00) + dan(a )20, (1) + 04 (1)) e (35 (1))
Upt(Zat) Upts (Zar) (1116)
d . N = o D "
= %(ta Tar) + dfar(Tar) - Vae(Tar) = Dif;(t,xAt)v
thanks to velocity addiction formula s = U + Upe. Ly

11.4.2 Vector fields

Proposition 11.16 Let W be a covariant objective vector field, cf. (11.2). Then its Lie derivative LW
is covariant objective:

Lz Wa = 0.(L5Wa), (11.17)
i.e., when fAt = Gt(th);
L Wa(t,Zar) = dO(Tpt). Loy Wp(t, Tnt), (11.18)
ie.,
Dw oL . . Dw L .
(T2 — g i) (t, Bay) = dO(t, Tpy). (S — difg i) (L, Fpe), (11.19)
Dt Dt
ie.,
OWa oL L. . . owp L L .
(W + dWg.Up — dUs.Wa)(t, Zar) = dO(t, th).(W + diip.vg — dUg.Wg)(t, ). (11.20)

But the partial, convected, material, and Lie autonomous derivatives are not covariant objective (not
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84 11.4. The Lie derivatives are covariant objective

even isometric objective because of the drive velocity tp): We have

(dibat-(Tas—0pe) ) (Tas) = (dOy.(diWps-Tgt) + (2O p¢).Tgt ) (Tpe), 11.21)

(d(Ta—pe) - Wae) (Tar) = (dO¢.(dtipy W) + (d°Oy.Tpy) W) (Tpe),
(d(gAt_ﬁDt)~(UAt UDt))( ) (d9t~(d173t~173t) + d29t(773t7 gBt))(th)v
E(UAt th),lEAt(f ) = d("‘)t((EBt) £{;‘Btht(th)

0wy 0up

11.22)
11.23)
11.24)

~ o~ o~ o~

5 (b3 + LY war(Zar) = dOy (1) — = (1, Tm), (11.25)
Dwy . oL . . . D, 9 L .
Di (t, Za¢) — dipy.Way (%ay) = d@t-(th).iDt (t, Zpt) + d“O¢(Upt, Wpt) (Tpt), (11.26)
O(Ua—7 . L . L . 01 N
HBI) (1 530) + £, (54—T) (1 F) = O () 2 (1, ). (1L.27)
Proof. e lBAt(@t(th)) = d@t(th).’LﬁBt(th) giVGS
dWay (.’fAt).d@t (th) = d2@t (th).wBt(th) + dO; (th>.de (th>, (11.28)

thus, with dO:(Zp:).Us:(Zst) = (Uar—Upt)(Zar) = Upex(ar) (velocity-addition formula),
diia (Far).(Uar—tpe) (Tar) = (d*Ou(Tpe). Ut (Tpe)) - Wpi (Tpe) + dO (Tt ).dipe(Tpt ). Ut (Tpe),

hence (11.21). In particular dwas(Zat).Uat(Zat) # dO(Tpt).(dWp:(Zpt).Up:(Zp:)) (the vector field dw.v is
not objective).

o (Uar—Upt)(O4(Zpr)) = dO(Tpt).Ust(Zp:e) gives
d(Tae—Tpe) (Tar)-dO (Tpe) = d* O (Tpe). Ut (Tpe) + dO(Te) . diipe (Tpe),
so, applied to Wp; (resp. Upt), we get (11.22) (resp. (11.23)). Hence (11.24).
o If %4y = O4(Zp), then Wa(t,O(t, 7)) = dO(t, Zp).Wp(t, ¥p), so, with %(t,fB) = Uot(Zaz), we get

ow 00 ow .
atA (t, Zar) + dWiar(Zar) Vot (Zar) = d— 5 (t,Zp). Wp(Zp) + dO(TR). a—tB(t, B)
L T L, Oup,, |
= (dVoi(Za1).dO(TR)) Wr(ZTp) + d@t(xB).W(t@B),
Thus (11.25) since g = ¥p; Then (11.21) gives (11.26).
L] ’UB* (t, @(t, fB)) = d@(t,fB).gB(t,fB) gives
00« _ oL . ode , Lol NG .
a—]:(t, Zar) + dUB«(Zar). Vo (t, Tar) = W(t,xB) g (Zp) + d@(t,xB).a—f(t,xB,)
—_——
dTet(Zar).dO(Tp)

since 8{‘;? (t,7g) = d(a—@)(t Zg) and %(t,fg) = Vo (t, Zar) = Vo, (0+(Z5)); hence (11.27). un

11.4.3 Tensors

Proposition 11.17 It T is a covariant objective tensor, then its Lie derivatives are covariant objectives:

L5,Ta = 0,(LsTs). (11.29)

Proof. Corollary of (11.15) and (11.18) to get Lz(a.w) = (Lza). W + a.(LzwW); Then use Lz(t] @ ta) =
(Lat1) @ta +t1 @ (Lyta). on
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85 11.5. Taylor expansions and ubiquity gift

11.5 Taylor expansions and ubiquity gift

11.5.1 First order Taylor expansion and ubiquity issue

Let @ : RxR™ — R™ be regular and p(t) = ® (¢, p,, ). With f(t) = @(t, p(t)), f(t) = fto)+(t—to) f'(to)+
o(t—1ty) (first order Taylor expansion), we get

(1, (1) = W0, )+ h 2 (1, i) + ol1—1o) (11.30)

Issue: The left hand side w(t,p(t)) lives in 7,,(€2;) while the right hand side (calculation) @(ty,py,) +
h 25 (ty, py,) lives in 15, (). Thus (11.30) is meaningless: To be meaningful, the @(t, p(t)) term should
ﬁrst be pull-backed by ®¥ (p;,) to be compared with 1 (ty, ps,) (or the @ (ty, ps, ) term should first be push-
forwarded by ®(p,) to be compared with @(t,p;)). E.g., in a non-planar manifold (e.g. in a surface
in R?), @(t,p;) and w(ty, p,) don’t belong to the same vector space (the “tangent spaces” T,,(§;) and
1, (€, ) are different in general).

Ok with Lie: With the Lie derivative defined with pull-backs, i.e.

9) A (py,)~Lab(t, p(t)) — @ Plo*y
Lt (to, pry) E (pu) (0, p(1)) = WLl ) +o(1) (= (®70 = @) {to, o) +o(1)); (11.31)
t—1t t—t
It is an equation in Ty, (%,) which gives the first order Taylor expansion in Tp, (Q4,): With h = t—t:

DY (pry) " (t, p(t)) = W(to, pry) + h Law(to, pry) + 0(h) (= P w(to, pyy))- (11.32)

Or with push-forwards: We have obtained the first order Taylor expansion in 1,,(€;): With h = t—ty:

W(t,p(t)) = d2f (py,).(W(to, i) + h Ld(to, pry) + o(h))
= dO (py,)- W (to, piy) + hd®y (p,)-Lir(to, piy) + 0(h) (11.33)
= (@, D) (t,p(t)) + h . (Lyw)(,p(t)) + o(h).
Proposition 11.18 In R", with the gift of ubiquity, (11.33) gives (11.30) (of course).

Interpretation: Because ubiquity gifts don’t exist, (11.30) is meaningless while (11.33) is meaningful;
Which tells that “The Lie derivative is the meaningful derivative in physical sciences”.

Proof. With d®® (ty+h, py) "2 I+ hdi(ty, py,) + o(h) and L5 2" %1: — di.ii, (11.33) gives
w(t,p(t)) = Aoy (py,) . (@(to,py,) + h Ladi(to,py,))  +o(h)
(I + hdito, p) + o(h) (5 + h (2E — i) (lo, ) + o(h)

- (w+h(%‘t” — dv.a8) + hdi.10) (o, py, ) + o(h),

which is (1130) . un

11.5.2 Second order Taylor expansion

Jto—¢, to+e[ — R™ N i} )
. Th 027 d _
2 t%ﬂw:wwmm} us fis €%, and f(t) = f(to) +

hf'(t) + h—;f”(to) + o(h?) where h = t—tq (second order Taylor expansion). Thus, near (to, py, ),

In R", with @ € C? let f : {

D@ h? D*w
3(t, p(t)) = h— h?). 11.34
@t p(t) = (@ + h S + 5 5o, p(to)) + o(h?) (11.34)
Once again there is an ubiquity issue. Without ubiquity gifts, we have “the second order Taylor expansion:

B0, p(t)) = (0 + hLati + o Lol L)) (o, )+ 002) (11.35)

(L)) (to, piy) + 0(h?) (pull-back),
t,p(t)) + o(h?) (push-forward). Indeed:
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86 11.5. Taylor expansions and ubiquity gift

Proposition 11.19 In R™, with the gift of ubiquity, (11.35) gives (11.34).

Proof. (4.37) gives F;ff’o( ) = Iy, + hdi(ty, py) + % d7(to, p1,) + o(h?). Thus, omitting the reference to
(to, py,) to lighten the writing, (11.35) gives

2
d® (py,). (W + hLyb + %Lgﬁgw +o(h?))

2 b 2 (11.36)
- (I + hdi+ - d(57) + o(hz)) . (w + WLt + - Lol + o(h2))
The h° term is I.%W0 = . The h term is L0 + d0.70 = %. The h? term is the sum of
. %cﬁﬁm — %(%itf 9 dﬁ.%f - Dl(f) A+ d5.diaD), of(9.42),
o d7.LoT = dﬁ.%f — d7.d75 = (2d % — 2d7.d7F),
%d(%').u”; = %(Dl(jf) A + dv.dvas), cf.(2.30),
which indeed gives % 2. 5

11.5.3 Higher order Taylor expansion

Exercice 11.20 Let @ € C™ and E%”) = Lzo...0 Lz (n-times). For all n € N*, prove (Taylor expansion)

(to)

W(t, p(t)) = dD (pyy).( + (t—to) L + ... + ——L— LLV) (b, pr,) + o((t—0)™), (11.37)

e, F{(po) ™1 (t p(t)) = (Sheo S5 (L) M) (to, piy) + 0{(t—t)") i Ty, ($2)-

Answer. (Proof similar to one of the classical proof of Taylor’s theorem.) ty and p;, are fixed, p(t) = ®% (¢, py, ),
and H® (t,p(t)) := H{(p(t)) := F*(p,)"". With

fan(t) = (H D) (t,p1t) — (0 + (t—to) Lo + ... + L5%) (to, pry ), (11.38)

(t—to)"™
n!
we have to prove: f.,(t) = o((t—t)") (which means Ve > 0, 3h > 0, Vt € [to—h, to+h], || fan ()]s < €).
Recurrence hypothesis: With n € N*, for all @ € C™ | || fun(t)|ly = o((t—t)™).

This is true for n=1, cf. (11.32). Suppose it is true for n.
Let @ € C" 1. With 2H° — _H' 45, cf. (4.48), we get

r ’ - = D i — t— " n —
fant1 (t) = (—H™ .dv.5 + H’“.—w)(t,p(t)) — (04 LW+ ... + %E% +1>w)) (to, pty)

Dt
= (1 Led)(t,p(0) — (Lo + ..+

(11.39)

—

£3.L5T) ) (o, ) = fegmn ().

N F,mt1 ()= F et (

to)|| g g .
(=] <UD eyt ||t (T)lg5 And fig s (f0) =112

And the mean value theorem tells

0, thus w < SUP- ety —h,to+h] |[fzpa.n(T)]lg- And, Ly& € C™, hence the recurrence hypothesis tells:

1 zgn(®)lly = o((t—to)"). Thus Wzt @lie — o((~to)", thus || Fnia (1)l = of(t—t0)"+".
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87 12.1. Newton fundamental laws

12 The virtual work and power principles

12.1 Newton fundamental laws

. . .. . ‘ o « e
2. ) > , i

(See e.g. Germain [11]). Consider N > 1 distinct particles Ry, of mass m; which make the “body” Obj =

{ Ry, ---, Fonjpy }- In our universe, at ¢ call p;; —written 5, ¢ R™ the position of PObjj and Q; := {p1¢, ..., DNt }-

) __written 3

Each Ry, is subject at ¢ to the acceleration ¥ (ps ~:, to the external force f;(pit)
and to the internal forces f_t)’p].t (pit) =Written f;l due to the other POlzjj-

__written f
- 19

Newton postulates: There exists a Galilean referential R, (called absolute) s.t. at any ¢:

o 1st law (Galileo law of inertia): “a body not acted upon remains at constant speed”. (12.1)
N

e 2nd law (Newton): Vi=1,...,N : m; = f; + Zf_;l (12.2)
j=1

e 3rd law (of action and reaction): Vi,j =1,...,N : f;l = —f_;j and f_;j | pips- (12.3)

Remarks: - If N = 1 (one particle), then (12.2) reads m7 = f and (12.3) is trivial.
- fi = 0 for all i.
- The laws apply to any subset of Obj (the other particles being considered external).

12.2 D’Alembert formulation

12.2.1 The virtual power formulation, discrete framework

At t, with the above discrete Eulerian vectors fields 7, f:, ﬁvpjt 0 — R_’?’, consider any discrete Eulerian

—

vector field @, : p € Q — 1,(p) € R3 called virtual vector field, and let 7, (p;) ="ritten ;.
Then choose a Euclidean dot product (-,-), =Wen . in R3.

Definition 12.1 At ¢, the acceleration virtual power, the external virtual power, the internal virtual
power relative to i are the scalars

N N N
Pu(t) = Zmﬁi ety Pe(U) = Z fietii, Bu(d) = Z(Z fyi) « U (12.4)
i=1 i=1 i=1 j=1
Remark: If N = 1 (one particle), then P, (@) = m7 « @, Po(if) = f » @, and By () = 0.
D’Alembert virtual power formulation® (variational formulation of 2nd and 3rd Newton’s laws).
There exists a Galilean referential R, s.t. at any ¢, together with Galileo’s law of inertia,

Vi € F(QuR3),  Pu(@d) = P.(@d) + Bul). (12.5)

Interpretation (Germain): To measure a force needed to move Obj, you need to move the Ry, i.e.
you need to measure a work (subsequently a power), i.e. you need d’Alembert’s formulation. Germain’s
words: “to know the weight of a suitcase you have to move it” (it is not enough to look at it).

Proposition 12.2 1- (12.2) is equivalent to (12.5).
2- (12.3) is equivalent to: B (@) = 0 for all discrete rigid body velocity field @ € F({p1, ..., pn }; R3).

Proof. 1- (12.2) & (mﬁl — ﬁ — Z#i f;l =0 for all z) = ((mfy’l — ﬁ — Zﬁéi f;l) «i; = 0 for all ﬁl) &
(Zi(mﬁi i =0 fii) it = 0 for all (ﬁi)i:L..,,N) = (Pa(ﬂ’) D) — B (@) = 0 for all @ € (R’B)N).
2- Consider the body B = { Ry, by, } (the others particles being considered external). A rigid body

Bt (@) = for « @y + fro + @ :_’(ﬁl t]?lQ) #171 + fi2+ (@ qu1p3)ﬁ= (fo1 + fi2) « W1 + @« (P73 X fi2).
21- Suppose (12.3), i.e. fo1 + fi2 = 0 and p1p5 x fi2 = 0: A rigid body motion of {p1,p2} gives
Ru(@) =0+0.

motion of B is characterized by iy = u; + & x pyps. Having f;z = 0, the internal virtual power is

3Also called Lagrange, Euler, ... virtual power formulation
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88 12.2. D’Alembert formulation

22- Suppose B (1) = 0 for all rigid body motion of {pl,pg} f}l + ﬁg) o Uy + fiz (o"j X M) =

all @1,d. In partlcular G=0 (translatlon) glves (f21 + f12) « 7 = 0 for all u;, thus f21 + f12 0. We

are left with f12 o (& x pips) = 0= (Pip% % flz) for all &, thus p1ps x f12 =0.
23- Idem for any two particles at Ry;, and R, for all i,j. And a rigid body motion of ; =

{10y, - Iowj v } implies a rigid body motion of any { I, fow; }- .

12.2.2 Towards continuum: L?(Q2) framework

Q is an open set in R™. The space of finite energy scalar valued functions, its usual inner dot product
and norm are:

L*(Q) :={u:Q — Rs.t. / u(p)? dQ < oo},

pes (12.6)

()1 1= /  ulpyu(p)an " [ wwde. el = vz = ( / oy )",

Choose a Euclidean dot product .. in R? with its associated norm ||.|[g= ="*it*" || ||. The space of
finite energy vector fields @ € Tg(Q), @ : p € Q — d(p) € R™ (simplified notations for @ : p € Q —
(p,u(p)) € Q x R"), its usual inner dot product and norm are:

LHQ)" = {if: Q- B st. / [i(p)][2 d2 < o},

pee (12.7)

W=

@i = [ ) a0, il = V@D = ([ 1ae)irae)”

12.2.3 D’Alembert formulation, continuous framework

In (12.4), replace the sum sign > by the sum sign [: Consider a body Obj made of particles Ry, and
~ [tl,tg] X Oly — R"
a motion P : ~

(t, POb?) — Pt = (I)(tv PObJ)
at all t. Choose a Euclidean referential R, and, at any t, call ¥;(p;) the acceleration of Ry;, fi(p:) the
external force on Ry, p¢(p¢) the mass density, and take a (so-called virtual) vector field u; in €.

of Obj where Q; := ff)(t, Olj) is an open subset in R”

Definition 12.3 The acceleration, external and internal virtual powers relative to « at t are

,Pa(ﬁt) = /GQ p(p)f?t(p) ’ﬁt(p) A0 Writ:ten /

P’Yt ° ut aq ertten / pa(t7 ﬁt) an
Qq Q

Puiy) = / Fip) +iiy(p) d2 VT [, g vritten / pe(t, @) dS2, (12.8)
PEQ Q Q

Pouliiy) = / poa (b, ) (p) d "R / Pt 01) A2,
peEQ: Q¢

where pg, pe, Pi¢ are the virtual “acceleration, external force and internal force densities”.

D’Alembert virtual power formulation. There exists a Galilean Euclidean referential R, s.t., to-
gether with Galileo’s law of inertia, at any ¢ for all (regular enough) vector field w,

Pa(tir) = Pe(ti) + Fut (1) (12.9)

12.2.4 Remark: Rigid body motion and Germain’s notations

Choose a Euclidean basis (€;), call . +. and . x . the associated Euclidean dot product and vector product,
let
SC' = the screws := {7 : R3 — R3 s.t. 30 € R3, Vp,q € Q, i(q) = @(p) + & x pg}

T T . ) - (12.10)
={u:R3 > R3s.t. 35 € R3, Vg € Q, i(q) = d(0O) + I x Og}

independent of a chosen “origin” O € R? (trivial check: # is affine). And SC is a vector space (trivial
check), and dim(SC) = 6 because %(O) and & characterize a screw (6 degrees of freedom).
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89 12.3. D’Alembert formulation and linear hypothesis

Recall:
e The velocity field of a rigid body motion is a screw called a twist or a kinematic screw or a distributor.
e A screw which is the moment of a force field is called a wrench.

Germain notations: R R R
e A virtual twist is noted @ (with a “hat”), u(q) = u(p) +d x Pq, and is represented by the 6 * 1 matrix

>~
—

{C} = ([ [( ])][e> written (u(f)) (reduction elements of i at D).
& w ﬁ
e A wrench is noted i (for moment), 7 (q) = m(p) + F x ¢, and is represented by the 6 * 1 matrix

[F] = ( lF} e ) =written ( _,F ) (reduction elements of 7 at p in this order).
[ (p)) (e 1i(p)

o SC’ is the dual of SC, i.e. the set of linear forms ¢ : SC — R.

o If SC' = the twists, then SC’ = the wrenches; If SC = the wrenches, then SC’ = the twists.

e The dual product of an element M € SC and an element N € SC’ is noted M.N.

Proposition 12.4  is bounded, p € Q, ¢ € SC' represented by [F] = (n‘i{p)) (s0 17(q) = m(p) + F x

) (so 5’(q) = a'(p) +@ x Pq) we have

g

pq). For all e represented by {6} = (u

0= Fiilp) + m(p) » @ "Hem (£ {C). (12.11)
(In fact should be noted [F]T.{C} if the matrix product is understood; The notation [F].{C} means that
the canonical inner dot product in the vector space Mgy of 6 x 1 matrices is implicit: [F| and {C} do not
belong to a same space, so [F|.{C} can’t be anything else.)

Proof. © bounded implies SC C L*(Q): Indeed, [, [[ii(p)|[*d2 = Jq [|i(0) + & x Opl|2dQ <
Jo 2l@(0)]1? + 2[|d]| \|Op||2 dQ) < oo, since the volume of €2 is bounded.

And SC is a vector space (sub-vector space of L%(Q)); Indeed, i(q) = ii(p) + &z x pg and ¥(q) =
U(p) + 5 x Py give (@ +\0)(q) = i(q) +A0(q) = (@+A7)(p) + Tz + Ag) x B = (@ + AT)(p) + Daxc % P
where Wz g := Jz + Mg € R3; Thus 4,7 € SC implies 4 + A7 € SC.

And SC being finite dimensional (dim SC = 6), SC is a closed sub-vector space in L?(2), thus
(SC, (+,+)r2) is a Hilbert space, and any ¢ € SC’ is (linear) continuous. Hence we can apply the (-,-)2-
Riesz representation theorem: If ¢ € SC”, then 37 € SC, Vi € SC,

Tlg) ~ iiq) d2 = / )+ (o) +5 % ) 49
€ (12.12)

—

= Feil(p)+ @D eme(p) where F = / U(q)dQ and mi(p) = / g x £(q)dS,
qeN qeN
Thus (].2].].) un

12.3 D’Alembert formulation and linear hypothesis

Setting: Geometric vector space I@", n = 1,2,3, Euclidean basis (€;) imposed by an observer, associated
Euclidean dot product. In this § the “tensor writing” is in fact a matrix writing.

12.3.1 First order linear hypothesis

With E?T“j = du.€; and Vu = Z] 59“ €;, let (Hilbert space of order 1 needed for “deformation gradients”)

e H'(Q):={uecl?Q):Vj=1,..n, %‘ e L2(Q)} VM £y € L2(Q) : Vu € LA(Q)"),
J

° (U,'U)Hl _ u v L2+Z ou 31} L 7\/ f dQ+/ VU ) Q (1213)

ax] (’930] 2eQ

] HUHHl = (U,U)Hl.

—

(H'(S2), (-,-) 1) is a Hilbert space (Riesz—Fisher theorem). And [, Vu(Z) « Vo(Z) dQ ="ritten (Gy, Vo) e,
$0 (u, v) g =" (4 ) o 4 (Vu, Vo) .
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90 12.3. D’Alembert formulation and linear hypothesis

The dual space of Hl(Q) is H'(Q)' the space of continuous linear forms ¢ : H'(Q) — R. We use
theorem V.12: If £ € H*(Q) then 3(f, §) € L*(Q)x L2(Q)" s.t., Vi € H' (),

@) = (f2)1e + (F, 99) 12 = /Q o+ Ge T da. (12.14)

Application to vector valued functions: With Vi = [g;?] (matrix), let
J

HY Q)" ={aeL*()":Vic LQ(Q)"2} ={i=> wé e L*(Q)":Vi,j, g;” )},
2 J

(12.15)
(17:, 17)].]1 = (’L_L', g)Lz + (Vﬂ:7 Vz’;’)Lz, Hﬁ”Hl = (’J ﬁ)Hl
where (7,7)12 = [, @+ TdQ and (V@ V)2 == 307, [, §at Gt dQ =211 [ Vid : VIdS where the

double matrix contraction Vu : VU = Z:LJ 1 gil g;l is used.

The dual space of H'(Q)"is H'(Q)"' = {P : H(Q2)" — R linear and continuous}. Thus (application
2
of (12.14) component wise): If P € H'(Q2)"' then 3(f,a) € L2(Q)"xL*(Q)" s.t., V& € H(Q)",

P(@) = (f,0)12 + (g, V)12 = /Qf~17+g: V7 dQ (12.16)

P .
when @ =), vié;, f =3, fi€i, @ = [o45], and v; j = 3;?]

12.3.2 Application: Usual Cauchy’s result

The (linear approximation of the) virtual internal power By is in H' ()™, hence of the type (12.16),
and in a Galilean Euclidean referential:
1) B (¥) = 0 for all ¥ uniform (i.e. dv = 0). Thus (12.16) glves (f,¥) 240 = 0 for all # uniform, also

true for any subset in Q. Thus f = 0 and 3o = [oy;] € LZ(Q)n s.t., Vo € H' ()™,

B (7) = / 0 VidQ = — divg-UdQ+/(g.ﬁ)-17dQ (12.17)
Q Q - r

where divg is the matrix divergence cf. (T.75).
2) B () = 0 for any rigid body motion, i.e. s.t. V& + VoT = 0. Thus 0 = [, 0 : W%Wdfl for

any ¥ s.t. Vi 4+ Vol = 0. Also true for all subset in ©, thus a(p) : w =0 at all p, thus ¢ is
symmetric:

Vi + Vit

c=07, and Ru(?) = / o %d(l, Yo e HY(Q)" (12.18)

g=g 0=
Example 12.5 Pressure in a perfect fluid: f: 0 and a = p.I where p,. € L2(Q) (pressure), thus

P (V) z/prdivﬁdﬁz —/ gl‘?ldpr-ﬁdQ—F/p,«ﬁOﬁdF. (12.19)

(Germain’s notations: P fQ Dy dive dQ with p- the pressure and ¥ a virtual velocity.) oh
Exercice 12.6 What is the correct notation for (12.17)?
Answer. RBu(0) = [,lalie : [V]jed = — [, div([g]e) « [0]jedQ + [.([g]|e.[7])e) * [0]1e A2 where (€;) is a chosen
Euclidean basis, [g]‘e = [04j] € Mun, [V]je = [vi] € Mnl, [V1)e = [8”1] € Mun, [A] = [n;] € Ma1, div([g]je) € M
is the divergence of the matrix [g]|z cf. (T.75), and . « . is the canomcal inner dot product in M. un

12.3.3 Second order linear hypothesis

Generalization to
H2(Q) = {u € L*(Q) : gradu € L2(Q)", d®u € L2 Q)" }. (12.20)
)

with its inner dot product (u,v)gz = (u,v)z2 + (gradu, gradv) 2 + (
[|lul|grz = \/(u,u)p=. And (similar to the HY(Q)" case): If P € (H*(Q

2u,d?v) 2 and associated norm
)
on H2(Q)) then 3(F, o, x) € LA(Q)"xL3(Q)" xL3(Q)" s.t., for all @ € H?

)
(

(i.e. linear and continuous
n
o,

P(@) = (f, @)z + (g, Vid) 12 + (x, d°@) 2. (12.21)

Gives “micropolar materials”. See e.g. Germain [12].
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91 13.1. The classical justification of the linear approach

13 First order virtual power formulation with Lie derivatives

13.1 The classical justification of the linear approach

The classic approach for elastic materials is clever but weird. Clever because it uses the comparison

between two vectors to measure a relative deformation. Weird because it starts by squaring the a linear

motion and then... linearize it... which produces a spurious F7. In short:

. Take two vectors Wl and Wg at ty; They become W = F.Wl and Wy = F.Wg at t (linear hypothesis).

. Compute (@,ds), = (F.Wy, F.Wa), = (FT.F.Wy,Ws)a: doing so the motion has been “squared”
(product of two deformed vectors), and you have built C = FT.F, see (G.15).

. Compare (i, s), (at t) with (W1, Wa)g (at t) thanks to (61’62)9_2(W1’W2)G = ((FT'F*I%'W“WQ)G, the
% because it is a squared quantity (the linearisation of f(x) = % gives f'(z) = z). In doing so, you
have built the Green-Lagrange tensor E = £(FT.F —I) = $(C —I).

. Linearize E: E is approximated by g = F';FT — I. In doing so, you have introduced the spurious F'7

(in g), which does not exists in the first order Taylor expansion O(P+hW) = ®(P) + h FW + o(h),
which isn’t ®(P+hW) = &(P) + h EEEZ W + o(h).
. Without forgetting that the classic elasticity law using £ (instead of ) doesn’t give “good” results.

This classic approach rises the questions:

1- Is it "normal" (convincing) to start from a constitutive law with E that does not give good results,
to deduce (legitimize) a linear constitutive law, moreover with a spurious F'7'?

2- Can we get a linear law without E (without squaring first), so without the spurious F7? Yes:

13.2 ¢ with Lie derivatives of vector fields

The Lie derivative of a Cauchy stress vector T along ¥ at t at p € ; (rate of stress along ¥) is, cf. (9.16),
LT = =— —do.T (= =+ dT.5 — do.T). (13.1)

Choose a differential form « to measure LT to get the internal power density a.ﬁgf, i.e. the real
objective values «(t, p;).LzT(t,p:) at ¢ at each p; € ;. You get the internal virtual power

_ DT -
Rty @) := / a. LT dQ) = / a.— — (T®a) () dvdQ, (13.2)
Q Q Dt

since a.dv.T = (« ® T) () dv (objective double contraction between (}) tensors). The use of the Cauchy
stress vector field T (order 1 tensor) is explicit (the obtained order 2 tensor @ ® T is obtained thanks to a
choice of a direction of measurement «). No initial time # (Eulerian approach), and covariant objective
approach (no basis and no inner dot product required).

Restrictions to get admissible constitutive laws:

e Galilean referential: 7, vanishes when dv' = 0, true for all subset of ;. We are left with

Bot(eonya) = —/Q T, 0dvdQ, where 7 =TQa« (13.3)
NB: The use of the Cauchy stress vector field T (tensor of order 1) is explicit, the obtained tensor
r,=T®a of order 2 being obtained after a choice of a direction of measurement «.

e Isometric framework: Choose a Euclidean basis (€;) and its associated Euclidean dot product
(-, ) ="1tten o “and call 77 the exterior (-,-),-normal unit vector field on I'. We get

Rut(y ) = / &ivv;a.ﬁde/(ga.ﬁ)-ﬁdF, where 7 =T ®«
o h (13.4)

- / (div)a.d + (da.T).5d0 — / (.8)(T « 7) dT,
Q

I

where &;/(ga) = div(T ® @) = (divT)e + da.T is the objective divergence of z, see (T.69).

91



92 13.3. g with Lie derivatives of differential forms

e Classical formulation recovered: With (e?) the dual basis of (¢;), T = Y, TiE, 7= Y, v,
due; =) . g; €, a = > a;e’, we have [d7] = [3;’1], [z ] = [T%a;] (representation matrices relative
to (€;)). Then call 4

g, = [LQ]T = [aT?] = [og;5] (matrix). (13.5)

With the canonical inner dot product in M, also called.«. and with the matrix double contraction
[Mj] « [Nij] := 32, MijNij, (13.3) gives

Bt (oo r) = _/thz [dv]dQ (= o divg, « [0] — / o [] dD),

" (13.6)
written .
= - o, dvdS) :/ dlvg-ﬂ'—/ o .n)evdl).
o, & ( b, v, ; (g,-7) )
Moreover B, must be independent of rigid body motions (frame invariance principle), thus
Ao+ d a,+a," dv+di”
Ru(oya) = — g,: udgz,/ == U+ dv 10
Q, 2 Q 2 2
(13.7)

— T o +0.T
—/ QZMdQ:—/ o :didQ where g==*t—F—.
Q- 2 Q- = 2

We have recovered the usual classical formulation: B; = — fQ g dvdSd.

Remark 13.1 T is the main unknown with its 3 components, not ¢ with its 9 components (or 6 com-
ponents thanks to symmetry). And for the oncoming second order theory with Lie, a second order term
Lz(L5T2) will be introduced (see § 13.5), which only introduces 3 more unknowns with T5; To compare
with the 81 unknowns (number that can be reduced with symmetry considerations) with the tensor y

which gives the linear model (12.21), cf. Germain [12]. ou

13.3 a with Lie derivatives of differential forms

Germain [12] and others have proposed that the Cauchy stress is a (Eulerian) differential form 7' (which
objectively acts on vector fields). Its Lie derivative along a (Eulerian) vector field ¥ is

DT orT
LiT = —+T.d0 (= — +dT.7+T.dv). 13.8
D T+ ( 5 AT+ 7) (13.8)
LT acts on a vector fields @ (measurement direction) to give the density of power m,; and the power B:
Tint(T,0,10) := LzT.@, and Ru(Q,T,7,4) = / LT dSQ. (13.9)
Qy

Notation for Germain’s “distribution” (duality) approach: By (w@) = (LT, ).
Having (7.d%).i = (i ® T) () dv (objective double contraction between (}) tensors), we get

DT
Palon@®) = | e+ (@0 T) @ dido (13.10)
Q. Dt

The use of the Cauchy stress differential form 7" (order 1 tensor) is explicit (the obtained order 2 tensor
i ® T is obtained thanks to a choice of a direction of measurement ). No initial time ¢ (Eulerian
approach), and covariant objective approach (no basis and no inner dot product required).

Restrictions to get admissible constitutive laws:

e Galilean referential: 7, vanishes when ¢ is uniform (dv' = 0), true for all subset in ;. Hence

Rot(..., @) :/ (T®T) @ dodQ = —/ 7, 0dvdQ, where 7_:=-u®T. (13.11)
Qt Qt =Uu

(The — sign for comparison with the usual classic approach.)
e Isometric framework:

= =u

Bt (@) = &ivvgﬁ.ﬁdQ—/(zd.ﬁ)-ﬁdF, where 7_.:=—-uUQT,

o h (13.12)

- / (d1vu)Tv+(dTu)de—|—/ (T.5)(if + ) dT".
Q4

I
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93 13.4. Non linear first order virtual power formulation with Lie derivatives

e Classical formulation recovered:

g, = o] =[] = l@e )" = [T], (13.13)
thus
Pm(...)(lgl) - /QQJ : [do] d§2 L /ng 2 dvdS). (13.14)
And B is independent of rigid body motions, thus
RBul(..) = — /Qge : ﬂa& = —/Qg 1 dvdS), where g = %J;%T. (13.15)

which gives the classical formulation.

13.4 Non linear first order virtual power formulation with Lie derivatives

Add to (13.2) a differential form oy (measuring tool) imbedded in the flow to measure some internal force
T subject to the flow:

Rula, 00,7, T, T)) = / a.LiT + Lo . (LyTh) dS. (13.16)
Q

A first choice is a; = o and fl =T. (Lzar = 8“1 +day .U+ «.dv is the rate of deformation of o along v).
Then choose a; uniform and stationary, so £~oz1 = 3.dv, and

Bt (...) :/Q (%+dT’U—d’U T + ay.d7. (aalt—i—dTlv—dv 7)) dQ. (13.17)

It is non linearin ¢. The internal power has to vanish whenever dv = 0, true for all subset of 2, hence
the a.(%—f + dT'.7) term vanishes, and, with 7 := T ® o and 7, =T1 ® o, we are left with

Bul.) = /—a.da.:ﬂal.dv.(%—dv.fl)cm
Q (13.18)

Dt
z/—T@dv+ C)dv—T 0 (dv.dv) dSQ.
Q
Recall: Only Lie derivatives of the vector fields T' and T are used (no derivative of order 2 tensors).

13.5 Second order virtual power formulation with Lie derivatives
We add the second order Lie derivative Lg(LyTh) =Written Esz)fg of a vector field T5 (not the first order
Lie derivative Lo of a tensor ¢ cf. e.g. the Jaumann derivative) to get, for all 7,

Puler, 5, T, Ty) = / o (Lo + £OT) do, (13.19)
Q

A simple choice is Ty = cT.
Galilean framework: R, vanishes if d&7 = 0, thus moreover choosing a stationary @ (so 2 5 = =0),

. oT. . , . .
Bul...) = / . (—do.T — 2d5.222 + dTs.dv.0 — 2d5.dTs.7 — (d*3.0). T + dv.dv.Ts) dS)
@ ot (13.20)

. DT . .
_ / o (~di T — 205752 + ATy di — (d0.0) Ty + do.di Ty) o
Q

Restrictions on T and_ifg in a Galilean_‘Euclidean framework: R, vanishes when dv + do” = 0.
Then define 7 :=T ® a and 7, :=T> ® a (for constitutive laws) and choose o uniform: We get

D
nm(...):/Q—T 0 dii— 22 i+ dr, §(d0.0) A+ 7, O(dv.di — *T.0). (13.21)

NB: The result (13.21) is given with tensors 7 and T, to be able to compare classical results, e.g. with
Jaumann derivatives (Lie derivative of G) tensor). But here we only have Lie derivatives of the vector
fields T and TQ: No derivative of order 2 tensors.
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Part V
Appendix

Bertrand Russell (beginning of the 20th century):
“Studying Mathematics I had hoped to penetrate the essence of truth...
... But all I was learning was cheap calculating tricks.”

And isn’t this still too often the case in continuum mechanics: “Studying Continuum Mechanics I had
hoped to penetrate the essence of truth... But all I was learning was cheap calculating tricks”?

It is... Mainly due to the lack of basic math definitions, e.g.:

What is a motion? A Eulerian variable? A Lagrangian variable?

Why domain and codomain of a function are rarely mentioned (hence errors and misunderstandings)?
What is a “canonical”, a “Cartesian”, a “Euclidean” basis?

What is a transposed (of what)?

What is pseudo-vector versus a vector?

What is covariant vector versus a contravariant vector?

Why a linear scalar valued function can’t be identified with a vector?

What is the difference between a differential and a gradient?

What is a tensor?

Why the infinitesimal tensor g is not a tensor?

Why a endomorphism E — FE can’t be identified with a bilinear form E x E — R?

What is the definition of Einstein’s convention?

What is the Lie derivative? And why is it “The natural derivative in continuum mechanics”?
What is a distribution?

What does gTVZ mean (derivation relative to components?)?

)

One of my teachers: “This is the big advantage of not giving definitions: It allows you to say anything.’

In this appendix, we give standard simple definitions and results, useful in mechanics, often scattered
in the existing literature, and sometimes difficult to find. Hence no ambiguity is possible. We avoid
notations which are of no use or add to confusion, or come like a bull in a china-shop.

All the definitions apply to electromagnetism, chemistry, quantum mechanics, general relativity... and
continuum mechanics (solids, fluids, thermodynamics...): Mathematics applies to everyone.

For simplicity, we mainly consider finite dimensional vector spaces.

A Classical and duality notations

A.1 Contravariant vectors, covariant vectors

Let (E,+,.) =""it%" E he a finite dimension real vector space (= a linear space on the field R).
Definition A.1 An element & € F is called a vector, and it is also called a “contravariant vector”.

A vector is a vector... So why is it also called a “contravariant vector”?
Historical answer: Because of the change of basis formula [Z]|,e, = P~'.[Z]|44, P being the transition
matrix see (A.25), which uses the inverse P~1.

Definition A.2 A linear form is a function F — R (real values) which is linear. A linear form is also
called a covariant vector.

The space E* := L(E;R) is the space of linear forms on E called the dual of E. (It E* is a vector
space, sub-space of F(F;R),trivial check.)

Why a linear form is called a “covariant vector”?
Historical answer: Because of the change of basis formula [¢]|,,a, = [{]jaq-P, which uses P, see (A.25).

Interpretation: A covariant vector is a linear measuring tool for vectors, because it is a linear form /¢
that gives reals values ¢(Z) € R to vectors Z € E.
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95 A.2. Bases

A.2 Bases
A.2.1 Basis

e n vectors €, ...,€, € F are linearly independent iff for all A, ..., A, € R the equality > .-, \;&; = 0
implies \; =0 for all ¢ =1,...,n.

® n vectors €1,...,¢, € E span E iff : VZ € E, I\, ..., A, € Rst. =) 1 \i€;.

e A basis in F is a set {€,...,€,} C E made of n linearly independent vectors which span E. In
which case the dimension of E is n (all the bases in E have the same number of vectors: exercise). And
{€1,...,en} =Written (€:)i=1,...n =written (€;) if n is implicit.

A.2.2 Canonical basis

Consider the Cartesian product R x ... x R (n times) with its usual vectorial structure. Its canonical basis

—

(4;) is defined by
Ay =(1,0,...,0), ..., A, = (0,...,0,1), (A.1)

with 0 the addition identity element used n—1 times, and 1 the multiplication identity element used once.

Remark A.3 Consider the 3-D geometric space “we live in”, and the associated vector space R3 of “bi-
point vectors”. There is no canonical basis in R3: What would the identity element 1 mean? 1 metre?
1 foot? And there is no “intrinsic” preferred direction €. .

A.2.3 Cartesian basis

(René Descartes 1596-1650.) Let n = 1,2,3, let R™ be the usual affine space (space of points), and let
Rn = (an’ +,.) be the associated usual real vector space of bipoint vectors. Let p € R™, and let (€;(p))
be a basis in R" at p (e.g. the polar coordinate system see example 6.12).

Definition: (€;(p)) is a Cartesian basis in R" iff &(p) is independent of p for all i and p; And then
(a(p)) _written (éi)-

Remark: A Euclidean basis described in § B.1 is a particular Cartesian basis.

A.3 Classic and dual representation, Einstein’s convention for vectors

There are to equivalent notation systems:

e the classical notation (non ambiguous), e.g. used by Arnold [3] and Germain [11], and

e the duality notation (can be ambiguous because of misuses), e.g. used by Marsden and Hughes [16].
Both classical and duality notation are equally good, but if in doubt, use the classical notations.

Definition A.4 Let # € F and let (€;) be a basis in E. The components of Z relative to (€;) (or in (&;))
are the real numbers z1, ..., z,, (classical notation) also named z?, ...,z (duality notation) by

it ;171
T=1161 + ...+ Tp€p = 28 + ... + 2"E,, le. [©]je = : = , (A.2)

n

clas. dual Tn T
[7]|e being the column matrix representing 7 relative to the basis (¢;). (Of course a; = ' for all i.)

If a chosen basis is imposed to all then [7])z is simply named [Z]. With the sum sign:

n

=) xié = zn::vié} (= zn::w = zn: 1Y€y, (A.3)
i=1

i=1 J=1 a=1
—— =
clas. dual

the summation index being a dummy index.

Definition A.5 The Einstein’s convention uses the duality notation. And then you can omits the sum
sign 1 So ¥ = Z;”:laﬂé’j =witten pje. = pig; = 27¢; = 1*¢€,. This omission was motivated by the
difficulty of printing 2?21 in the early 20th century. We won’t omit the » sign in the following, thanks

to TEX-BTEX which makes the writing of >°7_, simple.
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96 A.4. Dual basis

Example A.6 In R_é, let ¥ = 31 + 4é5 = 23:1 Ti€; = 2?21 x'€;, so x1=2'=3 and zo=x2=4. And

; A =1ifi=j
[©]|e = 3[€1]|e + 4[e2]1e = 21‘2:1 zi[€ije = Zle r'[€i]je. So with 0% = §;; = . j (Kronecker),
= 0if i#j
1 0
n L 0 :
é} = Z(Smé; = Z(S;é'“ i.e. [61]|g = . y ey [é'n]‘g = 0 s (A4)
i=1 i=1 :
clas. dual
that is, the components of €; in (€;) are ¢;; with classical notations and 6; with duality notations. un

Remark A.7 The basis ([€]]¢) is the canonical basis of the vector space M, of n * 1 column matrices.
A column matrix [Z] is also called a “column vector”. So a column vector [Z])z is a matrix representation
of a vector in a basis. See the change of basis formula (A.25) where the same vector is represented by
two different “column vectors” (two different representation column matrices). nn

A.4 Dual basis

General usual notations: If E and F are vector spaces then (F(E; F), +,.) =""ten £(E; F) is the usual
real vector space of functions with the internal addition (f,g) — f+g¢ defined by (f+g)(z) := f(z)+g(x)
and the external multiplication (A, f) — A.f defined by (A.f)(z) := A(f(z)), for all f,g € F(E;F),z € E,
AeR. And \.f ="ritten \ 7 for all A € R and f € F(E; F).

A.4.1 External dot notations for duality

Recall definition A.2: The dual of E is the vector space E* := L(E;R) (set of linear real valued functions),
and an element ¢ € E* (a linear form) is called a covariant vector.

Notation: If / € E* then )
Vie B, (@) """ 0. (A5)

The dot in £.47 in (A.5) is “the distributivity dot” since linearity £(i@ + A0) = £(@) + A(7) follows the
distributivity rule a(z + \y) = ax + Aay : so (@ + \T) =N ¢ (7 4 A\F) = £.4 + M.7. And it is an
external dot for computations: E* # E (and E* can’t be intrinsically identified with E), thus ¢ and @
are in different spaces, thus £.4 is not an inner dot product.

(@) is also written £(@) =""MeN (0 @) p. m where (.,.) - g is the duality bracket (and written ¢, )
for short).

NB: Co-variant refers to: 1- The action of a function ¢ on a vector @ that gives the real £(), the
calculation of ¢(@) being called a co-variant calculation, and
2- The change of coordinate formula [{],e = [€]|qq. P, see (A.25) (covariant formula).

Remark A.8 More precisely, E* is the algebraic dual of E. If F is infinite dimensional, then we may
need to define a norm ||.|| for which £ is a Banach space. E.g. E = L*(Q) and ||f|[72 ) = [, f(Z)? dQ.
In that case E* is the name given to the set of continuous linear forms on F, called the topological dual
of F: It is essential in continuum mechanics.

(If F is finite dimensional then all norms are equivalent and a linear form is continuous.) un

Remark A.9 E* being a vector space, an element ¢ € £E* is indeed a vector. But E* has no existence
if E has not been specified first! And ¢ € E* can’t be confused with a vector ¥ € FE since there is no
natural canonical isomorphism between E and E* (no “intrinsic representation”), see § U.2. So if you
want to represent a £ € E* by a vector then you need a tool which is observer dependent; E.g. you need
some inner dot product (observer dependent) if you apply the Riesz-representation theorem, or you need
to specify a basis (observer dependent) to represent ¢ with its matrix of components (in the dual basis). o

Remark A.10 (continuing.) Misner-Thorne-Wheeler [18], box 2.1, insist: “Without it [the distinction
between covariance and contravariance], one cannot know whether a vector is meant or the very differen

object that is a linear form.” on
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97 A.4. Dual basis

A.4.2 Covariant dual basis (functions that give the components of a vector)

Notation: If @y, ..., @y are vectors in F, then let Vect{wy, ..., @} be the vector space spanned by 1, ..., .
Let (€;)i=1,....n be a basis in E. Let i € [1, n]y.

Definition A.11 The scalar projection on Vect{€;} parallel to Vect{€é1,...,€;_1, €it1, ..., €n} is the linear
form named m.; € E* with the classical notation, named e' € E* with the duality notation, defined by,
for all 7,

(A.6)

clas. not.: 7 (€;) =9d;;, i.e. €5 = dij,
{ dual not. : €'(&;) = 5;», ie. e.¢ = 5;
(The dual basis (me;) = (e') is intrinsic to the (€;): The same for an English and a French observer...)
Tei = €' being linear, if & = 37" ;€ then me; (&) = Y7_ 2 mei(€)) = 2

Tei T clas. T, = et 798 01— the ith component of Z relative to (€&;), (A.7)

see figure A.1.

Figure A.1: Parallel projections: m.1(%) = 21 and meo(%) = 22 (dual not.: e!(7) = x! and €2(¥) = 2?).

NB: Fundamental. ;.7 is not an orthogonal projection: Because orthogonality depends on the choice
of an inner dot product (subjective), and 7.;.Z is not an inner dot product because m; = €' € E* and
Z € E do not belong to a same vector space, and (A.7) is independent of any inner dot product.

Definition A.12 Particular case: If (€;) is a Cartesian basis, then usually 7; =written g, (or dx® with
duality notations). So dz; (%) = x; = «* = dz".Z with classical and/or duality notations.

Proposition A.13 and definition . (7¢;)i=1,..n = (€")iz1,..n —written () — (¢') is a basis in E*,

called the (covariant) dual basis of the basis (€;). Thus dim E* = dimE = n. And { = m € E* iff
0(€;) = m(é;) for all i. And for all ¢ € E* the reals {; := {.€; are the components of ¢ in the dual basis:

¢ C]%S' Zfﬂrei du:aI Z&el where {; = (.¢€;. (A8)
=1 i=1

Proof. If Z?:lAiﬂ—ei = 0, then 0 = (Z?:lAiWei)(éj) = Z?:lAiWei(gj) = Z?Il)\iéij = )\j for all j, thus
(Tei)i=1,...,n is a family of n independent vectors in E*. If £(€;) = m(€;) for all i then 4(Z) = )", z;4(€;) =
Yo xil(€) = >, xym(€;) = m(Z) for all Z, thus £ = m; And the converse is trivial. Then let £ € E* and
m =) .(L.€;)me;. Thus m € E* (since E* is a vector space), and m.€; = >, (£.€;)(7ei.€5) = >, (£.€;)0i; =
L.€;, for all j, thus m = ¢, thus £ = ) ({.€;)7¢;, thus Vect{(me;)i=1,.. n} span E*, thus ¢; = (.€; and
(Tei)i=1,....n is a basis in E* and dim E* = n. (Use duality notations if you prefer.) un

Example A.14 The size of a child is represented on a wall by a bipoint vector .

1- An English observer chooses the foot as unit of length and thus makes a vertical bipoint vector
“one-foot long” @. And then defines the linear form , : Vect{t} — R by m,.d = 1. And s, := 7,.4 is the
size of the child in foot (7, is a measuring instrument which gives values in foot).

2- A French observer chooses the metre as unit of length and thus makes a vertical bipoint vector
“one-metre long” b. And then defines the linear form mp : Vect{@} — R by Wb.g = 1. And s := mp.1 is
the size of the child in metre (m, is a measuring instrument which gives values in metre). un

-

Exercice A.15 Let (@;) and (b;) be bases and let (m,;) and (m;) be the dual bases. Let A # 0. Prove:

- 1 ) .
If Vie [1,%}1\] b; = )\Ziu then Vi e [1,77/]1\] Thi = X Tai (1e bt = %az). (Ag)
Answer. my;.b; = 8;j = Tai.G; = TFM'.% = %ﬂ'ai.gj for all j (since mq; is linear). un
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98 A.4. Dual basis

A.4.3 Example: aeronautical units

Fundamental example if you fly. International aeronautical units:
e altitude = English foot (ft).
e Horizontal length = nautical mile (NM).

Example A.16 First runway oriented South: First basis vector €5 one NM long oriented South. Second
runway oriented Southwest: Second basis vector €2 one NM long oriented Southwest. €3 is the vertical
vector of length 1 ft. O = the position of the control tower. The referential of a traffic controller is
R = (O, (€1,€3,€3)). The dual basis is (71, Te2, Te3) (S0y 7ei(€j) = 6;5 for all ¢, j). A plane p is located
at t at £ = Op. The air controller uses ¥ = Z?zlxié} € I@’% hence z; = 71 (&) = the distance to the
south in NM, zo = 7m.2(&) = the distance to the southwest in NM, x5 = 7.3(Z) = the altitude in ft.
Here the basis (€;) is not a Euclidean basis. This non Euclidean basis (€;) is however vital if you fly:
A Euclidean basis is not essential to life... Also see next remark A.17. u

Remark A.17 The metre is the international unit for NASA that launched the Mars Climate Orbiter
probe... But for the Mars Climate Orbiter landing procedure, NASA asked Lockheed Martin (who uses
the foot) to do the computation. Result? The probe burned in the Martian atmosphere because of A\ ~ 3
times too high a speed during the landing procedure: One metre is A ~ 3 times one foot, and someone
forgot it... As a matter of fact NASA and Lockheed Martin both used a Euclidean dot product... But not
the same: One based on a metre, and one based on the foot. Objectivity and covariance can be useful! au

A.4.4 Matrix representation of a linear form

(€ E*, (&) is a basis, (7,;) the dual basis, £ = Y7, £;m¢;. The matrix of of ¢ relative to (€;) is the row
matrix

Wi, = (6 o £y) " [1]; (row matrix). (A.10)

Thus, if 7 € E and & = 3711 %€, then 07 = (3L limed).(30)_ 25€5) = D0 - biwj(mei€y) =
> i j=rlizidiy = 301 Lixi, thus, with the usual matrix multiplication rule,

n

03 = [, e = Y i " [l 21z (A.11)

i=1

product of a 1 % n matrix times a n * 1 matrix. With duality notations: £.Z = Y7 {;z" = [(] . .[2] e
In particular for the dual basis (7;) = (e?) (classical and duality notations),

[mejlie=1[e"]e=(0 ... 0 _1_ 0 ..0) (= rowmatrix [&]]), (A.12)
Jth position

and we recover x; = T¢;.Z = [T¢j]|e.[T]je = [é}']ﬂ.[fhg = el.& = [ef]o.[2])e = 2.

Remark A.18 Relative to a basis, a vector is represented by a column matrix, cf. (A.2), and a linear
form by a row matrix, cf. (A.10). This enables:
e The use of matrix calculation to compute .7 = [{] z.[Z]s, cf. (A.11), not to be confused with an
inner dot product calculation & « § := (Z,9), = [Z] ﬁ; [9]r. -[7]|e relative to an inner dot product (-,-), in E.
e Not to confuse the “nature of objects” Relative to a basis, a (contravariant) vector is a mathematical
object represented by a column matrix, while a linear form (covariant vector) is a mathematical object
represented by a row matrix. Cf. remark A.10. u

A.4.5 Example: Thermodynamic

E.g.: Cartesian space R? = {X = (T, P) € R x R} = {(temperature,pressure) }. There is no meaningful

inner dot product in this R2: What would [|(T, P)|| = VT?+P? mean (Pythagoras): Can you add Kelvin
degrees and pressure (kg.m~!-s72)? Here a (covariant) dual basis is fundamental for calculations.

Here, after a choice of temperature and pressure units, consider the basis (E,=(1,0), E;=(0,1)) in R?,
and its (covariant) dual basis (71, Tgo) =" (dT,dP). Let X = TE| + PE, ="rtten (T p),
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99 A.5. FEinstein convention

The first principle of thermodynamics tells that the density « of internal energy is an exact differential
form: U € C(R%;R) s.t. a« = dU. Thus a(X ) =dU(X ) (the internal energy density at X) is a linear
form in (R2)* with components oy (X) = gg (X) and ay(X) = g—g()?):
oUu
or

()?)dT+a—U()Z')dP and [dU(X)] z = (2%(X) 2%(X)) (row matrix). (A.13)

dU(X) = e 2y

Thermodynamic notations: dU = 9% pdT + gng dP and [dU] = (%‘P g%lT )-

With matrix computation, column matrices for vectors, row matrices for linear forms:

- 1 - 0 - T - 6T
.[El]“?,:(o)a [E2]|E:<1), [X]E:(p>» [5X]|E:<5p>v and (A.14)
o [EY5=[dT)z=(1 0), [E*z=[dPlz=(0 1), [dU]z=(5% $5%)
give
dU(X).6% = (%) ggo@).(ﬁﬁ) gg( )5T+‘;—g()?)5p. (A.15)

Thermodynamic notations: dU. AX = 6T|PAT+ ap\TAP
This is a “covariant calculation” (in particular no inner dot product has been used).

A.5 Einstein convention
A.5.1 Definition

When you work with components (after a choice of a basis), the goal is to visually differentiate a linear
form from a vector (to visually differentiate covariance from contravariance).
Framework: a finite dimension vector space F, dim F = n, and duality notations.

Einstein Convention:
1. A basis in F (contravariant) is written with bottom indices: E.g., (€;) is a basis in E.

2. A vector ¥ € E (contravariant) is quantified relative to (&;) with its components written with up indices:

.’171

=" ,2'¢; and is represented by the column matrix [Z]; =

l,n

3. The (covariant) dual basis of (¢€;) (in E* = L(E;R)) is (e*): Written with up indices.

4. A linear form ¢ € E* (covariant vector) is quantified relative to (e?) with its components written with
bottom indices: £ = Y7 ,/;e" and is represented by the row matrix [(]jz = (£, ... £y).

5. Optional: You can use “the repeated index convention”, i.e. omit the sum sign > when there
are repeated indices at a different position. E.g. Y1 aie; =WUeN gig S fiet =WHten giel
S LiE; =written L€, 30 i1 9ia'y’ =written g, .iyi .. In fact, before computers and word pro-
cessors, printing Z _, was not an easy task. With I¥TEX it’s easy: In this manuscript the sum sign )
is not omitted (and confusions are avoided).

A.5.2 Do not mistake yourself

1. Einstein’s convention is just meant not to confuse a linear function with a vector.
2. It only deals with quantification relative to a basis.

3. Classical notations are as good as duality notations, even if you are told that classical notations cannot
detect obvious errors in component manipulations... But duality notations can be easily (and are often)
misused in classical mechanics (cf. the paradigmatic example of the vectorial dual basis treated at § F.8),
and then add confusion to the confusion.

. The convention does not admit shortcuts; E.g. with a metric (-,-)g: g(Z,9) = >} ;_,9ij2'y’ shows the
observer dependence on a choice of a basis and on the chosen metric (with the g;;); And even if g;; = J;;
you cannot write g(Z,4) = >, 2"y’ You must write g(Z,5) = >7';_,d;;2'2’: Unmissable in physics
because you need to see the metric and the basis in use.

. Golden rule: Return to classical notations if in doubt. If not applied correctly, Einstein’s convention can
add confusions, untruths, misinterpretations, absurdities, misunderstandings...
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A.6 Matrix and transposed matrix

The definitions can be found in any elementary books, e.g., Strang [24].
e M,,, is the vector space (with the usual rules) of m x n matrices.
e Product: If M = [M;j]i=1....n.. € My, and N = [Njj;]i=1...... € My, then their product is the m % p
j=1,...,n i=1,...,p

,,,,, i=1,...,

> k=1 MirNi;.-
e Transposed : If M = [M”] i=tom € M., then its transposed is the matrix M7 = [(MT)W];; .......... n €
M, defined by
(MT);5 2= Mj;. (A.16)

(Swap rows and columns).

e M is symmetric iff MT = M (requires m=n).

o (M.N)T = NT.MT (because Y, MjpNy; = >, (NT)ix(M7T)y;).

e M € M,, is invertible iff AN € M,,, s.t. M.N = I, then N =written 37=1 53nd N-1 = M and
N.M=1.

Exercice A.19 Prove: If M is an n * n invertible matrix then M7 is invertible and (M7)~! = (M~1)T
( =wntten pr=Ty. And if M is symmetric, then M ~! is symmetric.

Answer. M.M~" = I gives (M~")".MT = I” = I, thus M” is invertible and (M7T)~! = (M ~1)T =Written /-7
Thus if M = M” then M~' = M~T = (M~ 1)T. ou
A.7 Change of basis formulas

FE is a finite dimension vector space, dim E' = n, (€uq,;) and (€pew,;) are two bases in E, (Tqq,;) and (Tpew,;)
are the associated dual bases in E*, written (e,;) and (el ) with duality notations.

A.7.1 Change of basis endomorphism and transition matrix

Definition A.20 The change of basis endomorphism P € L(E; E) from (€yq,;) tO (Enew,:) is the endo-
morphism (= the linear map E — E) defined by P.€uqd,; = €new,; for all j € [1,n]y, so

€new,j = P-€oid,j- (A.17)
And the transition matrix from (€oid,i) t0 (€new,i) is P = [P]jz =clas.[p, ;] =dual [pi ] “thus the matrix
whose j-th column [gﬂﬂ”aj]|5old stores the components of €pew,; in the basis (€ua,i):
1
n n P P
gnew7j = ZPZ‘J‘ gold,i = ZPZJ' g01d7i7 i.e. [gnewvj]léold = = . (AlS)
=1 i=1 P’I’Lj Pnj

You can find other component notations: P;; = (P;); = P'; = (P;), i.e.

n n (Pj)1 (P!
Cnew,j = Z(Pj)i €old,i = Z(Pj)l Cold,is 1€ [Cnew,jlley = : = : . (A.19)
=1 =1 (Pj>n (Pj)n

A.7.2 Inverse of the transition matrix

The inverse endomorphism Q := P! € L(E; E) satisfies Q.€pew,j = €ga,; for all j € [1,n]y, so

n n Q1; Q'
Cold,j = D-Crew,j = ZQijgnew,i = ZQljgnew,ia [Coid, 5],y = : = : , (A.20)
=1 =1 an an
i.e. Q is change of basis endomorphism from (€new,i) to (€oia,i), and Q := [Q]jz = [Qy;] = [Q")] is the
transition matrix from (Enew,;) tO (€oid,i)-
Proposition A.21
Q=P (A.21)
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101 A.7. Change of basis formulas

Proof. €ew,j = P-Codj = Y iy Pij€oidi = Doimy Pij (X imy QriCnewr) = 2pmy (Oie) QriLij)new e =
S r_1(Q.P)yj€new for all j, thus (Q.P)g; = dx; for all j, k. Hence Q.P = I, i.e. (A.21). ua

Remark A.22 P? # P~1in general. E.g., (€u,i) = (a@;) is a foot-built Euclidean basis, (€new,i) = (b;)
is a metre-built Euclidean basis, and b; = A\d; for all i (the basis are “aligned”): Here P = AI; Thus

PT = Xl and P! = 11 # P7T, since A = g5bx # 1. Thus it is essential not to confuse PT and P71,
cf. the Mars Climate Orbiter probe crash remark A.17. .

Plieas = Plicnew = £ }: ie.

Exercice A.23 Prove {
[Qieey = [Qliggy = @

P.gzlm,j = Z;L)j:lpijalew,i (: szzlpijgnew,i = Z?,jzl (Pj)ignew,i)7 (A 22)
Q.oaj = Y1 1o Qig€oidi (= 21 io1Q 5o = 2ot i1 (Q5) Coiai)- '
J J J
Answer. 7 = [Zij] = [Plig,,, means P.uey; = >.; Zij€new,is 1€ €new; = Q.(3°711ZijCnew,i)
Z?:1Z1'J'Q-é‘new,i = Z?:1Zij(22:1Qki€new,k) = ZZ:1(Z?:1QkiZij)€new,k = ZZ:1(Q-Z)kj€new,k for all j, thus
(Q-2)kj = dx; for all j, k, thus Q.Z = I, thus Z = P. Idem for @Q, thus (A.22). un

A.7.3 Change of dual basis

Proposition A.24 (7)) = (€%,,) and (Tqq;) = (e;) being the dual bases of (€yew,i) and (€yq,;), we
have, for all i € [1,n]y,

T new i Cﬁs.z@ijﬂ-o]d,j = eflew du:a] ZQijeZICP (A23)
j=1 j=1
ie. . ‘ ‘
[Wm’z]lgold = (Qzl e an ) = [eZHEW]IE()]d = (Qll eee an ) (Z—th Irow Of Q). (A.24)

Proof. mpew,i(Coa.k) =2 Mnew (3 Qjkrew) = 225 Qi Tnew,i(Enewj) = Y., Qjrdi; = Qu, and
Zj QijWM,j(gold,k) = Zj Qijéjk = Qik; true for all ’L',k, thus Tnew,i — Zj Qijﬂ-old,ja i.e. (A23) And
the matrix of a linear form is a row matrix. n

A.7.4 Change of bases formulas for vectors and linear forms
Proposition A.25 Let ¥ € E and ¢ € E*. The Change of bases formulas are

o [7] = Pil.[fhgol g (contravariance formula for vectors: between column matrices),

ey (A.25)
o [Uie,, = Wiey P (covariance formula for linear forms: between row matrices).
And the real ¢.Z is computed indifferently with one or the other basis (objective result):
K‘f = [Z] |501d : [f] ‘é‘OId = [6] IgHeW. [f] |5new : (A26)

PI’OOf. .’f = Zyzlxjé’old,j = Zyzlxj(Z?leijgnew,i) = Z?:1(Z?:1Qijzj)€llm,i and f = Zi yignew,i give
yi = >_; Qijx; for all 4, thus (A.25),.

= Z?:lgiﬂ'dd,i = Zij fiPijﬂ-new,j and / = Z]‘ M Thew, j give m; = Zz &PZJ for all j, thus (A.25)2.

Thus [Z]@nm.[fhgqm = ([Z]|gold.P).(P_1.[f]‘gOId) = [E]‘gold.[f]‘gold, hence (A.26).

Use duality notations if you prefer. un
Notation: Let © € E, ¥ = Zj Tj€oid,j = »_; Yi€new,i- Hence (A.25) give y; = Z?:lQijxja which tells:
y; is the function defined by y;(z1,...,z,) = Z?ﬂQijzj, thus Q;; = %(zl, <oy &p); Similarly with P;j;

J
Which is written

Qi = gi’j and Py = gzﬂ (A.27)
(Use duality notations if you prefer: Q%; = g—gj- and P'; = %)
Exercice A.26 Check that (A.25) applies to €pew,; and ey, i-
Answer. Let (EZ) be the canonical basis in M, the space of n x 1 matrices. Thus [é’new’j]‘gnew = Ej and

P[Goew.iliepmy =(4.25) [Crewjlieyy r€ads P.Ej = [Enew ;e = column j of P : True.
[ﬂw’i]‘é'old = EZT, thus [Wm‘i]lgneW'Q :(A'25> [ﬂw’i]‘e—o]d reads ElTQ = [ﬂm’i]‘éold = row 7 of Q : True. l.l
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A.8 Bidual basis (and contravariance)

Definition A.27 The dual of E* is E** := (E*)* = L(E*;R) and is named the bidual of E. E** is also
called the space of contravariant vectors (= the space of directional derivatives see § T.1).

If (€;) is a basis in E, (me;) is its dual basis (basis in E*), then the dual basis (9;) of (m¢;) is called
the bidual basis of (€;). (Duality notations: (9;) is the dual basis of (e?).)

Thus, for all ¢, the linear form 9; € E** = L(E*;R) are characterized by, for all j,
Opmej =03 (=7ej&), so L= lime if £;=0;L (=L&), (A.28)
i=1
since 81(6) = [“)Z-(Z?:l@jﬂej) = Z;—l:l[jai(ﬂ'ej) = Z?Zlﬁjéij = 52 (Dual. not.: 8i.ej = (Si, and £1 = 824)

Remark A.28 0; refers to the derivation in the direction €; because 9;(df (Z)) = df (¥).¢;. And thanks

E — E*
to the natural canonical isomorphism J : < o ¢ given by J(@).¢ := £.4 for all £ € E* (observer
u — J(U)
independent identification see (U.8)), we can identify @ and J(@). Notation in differential geometry:
J (&) = 0; ="rtten g and (df (%).€; =) 0;(df (¥)) ="1tten g, (£)(x). n

A.9 Bilinear forms

FE and F are vector spaces.
A.9.1 Definition

- . : : ExF —R
Definition A.29 e A bilinear form is a function S8(-,-) : . o L. St
(U, @) — B, w)

Bty 4+ Aa, W) = B(ty, W)+ A3 (U2, W) (linearity for the first variable) and (@, W + Awa) = B(d, W) +
AB(t,Ws) (linearity for the second variable) for all @, @y, ds € E, W, W, ws € F, A € R.

e L(E, F;R) is the set of bilinear forms E x F' — R.

e An elementary bilinear form in £(F, F';R) is a bilinear form {®m € L(E, F';R) made with a ¢ € E*
and a m € F* and defined by, for all (@, %) € E x F,

(6 ® m)(@,@) = H@)ym(F) (= (£.3)(m.D)). (A.29)

A.9.2 The transposed of a bilinear form (objective)

Definition A.30 If 3 € L(E, F;R) then its transposed is the bilinear form 87 € L(F, E;R) defined by,
for all (W, %) € F x E,

This definition is objective = observer independent, i.e. same definition for all observers; In particular
the definition of A7 doesn’t require a basis or an inner dot product.

Warning: Not to be confused with a transposed of a linear map, subjective because it depends on a
choice of an inner dot product, see e.g. (A.49).

A.9.3 Inner dot products, Cauchy—Schwarz inequality, and metrics

Definition A.31 Here F' = F and 8 € L(E, E;R).
e 3 is (semi-)positive iff, for all @ € E, 5(u, @) > 0.
e 3 is definite positive iff, for all @ # 0, 8(w@, @) > 0.
e 3 is symmetric iff 37 = , i.e. iff B(u, ¥) = B(v, @) for all 4,7 € E.

Definition A.32 e An “inner dot product” (or “scalar dot product”, or “scalar inner dot product”, or
“inner scalar product”, or “inner product”) in a vector space F is a symmetric and definite positive bilinear
form g € L(E, E;R), and

wen gy e Ly, YN L L e g(il, @) = (@, @)y = i, W, Vi, € B, (A.31)

e A “semi-inner dot product” is a symmetric and semi-positive bilinear form.
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Definition A.33 Let (-,-), be an inner dot product in E.
e Two vectors @, w € E are (-,-)g-orthogonal iff (@, @), = 0.
e The associated norm with (-, -), is the function ||.||, : E — Ry defined by, for all @ € E,

[illg = +/ (@, @)g- (A.32)
It is called a semi-norm iff (-,-), is a symmetric and semi-positive bilinear form.
NB: orthogonality is subjective : It depends on a chosen (-, ).
Proposition A.34 (Cauchy-Schwarz inequality.) If (-,-), is an inner dot product in E then
Vi i e B, |(d@,d),] < ||l (A.33)

and |(u, W),| = ||d]|g||wW|| iff @ and W are parallel. Thus ||.||, in (A.32) is indeed a norm.

Proof. Let p(\) = |[d+d]|Z = (G-+M0, i+D) 4, 50 p(X) = aA® + bA 4 ¢ where a = [|@]|2, b = 2(u@, W),
and ¢ = [|d]|2. With p(\) > 0 (since(-, "), is positive), we get b — dac > 0, thus (A.33).

And ||u||g =0 iff (¢,u)y =0 iff @ =0 since (-, ), is definite positive.

Then |(@, @) 4| = ||d]|4|[w0]]4 iff b* — dac = 0, i.e. iff IX s.t. p(A) = 0 i.e. T+ = 0

And ||u||4 > 0 since (-, ), is definite positive, and [|Ad||, = /(AT Ad)y = \/A2(4, = |Al]|d]|q4, and
[t + ]| = (@ + 0, i + ) = ||| + 2(i, @)y + [|d][§ < ||u|\2 2l ||w\|g + ||w||2 (||u|\g+ ||l )
thanks to Cauchy—Schwarz 1nequa11ty, thus ||@ + ||y < ||dllg + ||W]|g; Thus ||.]|4 is a norm. n

Definition A.35 (Metric.) 1- In R™ our usual affine geometric space, n = 1, 2 or 3, with R" = the
usual associated vector space made of bipoint vectors. Let  C R™ be open in R™. A metric in  is a C*°
( )Wriﬁcen

Q — L(R",R";R)
function ¢ :
p —gp 9p

Case: If the g, is independent of p then a metric is simply called a inner dot product (e.g. a Euclidean
metric is called a Euclidean dot product).

2- In a differentiable manifold 2, a metric is a C*® (g) tensor g s.t. g(p) € L(TpQ, T, R) is an inner
dot product at each p € Q (with T,Q the tangent plane at p). A Riemannian metric is a metric s.t. g(p)
is a Euclidean dot product at each p € .

} such that g, is an inner dot product in R™ at each p € Q. Particular

A.9.4 Quantification: Matrice [3;;] and tensorial representation

dimE = n, dimF = m, 8 € L(E, F;R), (@) is a basis in E which dual basis is (74;) = (a?), (b;) is a
basis in F' which dual basis is (73;) = (b%) (classical and duality notations).

Definition A.36 The components of 3 € L(E, F;R) relative to the bases (@;) and (b;) are the nm reals

,81']‘ = B(C_l'i, bj), and [ﬁhd,g = [ﬁij];f%”"’m ertten [,8”} (A34)

is the matrix of 3 relative to (d;) and (b;). If F = E and (b;) = (@;) then 18ia,a —Witten 1Bl

Proposition A.37 A bilinear form € L(E, F;R) is known as soon as the nm scalars 3;; = ﬂ(&’i,gj)
are known: We have

B = ZZﬂijﬂ'ai ® Ty = ZZ&jai @b, and

1=175=1 i*lj*l (A 35)
7-_’: u_j Z szuzwj Z Bzgu 'wJ T [Bha‘j[u_ﬂw
B,j=1 4,j=1

for all @ =Y jw;d; =y . u'd; € E and @ = Z:;lwil;i = Z?zlwigi cF.
Duality notations: § =1 3" Bija* @b and B(@,w) = Y7, Bijutw.
And dim L(E, F;R) = nm, a basis being given by the nm functions m,; ® m; = a’ @ b’.
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104 A.10. Linear maps

—

Proof. § being bilinear, @ = Y7/ u;d; and & = 37 Jw;ib; give B(d, @) = doi jmrwiwiB(d@;, by) =
> i e wiBijw; = ([ﬁ]m)T.[B]‘ 7 [u_f]l Thus if the j;; are known then £ is known.

And (mq; @ ;) (@, be) =429
are zero except the element at the intersection of row ¢ and column j which is equal to 1).

Thus szzlﬁij(wai@mbj)(ﬁ, 117) = E?] 1Bijuiwj = /B(ﬁ 17) for allﬁ u_} thus 6 = Z?J 1ﬁij(7rai®ﬂ'bj),
thus the 7,; ® m; span L(E, F;R). And Z Xij(Ta; @ mp;) = 0 implies 0 = (Z Nij (Tai @ ;) (g, be) =
ZU Xij (Tai @7p5) (ks Eg) ZU Xij0ikdjr = Age = 0 for all k, ¢; Thus the m,; ® mp; are independent. Thus
(Tai @ mp;) is a basis in L(E, F;R) and dim(L(E, F;;R)) = nm. o

(Tai-Ax) (0. bg) = 0;,0;¢ (all the elements of the matrix [m,; ® ij]‘ a5

0 3
Bliz, b1) = Bo1 = 0, B(da, bs) = Bz = 3. And Brz = [@1]].[8), ;5. [b2] 5 = (1 0). (é g) . ((1)) =2 M

Example A.38 dimE = dim F = 2. [] ;= (1 2) means (@, 5) = i1 = 1, B(@1,52) = s = 2,

Exercice A.39 Prove

B=Y Bijmai @my; = B = Bjimy @maj, ie. [T =((8lz5)" written [37]=[8]". (A.36)
i ij
Ile. g = Z” Bijat @b = BT = Zw Bjib" @ al.
Answer. 87 =30, (8")ijmei ® ma; € L(F, E;R) gives (87)i; = 87 (bi, d@;) =% 8(d;,b:) = Bji. o

Exercice A.40 3 € L(E, E;R) and (@;) and (b;) are two bases in E, and let A € R*. Prove:
if, Vi€ [l,nly, b=\, then [B];=\[8]z (A.37)

(A change of unit, e.g. from foot to metre, has a big influence on the matrix of a bilinear form.)

Answer. b; = Ad@; give (b, b;) = B(\di, Ad@;) = A2B(d;, a@,) (bilinearity), thus Bl5 = N [8]a- .

A.10 Linear maps

FE and F' are vector spaces.

A.10.1 Definition

Definition A.41 e A function L : E — F is linear iff L(t@; + AMio) = L(t1) + AL(42) for all @y, € F
and all A € R (distributivity rule). And (distributivity notation):

L(@) "™ L@ so  L(idy + Ads) = L.(y + Mdz) = L.@y + AL.is. (A.38)

NB: This dot notation L(&@) =""t%" [ i is a linearity notation (distributivity type notation);
e It is an “outer” dot product between a (linear) function and a vector;
e It is not an “inner” dot product since L and @ don’t belong to a same space.
e It is not a matrix product (no quantification with bases has been done yet).

Definition A.42 L(E;F) is the set of linear maps E — F' (vector space, subspace of (F(E; F),+,.)).
If F = E then a linear map L € L(E; E) is called an endomorphism in E.
If F =R then a linear map F — R is called a linear form, and E* := L(F;R) is the dual of E.
L;,(E; F) is the space of invertible linear maps E — F, i.e. L € L,(E; F) iff 3M € L;(F;E) s.t
LoM =1Ip and M o L = Ig where Ig and I are the identity maps in F and F.

Vocabulary: If F is a finite dimension vector space, dim E = n, then, in algebra, the set (L;(E; E),0)
of invertible endomorphisms equipped with the composition rule is called GL,,(E) = “the linear group”
(it is indeed a group, easy check).

Particular case: GL,,(M,,) = (L;(M,; M,),.) is the set of invertible n * n matrices equipped with the
matrix product.
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105 A.10. Linear maps

Exercice A.43 (Math exercise.) E = (E,||.||g) and F = (F,||.||r) are Banach spaces, and L;.(E; F)
is the space of invertible linear continuous maps E' — F with its usual norm [|L|| = supy z, =1 [|L-Z]|p.

Li.(E;F) — Li.(E; F)
Let 7 :

[ } Prove: dZ(L).M = —L YoM o L=}, for all M € L;.(E; F).
%

Answer. Consider limy, o w = limp—o W, —written ;5 (L).M if the limit exists. With
N = L™'.M we have L + hM = L(I + hN), and (I + hN) is invertible as soon as ||hN|| < 1, i.e. h <
its inverse being I — hN + h*N — ... (Neumann series); Thus I + AN = I — hN + o(h), and

1 1
TN = TIZ=1m) IR
(L+hM)™" = (I+hN)"".L™" = (I = hN + o(h)).L™" = L™" — hN.L™' + o(h). Thus LML~ _

L’l—hNAthl-FO(h)—L*l — _NL '+ 0(1) —>ho _N.L-L =

A.10.2 Quantification: Matrices [L;;] = [L']

dim E = n, dim F = m, L € L(E; F), (@) is a basis in E which dual basis is (m4;) = (a?), (b;) is a basis
in F which dual basis is (m,;) = (b°) (classical and duality notations).

Definition A.44 The components of a linear map L € L(E; F) relative to the bases (a@;) and (b;) are
the nm reals named L;; (classical notation) = L?; (duality notation), which are the components of the

—

vectors L.d; relative to the basis (b;). So:

m m

L.ﬁj = ZL”E; = ZLijgi; i.e. Lij = wbi.L.d’j = Lij = bZLﬁ:J (A39)
i=1 i=1
And
i written i
[Lag = [Ligliztem = [Lh]imtom =0 [Lig] = [LY] (A.40)
is the matrix of L relative to (@;) and (b;). So
Iy LY;
[L.&’j]lg = = = j-th column of [L]\a 7 (A.41)
Limj Lm;
Particular case: E = F, so L is an endomorphism in E, and (b;) = (&,): [L)|a,z =""%en [L] 5.
Example A.45 n=m = 2. [L]|a,5 = <(1) §> means L.@; = b; and L.@s = 2b; + 352 (column reading).
Here L11:1, L12:2, L21:O, L22:3 (duahty notations: Lllzl, L12:2, L21:O, L22:3). un
Let L € L(E; F). Forall 4 € E, @ =7 u;d; = > ) ud;, we get, thanks to linearity,
L= Liusb =Y > L'juwby, e |[Lil]y=[L] ;5[] (A.42)
i=1j=1 i=1j=1
Shortened notation: [L.@] = [L].[@] when the bases are implicit.
Proposition A.46 A linear map L € L(E;F) is known as soon as the n vectors L.ds, ..., L.d, are

known. And, for i,k =1,...,n and j = 1,...,m, the linear maps L,;; € L(E; F') defined by L;;.d) = 5jkl;z-
(all the elements of the matrix [Eijha,l? vanish except the element at the intersection of row i and column j
which is equal to 1), constitute a basis € L(E; F'). So, dim(L(E; F)) = nm.

(Duality notations: L;; —written i and L£.d), = 5%1_7;)

Proof. L is linear, @ € E and @ = }_; u;d; give L. = } >, u;L.a;. Thus L is known iff the n vectors
L.d; are known, j = 1,...,n; And (Z” Li;L;5).qr = Zij Lijojkb; = >, Litb; = L.dy, for all k, thus
Zij LijLi; = L,ie. L = Zij L;;L;;, thus the £;; span £(E;F). And Y ", ;L:l)\ij['ij = 0 implies
S NijLig.dy = 2212?:1)‘1‘3‘5]‘165@‘ = " Airb; = 0 for all k, thus Ay, = 0 for all i,k (because

(b;) is a basis). Thus the £;; are independent. Thus (L£;;) i=1,.n 18 basis in L(E; F). ia

Exercice A.47 L € L(E; E). If b; = Ad; for all i (change of unit of measurement), check [L]ja = [L]Ig'

Answer. L.gj = ZZ NZJEZ gives L(AC_I:]) = ZZ N»L'j ()\51)7 thus L.ﬁj = ZZ Nijﬁi, thus N = M. e
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106 A.11. Trace of an endomorphism: Invariant

A.11 Trace of an endomorphism: Invariant

Recall: The trace of a n * n matrix [L;;] is Tr([L;;]) = >_1L;; = sum of its diagonal elements.
E is a vector space, dim E = n, (@;) is a basis in E.

Definition A.48 The trace of an endomorphism L € L(E; E) is the real
Tr(L) = Tr([L]jz) thus Tr(L) = Li=» L' (A.43)
when L&] = Z?ZILMEL’Z- = Z?zlLichi for all j

: . L(E;E) - R
And the trace operator is the linear map Tr : .
L — Tr(L)

Proposition A.49 If L,M € L(E; E) then Tr(L.M) = Tr(M.L), which means

Tr(Lo M) =Tr(MoL) ZLl]Mﬂf ZLZ M7, = Tr([L) 7. [M]a)- (A.44)
7,7=1 7,7=1

And the real Tr(L) is independent of a chosen basis in E: If (@;) and (b;) are bases in E, then
Tr([L]z) = Tr([L]“;) =Tr(L) (invariant). (A.45)
Proof. Lc_i] = Zz L”(—il and MEL} = Zz Mljd’l give (L o M)EL} = L(Ma}) = Zk MkjL.d’k =

doin MijLiwdi = 52,37, LieMiy)d@;.  Thus Tr(L o M) = 37,030, LiMyi) = >, LijMy; =
TI‘([L]W[M]‘[,;) = Zij LjiM" = T‘I‘(MOL)

And [L]IE = P '[L]|z.P where P is the transition matrix from (d;) t o (b;) (change of basis
formula see (A.93)), thus Tr([th) = Tr(P'.[L)jz.P) = Tx((P~.[L]jz).P) = Tx(P.(P'[L});z) =
TI‘((PPil)[L]‘E) = TI‘([LM&) =n

Exercice A.50 For L := @ ® ¢, defined by (@ ® ¢).@ = (£.@)w for all 4, check:
Tr(w @ 0) = L0 (A.46)

Answer. @ =), wid; and £ =Y, lima; give [0 ® £) = [wily], thus Tr(W® L) = >, wils = >, Liw; = L.10. an
Remark A.51 The “trace” of a bilinear form g : F x E — R (e.g. an inner dot product) defined with a

basis (@;) by Tz(g) = >, gii is useless (not used) because it depends on the choice of the basis (@;): E.g.
if b; = Ad@; then Ty(g) = A\*Ts(g) # Ta(g) when \ # =£1.

A.12 Transposed of a linear map: depends on chosen inner dot products

Not to be confused with the transposed of a bilinear form which is objective cf. (A.30).

Not to be confused with the transposed of a matrix cf. (A.16).

Not to be confused with the adjoint of an endomorphism which is objective see § A.13.

(E,(-,-)g) and (F,(-,-)s) are Hilbert spaces, and L € L(E;F) (supposed continuous when E and F
are infinite dimensional). E.g., £ = Rg, F = R?, deformation gradient F = d®®(P) ¢ ﬁ(@g;]@?),
cf. (4.1), (-,-)q is the foot built Euclidean dot product chosen by the observer at #, (measurements at t),
(v, *)n is the metre built Euclidean dot product chosen by the observer at ¢ (measurements at t).

A.12.1 Definition (depends on inner dot products)

Definition A.52 The transposed of L € L(E; F') relative to (-,-)4 and (-, ) is Lgh € L(F; E) defined
by, for all (¢, w) € E x F,

(LgTh.u'}, U)g = (W, L.@W)p, written (Lgh W) o U = W e, (L.10). (A.47)

where we used the dot notation Lth(u_i) =Written L?;h.u'i since L?;h is linear. This defines the map

O .{E(E;F) — L(F;E) Aag)

. h .
’ L = ()5(L) = LT,

(A linear map has an infinite number of transposed: depends on inner dot products, see exercise A.55.)
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107 A.12. Transposed of a linear map: depends on chosen inner dot products

Particular case of an endomorphism: L € £L(E; E) and (-,-)4 is an inner dot product in E. Then

ng written L; = the (-, -)4-transposed of an endomorphism L. (A.49)

Isometric framework: (-,-); is an imposed Euclidean dot product (English, French,...); Then
LY =written. 17" and (A.47) reads

(LY A0 o i = 0 o (L.10). (A.50)

Exercice A.53 Prove: If F and F are finite dimensional, if L € L(E; F) is invertible then 1- LgTh is
invertible, and 2- (Lz;h)’l = (Lil)zg.

Answer. 1- L invertible, thus dim £ = dim F'. Suppose 3w € E, @ # 0, s.t. L;h.u')’ = 0. L being invertible,
3¢ € E s.t. L.it = &, with @ # 0 because L is linear and @ # 0; We get LghlL.ﬁ = 0, thus (LghAL.'J, U)g =0=
(L.@, L.@), = ||L.d||3, thus L.@ = 0, thus @ = 0 since L is linear invertible; Absurd because @ # 0. Thus L}, is
one-to-one with dim £ = dim F', thus invertible.

2- (Lip (L™ hg i, 0)g = (L) k@, Lad)n = (4, L' .Lab)g = (4, W)g = (Lap-(Lip) "4, @)y for all @, . da

Exercice A.54 Prove: If (E, (-,-),) is an Hilbert space and if L € L(E; E) is continuous, then L] exists,
is unique, and is continuous (apply the Riesz representation theorem F.2).
(If E is finite dimensional then see next § for a direct calculation.)

Answer. Let W € E, let gy : U4 € E — Lgg(@) := (W, L.¥W)y € R. £, is linear (trivial since L is linear and ( g 18
bilinear) and continuous: |lg4.%@| < ||W||4||L.T||g < ||W]]q ||L|| [|d]]q gives |[lag|lex < ||L]|||W]|g < oo. Let Emg €er
be the (-, -)4-Riesz representation of bgg € E*: So Ly U = (ng, )4 for all @ and ||€wg||g = ||lsg||E+. Then define
LY weE— LT (w):= U5y € B; So (LT( ), @)y = (Lg, @)y = Ly = (W, L.@0) 4, thus LY is linear (since (-, "), is
bilinear) and continuous: ||LT .||y = ||lallg = |[Cagl|z+ < ||| ||@]]4 gives [|LT|| < ||L]|z(z:z) < oo. Uniqueness:
if M also satisfies (M .0, @)y = (@, L.@)y then (M, .0,%)y = (L} 10, @)g, for all @,, thus M, = L.

A.12.2 Quantification with bases
(@:)i=1,...n and (51)1:1m are bases in F and F. Let

e gij = g(di,d;), [g] = [9ij], hij = h(bi, i), [h] = [hij], and

n - n A51
o Lij =Y Lid, [L]=[Lyl, Libj=> (LD, [Lix) = [(Lin)ij], (A.51)
i= i=1
ice. [g] = [gljas 0] i= W], (2] o= (Ll g [E5,] 1= [E5,] e
(A.47) gives [d]T.[g]. [Lgh w] = ([L.d))T.[h].[w] for all i,w, thus
[QHL;J =[L)". Zgzk oh)ki = ZLM hugj, (A.52)
ie. o
[Lan) = o) VLI [R) ], e (Lg)e = DY () inLenhay. (A.53)
k=1¢=1
Duality notations:
S g L)k =Y LFihg, e (LL)= > g"L'%hy where g7 :=([g]" )i (A.54)
k=1
Particular case of an endomorphism:
[Lg] =g " [L]" [g] (A.55)

Particular case (d@;) is (-,-)g-orthonormal: [g] = [d;;], thus [L]] = [L]T, i.e. (L]); = Lj;, (L) = L7;.
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108 A.12. Transposed of a linear map: depends on chosen inner dot products

0 1
1 0

products (+,-)4 and (+,-), in R2 such that LT # L} (a transposed endomorphism is not unique, is not
intrinsic to L, because it depends on a choice of an inner dot product by an observer).

Answer. Apply (A.55):

Exercice A.55 Basis (d;) in R2, L € £(R?;R?) defined by [L] :==[L]jzg = ( > Find two inner dot

9] = ((1) ?) — [1]. Thus [Z7] = [Z].[L).[1] = (g’ (1)) ie. LT.d) = Gz and LT.d@, = a.
] = ((1) g) Thus [LT] = [B]"".[L].[] = (ﬁ; g) ie. LT.dy = G, and LT3 = 241

Exercice A.56 Prove: Two proportional inner dot products give the same transposed endomorphism:
If L€ L(F;E) and 3\ > 0s.t. (+,")q = A2(-,+)p then LT = LT.

Answer. (LI .40,@), = (@, L.@)y = N (0, L.@0)q = N(LY 0, @) = (LT @, @)y, for all @,w, so LT = LT, "
Exercice A.57 Let L € L(E; E). Prove: Tr(L]) = Tr(L) (independent of g).
Answer. Tr(Lg) = Tr([Lg]je) = Te([g] ;2" [L]fz[9]1e) = Tr(lg)je-lo] o - [L][2) = Tr([L)j) = Tx([L]je) = Tr(L).  ow

Remark A.58 In fact g*/ in (A.54) is the short notation for (¢%)¥, see (F.30). Use classical notations
to avoid misuses and misinterpretations. ==

A.12.3 Isometry

(+,-)g and (-, ) are inner dot products in E and F.
Definition A.59 An invertible linear map L € £;(E; F') is an isometry relative to (-,-), and (-, )y iff
Vii,w € E, (L.ii, L&), = (i, W)y, ie. L}, oL =Ig (identity in E). (A.56)

Thus, if L € L(E;F) is an isometry and (¢;) is a (-, -)g-orthonormal basis, then (L.€;) is a (-,)p-
orthonormal basis, since (L.€;, L.€;), = (€, €;)q = J;; for all 4, j.
In particular, an endomorphism L € £;(E; E) is a (-, -)4-isometry iff

Vi, i € E, (L.i,L.w)y = (ii,d)y, ie. LJoL=1I (A.57)

Exercice A.60 Let f: E — F. Prove:

— —

If, Vii,w € B, (f(@), f(@))n = (@, @), then fis linear (and is an isometry). (A.58)

—

Answer. Let (€;) bea (-, -)g-orthonormal basis; Thus (f(¢€;)) is a
And @ = Y, w;& and @ = 3, w;ié; give f(@) =" 3, (f(@), f(&

>

thus f(@ + M) = 2, (ui + Aw;) f(&) = 3, wif (&) + A X, wi f(&

(-, -)n-orthonormal basis, cf. hypothesis in (A.58).
DF(E) =" (0, 8),f(6) =" 5, (@),
) = f(@) + Af(i%), thus f is linear. .

Exercice A.61 R” is an affine space, R™ is the usual associated vector space, (-,-)g is an inner dot
product in R™ and ||.||4|| is the associated norm. Definition: a function f : p € R" — f(p) € R" is

[|.||g-distance-preserving iff
1F @) F@)lls = |IFlly, Vg € R (A.59)

Prove: If f is a distance-preserving function, then f is affine.

Answer Let O € R™ (an origin) and f: Z = Op € R* — f(Z) := f(O)f(p) (vectorial associated functlon) Let
— " 7)

z = Op and ¥ = Og. Then the remarkable identity 2(f( ) (g_{ g = Hf( )Hg + Hf( e — I1f(@)—f(7 7)||; gives

2f(&), F(@)g = IF@NHIFDI - IIF QI G = I17@)] |g+|\fq($g 1@Bll5 = [1/15+1715- 11235 = 2(Z, 7)s,

+ f(Op) 1

—

thus f is linear cf. (A.58), thus f is afﬁne since f(p) = f(O)

A.12.4 Symmetric endomorphism (depends on a (-,-),)

Definition A.62 An inner dot product (-,-), being chosen, an endomorphism L € L(E;E) is (-,)4-
symmetric iff Lg =L:

L (-,-)g-symmetric <= L] =L <= (L., W)y = (i,L.w),, Vi,dcE. (A.60)

(Depends on (-,-)q: L can be (-,-)g-symmetric and not (-,-),-symmetric, see exercise A.55; IL.e. the
symmetric character of an endomorphism is not intrinsic to the endomorphism.)
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A.12.5 Deformation gradient symmetric: Absurd

The symmetry of a linear map L € L(F; F) is a nonsense if E # F.

E.g.: The gradient of deformation F{°(p;,) = d®® (p, ) ="'itten f ¢ E(I@Z),@f) cannot be symmetric
since FT e L(RY; I@g) Idem for the first Piola-Kirchhoff tensor H[°, which motivates the introduction
of the symmetric second Piola-Kirchhoff tensor S [°, see Marsden-Hughes [16] or § 0.2.4.

A.12.6 Dangerous tensorial notation

To simplify the writings, we consider F' = E.

The transposed 37 € L(E, E;R) of a bilinear form 8 € L(E, E;R) is objective cf. (A.30): We don’t
need any tool like an inner dot product to define 7. And (quantification) with a basis (€;) and its dual
bases (e?): If 3 = > Bije' @ el then BT = > Biiet @ el ie. [BT) 1z =[] -

The transposed L;F of an endomorphism L € L(E; E) is subjective because it depends on a choice of
an inner dot products (-,-),. And with a basis (€;) (quantification), [L]]jz # [L]|z" in general because
(L5 ]1e = [g) - [L]" Lg].

Hence it is dangerous to represent an endomorphism in a basis with its “bilinear tensorial represen-
tation” when dealing with the transposed. Details: L € £(F; E) is naturally canonically represented by
the bilinear form My, € L(E*, E;R) (mixed tensor) defined by My, (¢,4) = ¢.L.@ for all £ € E* and @ € F
(so My, ¢ L(FE, E;R)). Quantification:

LE =316 ~ My=Y L& @¢ hence M 2V Y i wa,. (A.61)

i=1 ij=1 i,j=1

And, (-,-), being chosen, Lg € L(F; E) is represented by the bilinear form MLgT € L(E*, E;R); And

3

Ly = (Ly)& ~ Myr = > (L})';& ©¢’; Thus | Myr # M." (A.62)

i=1 ij=1

because: 1- € ® e/ # e’ ® €; (!), and

2- (L3)'5 = g1 (gl )irL h ge; # L7 in general, while (M,")"; = (Mg)7; always: (f)" is
independent of any inner dot product, while LgT depends on a chosen inner dot product.

3- Mz € L(E*, E;R) ~ L(E*; E*) is the tensorial representation of the adjoint L* of L, see (A.68).

So in continuum mechanics it is strongly advised not to use the tensorial notation for linear
maps when dealing with transposed (you should not confuse covariance with contravariance). It can be
only used for computations when a Euclidean basis and associated Euclidean dot product are imposed
(isometric framework).

A.12.7 The general flat > notation for an endomorphism (depends on a (-, Jg)
The ® notation deals with change of variance. Let L € £(E; E). Choose an inner dot product (-,-),.

Definition A.63 The associate bilinear form L} € L(E, E;R) is defined by, for all @, @ € E,
L (@, @) = (@, L.w), (it is (,-)y dependent). (A.63)

The bilinearity of L’ is trivial.) (Thus L € T}(Q) implies L° € T9(€).
g 1 2

Quantification: (¢;) is a basis in E, (¢') is its covariant dual basis, g = >, gije’ @ ¢ ie. [g] = [95],
L& =Y L&, [L=[L], L= (L)ge e, [L]=I[(L)) (A.64)
i=1 ij=1
This explains the ” notation: The up index in L?; becomes a down index in (LZ)U.

And (Ly)ij = L}(&, &) = (&, L.8)g = (&, 2 LFj@k)g = 0 L¥5(Es@k)g = 2op LF jgan = ([9).[L)) 5,

thus
(L) = LFigu. ie. |[L3]=I[g][L]| (A.65)
k
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Remark A.64 (A.63) defines the (-,-),-dependent operator

70 :{E(E;E) ~ L(E*,E;R) — L(E,E;R) (A.66)

L — Jy(L) =L,

This operator is a contravariance—covariance exchange operator. With the natural canonical isomorphism
L e L(E;E) ~ Ty, € L(E*, E;R) given by Ty, (¢,w) = ¢.L.w see (U.13): The “mixed tensor” L has been
transformed into the “twice-covariant tensor” L';. With a basis:

L~Tp = Z L';é;®el  and L'; = Z (LZ)ijei ®el, (A.67)

i,j=1 1,5=1

Wlth (A65) n

A.13 The adjoint of a linear map (objective)

A linear map L € L(E; F) has one and only one adjoint L* (intrinsic to L), while it has an infinity of
transposed LT := L;h (needs chosen inner dot products). So they can’t be confused.

A.13.1 Definition
E and F are vector spaces, E* = L(E;R), F* = L(F;R).

Definition A.65 The adjoint of a linear map L € L(E; F) is the linear map L* € L(F*; E*) canonically

defined by
F* — FE*
L . , . (A.68)
m — L*(m):=moL, written L*.m =m.L
thanks to the linearity of m, L and L*. So, for all (@,m) € E x F*,
(L*.m).@ =m.La (A.69)
thanks to the linearity of m, L and L*.

(Remark: ||L*.m||g« = ||m.L]
continuous when L is.)

g < |Im||p<||Ll|z(z5ry gives ||[L*||cpemey < |IL|2(E;r), thus L* is

A.13.2 Quantification

(@) and (b;) are bases in E and F, (a') and (b') are the (covariant) dual bases, L € L(E;F), so
L* € L(F*; E*). Let

n

L.@:ZL%, (L) =[L%], LW =Y (L)%a', [L*]=[(L");’]. (A.70)

i=1

(So [L] = [L] 5 and [L*] := [L*]jpq). (A.69) gives (L*.b/).d; = b/.L.G;, thus (307 (L*)x’ a).a; =
W .(5, L¥iby,), thus

(L*);9 = L%;, thus [L*]=[L]T (transposed matrix). (A.71)
Classic notations: L.C_ij = Z;llLijgi’ L*.ﬂ'bj = Z?:l([’*)ijﬂ-ai: and (L*.Tl'bj).c_ii = 7Tbj.L.C_L’i, thus

(e (L) iy mar) @ = ms. (X ey Luibi), thus (L*);; = Ly;, thus [L*] = [L]T

A.13.3 Relation with the transposed when inner dot products are introduced

We need the (-, -),-Riesz representation mapping ﬁg e B — ﬁg () = Zg € E defined by .4 = (Zg, U)g
for all ¥ € F, valid when E* is the space of continuous linear forms.

Let L € L(E; F) be continuous, and (-, )4 and (-, -);, be inner dot products in E and F: The transposed
of L is defined by LT := L;Fh is defined by (LgTh.u'i7 )y = (W, L)y, for all @ € E and w € F.
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111 A.14. Tensorial representation of a linear map (dangerous)

We have
(L*m).@ "2 m(L.@), thus (R,(L*.m), @), = (Rn(m), L., (A.72)
thus ((ﬁg oL*)m, ), = ((Lz;h o Ry).m, @)y. Thus ]% Lz;h o Ry, ie.
LT
_ E < F
gh =RyoL*o(Ry)™t| e R, 1 + Ry, is a commutative diagram. (A.73)
E* «— F*
L*

Exercice A.66 From (A.73), recover (A.52), i.e. [L],] = [g]~".[L]".[A].

Answer. [L],] =79 [R).[L*).[Ry] ! =57 [g] 7 (L] [h].

A.14 Tensorial representation of a linear map (dangerous)
Consider the natural canonical isomorphism (between linear maps E — F and bilinear forms F* x F — R)
~ [ L(E;F) — L(F*,E;R)
VE N where G (m, @) == m.(L.@W), Y(m,@) € F* x E, (A.74)
L —p,=J(L)
see § U.4.

Quantification: (d;);=1._ . is a basis in F, (l;i)izL___,m is a basis in F which dual basis is (m;) = (e%),
Le L(E;F). let

ZLZ]bZ) BL = ZZ ﬁL ’ij ®7Taj7 [L] = [Llj]7 [BL] = [(611)%]} (A75)
(A.74) gives
[(6L)ij = BL('/Tbi,aj) = Wbi.L.afj = Lij, thus [BL] = [L] (A76)

Duality notations: L.@; = 3, Li;b; and f, = Zij(ﬁL)ijl_);- ®a’ and [LY;] = [(BL)"].

Contraction rule. With @ = """, u;d,,

Br.i = ZZL”b @waj = ZZL”I) (Taj. T ZZL”ujb = L. (A.77)

1=175=1 i=15=1 j=1li=1
contractlon

because L.i =Y ujL.dj =}, u]L”l_;
Duality notations: Br.u = ZLl b ®d’ ). 4 = ZLl b, ") = ZLijujZ;i =
—— -

1 1
J contraction J

Remark A.67 Warning: The bilinear form f; should not be confused with the linear map L: The
domain of definition of 5y is F* x E, and £ acts on the two objects £ (linear form) and @ (vector) to get
a scalar result; While the domain of definition of L is F, and L acts one object i to get a vector result.

You can use the tensorial notation for L... only to calculate L.i as in (A.77) (contraction rule). ia

A.15 Change of basis formulas for bilinear forms and linear maps
A.15.1 Notations

Let A and B be finite dimension vector spaces, dim A = n, dim B = m. (E.g. application to the change
of basis formula for the deformation gradient F: A=R} — B=R}.)

(@ota,i) and (@pew,;) are two bases in A, ( oid,i) and (l_)'new’i) are two bases in B, (a’y), (al,.), (biy), (0%n,)
are the (covariant) dual bases (duality notatlons). Let 24 and 75 be the change of basis endomorphisms
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112 A.15. Change of basis formulas for bilinear forms and linear maps

from old to new bases, and P, := [Pi]|z o = [Py;] and B := [733]“; y
O
matrices, and Q4 = P! and =K L,

n
— - i -
Qpew,j = 7?4-a01d,i = § PA jQold,i s a’new E Q4 ]aojda

ij*l
11ewg % bo]d i § % bOId i) 11ew - § % JboId
4,5=1 1,5=1

Classical notation: Cpew,j = Y_; 1:;Coid,i» Tenew,i = Zj QijTedd,i-

A.15.2 Change of coordinate system for bilinear forms € £(A, B;R)

= [B5;;] be the associated transition

(A.78)

Let 3 € L(A, B;R), B=73_,, M;jaly @ bOId > Nij Hew(X)bneW, ie., for all (4,7) € [1,n]y x [1,m]n,

. 5 . N ) [ﬂhdds =M= [sz]]l;l ________ N
ﬁ(aold,ia bold,j) = Mija ﬂ(anew,iv bnew,j) = Nij7 Le. B _ 1 o

Proposition A.68 Change of basis formula:

[Bljnews = " [Bjgas- I |, ie. N=RBR".MB.

(A.79)

(A.80)

In particu]ar, if A= B and (aold}z) = (gold,i) and (6new,i) = (Enm,i); then Bq = % :Written P, and

[Blnew = P.[Blaa-P|, ie. N =PT.M.P.

Proof. Nij = (@uew.i, buew.j) = D ke BF B 8o g, Do) = S BF M B =30,

Exercice A.69 Prove (objective result):

B, @) = [z, [Blinews-[@ 5

= (i -8 1]

new | bold”

Answer. [d][;  [Blinews: (@5 = (B [@)a,,)" (A" [Bljaas-B)-(B " [@] 5 ).

new new ] 1®oid

A.15.3 Change of coordinate system for bilinear forms € L(A*, B*;R)
Let z € L(A*, B*;R), and, for all (¢,j) € [1,n]y x [1,m]n,

2(atg bl ) = MY, z(al,,, b N9 e ‘ Cmim

( old oId) ( ew new) [Z]‘Wé — N = [NU] 3

Proposition A.70 Change of basis formula:

Epnews = 2~ [2)jaas- BB, de. N=DR "M

(A.81)

BT My 5.

(A.82)

(A.83)

(A.84)

In particular, if A= B and (dgq,;) = (l;old,i) and (Gpew;) = (l_)'new,i), then P, = I ="ritten P, and

Zinew = P T [2]aq.P~Y, ie. N=P T MPL
\

Proof. N;; =
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113 A.15. Change of basis formulas for bilinear forms and linear maps

A.15.4 Change of coordinate system for bilinear forms € £(B*, A;R)

(Similar to linear maps L € L(A; B) ~ L(B*, A;R) thanks to the natural canonical isomorphism.)
Let T € L(B*, A;R), and, for all (i,7) € [1,n]y X [1, m]y,

T(bf)ldv aOld»j) = Mijv T(b;ewv 6H8W7j) = Nijv Le. _ i j‘=1 ‘‘‘‘‘ " (A-SG)

Proposition A.71 Change of basis formula:

Tnews = B [TNjgas-Ba |, ie. N=Qu.MB. (A.87)

—

In particular, if A = B and (Goq,i) = (boia,s) and (Gpew,i) = (gnew7i), then P, = I ="ritten p_and

[T)jnew = P~ .[T]ag-P|, ie. N =P '.M.P. (A.88)

Proof. N = T(biy,, Gnew.j) = S ope @ kB 5T (Vs Goid ) = e Q' kM7 B

A.15.5 Change of coordinate system for tri-linear forms € £L(A*, A, A;R)

(For d?ii(p): For a vector field @ € T'(U) ~ T¢(U), i(p) € R™, its differential satisfies dii(p) € L(R?; R") ~
L(R™* R R), and d?i(p) € L(R™; L(R";R")) ~ L(R™*,R",R™; R), see § T.1.4.)

Consider a tri-linear form T € L(A*, A, A;R), and [T]z_, = [M;,] and [T]jz = [N};], so where
;k = T(aéldaaold,ja Gold,k ) N;Lk = T(aiew7 Gnew,j» Qnew,k)- (A.89)
Then .
=Y. Q\P'PY M), (A.90)
Ap,r=1
Indeed 7, ,, M), Gotan ® aljy @ aky = 3" iie Min QAP PY inenyi ® gy, ® i,

A.15.6 Change of coordinate system for linear maps € £L(A; B)
Let L € L(A; B) and, for all j =1,...,n,

L.dog; = ZMijgold,i = ZMijgoId,i ie. [Lljowas = M = [M;;] = [Mij]gj«-wt:a
i=1 i=1

o o (A.91)
L.&,E.W,j = ZNijgneW,i = ZNingeW,i i.e. [L]|news = N = [NZJ] = [N’LJ] 2::11 ..... 2,,
i=1 =1
with classical and duality notations.
Proposition A.72 Change of bases formula:
Lljnews = B~ [L]jaas-Br|, ie. N=I"'MD. (A.92)

—

Particular case L endomorphism: A = B, (dgd,:) = (bod,i), (Gpew,i) = (l_)’newyi), P, = Iy =Written p 459

[Lljnew = P~ [L)jga-P|, ie. N=P 'M.P. (A.93)
Proof. L-dnew,j = Zz Nijgnew,i = Zik Nij%kigold7k = Zk(%'N)kngId7kf and L.Cﬁl‘newd =
L(ZZ Bﬁlljaold,i) = Zi Bﬁj Zk Mkibold,k = Ek(M-&)kjbold,k: for all j, thus B5.N = M. E,. un
Exercice A.73 Prove: (.L.4 = [é]lgnm'[l’]\ws'[ﬁhdnm = [E]lgold.[L}|dds.[ﬁ}|dOId (objective result).
Answer. [(] 5 [Linews- [, = (€], -)- (B [Ljaae- ). (B [il] 2 )- =
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114 B.1. FEuclidean basis

Remark A.74 Bilinear forms § € £L(A, A;R) and endomorphisms L € L£(A; A) behave differently: The
formulas (A.81) and (A.93) should not be confused since P~' # PT in general. E.g., if an English
observer uses a Euclidean (old) basis (@;) = (daq,) in foot, if a French observer uses a Euclidean (new)
basis (b;) = (Gpew,i) in metre, and if (simple case) b; = Ad; for all i (change of unit), then P = AI and

[Ljnew = [Lljas  while  [Bljnew = A2 [B]jaa- (A.94)
>10
Quite different results! Here P~ # PT. Cf. remark A.17 (Mars Climate Orbiter crash). L

B Euclidean Frameworks

Time and space are decoupled (classical mechanics). R™ is the geometric affine space, and R™ is the
associated usual vector space made of “bi-point vectors”, n = 1,2, 3.

B.1 Euclidean basis

Manufacturing of a Euclidean basis.

An observer chooses a unit of measurement (foot, metre, a unit of length used by Euclid, the diameter
a of pipe...) and makes a “unit rod” of length 1 in this unit.

Postulate: The length of the rod does not depend on its direction in space.

e Space dimension n = 1: This rod models a vector €; which makes a basis (&1) called the Euclidean
basis relative to the chosen unit of measure.

e Space dimension n = 2 and 3:

- The observers, with his unit of measurement, makes three rods of length 3, 4 and 5, to build a
triangle (A, B, C) (vertices A, B and C) and A is not on the side on length 5.

- Pythagoras: 32 + 4% = 52 gives: The triangle (4, B, C) is said to have a right angle at A.

- Two vectors @ and @ in R" are orthogonal iff the triangle (A4, B, C') can be positioned such that AB
and AC are parallel to @ and .

- A basis (€;)i=1,... »n is Euclidean relative to the chosen unit of measurement iff the &; are two to two
orthogonal and their length is 1 (relative to the chosen unit).

Example B.1 An English observer defines a Euclidean basis (d@;) using the foot. A French observer

-

defines a Euclidean basis (b;) using the metre. We have (international yard and pound agreement 1959)

1
1foot = pmetre, p =0.3048, and 1metre = Afoot, A= — ~ 3.28. (B.1)
i
E.g., “aligned” bases: For all ¢, .
b =Ad;, and P =M\l (B.2)
is the transition matrix from (@;) to (b;). NB: PT =\ =P # P~! = +I and PT.P = N\2I. oa

Remark B.2 The bases used in practice are not all Euclidean. E.g., see example A.16 if you fly. .

B.2 Associated Euclidean dot product

Definition B.3 An observer has built his Euclidean basis (€;). The associated Euclidean dot product is
the bilinear form g(-,-) = (-,+), € L(R",R™; R) written .+ . defined by

Vi, g, gij = g(€;,€5) = 045, ie. [gle=1. (B.3)

Le., with (7.;) = (¢*) the (covariant) dual basis (with classical and duality notations),
.og.:(.’~)g = Zwei@)wei:Zei@ei. (B4)
i=1 i=1

With Einstein’s convention, (-,-)g := >, dije' @ e

114



115 B.3. Two FEuclidean dot products are proportional
Thus, for all Z,§ € R™, with @ = Y7 ;& =Y i 2'¢; and §= > i€y = > Y €,

'gg: (fa y) \e 27]|P Zmzyz Zlﬂyl (B5)
=1

With Einstein’s convention: &'« § = (Z,¥)g := >_;; dij2’ yd

Definition B.4 The associated norm is ||.||g := 1/(,-)g, and the length of a vector & relative to the
chosen Euclidean unit of measurement is ||Z||y := \/(Z, ), = /T« T.

With & = >0 2,6 = Y 1 2'e; we get ||Z]|g = /D27 = /Doy (27)2

Einstein convention: |[Z||g = /> ;. d;;x'®d.

Definition B.5 The angle 6(Z, i) between two vectors Z, 7 € R® — {0} is defined by

- r g
cos(0(Z, ) = (=—, —=1)g- (B.6)
12l [171ls "
(With a computer, this formula gives 6(Z, §) = arccos(( Hffllg’ ;1717| )g) in [0, 7].)

g9

B.3 Two Euclidean dot products are proportional

Consider two Euclidean bases in R (@;), e.g. built with the foot, and (b;), e.g. built with the metre.
And let (-,-)g and (-, ), be the associated Euclidean dot products: (d;,d;)y = di; = (i, b;)n.
Proposition B.6 If A = Hl_;ng, then ||l_);||g =Aforalli=1,..,n and

(g =A2(, Jns and [[[lg = Ml[][n- (B.7)

Proof. By definition of a Euclidean basis, the length of the rod that enabled to define ( ;) is independent
of i cf. § B.1, thus A = ||b1||, = ||bs]|, for all i. Thus ||b; 12 =X = A2||b;||? for all i. If i # j then

(bl,b )g =0= (bl,b )n since (b;), (,-)g and (-,-), are Euclidean cf. § B.1. Hence (bl,b )g = A2 (bi,b )
for all 4, j, thus (Z,7), = N(Z,§)s, for all Z, 7 (bilinearity of (-,-), and (-,)s), thus (B.7). oa

Example B.7 Continuation of example B.1: (-,-), = Y. ;a’ ® a” is the English Euclidean dot product
(foot), and (-,-)p = > ;- b* @ b" is the French Euclidean dot product (metre). (B.7) and (B.1) give:

(v )a=A2(,)p and [|lla = Alllls, with A=~328 and A?~ 10.76. (B.8)

E.g. if |||, = 1 (length 1 metre) then ||@||, = A (length X ~ 3.28 foot). ua

B.4 Counterexample: Non existence of a Euclidean dot product

1- Thermodynamic: Consider the Cartesian vector space {(T, P)} = {(temperature,pressure)} = RxR.
There is no associated Euclidean dot product: An associated norm would give ||(T, P)|| = vT? + P2 € R
which is meaningless (incompatible dimensions). See § A.4.5.

2- Polar coordinate system ¢ = (r,0) € R x R: There is no Euclidean norm ||g]| = vr2 + 62 that is
physically meaningful (incompatible dimensions), see example 6.12.

B.5 Euclidean transposed of a deformation gradient

Consider a linear map L € L‘(H@g); R?) (e.g., L = F{*(P) the deformation gradient).

Let (-, )¢ be a Euclidean dot product in @?O (used in the past by someone), and let (-,-), and (-,-)n
be Euclidean dot products in @? (the actual space where the results are obtained by two observers, e.g.,
()¢ built with a foot and (-, -), built with a metre). Let L, and L, in L(R};Ry) be the transposed

of L relative to the dot products, cf. (A.47): For all (X,7) € @g x R7,

(LE, 9, X)e = (LX), and (LE,.7. X)e = (L.X, §)n. (B.9)
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116 B.6. The Euclidean transposed for endomorphisms

Corollary B.8
If (,)g=A(,)n then L&, =NLE,. (B.10)

(Do not forget A\?, e.g. \> ~ 10 if (-,-), in foot and (-,-), in metre).

Proof. (L5, 7, X)e "2 (L.X, ), "2 N (L.X, ) "2 N(LE,.4, X)g for all X € B2 and all § € Rr,
thus LT .57 = N2LL,, i for all € Rp, thus LT, = A?Lgh.

B.6 The Euclidean transposed for endomorphisms

Consider an endomorphism L € E(I@?; I@?), E.g. L = dv;(p) the differential of the Eulerian velocity. Let
(,-)g and (-,-)n be dot products in R". Let L} and L{ in L(R7;R?) be the transposed of L relative

to (-,-)g and (-,-)s: For all Z,7 € R?,
(L5, 2)g = (LZ,4)g, and (Ly.§,2)n = (L.Z,§)n. (B.11)

Corollary B.9
It ()g=A(,)n then LT =Lf"erpr (B.12)

(an endomorphism type relation). Hence we can speak of “the Euclidean transposed of an endomorphism”.

Proof. (LT.5,7), "= (L., ), "L N(L.Z,7)n P2V XL 5, 2), "2 (L] ., %), for all & § € B, thus

LT.§= L] g for all j € R", thus LT = LT.

B.7 Unit normal vector, unit normal form

The results in this § are not objective: We need a Euclidean dot product (need a unit of length: Foot?
Meter?) to get a unit normal vector. Choose a Euclidean dot product in R”, and for all @, @ € R”

written o,
= Ue, W

(@, %), Y (B.13)

and ="Tten 7 .45 when the chosen Euclidean dot product is imposed on everyone.

Q is a regular open bounded set in R”, and I' := 0{Q is its regular surface. If p € I' then T,I" is the

tangent plane at p to I". Let (51 (p), ...,En_l(p)) be a basis in T,I" e.g. obtained thanks to a coordinate
system describing I" (so it is not an orthonormal basis a priori).

B.7.1 Unit normal vector

Call 7i4(p) the unit outward normal vector at p € I at T,,I" relative to (-,-)4:

Vi=1,.,n-1, Bigfy =0, fgei,=1 (=]i?), (B.14)

and 3hg > 0, Vh € [0, ho[, p — hii(p) € Q (drawing: outward normal).
Hence (51(p), ..., Bn—1(p), fig(p)) is a basis at p in R™, written in short (51, ..., Bn—1,7y). Drawing.
Thus, if @ € R™ is a vector at p, W = Zf;ll w; B; + wnity (classical notations) then

wp, = W« 7, = the normal component of @ at p at I". (B.15)
(wy, depends on (-,-),.) (Duality notations: @ = > 11 w' B + w" iy and w" = 0« 7i,.)
Exercice B.10 (@) is a basis in R" and [9]ja = [9j] = [g9(ds,@;)]. Call By; the component of ﬁ_; in (a@;),

ie. ,8] S Bjjd; for j =1,...,n—1. Compute the components n; of i, in (a@;), i.e. s.t. g = > 1 n;d;.
Particular case (d@;) is (-, )4 orthonormal?

Answer. (B.14) gives [ﬁi}ﬁ..[gha.[ﬁg]‘a =0 for i = 1,...,n—1: We get n—1 linear equations. With one more
equation given by [ﬁg]lqt;a.[g]w.[ﬁg]‘a = 1: We get 7y up to its sign.
If (@:) is (-, -)g-orthonormal then [g]jz = I and >°7_, Biyn; = 0 for i = 1,...,n—1, with 377 L oni=1 un
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117 B.8. Integration by parts (Green—Gauss—Ostrogradsky)

Exercice B.11 Let (@;) be a Euclidean basis in foot, (b;) a Euclidean basis in metre, (-,-)q and (-,-);
the associated Euclidean dot products, so (+,-), = A2(+, ), with X\ ~ 3.28, cf. (B.7). Let 7i,(p) and 7i,(p)
be the corresponding unit outward normal vectors, cf. (B.14). 1- Prove (up to the sign):

iy = Mg, and (@, 7q)q = M@, ), Vi € R? (B.16)
2- Then let 7, = > ;" ng;d; and 7, = Z;n:lnbigi; Prove:
If, Vvi=1,...,n, l_;l = \d; then Vi=1,...,n, ng = ngy;. (B.17)

So the vectors 7i, and 7, are different (A > 1), and their respective components are equal... relative to
different bases! And of course 1 = [[7i,||2 = Y7 (i) = Yoy () = ||7i]|7 = 1.

Answer. 1- 7i,(p) || ©s(p), since the vectors are Euclidean orthogonal to T,I'. And ||7is]|la = A||7s]ls = A =

Al[falla, thus 7y = £Af,. And they are outward vectors, so 7y = +Afia. Thus (W, 7a)s = N (W, 7))y =
N2 (@, 5o = (@, i ).
2- Then b; = Ad@; gives > 1nbb = A0 nbds =30 nh(Ad) = Y0 nbbs, thus nl, = nj. .

b

B.7.2 Unit normal form n’ associated to 77

For mathematicians: May produce misunderstandings, bad interpretations. Don’t forget: n’ is obtained
only after 7 has been defined.

Definition B.12 Let p € T, (-,-), be an inner dot product and 7i4(p) be the outward unit normal at p.
The unit normal form nZ(p) € R™" is the linear form defined by nz ()T = (7y(p), @), for all & € R"
vector at p :

) = (ig, ¥),g. (B.18)

( ="ritten 7. 47 if one chosen Euclidean dot product is imposed).

Quantification: Let (&;) be a basis in R"; Then (B.18) gives [n';]]|g.[1b']|g = [ﬁg]ﬂ.[g]‘g.[zﬁhg simply
written [n°].[w] = [7i]T.[g].[w] if the basis (&;) is imposed. Hence, with the dual basis (¢?) in R™*,
n n n
if 7= Zniéi and n’ = Zniei then n; = Zgijnj, ie. [n°]T = [g).[7] (B.19)
i=1 i=1 j=1

(recall: the matrix [n"] is a row matrix since n” is a linear form).

Particular case (€;) is a (-,-),-Euclidean basis, then n; = n’ and n° = 3_1" ne’. Use the Einstein
convention to avoid this apparent contradiction: Write n; = Z?Zléijnj since gi; = 0;j.

We used the duality notation to justify the ” notation: The “top #” in n* becomes the “bottom 7” in n;
(change of variance). Classical notations: 7 = >_, n;€;, n° = 3, (n°);me; and (n”); = > 9ijny-

B.8 Integration by parts (Green—Gauss—Ostrogradsky)

—

) is a regular bounded open set in R", I' = 9Q, ¢ € C1(Q;R), (&;) is a Euclidean basis, g (p) :=dp(p).€;,
(-,-)q its associated Euclidean dot product, 7i,(p) = 7i(p) = Y. n:(p)€; (classical notatlons) is the (-, )g-
outward normal unit vector at p € I'. Then (Green), for i =1, ...,n,

/ 02 () d6r = / o(p)ni(p)dl, in short / 92 40 — / on; dr. (B.20)
P pel Q 3} T

S19] 8$i T;

Thus, for any v € C*(Q;R), with v instead of ¢ in (B.20), we get the integration by parts formula
(Green’s formula):

Op Ov
vd) = — dQ i dl. B.21
/ 8302 /Q 4 ox; + /F o ( )
Thus, for any 7 € C(Q; R?) (vector field), with @(p) = S v;(p)& we get
Oy ov;
Q) =— Q ing; dl. B.22
/ oz, v; d / (’“)xz LdQ+ /F puin; d ( )

Thus (3 ,), with dy the differential and grady = > Bz €; the gradient, we get the Gauss—Ostrogradsky
formula:

/d@.EdQ:/ngxdap-ﬁdQ:—/ @dideQ—s—/ng-ﬁdF. (B.23)
Q Q Q r
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118 B.9. Stokes theorem

B.9 Stokes theorem
B.9.1 The classic Stokes theorem

¥ C R3 is a regular oriented 2-D surface parametrized with 7: (u,v) € [a,b] X [¢,d] — & = 7(u,v) € R3.
ar

oF
Let 7i(T) := ”%#‘3;’”(% v), unit normal at & = 7(u,v). And ¥ has a boundary I positively parametrized

X v
with ¢ : t € [t1,t2] — ¢(t) = 7(u(t),v(t)) € R3 (positively means: at any Z € Im(q) = TI', the vector
71(Z) x ¢'(Z) points towards the surface).

Theorem B.13 If f € Cl(R??’;R_‘?’) then

—

/f-d[:/cﬁrlf.di (:/cﬁrlf.ﬁdz), (B.24)
r ) )

. to 7 - _,, b d = o7 o7

ie. [,.2, f(@t)q"(t)dt = [,_, [, curlf(7(u,v))« (g x §;)(u,v) dudv.

Proof. See any elementary course, e.g. https://www.isima.fr/ leborgne//Isimathlereannee/cousur.pdf. au

B.9.2 Generalized Stokes theorem

The curl operator is a differential operator which acts on vectors to give vectors. From a covariant point
of view, it would be nice to first define a “curl operator” curl as a (linear) function acting on vectors
(objective point of view), and then eventually represented by ClIrl; And because curl “kill the gradient”,
curl should “kill the differential” i.e. curlod = 0 (in place of curlograd = 0). To do so Cartan [5] developed
the “exterior differential” d.,; which acts on k-forms (skew-symmetric covariant tensors), see [5] and e.g.
Marsden—Hughes [16]:

. The set of C°°(R™; R) functions is called Q° (the set of (J) tensors = functions); Then define d.py := d =

the usual differential operator on Q°, i.e. duy f := df for all f € Q°.

. The set of C>(R™;R"*) 1-forms is called Q' (the set of (}) tensors = differential forms); In particular
if f € Q0 then the exact differential form d..; f = df is in Q*.

. Definition: A 2-form is a bilinear skew-symmetric (g) tensor, and the set of 2-forms is called Q2; So

B € Q2 iff 3 is bilinear and [(i, W) = —B(w, @) for all i, 7 € R (a 1-form is meant to “measure a length”
and a 2-form is meant to “measure a surface”). And the wedge product a A 3 of two 1-forms «, 3 € Q*
is the 2-form o A B € Q2 defined by a A3 =a® 3 — 3® a (and A is an exterior product defined on Q!
to give elements in Q2: from “lengths” you get a “surface”).

. Define the exterior differential d..; : Q' — 02 s.t. du(df) = 0 for all f € Q°, and d(a A B) =
gt A B — & A doge 3 for any o, B € QL.

. (Generalization.) For k > 2 define a k-form (also called a differential k-form) to be a skew-
symmetric (2) tensor (order k covariant), the set of k-forms being called Q% (so a € QF satis-
fies a(Un(1yy .oy Ur(ry) = sgn(m)a(is,...,u,) for all 4y,...,14, € R" and all permutations 7). On
OF x QF define the exterior wedge product a A B € QFF by a A B(wy, ..., Wi, W1, oy Whie) =
7 D oreo SE(T)(Wry s ooy W, ) B(Wry sy s ooy Wiy ,,) Where o is the set of permutations. Then define
the exterior differential duy : QF — QFF! sit. dyy(duy) = 0 for all v € Q1 and doy(a A B) =
degt A B+ (—=1)*a A dgy 8 for any o € QF and 3 € QF.

. Then d,,; ="ritten g (this notation creates confusions for non-mathematicians).

The generalized Stokes theorem (see e.g. Abraham-Marsden [1]) is:

Theorem B.14 If ¥ is n dimensional, if T is positively oriented and if o € Q"' then

/demta:/a, written /da:/a. (B.25)
2 r b r

C Rate of deformation tensor and spin tensor

® : [t1,1o] X Obj — R™ is a regular motion, cf. (1.5), Useptr ) ({t} x Q¢), and 7 C — R is the Eulerian

velocity field: ¥(t,p) = %—‘f(t, Ryj) when p = ®(t, Ry ), cf. (2.5). Choose a Euclidean dot product (-, ),
the same at all t. (So loss of objectivity in what follows).
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119 C.1. The symmetric and antisymmetric parts of dv

C.1 The symmetric and antisymmetric parts of dv
With the chosen Euclidean dot product (-, ), in R?, consider the transposed cf. § A.12:
{Qt — LR} RY)

df
p — di (p) == dii(p)”

Uy - } s where (dﬁt(p)T.lf)l, wg)g = (1171, dﬁf(p)’lﬁg)g (C].)

for all iy, @, € R? vectors at p. Other notations (definitions): ¥ (p) = dii(t, p)T = o™ (t,p).

Definition C.1 The (Eulerian) rate of deformation tensor D, or stretching tensor, is the (-, -) s-symmetric
part of dv:

dv + do” du(t di(t,p)*
D= HTU, ie., V(t,p)eC, D(t,p) = o ,p)+2 vt ) (C.2)
The (Eulerian) spin tensor is the (-, -)g-antisymmetric part of du:
dv — do” di(t, p) — dv(t,p)*
0= % ie, Y(t.p)eC, Qtp) = ut, p) . ut,p) (C.3)

(So dv =D + Q.)

NB: The same usual notation is used for the set of points ; = &)(t, Obj) C R™ and for the spin tensor

7, —d7 o
QO = u' The context removes ambiguities.

C.2 Quantification with a basis
With a basis (¢;) in R?, (C.1) gives []T.[g].[d,(p)T ] = [do,(p).02)T .[g].[s), thus

[9].[d5"] = [dd]"[g], thus [dT"] = [g]~".[a0]" [g]. (C.4)
In particular, if (€;) is a (-,-)g-orthonormal basis, then [dv”]; = [dﬁ]lq;, and with o = Y, v;€;, D.¢; =
Z?:lpijgi and ng = Z?:lQijgi we get Dij = (227 + Bv]) and Qij = %(31)"' — 81)_7'):

6acj 6:EL
d do)T dv] — |d
[D] = M and [Q] = w (Euclidean framework). (C.5)
Duality notations: D} = %(ax] + gzj) (sym) and Q'; = %(% - gf) (antisym).

D Interpretation of the rate of deformation tensor

We are interested in the evolution of the deformation gradient F'(t) := F;?O (t) along the trajectory of a

particle Ry, which was at p;, at f. Let A= a(to, py,) and B= l_;(to,pfo) be vectors at # at py, € {4, and
consider their push-forwards by the flow ®® (the transported vectors), i.e. at t at p(t) = @;ﬂm (1),

a(t,p(t)) := F(t).A and b(t,p(t)) := F(t).B. (D.1)
see (4.3) and figure 4.1. Then consider the function
. C R
(@,b)g : o . - (D.2)
(t,pe) — (@, 0)g(t, pe) == (a(t, pe), b(t, pt))g-

Proposition D.1 A unique Euclidean dot product (-,-), being imposed at all t, the rate of deformation

tensor D = d”+d” gives half the evolution rate between two vectors deformed by the flow:
(a") b) -
Di ¢ =2(D.a,b),. (D.3)

Proof. Let f(t) = (a(t, p(t)),b(t, p(t)))y = (F(t).A, F(t).B),. Having (-,-), being independent of ¢, and

FY (1) B3 (1, p(1)).F(F), e et
7t = (F'().AF(t).B), + (F().A.F/(1).5),
0 000,00 Bt 0, + (e PN 08 B 0000, 0.9
= ((d(t, p(t)) + di(t, p(t))") ﬁ(tap(t)),g(tap(t)))g,
thus (D.3). ua
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120 E.1. Affine motions and rigid body motions

E Rigid body motions and the spin tensor

Choose a Euclidean dot product (-, -), the same at all times (to simply characterize a rigid body motion).

Simple definition: A rigid body motion is a motion whose Eulerian velocity satisfies dv/ + dv? = 0,
i.e., D =0 (Eulerian approach independent of any initial time ¢ chosen by some observer).

But the usual classical introduction to rigid body motion relies on some initial time % (Lagrangian
approach). So, we start with the Lagrangian approach: Consider a regular motion &), fix a ty € R, the
associated Lagrangian motion ®%, and for a fixed ¢ the associated motion ®¥. The first order Taylor
expansion of ® in the vicinity of a p, € Qy, is, with d®® (p, ) =Written plo(y, )

DL (q1,) = (1) + F* (p) Py + (Pt )- (E.1)

Marsden—Hughes notations: ®(Q) = ®(P) + F(P)]@ + o(l@).

E.1 Affine motions and rigid body motions
E.1.1 Affine motion

Definition E.1 ®% is an affine motion, meaning “affine motion in space”, iff % is an affine motion for
all ¢, i.e. iff, for all py, qi, € O, and all ¢ € [ty, o],

O (a1,) = @1 (Pry) + Fy° (Pio)-Pio T - (E.2)
Marsden-Hughes notations: ®(Q) = &(P) + F(P).PQ.

Proposition E.2 and definition. If ®% is an affine motion then F/°(p,,) is independent of p,: For all
t €]t1,t2] and py,, g, € Dy,

written

Ftt0 (py) = Ftt0 (qt) Ftto~ (E.3)

Thus dF}(py,) = 0, i.e. d>®% (p;,) = 0. And for all t €]ty t5[, B is an affine motion, i.e. for all T €]ty,to]
and all py, q; € Oy,

O (q) = ©(pe) + Fr.pigi- (E4)

And ® is said to be an affine motion.

Proof. ¢, = pi, + Py gives ©F(q,) = O (b + Puds) = ®F (pi) + A2 (py,)-PiGs, and, similarly,
O (pry) = O (a1, + Tbiy) = 4 (dry) + AP (¢1,)-TioPry- Thus (addition) D (gr,) + 2 (pry) = 7 (pry) +
Y (q1,) + (d®) (pr,) — AP (a4,))-Dio @, thus (d®Y (py,) — AP (qy,))-Pio@iy = O, true for all py,, qy,, thus
d® (py,) — d®P (q4,) = 0, true for all ¢, py,, 1, thus (E.3).

Thus d®! (py, )., = limy, o 2ELe )00 W0) _ pypy, - ORdOE ) for )] and all @,
thus d?®¥ (p,,) = 0 for all p;,, thus d?®P° = O

And (@t o ®)(py) = OP(py) (comp051ti0n of flows (5.16)), thus with p, = ®9(p;) we get
% (p,).d®Y (pr,) = A% (pyy), thus dPL(p;) = dPP (py,)-d®Y (py,) ", and (E.2) gives

d®t (p;) = Aol 4o ! written d®’  (independent of p;), (E.5)

thus (E4) . n

Corollary E.3 With ¥ the Eulerian velocity and Vo the Lagrangian velocity: If ® is affine then, v, is
affine for all t, and V" is affine for all t,t, i.e., dvi,(p;) = di; for all p, € Q, (independent of p;), and
AV (py,) ="ritten gl for all p, € Qy, (independent of py,). So, for all p;,q; € Q0 and py,, g, € Qs

{ o Ui(q) = Ui(pe) + dv.peqt,

! - ! (E.6)
o Vi%a,) = Vi®(py) + AV, Dty @) -

Proof. (E.2) gives ®%(t,q,,) = ®%(t,py,) + Ftﬂ( )Pto(ho, and the derivation in time gives (E.6)q,
hence (E.6); thanks to dV° (p,,) =327 d,(p,).F{© and pyqp =F2 (F*)~1.pq;. o

Example E.4 In R2, with a basis (E}, Es) in ]1@% and a basis (€1, &) € R?, then F}° given by [Ftto]‘b: e =

1+t 262 P L+t 262\ .
< 0 ot > derives from the affine motion [® (p,, )® (q1)]je = ( 0 ot ) .[pfoqto}lﬁ. ua

120



121 E.1. Affine motions and rigid body motions

E.1.2 Rigid body motion

Marsden notations to lighten the notations: ® := ®® F := F°, P € Q;, p = ®(P) € €, the (-, Vg
transposed FT (p) € L(R};R}) of F(P) € L(R}:;R}) is defined by

R} — R}

W, — FT(p).u')'p

FT(p) ::F(P)T:{ } where (FT(p).@,,Up), = (@,, F(P).Up), (E.7)

for all Up € R}. Which defines the function F7 : Q, — L(R};RY).
Particular case: For an affine motion F is independent of P, hence F7T is independent of p.

Definition E.5 A rigid body motion is an affine motion ® such that angles and lengths are unchanged
by ®: For all t5,t € R, P € Qq, U,W € R} vectors at P, and with p = ®(P),

(FU, FW), = (U, W),, ie (FL.EU,W),= (0 W), ie |FI.F=1]| (E.8)

In other words, with the Cauchy strain tensor C € E(I@g; @Z) defined by C = FT.F, the motion is rigid

iff it is affine and
[C=T1] ie [F'=FT] (E:9)

Proposition E.6 If &% is a rigid body motion, if (ffl) is a (-,-)g-Fuclidean basis in I@%, if di(p) =
F(P).A; for all i when p = ®°(P), then @;(p) ="""e" G, is independent of p, and (@) is a (-, )g-
Euclidean basis with the same orientation than (fL), for all t.

Proof. ®Y is affine, thus, for all t, P, F}°(P) = F;° (independent of P), thus @, ;(p) = Fl A; € R7 is in-
dependent of p, for all t. And (di,dji)g = (Ftw.gi,Ft%.Ej)g = (FPT.th.Ei,A'j)g :”gid(I.A’i,A})g =
(Ei,ﬁj)g = ¢;; for all ¢4, thus (@y) is (-,-)g-orthonormal basis. And det(dig, ..., dnt) =
det(Ff Ay, ..., Flo . A,) = det(F°)det(Ay, ..., A,) = det(F[) since (4;) is a (-,-),- orthonormal basis.
And, ®% being regular, ¢t — det(F[) is continuous, does not vanish, with det(Fttf) =det(I) =1 > 0

Thus det(F°) > 0 for all ¢, thus det(dy, ...,@,) > 0: The bases have the same orientation. ua
9 L t [ cos(0(t)) —sin(6(t))
Example E.7 In R“, a rigid body motion is given by F}° = <sin(9(t)) cos(6(t)) where 6 a regular

function s.t. 6() = 0. ou

Exercice E.8 Let ® be a rigid body motion. Prove

(FTY = (F)", and FT.F'is antisymmetric: (F")T.F + FT.F' =0. (E.10)
Answer. Let F(t) = Fg(1), p(t) = ®B(t), U,w e @%_‘and W) = Fﬁt),VT/. (E.7) gives
(FT(t)a8(1), U)g = (@(t), F().0)g, thus (F7)(t).5(t) + F (8).0 (£),0)y = (' (1), F(t).0) + (@(1), F'(t).0),,
thus ((FT)'(t).@(t), )g = (@(t), F'().0), = (F)T(t).5(t), U)y where (F')T (t) := (F'(t))7, thus (FT) = (F")T.

E.1.3 Alternative definition of a rigid body motion: dv + di’ =0

— =T = =T
The stretching tensor D; = % and the spin tensor ;, = % have been defined in (C.2)-(C.3).
Here no initial time is required: Eulerian approach.

Proposition E.9 Ifdisa rigid body motion then the endomorphism dv; € E(RZ‘; RZ‘) is antisymmetric
at all t:
Dy = dvy + dvl =0, ie diy, = Q. (E.11)

Converse: If, at all t, dv, + dvT = 0 then ® is a rigid body motion.
So the relation « dv; + dif =0 for all t » gives an equivalent definition to the definition E.5.
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122 E.2. Vector and pseudo-vector representations of a spin tensor Q2

Proof. Recall: V%(t,P) = 22°(¢ P) and F®(t, P) = d®®(t, P), thus 252 (¢, P) = dV'(t,P). And
p(t) = @ (t, P) and V(t, P) = §(t,p(t)) give dV (¢, P) = d(t,p(t)). Fto(t P). And FT.F = I gives
F~T = =1 thus F.FT = I. Let F(t) := F%(t) and V() := V[ (t) and dV (t) = dV"(t, P).

(E8) gives (FFTY(t) = 0 = F/(6).F7(t) + F(t).(F7)(t) =" F'(1).F7 (1) + (F'(8).F"(£))" =

av (t).F ()" + @V (£).F ()" 27 as(t, pr) + dii(t, po)”. Thus (E.11),
Converse: dv + di’ = 0 and (D.3) give D(a’b)" = 0, thus ( g) (t,p(t )) = (a,b ﬂ) (tg, P) when p(t) =
d(P), ie. (Flo(P).A, Fl°(P). ) (A, B) thus Flo(P)T.Fl°(P) = I: ® is arigid body motion. o

E.2 Vector and pseudo-vector representations of a spin tensor 2

We are dealing here with concepts that are sometimes misunderstood or poorly known.

E.2.1 Reminder

e The determinant det |z associated with a basis (€;) in R? is the alternating multilinear form defined
by det\€(51752,€3) =1L

e A basis ( ;) has the same orientation than the basis (€;) iff det|e(b1, bg, bg) > 0.

e If (¢&;) is Euclidean, the algebraic volume (or signed volume) limited by three vectors i1, is, U3 is
det (i1, U2, U3); And the (positive) volume is | det (i1, U2, U3)|, see § L.

e Let A and B be two observers (e g. A=English and B=French), let (@;) be a Euclidean basis chosen

by A (e.g. based on the foot), let (b;) be a Euclidean basis chosen by B (e.g. based on the metre). Let
A = ||b1]||la > 0 (change of unit of length coefficient). The relation between the determinants is:

+ if dlgt(gl, by,bs3) >0 (the bases have the same orientation),

det = +£)* det  with Lo (E.12)
|a@ |5 — if dlgt(bl, ba,b3) < 0 (the bases have opposite orientation).

In particular, if A and B use the same unit of length, then A =1 and det|z = &+ det|b
e With an imposed Euclidean dot product (-,-),: An endomorphism L is (-, -)g-antisymmetric iff
Vi, v, (L.i,v)g = —(i,L.¥)y, ie. LT:=L]=-L. (E.13)

E.2.2 Definition of the vector product (cross product)

R™ =R3, (&) is a Euclidean basis, (-,-), is the associated Euclidean dot product (-,-), (so what follows
is not objective). Let @, ¥ € Rﬁ, and let lz 4 5 € C(H@,R) be the linear form defined by

R3 - R
. (E.14)

= the algebraic volume of the parallelepiped limited by , ¥, Z in the Euclidean chosen unit.

Definition E.10 Relative to (€;) and (-, -)4, the vector product, or cross product, @ X, ¢ (written @ Agy ¢/

in french) of two vectors @ and ¥ is the (-,-),-Riesz representation vector @ xq U € R? of the linear
form {4z z 51 So, cf. (F.2):

VZERS, [(@ xq ,2), = det(@, 7, 7) | (E.15)

|e

NB: i X ¥ depends both on (-, -), and on the orientation of (€;). This defines the bilinear cross product
operator

R3 x R3 — R3
xeg:{ R (E.16)

(0,7) — g (1, V) 1= il Xeq ¥

(The bilinearity is trivial thanks to the multilinearity of the determinant.)
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123 E.2. Vector and pseudo-vector representations of a spin tensor Q2

written 7w §. Moreover if an orthonormal

Notation: If a chosen (-, ), is imposed to all, then @ X, U =
basis (&) is imposed to all observers then @ x, 7 ="rtten 7 x .

NB: The cross product is not an objective operator! It depends on a chosen Euclidean dot product
and on a chosen Euclidean basis (its orientation).

NB: Isometric framework = imposed Euclidean basis which is positively oriented and its associated

Euclidean dot product (-,-),: Then (@,7), =""" 7+ 7 and x, =""e" x and (E.15) is written
VZERS, (i x )7 =det(d,7, 7). (E.17)
Exercice E.11 Prove: @ X U is a contravariant vector.

Answer. 4 Xq U is a Riesz representation vector, hence it is contravariant. (Or calculation: It satisfies the
contravariance change of basis formula, see (F.17).) .

E.2.3 Quantification
U= Z?=1 €, U= Zf’ 1 v;€; and (E.15) give

Uy U1 1
(ﬁ Xeg ’U, gl)g - d‘qt(ﬁ, ?7, 51) = det U2 V2 0 = det (Zz 52) — U2V3 — U3V2. (E18)
€
us U3 0

— = — —

Similar calculation: (@ X ¥, €2)e = ugvy — u1v3 and (4 Xg U, €3)e = w102 — ugv1, thus

U2V3 — U3V2 3
[ﬁ Xeg 17]|g = u3zv1 — U1v3 s ie. u Xeg U= E (ui+1vi+2 — Ui+2'Ui+1) €; (E].g)
U1V2 — U2V =1

with the generic notation wy := w; and ws = ws (indices modulo 3): In particular €; Xe €41 = €iy2.

Proposition E.12 1- @ X U = —¥ X4 @ (the cross product x is antisymmetric).

2-U || U iff U Xeg U= 0.

3- U X ¥ Is orthogonal to Vect{u, U} the linear space generated by i and v.

4- U Xo U depends on the unit of measurement and on the orientation of the (-,-)g-orthonormal
basis (€;). Precisely: Consider two Euclidean dot products (-,-), and (-, -)p, let A > 0 s.t. (-, -)a = N2(-,)p,
choose a (-, -)q-orthonormal basis (d;) and a (-, -)y-orthonormal basis (b;); Then

U Xaa U=2+\U Xbb 77, (EQO)
with the + sign iff (@;) and (b;) have the same orientation.
Proof. 1- (i Xg U, 2) g = det (i, ¥, 2) = — det|2(0, U, 2) = —(U X U, Z)4, for all Z.

2- If 4 || ¥ then det)g(d, ¥, 2) = 0 = (U X U, 2)e, 50 U X U Ly 2, for all 2. Converse: If 4 xq 7 = 0
then (E.19) gives « || ©.

3- If 7 € Vect{i, v} then det|z(i, 7, Z) = 0, thus (@ xq ¥, 2)g = 0 thus Z L, @ xq 7.

. . . 1
4 (8 %o T, F)g T2 det(, 7, ) F22) L3 dot(a, 7, 2) T2V £03 (w7, 2)p = 75 (700 T, 2o, trute
a |b
for all Z, thus (E.20). ou

E.2.4 Antisymmetric endomorphism represented by a vector
(€;) is a (-, -)g-Euclidean basis.

Proposition E.13 and def. IfQ € E(Il@;@% is (-, -)g-antisymmetric then 3!Jy, € R3 s.t. Vij, 7 € R3,

(27,2)g = ety 7.2), e Q7 = By % 7 (E.21)

And B, is called the representation vector of Q relative to (€;) and (-,-),. And

0 —c b a
[th = c 0 —a — [Qeg]\é' =|b]. (E.22)
-b a 0

In particular Q.&e = 0 (= Jeg Xeg Weg ), B.€. Ueg i an eigenvector of Q) associated with the eigenvalue 0.
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124 E.2. Vector and pseudo-vector representations of a spin tensor Q2

Proof. ) is antisymmetric, thus [Q2]|z is given as in (E.22). Suppose that a e, satisfying (E.21) exists,

0
WGey = w1€1 + wof + wsfs; Hence [Gy Xg €1]je = | w3 |, cf. (E.19), thus w3 = ¢ and wy = b; Idem with
e
€ so that wq = a. Thus &y, is unique. And &, given in (E.22) satisfies (E.21): It exists. ia

Proposition E.14 Let (-,-), and (-,-), be two Euclidean dot products (e.g. in foot and metre), let (a;)
and (b;) be Euclidean associated bases, let A > 0 s.t. (+,-)q = A2(+, )y, let @, := Guq and &y := Gpp. Then
(change of representation vector for ):

e If (b;) and (d@;) have the same orientation, then &, = A,

B (E.23)
e If (b;) and (d;) have opposite orientation, then &y = —\dJ,,

NB: The formulas &, = £A&, are change of vector formulas, not a change of basis formula.

Proof. Apply (E.20). o
0 -1 0
Interpretation of d.: Suppose [z =a |1 0 0]. So Q is the rotation with angle 7 in the
0 0 O
0
horizontal plane composed with the dilation with ratio a, and [Jglle = a | 0 S0 Wey = a3 is
1

orthogonal to the horizontal plane, hence g, %o is a rotation around the z-axis composed with a dilation
which coefficient is a.

0 —c b
Exercice E.15 Let 0 s.t. [Q)z= | ¢ 0 —a | (see (E.22)). Find a direct (relative to (¢;)) or-
-b a O
0 -1 0
thonormal basis (b;) s.t. [ =Va*+b>4+c* {1 0 0
0 0 0

De 1

a —b
Answer. Let by = —2<— so [53]|g = _——L [ b|. Then let by be given by [51]|g = a o
[[@elle? \/a c Va ’
2+b2+ 2 c 2412 0

—ac
b, L bs. Then let by = b Xe b , that is, b = 1 L —be . Thus 51 is a direct orthonormal
1 3 2 3 1 [ 2]I Va24+b2 \/a21b2+c2 e (bi)

basis, and the transition matrix from (&) to (b;) is P = ([51]|g [52]|,; [53}‘(;). With [Q] ; = P~1[Q)z.P (change
of basis formula), where P~! = PT (change of orthonormal basis).

0 —c b —b —ac
With [Q]z.[b1]je = —— 0 —al. = 1 —be | = VT3] ted),
ith [©Q]jz.[b1]; NG (cb 0 0a> ( g ) e <a2 +ch) a c2[b2]z (expected)

0 —c —ac bc? + b(a® + b?)
[bolis = S S _ _ _ [ S T S S _
[Q]le'[b2]|e /b2 +c2 /a2 +b2+c2 —Cb 2 Oa ’ o2 _ich V/02+c2 \/a2+b2+c? ac a‘(a‘ +b )

abc — abc
—Va2 102+ 2[b1] iz (expected), and [Q)z[bs]z = [0] (expected since by | &). Thus [Q).P =
e —[bl]lg [6]|€) And (P_I[thp)w = (PT[Q]|5*P)U = [bllr‘l;—[th[b]hg gives the result. l.l

E.2.5 Curl (rotational)

Definition E.16 Let (€;) be a Euclidean basis in R3 and 7 be a C! vector field, 7 = Zle v'€;. The
curl (or rotational) of ¥ relative to (&) is the C° vector field curl.% given by

3 Ouz _ Ovy
- 8vi+2 81}1‘4_1 - Oz 93
- " . o £
curl. ¥ = Z(a — = 87) €, le [ewld]z=| 52t — 522 |. (E.24)
o1 9T+l Tit2 Qva _ duy
8.’1;1 81‘2
0
o . N 811 Ul
And curl,7 =""ten 7 x, ¢ (notation due to the matrix product 5 | x| v2 |). This defines the curl
9 v
Oxo E

operator curl, : C1(y; ]1@3) — CO(Qt;H@).
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125 E.3. Pseudo-vector, and pseudo-cross product

Proposition E.17 Isometric framework — imposed Euclidean basis (€;) which is positively oriented
and its associated Euclidean dot product (-,-)g: Then dof, =" dg" and curl, =""*" curl. Let

Qt,ps) = M and let &, =""e1 G be its associated vector relative to the Euclidean ba-

sis (€;), cf. (E.21). Then
1

W= 5011}117. (E.25)
0 9w _ vz Oduvi _ Ous
e oz, Ooxs (?Cfl
Proof. [z = 3 0 9va _ Ovs | jg antisymmetric. Thus (E.24) gives (E.25). wn

89:3 69:2
0

E.3 Pseudo-vector, and pseudo-cross product

We enter the world of the representation of vectors with matrices. M,,,, is the space of m * n matrices.

E.3.1 Definition

Definition E.18 A column matrix is also called a pseudo-vector or a column vector. And the pseudo-
o {M31 X M3z — May

cross product X : } is defined by

R O, _ written _O _,
(Z,9) — x(Z,9) = ¥xy

o T\ o [N T2Y3 — T3Y2 T Y1
Xy= 22 | X | y2 | :=| zay1 —21y3 |, when Z= | x and 7=\ 1y2 |. (E.26)

xs3 Y3 T1Y2 — T2Y1 xs3 Y3

E.3.2 Antisymmetric matrix represented by a pseudo-vector

Definition E.19 The pseudo-vecteur 8 € M3, associated to the antisymmetric matrix A = [A4;;] =
0 —c b o a o
¢ 0 —a | € Mszisthematrixw:= | b | € M31: So w satisfies
—b a 0 c
n
O
Ag=8xgl Vi=|w|. (E.27)
Ys

E.3.3 Pseudo-vector representations of an antisymmetric endomorphism

(+,-)g is a chosen Euclidean dot product and Q € E(H@;R_‘?’) is a (-, -)g-antisymmetric endomorphism 1i.e.
s.t. QT = —Q (i.e. (Q7.4, W), = — (i@, QW) for all @, € R3).
Then choose a positively oriented (-, -),-Euclidean basis. Thus [}z is an antisymmetric matrix and

o) . I . 00, .
call w the associated pseudo-vector: V& € R3, [ z.[0] e = WX [1] |z, written

Q).[7] = @x][d]. (E.28)

This formula is widely used in mechanics, and unfortunately sometimes written Q.9 = & x v

Be careful: (E.28) is not a vectorial formula; This is just a formula for matrix calculations which
can give false results if a change of basis is considered; E.g., consider the basis (b1, b, b3) = (—€1, €2, €5):
(b;) is also a (-, -)4-Euclidean basis but with a different orientation.

-1

1- Vector approach: The transition matrix P from (&) to (b;) is P = | 0 . Q being an
0

O = O

0
0
1
endomorphism, we have [Q]Ig = P~1[Q]|z.P (change of basis formula). Thus | (

125



126 F.1. The Riesz representation theorem

gives
-1 0 0 0 —c b -1 0 0 0 ¢ —b
[Q]‘g =0 1 0)J.{ ¢ O —a].lO0 1 O0)=[-<c 0 —al. (E.29)
0 0 1 -b a 0 0 0 1 b a 0

Thus the representation vectors &, and & are, cf. (E.22):

o a . a . (Ee = CLC?l —+ bajg —+ Cé_ig,
[Gelle=1 0], [Gelg={-b], ie = - - - thus
Wy = ab1 — bbg — Cbg,

&l

s — @ (E.30)

(Or simply apply (E.23).)
O O
2- Matrix approach and pseudo-vectors: (E.27) gives [Q]z.[0]|z = 86 x[v]|e and [Q]ll;.[ﬁ]lg = 81, X [zﬂlg,
with

a a
oo.)e =10 and 8;) =|-b], so 8;, + foo.)e : can’t be written = & (E.31)

—C

. . O O o . O .
because a unique notation w of both &, and Wy, is absurd. Moreover such a w can’t represent a single vector

because it does not satisfy the vector change of basis formula 8;, # Pil.ge (in fact [Q]lg = P71z P).

Thus the matrix notation & can only be used if no change of basis (even Euclidean) will ever be used...

F Riesz representation theorem

Framework: E := (E, (-,-)4) is a Hilbert space, i.e. a vector space E with an inner dot product (-, )4 s.t.
(E.|].]lg) is complete (with ||.||g :== 1/ (-, )4 the associated norm).

And E* = L(FE;R) is the space of continuous linear forms on E = the space of linear “measuring
tools” on FE.

(A linear function ¢ : E — R is continuous iff 3¢ > 0 s.t. V& € E, |[((Z)| < c||#||g. And then

|||+ := sup) z|,=1 [¢.Z] defines a norm in E*, and (E*,|[|.||g~) is a complete space, easy to prove.)

F.1 The Riesz representation theorem

The Riesz representation theorem establishes the converse of the easy statement:
Proposition F.1 If (E,(-,-),) is a Hilbert space then
Vv € E (vector), v, € E* (linear continuous form) s.t. vy.& = (¥,%),, VI € E, (F.1)

and moreover ||vg|| g+ = ||¥]|4-

Proof. Define v, : E — R by v,(Z) = (0,%), for all £ € E. We have v, linear on E thanks to the
bilinearity of an inner dot product. And the Cauchy—Schwarz inequality gives |vy(Z)| = [(¥,Z)4] <
[19]lq ||Z]|g for all £ € E, thus |Jvg||g« < ||T]lg < oo, thus v, is continuous. And |v,(7)| = |(17 0)g]
[19]]g ||]lq, thus ||vg||g= > ||V]|g, thus ||vg||+ = ||¥]|g. Uniqueness: Another w, satisfying wy.Z = (¥, &)
gives (wy — vg).Z = 0 for all £ € E, thus wy — v, = 0. o

e

Theorem F.2 (Riesz representation theorem, and definition) (E,(-,-),) being a Hilbert space,
any “measuring tool” £ € E* can be represented by a vector E:, e E:

V¢ € E* (linear continuous form), EI!ZQ € E (vector) s.t. £.3 = (Zgj’)g, Ve E, (F.2)

g+ And E_;, is called the (-,-)4-Riesz representation vector of £.

Proof. Easy in finite dimension: (¢;) being a basis in E, if [(]jz = ({1 ... #£,) (row matrix since £ is a
linear form) then (F.2) gives [(]z.[Z]|z = [@]g.[ghc [Z ]|c, thus [F] =g ]7 ‘[6]\* (column matrix), thus Fg.
Then [£.2] = |(fy, )| < 1ylgl 711y, with |£.L5] = [(Zy. £5)gl = [1F5llo]1gll,, thus 1]

B = 1fgllg-
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127 F.2. The (-,-)g-Riesz representation operator

General case (infinite dimension e.g. E = L?(f2)). ¢ € E* being linear and continuous, its kernel
Ker/ = ¢=1({0}) is a closed sub-vector space in E. If £ = 0 then [ = 0 (trivial). Suppose £ # 0, thus
Ker! C F, thus 37 € E s.t. Z ¢ Kerl and call 2 its (-,-)4 orthogonal projection on Kerf (Whlch exists
and is unique because Ker/ is closed): We have, Vi, € Kerl, (Z— 2y, %)y = 0. Thus 7@ := ” z Z‘ZOH is a
unit vector in (Ker)*. And 1 = dimR = dim(codomain of ¢) = dim(Ker/)* gives (Kerf)* = Vect{ii}
(see exercise F.3). With E = Ker{ ® (Ker/)! since both vector spaces are closed (an orthogonal is always
closed in a Hilbert space), any ¥ € F satisfies ¥ = Ty + (¥ — T) = To + Mi € Kerl @ (Kerl)t. We
get (Z,7)y = 0+ A|A]|2 = X and £(Z) = 0 + M(71), thus ((F) = (Z,7),0(71) = (&, L(7)7), (blhnearlty
of (-,-)g)- Thus Z = ((n)7 satisfies (F 2). And if 171 and Zg satisfy (F.2) then 0 = (¢ — ¢).%
(Egl Zgg, ) for all ¥ € E, thus 691 - 692 = 0. Thus Eg is unique. And [|[€|[g- := supyz,=1 [((Z )|

Cauch
Sup| |z ,=1 |( s %) gl =5 enwars ||£ lg- v

Exercice F.3 Prove: If / € E* and ¢ # 0 then dim(Ker/)* =1 (= dim(Im(¢)) = dim R).
TSR

r — E‘KerZL X
since £ is linear and £ # 0. And it is one to one since é|Ker,L( &) = 0 = {(&) gives T € (Kerl): NKerl = {0} thus
# = 0; Thus £k, is (linear) bijective, thus dim(Kerf)* = dim(R) = 1. un

Ker/
Answer. Consider the restriction £gq., 1 : { ( ) s _‘}. It is linear (since £ is), it is onto
z

F.2 The (-, -),~Riesz representation operator

(F.2) defines the (-, -),-Riesz representation operator (linear)

—

. E* - FE .
R, : - where (R4 ({),?), =¢.U, YU € E. (F.3)
Tl s Ry =0, Ry

R, is a change of variance operator: Transforms the covariant £ into the contravariant £, thanks to the
i

tool (-, ). With components see (F.6): ¢ down in ¢;, and ¢ up in (6_;]) .

NB (fundamental): Rg is not objective since it requires a man made tool (an inner dot product e.g.
English or French) to be defined. In fact, an isomorphism F <> E* cannot be objective, see § U.2.

With G the set of inner dot products in E, we have thus defined the Riesz representation mapping

. Gx E* - F
R: - - S o (F.4)
{ (9,6) — R(g,0) :== Ry(L) = £y = {(g).

So R has two inputs: A choice (-,-), by an observer for the first slot, a linear form for the second slot.

Proposition F.4 I:Eg is an isomorphism between Banach spaces.

—

Proof. Linearity: (Ry(£ + Am),Z)y = (£ + Am).& = L2+ Mn.T = (R, (0), T)y + AN(Ry(m), T)y = (Ry(€) +
AR, (m), Z),, for all &, gives Ry(£ + Am) = R,(f) + AR, (m). Bijectivity thanks to (F.1) and (F.2), and

HE_;]HQ = ||¢|| g~ thanks to the Riesz representation theorem. n

F.3 Quantification

dim E = n, £ € E* (a linear form), (€&;) is a basis, (e) is the dual basis, notations:
9ij = g ela 6] = Zﬂ e’ g_;] = Z(@)Zé;a ZRUGM giJ [glj] 17 (F5)
i=1
s0 [glie = [9i] € Mun, [l]je = [£;] € M, [Zghé = [( 9)'] € My, [R ]‘ee [R¥] € M,,, are the matrices

representing g(-,-), £, Zg and R in the bases (&) and (¢!). Then (F.2) gives {; = (.6, = (Zg,é'i)g =
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128 F.4. Change of Riesz representation vector, and Fuclidean case

- . —

>0 9(E5,€) = 3, 9is(g)7 thus [T = [g].[4,], thus

] =[g) 17| de (L)'= gL, Vi. (F.6)
j=1

And £, =F3 R, 0 = >, REGE; = 30, RiL;é; gives () = el = >, Rit;, thus 14y = [R,)].107,
thus

(Rl =[g)'| ie [RI]=[g"], and (f,)' =) R, Vi. (F.7)

j=1

Remark F.5 Isometric framework: A chosen Euclidean dot product (-,-), is imposed. If the duality
notations are used, then (£,)? =Written gi anq g, =written gf hecause the bottom index i in ¢; has been
raised by ﬁg to give £'. So * =", ('¢; and (F.6) gives

& 41 4
(F=("7 and Sl =t | =RrYL (isometric framework). (F.8)
o Ly Ly
We won'’t use this ¢ notation (we deal with objectivity: No isometric framework imposed). .

F.4 Change of Riesz representation vector, and Euclidean case

(,-)g and (-,-) are two inner dot products, £ € E*, Zg = ﬁg(é) and 0}, == ﬁh(ﬁ). Thus, V¥ € E,

— —

(ly, %)y = 0.5 = (I, D). (F.9)

Proposition F.6 For one given basis (€;) in E, we have the change of Riesz representation vector
formula:

— —

[B]-10n] = [g]-16g), de. | 0] = [P]"[g].10] | (F.10)

— - 1

short notation for []|z.[0h]1z = [g]2-[lg)|z, i-e- [0n]jz =[]

9lje- 2] |e- In particular
If () =A2(,)n then 0, =\l (F.11)

So, a linear form ¢ can’t be identified with a Riesz representation vector (which one: Zg? o ?).
Conversely, if {}, = )\26_;, for all linear forms ¢ € E*, then (-,-)g = A%(-, ).
NB: (F.10) is a “change of vector” formula (from é__; to €}, due to the change of inner dot product to
represent £); Not a “change of basis” formula (one vector expressed with two bases).

Proof. (F.9) gives [#]T.[g]z[ly]j = [#]T.[h]jz-[0h] ¢ for all &, hence [g)z. [0z = [Blz-[h] e L. (F.10).
In particular A2(-,-), = (+,-), give \2(€y, Z)p = (by, %), =T (£, F)p, for all 7, hence A2, = £},.
Converse: For all £ € E*, 2T, = I, gives N2(Z,, )y = (I, ©)n "= (F,, ), for all 7 and for all 7,

because ég is an isomorphism cf. prop. (F.4), thus A2(-,-), = (-, ), 5

Example F.7 If (-,-), and (-,-), are the Euclidean dot products made with the foot and the metre
then (F.11) gives
0, =N, with X\*>10 : (F.12)

Zg and @), are quite different! So a Riesz representation vector is (very) subjective, and certainly not
“canonical” (a word that you may find in books where... nothing is defined... nor justified...).

Thus, aviation: If you do want to use a Riesz representation vector to represent a £ € R™* it is vital
to know which Euclidean dot product is in use, cf. the Mars Climate Orbiter probe crash (remark A.17).
Recall: The foot is the international unit of altitude for aviation. u
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129 F.5. Riesz representation vectors and gradients

F.5 Riesz representation vectors and gradients
f € CHR™;R), p € R™. The differential of f at p is the linear form df(p) € R™* defined by

Fo+10) = Fb) o e g (F.13)

df (p)-@ = lim W

(definition independent of any inner dot product or basis).
If you choose an inner dot product (-,-), then you can define the gradient grad, f(p): It is the (-, ),-
Riesz representation vector of df (p):

gradgf(p) = ]%g(df(p))7 ie. |df(p).w= (gradgf(p),w)g , Y e R™. (F.14)

E.g. (F.12) gives

grad,, f(p) = A’grad, f(p) with A% >10 (English vs French) : (F.15)
The gradient is very dependent on the observer (a gradient is subjective, the differential is objective).

Remark F.8 Without inner dot products but with a basis, we also have an observer dependence. E.g.,
in the 1-D case with f : 2 € R — f(z) € R, question: What does f’(x) mean? Answer:

11- For one observer, it means f’(x) = limy_q W where in the departure space the observer
has chosen a basis vector @ of length 1 for him (e.g. 1 foot) which he calls @ = 1; So, with explicit notations,

his derivative f(z) is in fact f,(z) = df (2).@ = limy,_,o LEHD=T@),

12- For another observer, it means f'(z) = limp_0 w where in the departure space the

observer has chosen a basis vector b of length 1 for him (e.g. 1 metre), and he write b= 1; So, with

explicit notations, his derivative f’(z) is in fact f(x) := df (x).b = limp_0 w.

13- If b = Ad, then

_ fla+hb) — f(x) . flz4hrd) — f(z)
}zlg%) h a ilg% h h—0 hA k—0

Thus, e.g. with foot and metre,
fo(x) = Afl(z), with A~3.28, so fi(z)# f.(z). (F.16)

In other words, f/(z) = opposite side

= 2———""—— depends on the length unit of the adjacent side: foot? metre? om
adjacent side

Exercice F.9 We have f{(x) =16 \f/(z) and grad, f(z) =15 A\2grad, f(z). Why?

-
—

Answer. Because (F.16) does not use the Riesz representation theorem. Details: (@) and (b) are two bases
in R, associated inner dot products (-,-)s and (-,-)s, and b = A@; thus (-,-)a = A2(-,")p. And fi(z) = \fi(x)
gives (gradful(z), B)o =71 df (2).F = fi(z) = Mi() = Adf(2).d =19 Ngradfa (), @)a = (gradfs(z), A}y =

N2 (grad fa(z),@)s, so gradfy(z) = A2grad fa(z) as expected. .
Exercice F.10 With ||.||, :_'/\||.||h we have \|Eh||g = A||€h]|n- Does it contradict the Riesz representation
theorem which gives [|¢|| = |[¢4]|?
Answer. No, because ||¢|| := sup; % depends on the norm |[|.||z» chosen; Here ||.||z» is either ||.||g or ||.||x.
And if ||4||4 = supf% (you have chosen the ||.||zn := [|.||g), then ||{|[n = sup;.pn Il\ff“'i\l\j;l, = SUP;cpi %‘ﬁg‘lg =
ASUp ;g “lggﬁi = A||¢||g- Don’t forget: ||¢|| = sup(...) depends on the choice of a norm: ||.|[4? ||.||n? u
F.6 A Riesz representation vector is contravariant
Zg is a vector in FE so it is contravariant. To be convinced:
Exercice F.11 Check:

[thmﬂ = P_l.[lzyhdd (contravariance formula). (F.17)

Answer. Consider two bases (@;) and (b;) in E and the transition matrix P from (a@;) to (b;). Thus [@; =
P~'.[#); and g = PT.[g]|a.P, and £.Z = (,, %), for all & gives

(#5913 [G)ja = 0.2 = [#5.19) 510 s = ([@]a-P~T)-(PT.[9)ja-P).[lo) 5 = [#fa-lg)ja- (P[4 ), (F.18)

thus [Zg]‘@ =P [f_;]‘g since [g] is invertible (an inner dot product is positive definite). un
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150 F.7. What is a vector versus a (-,-)g-vector?

Remark F.12 e Dont forget: A representation vector Zg is not intrinsic to the linear form ¢ because it
depends on a (+,-), (depends on a observer: foot? metre?).

e It is impossible to identify a linear form with a vector (which one?).

° Zg is mot compatible with the use of push-forwards, cf. § 7.2.

° 6_;, is not compatible with the use of Lie derivatives, cf. (9.56). n

F.7 What is a vector versus a (-,-),~vector?

. Originally, a vector is a bipoint vector ¥ = AB in R? used to represent a ‘“material object”. E.g. the
height of a child is represented on a wall by a vertical bipoint vector Z starting from A the ground up
to B a pencil line. The vector & is objective: The same vector for all observers; Then to get the height
of the child an observer uses “its own unit” (foot, metre...) to give a value (subjective).

. Then (mid 19th century), the concept of vector space was introduced: It is a quadruplet (E,+, K, .)
where + is an inner law, (E,+) is a group, K is a field, . is a external law on E (called a scalar
multiplication) compatible with + (see any math book).

. Then a scalar inner dot product (-,-), in a vector space E was introduced.

. We can then get non “material” vectors (“subjectively built vectors”). E.g., usual vector space R3
of bi-point vectors, its dual R3* := L(R3;R), ¢ € R3>* (a measuring device), foot built Euclidean
dot product (-,-)g, metre built Euclidean dot product (-,-),. We get the artificial (man made) Riesz
representation vectors ¢, = Ry(¢) and ¢, = Ry,(¢), cf (F.12), and £y # {},.

. Remark: with differential geometry, a vector ¢ is redefined: It is a “tangent vector”, which means that
there exists a C! curve ¢ : s € [a,b] — ¢(s) € E such that ¥ is defined at a p = ¢(s) € Im(c) by
U(p) := &’(s). Advantage: This definition of a tangent vector is applicable to “tangent vectors to a

surface” (and to a manifold), see e.g. § 9.1.1,2-. Then it is shown that ¢ is equivalent to % = the
directional derivative in the direction ¥ (natural canonical isomorphism E ~ E** see § U.3).

For other equivalent definitions of vectors, see e.g. Abraham—-Marsden [1].

F.8 The “(-,),~dual vectorial basis” of a basis (and warnings)
F.8.1 A basis and its many associated “dual vectorial basis”

E vector space, dim E = n, inner dot product (-, )4 (e.g. Euclidean foot-built).

Definition F.13 The (-, -)s-dual vectorial basis (€;4) (or (-, -)4-vectorial dual basis, or (-, -)s-dual basis)
of a basis (€;) in F is the (contravariant) basis in E defined by

VJ = 1, ceey 1, (gigygj)g = 52‘]‘, i.e. 6;‘9 'qéj = 5” (Flg)

NB: A vectorial dual basis is not unique: It depends on the chosen inner dot product, see e.g. (F.21).
NB: €, is contravariant: €, € £. So with Einstein’s convention the index ¢ in €, is a down index.

Exercice F.14 Prove that the vectors €;, satisfy the contravariant change of basis formula

[€iglinew = P~ ".[Eigljaa  (the &4 are “contravariant vectors”). (F.20)

Answer. e First answer: €, is a vector in F, thus it is contravariant.
e Second answer = direct computation: Consider two bases (@;) and (b;) and the transition matrix P from
I

(@) to (b;). (F.19) and the change of basis formulas give [éj]ﬁ.[g]|a.[€i9 a = (€ig,€5)g = [é’j]lql;.[g]lg.[é}g]lg =
(P=1[g)ia)" (P [9)a-P)-[€ig) ;5 = [€][a-19)ja-P.[Eig] 5, for all 4, j, thus [Eig]ja = P[€g)j5, for all i, ie. (F.20).
e Third answer: Apply (F.17) since €4 is the Riesz-representation vector of e*, see (F.22). un

Exercice F.15 One basis (€;) in E, two inner dot products (-,), and (-, -)p (e.g., foot and metre built).
Call (€;,) and (&) the (-,-), and (-, -)p-dual vectorial bases of the basis (€;). Prove:

() =N = &= N4, Vi. (F.21)

E.g., A2 > 10 with foot and metre built Euclidean bases: €j; is much bigger than &, : A vectorial dual
basis is not intrinsic to (€;) (not objective).

Answer. (Flg) gives (gib, é}‘)b = (57;]' = (éia, éj)a = )\2(57;&, é'j)l” thus (ab — )\2é‘m, Ej)b = 51‘3‘, fOI‘ all l,] -.-
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131 F.8. The “(-,-)g-dual vectorial basis” of a basis (and warnings)

Remark F.16 If (&) is a (-, -)-orthonormal basis we trivially get é&;, = €; for all ¢, i.e., (€4) = (€;).This
particular case is not compatible with joint work by an English (foot) and a French (metre) observers. au

Definition F.17 (Equivalent definition.) Let (¢‘) in E* be the (covariant) dual basis of the basis (&;)
(the linear forms defined by e’.€; = §;; for all j, cf. (A.6)). The (-,-),-dual vectorial basis of the basis
(€;) is the basis (€;,) in F made of the (-, -),-Riesz representative vectors of the e':

€y = Ry(e?), ie. defined by (&,,7), = €'.7, Vi€ E. (F.22)
where Rg is the (-, -)4-Riesz operator (change of variance operator cf. (F.3)).

F.8.2 Components of €, in the basis (¢&;)
Basis (¢;), inner dot product (-,)g, [g] = [gi;] == [(€},&})], [g] 71 ="ritten [gid].
Proposition F.18 The transition matrix from (€;) to (€q) is P = [g]~ ! i.e. the components of €;, are
Pi; = g% for any j € [1,n]y,
n n
€ig = Zg”é;-, Le. €g4= Zszé'i where P'; =g", le. [€j]e= [g]fgl.[gj]|g. (F.23)
= i=1

(Einstein’s convention is not satisfied because R, is a change of variance operator.)

Use classic notations if you prefer: €;, = Y, P;;€; where [P;;] = [g:;] 7"
And the matrix of g(-,-) in the basis (€;4) is the inverse of the matrix of g(-,-) in the basis (€;):
9(Cig,€jg)) = [glies, = lalie. ™ = (lg(E, &))" (F.24)

Proof. (F.19) gives

Vi, j, [€]{=19]1e-[Eiglie = 05 = (€] @z, thus  [g]ja.[Eg)1z = [Eilja Vi, (F.25)
thus (F.23). (Or apply (F.7) = generic Riesz representation result.)
Then, [g]jz being symmetric, g(€ig,&j9) = [Eigliz-lg)ie-[€g)ie = [Eilz-[9lie™ -[9)je-l9lie™ " [E)]1e =
[a]\g’[g]leﬂil[é‘j]\é = ([g}le )1]; thus (F24) o
*2 1 0 1 1 0 1> [ ]
Example F.19 R?, [g]z = 0 2 , thus [¢ ]‘5 =l 12 . Thus €14 = € and €34 = ;€. ua
;

Remark F.20 M = [g]z = [M;;] is a matrix, and its inverse is the matrix M~ = [M;;]™! = |[N;;]: A
matrix is just a collection of scalars, it is not tensorial (has nothing to do with the Einstein convention),
and its inverse is also a collection of scalars, and you don’t change this fact by calling M~ = [M¥ ]
And because P'; equals ([g];!)ij = _written g'J, some people rename €, as €7... toget €7 = Y1 ¢¥é;...
to have the illusion to satisfy Einstein’s convention, which is false: They confuse covariance and contravari-

ance... and add confusion to the confusion... an

F.8.3 Multiple admissible notations for the components of ¢},

Let P € L(E; E) be the change of basis endomorphism from (€;) to (€),i.e. P.€; = €}, for all j. And
let P = [P]|z = the transition matrix from (€;) to (€j4). We have multiple admissible notations

€jg =P.€j = prez = Z i€ = > (Py)'ei =Y P;é;, (F.26)
j=1

j=1 j=1

i.e. the i-th component of the vector €j, has the names P;; = (P;); = (P;)’ = P*; or P}, i.e. P = [Pz =

[Pi;] = [(P)):] = [(P;)"] = [P?}] (four different notations for the same matrix), i.e.
Py (Pih P (P)*
Vi, lGgle=Plele=| : [=|  [=]| ¢ |=| (F.27)
Pnj (Pj)n Py (75)"

= the j-th column of P. You can choose any notation, depending on your current need or mood...
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132 F.8. The “(-,-)g-dual vectorial basis” of a basis (and warnings)

F.8.4 (Huge) differences between “the (covariant) dual basis” and “a dual vectorial basis”
1. A basis (€;) has an infinite number of vectorial dual bases (€;4), as many as the number of inner dot
products (-, ), (observer dependents), see (F.23).

. While a basis (€;) has a unique intrinsic (covariant) dual basis (7.;) = (e), cf. (A.6): Two observers
who consider the same basis (€;) have the same (covariant) dual basis.

. If you fly, it is vital to use the dual basis (7.;) = (¢%): It is possibly fatal if you confuse foot and metre
at takeoff and at landing (if you survived takeoff...).

. Einstein’s convention can help... only if it is properly applied.

F.8.5 About the notation ¢ = shorthand notation for (g*)”

Definition F.21 g¢(-,-) = (-,-), being an inner dot product in F, the Riesz associated inner dot product
¢*(-,-) = (-,"),+ in E* is the bilinear form in £(E*, E*;R) defined by, for all £,m € E*,

(£,m) e := (Lg,1714), when €, = R,(f) and iy = Ry(m). (F.28)

(g*(-,) is indeed an inner dot product in E*: easy check.)
So the (7) tensor g is created from the (5) tensor g using twice the (-, -),-Riesz representation theorem.

Quantification: Basis (¢;) in E, covariant dual basis (e') in E* (duality notations). (F.28) gives:

i i . (F.28 5 . F.23 _ . i —
()7 = g, e) "2 gig ), thus [0 2V = [0 de (@) =)t (F29)
shorthand notation: |[(g*)¥] written [g9] . (F.30)
Classical notations: [g]jc = [(9%)i;] = [0 (er, 7ej)] = [9(Eig1 @) = l915]* = ([g)je) "

Exercice F.22 How do we compute g#(¢,m) with matrix computations?

Answer. ¢ = > " (' and m = Z?Zlmjej give g*({,m) = szzl&mjgﬁ(ei,ej) = szzlﬂi(gﬁ)ijmj =
e [gﬁ]‘g.[m]‘g = [{]je-19] fe}[m]@ (a linear form is represented by a row matrix,). .

Exercice F.23 Purpose: Prove I ~ g% and (¢%)” = g and (g%)* = g.
1- Start with the (g) tensor g, use the (-, -),-Riesz representation theorem just once: Prove that you
get the (}) tensor g% € L(E*, E;R) ~ L(E; E) which is the identity endomorphism:

g ~ 1. (F.31)
2- Show that if you start with the (;) tensor ¢* and you apply the (-,-),-Riesz representation theorem
once then you get the () tensor gf.

Answer. 1- ¢° € £L(E*, E;R) is defined by ¢° (¢, @) = (£y, @), for all ({,7) € E* x E, where {, is the (-,-),-Riesz
representation vector of £. Thus ¢(¢, @) = £.40 = £.1.17, for all (£, @) € E* x E, hence g € L(E*, E;R) is naturally
canonically associated with the identity I € L(E; E).

2- g* (£, ) = L8 = (0y, W)y = (¢, wy) ¢ where Wy = (Rg) ™" ..

G Cauchy—Green deformation tensor C' = FT . F

= [loT1x 0 5B
. (t, POlzj) — $(t, Roy)
is fixed, ®(t,py,) = ®(t, (t, Roy;) when py = B(ty, py,), PP (p,o) = ®%(t,p;,). When t is fixed, & := O :

} is a motion of O, Q; = &)(,Po@v) is the configuration of Ol at ¢, t

n n
{Qto = } 3 B o) R}, —K;
an ptO = pfO : . . (I) -, —(I)
Po == W — @ = Fpy) W := lim (p“ﬁhv? (Pr)
—

(deformation gradient at py, between #; and t).
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133 G.0. Summary

G.0 Summary

Counstruction of C' (summary of Cauchy’s approach): ¢ and t, are fixed and

1- At ¢y, consider two vectors Wi and W, at a point P € Q.

2- At t, they have been distorted by the motion to become the vectors FW; and F.Ws at p = O(P).

3- Then choose a Euclidean dot product (-,-), ="t . .. the same at all ¢.

4- Then, by definition of the transposed, (F.Wy)e(F.Ws) = (FT.F.Wy)«Ws,: You have got the
Cauchy strain tensor C := FT.F; We have (E.Wy) « (F.Ws) = (C.W1) « Wa.

5- Then (F.Wy) « (F.Wa) — Wy« Wy = ((C—1I).W1) « W, gives a measure of the deformation relative
to Wl and V_Vg, value used to build a first order constitutive law for Cauchy’s stress.

G.1 Transposed F': Inner dot products required
G.1.1 Definition of the function FT

. . Q. — L(R?;R?
to and t are fixed, ty < t, ®lo =Written ¢ gl = [lo = g =written g { fo (Ry, t)}. At t,

P — F(P)

a past observer chose an inner dot product (-,-)¢ in I@Z), and at ¢ a present observer chooses an inner
dot product (-,-)q in RP. With P € , and p = ®(P) € {1, the transposed of the linear map F(P) €
£(I§%,I§?) relative to (-,-)q and (-, -)4 is the linear map F(P)f, € E(I@?,I@Z’) defined by, for all Up € Hig

vector at P and ), € R? vector at p:
(F(P)&gWp,Up)c = (F(P).Up, wy)g, (G.1)

when to, t, P are implicit. Full notation: (F*(P)%_.@,,Up)g = (F{°(P).Up,w,),. This defines

g

Q — L(RYRY)

itten 7
(F)Gy "= Fy ~ (G.2)
J 7 p —|F&,(p) :== F(P){,| where P=&"(p),
SO
(Fy(p)Bp, Up)g = (F(P).Up, W)y, written in short | (F”.15)+, U =+, (F.U) (G.3)

Exercice G.1 1. With the ambiguous notation FTZW = ZFW = FW.Z = W.FT.Z, which dots are
inner dot products?
2. With ambiguous notations, what does F.W;.F.Wy = W1.FT.F.W5 mean?

-

Answer. 1. No choice: (W,Z) € R}, x R} and meaning (F”.2) o, W = Zo (FW) = (F.W) ¢, = W o, (F".2).

2. No choice: Wy, Wa € ]@% and meaning (F.W;) % (F.Ws) =W, o (FT . F.Wh). u
Remark G.2 On a surface Q (a manifold), (G.1) is defined for all (Up,@,) € TpQy, x T,.

G.1.2 Quantification with bases (matrix representation)

Classical notations: (d;) is a basis in I@’tg, and (b;) is a basis in R?. Marsden—Hughes notations: (E;) is

a basis in I@% and (&) is a basis in R?. Let (lighten notations)

Gij = (@i,d;)a, gij = (bi,b;)g, F.@j = iFiﬁi, FTp; = zn:(FT)ijaj, (G.4)
i=1 =1
so [G] = [Glia = [Gyy), 9] := l9)5 = lgis] [F] o= [F) 5= [Fy), [FT) = [FT) 50 = [(FF)y)-

—

(G.1) gives [U)T.[G].[FT.w] = [F.U)".[g).[] for all U, w, thus

[GL.IFT] = [F]".[g], te. |[F']=I[G]""[F]".[g]} (G.5)
D Ga(F )y =D Frigry, ie (FT)iy = 27: ([C1Y)inFerges (G-6)
k=1 k=1 k=1

Duality notations: Gy = G(Er, E;), gi; = ¢(€,&;), F.E; =" Fig FT& =" (FT) E; and
)5 Gij J =147 j =1 j
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134 G.1. Transposed FT: Inner dot products required

Z G[K(FT)Kj = ZFkngj7 ie. (FT)Ij = Z GIKFIE(gkj where [GIJ] = [G[J]_l.
K=1 k=1 K,k=1

—

Remark G.3 If (@;) and (b;) are (-,-)¢ and (-,-)g-orthonormal bases, then [G] = I = [g¢], thus [C] =
[F]T.[F]. But recall: If you work with coordinate systems then the coordinate system bases are not
orthonormal in general, i.e. [G]™! # I and/or [g]~! # I in general. oa

Exercice G.4 Detail the obtaining of (G.6).

Answer. (F".b;,d@)c = (b, F.ii)g gives (X, (FT )kyiin, @i)e = (biy ey Frabi)g, thus S5y (F )iy (@, @) =
ZZ:1Fki(bj7 bk)g,thus Zzzl(FT)ijki = Zzlem‘g]’k, thus (Gﬁ) -.-

G.1.3 Remark: Usual classical mechanics isometric framework

We can choose a unique Euclidean basis (@;) in ﬁg at all time, so (b;) = (@;) € R?, and (-,-)g = (-, g
is the associated Euclidean dot product; Thus [G];z = I = [g]|a, and F{,, =written pT" and thus [FT); =
([F)ja)*, written

[FT] = [F]T : usual classical mechanics isometric framework. (G.7)

G.1.4 Remark: F*

For mathematicians (no “magic tricks”):

Definition G.5 The adjoint of the linear map F € E(I@g;l@?) (acting on vectors) is the linear map
F* e L(Rr, @g*) (acting on functions) canonically defined by,

Vm e R}, F*(m):=moF, written F*.m=m.F (€ R} (G.8)
because F* is linear. Le. F* is characterized by, for all (m, W) € I@?* X ]ﬁg),
(F*.m).W = m.F.W (€ R). (G.9)
NB: There is no inner dot product, no basis here: This is an objective definition.

Quantification = matrix representation. With Marsden notations: (E?) and (e’) are the (covariant)
dual bases of (FE;) and (€;), and F’; and (F*);’ are the components of F' and F* relative to the chosen
bases: So

FE;=Y Fi&, ie [Fl=[Flg.=[F) . "2 [F)] and
. (G.10)
Frel =Y (F)PE", ie [F]:=[F"p= [(F*) )izt written 1 gy ),
Jj=1,...,n
I=1
And (G.9) gives (F*.¢/).E; = ¢l . F.E;, thus
Vi,j, (F*)9 = Fi;, ie. [F*]=[F]T. (G.11)

Classic notations: F.Eij = Zl Fijgia [F] = [ ijs F*.ij = 7IL:1(F*)ij7Taiv [F*] = [(F*)ij], and
(F*.ﬂ'bj).di = Waj.F.di gives (F*)z_] = Fji~ (G12)
NB: There is no inner dot product.
Interpretation of F™* in classical mechanics: We introduce Euclidean dot products, (-, )¢ in Hi,’%
and (-,-)y in R?. Then we use the (-,-)g-Riesz representation vector Rg(F*.m) € I@Z’ of F*.m €
I@g*, and the (-,-),-Riesz representation vector ]:Tig(m) € R’ of m € R*. Thus (G.9) and (F.3) give
(Reg(F*.m),W)g = (Ry(m), FW), = (FT.Ry(m),W)q, thus Rg(F*.m) = FT.R,(m), written
Rg.F* =FT.R,, ie F*=Rg 'FT.R,. (G.13)

NB: The definition of F* is intrinsic to F' (objective), while the definition of F” is not intrinsic to F'
(not objective) because its definition requires inner dot products (observers choices).
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135 G.2. Cauchy—Green deformation tensor C

G.2 Cauchy—Green deformation tensor C
G.2.1 Definition of C

tp and t are fixed, ® := &, F := Fl°, P € Q, and p = ®(P) € Q, i = 1,2. Consider the W;(P) € @%
vectors at P and their push forwards at p:

@i(p) = F(P).W;(P) € R}, written @ = F.W;. (G.14)

Choose inner dot products (-, )¢ in Hig and (-,-), in R?. Thus

(@1, 18a)g = (F-Wh, FWa), = (FT.E.Wy, Wa)g. (G.15)
C

More precisely: (i1, Wap)g = (F(P).Wip, F(P).Wap)y = (F&,(p).F(P).Wip, Wap)c-

Definition G.6 The (right) Cauchy—Green deformation tensor between # and ¢t at P € ), relative to
(+-)as (-)g is the endomorphism Cy (P) ="M Cgy(P) € L(RY;Ry) defined by

Cag(P) :=Fg,(p) o F(P), written ] C=FToF=FTF \ (G.16)

the last notation because FT is linear.

So
CFToFFT.F:{@i%_) @;_L, - R . . (G.17)
W — F(W) = FL(F(W)) = C(W),
and (G.15) tells that, for all Wy, W, € @g,
Wy oy Wy = (C.W1) o, W = (F.W7) o) (F.W?). (G.18)
Moreover C'is a (-, -)g-symmetric endomorphism in I@”, i.e., for all Wl, Wy € @g,
(CW, Wa)g = (Wi,CWa)g, ie. (CW1)e, Wo=Wis, (C.W2), (G.19)
since (FT.F.W17W2)G = (F.W17F.W2)g = (W1,FT.F.W2)G and (-, )¢ is symmetric.
G.2.2 Quantification
With (@) and (b;) bases in R} and Rp, [C] =(G19) [FT].[F], with [FT] = [G]~".[F]".[g], thus
[C] =[G IFI".[glIF]| (= [FTLIF)), (G-20)

short notation for [Ca,liz = (G2 ([F] E,E)T'[g}lg‘ [F1,z 5

Exercice G.7 Use classical notation, then duality notations, to express (G.20) with components.
Answer. Classical notations: F.d; = Z?leijgi, C.a; = 327, Ciyjdi, [Fliz5 = [Fiy), and [Cljz = [Cij] give

>0 Chj (@, @k )e = (@i, Y2, Crjin)a = (@i, C.d@;)a = (F.ai, Fud;)g = (3, Fribr, X Foibe)g = 32500 Fri(b, be)g o,
thus

ZGikaj = ZFkigleZj = Z ([F]T)zk greFej, thus Cy; = Z ([G]il)ikamngFZj- (G.21)
k=1 k=1 k=1 k,6,m=1

Marsden duality notations: F.E; = Y1 F'&, C.E; = Y1, CEy, [F] 5 . = [Fy], [C] 5 = [C"] and

ZG}KC’KJ = Z FkI gnge‘]7 and CIJ = Z GIMFICM gMFeJ when [GIJ] = [G[J]_l. (G.22)
K—1 ke=1 k6, M=1

Matrix equalities: [G].[C] = [F]”.[g].[F] and [C] = [G]*.[F]".[g].[F]. ou

Exercice G.8 (-,-)¢ is a Euclidean dot product in foot, (-,-), is a Euclidean dot product in metre, so
(y)g = #2(, )¢ with p = 0.3048; And (a;) is a (-, -)g-orthonormal basis, and (b;) == (@;). Prove:

[C] = w?[F]".[F]. (G.23)

Answer. [C); =92 [G] - [F] 2.19)ja-[F)ja.a gives [C)z = L[F){ 5.4*I.[F]|z,3. Shorten notation = (G.23). d

|a@ la,a
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136 G.3. Time Taylor expansion of C

G.3 Time Taylor expansion of

A time Taylor expansion implicitly imposes “along a trajectory of a fixed particle”.

So let P be fixed, F'(t, P) := F9(t) =""iten p(3) and O(t) = FT(t).F(t).

And we use a unique Euclidean basis (@;) and the associate Euclidean dot product (-,-)g = (-,-)4 at
all time. So [C(0)] = [P(O]".[F(6)] = [C)t) = [F]” (0).[F](0).

And Vio(t, P) ="ritten 1/ (¢) and A% (¢, P) =""ten A(¢) (Lagrangian velocities and accelerations).

And ®(t+h, P) = ®(t, P) + hV(t, P) + & A(t, P) + o(h?) gives F(t+h, P) = F(t, P) + hdV (t, P) +
B2 dA(t, P) + o(h2), written F(t+h) = F(t) + hdV (t) + & dA(t) + o(h2), thus

[C(t+h)] [F(t+h)]T.[F(t+h)] = [F]F (t+h).[F(t+h)]

(tF)" + nav h; dLA" + o(n?)]) (IF + hdlV] + %2 dlA] + o(h2)]) (1)
2
(11

T).[dV]+[av]".[F]) + % (IF).[dA]+20aV]" [aV]+[dA] [F]) + o(h) ) (1),

Together with [C(t4h)] = [C()] + h[C' ()] + 2 [C”(1)] + o(h2) we get

[C'] = [FT].[aV]+[dV]T.[F] and [C"] = [F]".[dA]+2[dV]".[dV]+][dA].[F). (G.24)

—

In particular [C”(t)] = [dV (to)]+[dV (to)]T and [C"(to)] = [dA(to)]+2[dV (t)]T.[dV (to)]+[dA(te)] ", thus

2

[C(to+h)] = I + h ([dV]+[dV]T) (k) + —

5 ([dA]+2[aV T [dV]+[dA]T)(to) + o(h?). (G.25)

Abusively written C(to+h) = I + (dV + dVT)(t) + %2 (dA + 2dVT.dV + dAT)(ty) + o(h?), but don’t
forget it is a matrix meaning.

With Eulerian variables and ¥(¢,p) and ¥(t,p) the Eulerian velocities and accelerations at t at p =
® (¢, P) : We have dV'(t, P) = di(t, p(t)).F(t) and dA®(t, P) = d¥(t, p(t)).F(t), thus

OB (t+h) = CB(t) + h (FT(t).(dv + diT)(t, p(t)).F(t))
G.26
+ %2 (FT(t).(d7 + 2d5™.di + dyT)(t, p(t)).F(t)) + o(h?). (G-26)

abusive notation of [C9(t+h)] = ... (matrices).

Remark G.9 F” = dAis easy to interpret, but € = FT.dA+2dVT.dV +dAT . F = (FT.dA+dVT.dV)+
(FT.dA+dVT.dV)T is not that easy to interpret (and in not linear in V).

We already had a problem with the composition of flows: The (deterministic) formula Ftt0 = Ftt; Fttf
is straightforward, but the formula C{0 = (F°)T.F/° = (Ff)T(F/)T . F{} F° = (F)T.C{.Ff° is “not
that simple” (# C;L.CP).

Since C'(t) = dV(to) + dV(tO)T this may have little consequences for linear approximation near ty,

but ultimately not small consequences for second-order approximations (and large deformations) if C" is

used to make constitutive laws. The consideration of Lie derivatives may be an interesting alternative. am

G.4 Remark: ¢’

For mathematicians. For the general ® notation see § A.12.7.

G.4.1 Definition of C”

Definition G.10 At P € ,,, the bilinear form C’gg(P) —written ¢ ¢ E(I@g, @Z), R) associated with the

linear map Cg,(P) ="ritten ¢(p) =written ¢ ¢ E(@%,@g) is defined by, for all Wy, W, € ]@Z] vectors
at P,
C* (W1, W) := (W1,C.Wa)g (= (FWy, FWa),). (G.27)

NB: From the (1) tensor C' we have built the (g) tensor C”, thanks to inner dot products: Change in
variance.
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137 G.5. Stretch ratio and deformed angle

C" is a bilinear symmetric form (trivial) and is a metric in I@g since F si a diffeomorphism; But C”
is not a Euclidean metric (unless C' = I i.e. for rigid body motions i.e. no deformations).

-,

Quantification: (G.27) gives [W]T.[C?].[W1] = [Wa]T.[G].[C].[W1] for all Wy, W, since C* and (-, )¢
are symmetric, thus

(€] =[GlIC] (= [F]".[g].IF)). (G-28)
More precisely: [Cb]‘é = [G]\E'[C]\E = ([F]\E,E)T'[g]\é'[Fh 5o
Duality notations: C” = Y1 Ci;ET®@ E7 and C.E; = IEZ- and G =), GriE!' @ E7 give
Cry=>» CK,Gkr (= FrrgreF’y). (G.29)
K
Explains the flat notation: I is up in [C] = [C)] and T is down in [C*] = [C},] (change of variance).

(Classical notations: C” = ZZ] CijTai ® a5 and C.d; = Y, Cj;d; and G = Zij GijTai @ Ta; give

(C)ij = ZGikaj (= Z FrigreFej). (G.30)
k ke

G.4.2 Remarks, and Jaumann

C® can also be defined only with (-, -)g by, for all Wi, W, € I@g,
CZ(Wl,WQ) = (F.Wl,F.WQ)g, (G31)

i.e., C”:= C} := g* the pull-back of the metric (-,-)4 by ®, see (8.9).

e C"” is mainly useful to characterize a deformation: To compare the value Cb(VT/l, Wg) with (Wl, Wg)g,
i.e. if a Euclidean dot product (-,-)¢ was introduced in I@% This is why C” is classically defined from C,
cf. (G.27).

e There is no objective “trace” for a () tensor like C”, while Tr(C) is objective (endomorphism).

e The Lie derivatives of a second order tensor depends on the type of the tensor, and the Lie derivative
of the G) tensor like C' gives the Jaumann derivative, which is usually preferred to the Lie derivative of
the (g) tensor like C* which is the lower convected Lie derivative, see next remark G.11.

e So the introduction and use of C” in mechanics mostly complicate things unnecessarily, and interferes
with basic understandings like the distinction between covariance and contravariance.

Remark G.11 Interpretation issue with Jaumann (and the use of C” should be avoided in mechanics)
L ~ AT
With %:(230) = d(£Y) — dv.dv = dy — dv.dv and with orthonormal bases, 2D = D(dv) + (dv)
dy + dy’ — dv.dv — dvT.dvT (matrix meaning), thus, with (G.26) (matrix meaning),

c'(t)=F@)" (2% + dv.dv 4 dvT.di" 4 24T .d) (¢, p(t)). F(t)

=2F(t)" (%—D + D.dv + diT D) (t,p(t)).F(t).

(G.32)

The 22 + D.dv + di'T.D term looks like a lower-convected Lie derivative, but with do” instead of do*,
cf. (9. 63) So you may find (G.32) written C” = 2FT.L;D.F (isometric framework); But should not

. A’ 4T o
be written (C*)” = 2FT.L5D’.F where D!, := M because then L£zD) a priori means the lower
convected Lie derivative (disappointing results). un

G.5 Stretch ratio and deformed angle

Here (-,-)g = (-,")q, i.e. at & and ¢ we use the same Euclidean dot product, to be able to compare the
lengths relative to the same unit of measurement. (If (,-), # (-,-)¢ then use (-,-), = p2(-,")g-)
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138 G.6. Decompositions of C

G.5.1 Stretch ratio
The stretch ratio at P € I@g between ¢, and ¢ for a Wp € @g is defined by

» 7 Fp.W ¥
Ap) = Atlle. _WEe Welle ey (G.3)
|Wella [Wella [|Wp||a

where W, = Fp.V_[}p is the deformed vector by the motion at p = ®(P). I.e., in short
VW eRY st. |[W]| =1, XW):=||[FEW]. (G.34)
(You may find: A(dX) = ||F.dX|| with dX a unit vector(!); This notation should be avoided, see § 4.3.)

G.5.2 Deformed angle

Recall: The angle 6, = (Wy, Wa) between two vectors Wy and Wy in R:’é—{ﬁ} at P € Qy is defined by
W, W
Wille @ [[Welle

0s(0y,) = (G.35)

And the deformed angle 6; between the deformed vectors @; = F.W; at p = ®(P), with (-, g = (5)as

= ’1171 1172 (OWI) .G WQ
cos(Oy) := (W, W2) = o w = = 1= L (G.36)
ldhlle € |ldalle [|@ e [|@:]lc
G.6 Decompositions of ('
G.6.1 Spherical and deviatoric tensors
Definition G.12 The deformation spheric tensor is
1
Csph = ETT(C) 1, (G.37)
with Tr(C) = the trace of the endomorphism C' (there is no “trace” for the () tensor C”).
Definition G.13 The deviatoric tensor is
Caev = C — Coph. (G.38)
So TI“(Cdev) =0and C = Csph + Ceo-
G.6.2 Rigid motion
The deformation is rigid iff, for all ¢, ¢,
(FP)T.Fe =1, ie. Cp =1, written C=1=F".F. (G.39)

After a rigid body motion, lengths and angles are left unchanged.

G.6.3 Diagonalization of C

Proposition G.14 C = FT.F being symmetric positive, C is diagonalizable, its eigenvalues are positive,
and R} has an orthonormal basis made of eigenvectors of C'.

Proof. (C(P).Wy,Wy)a = (F(P).Wy, F(P).Wy), = (Wl,C’( )VT/Q)G, thus C is (-, -)g-symmetric.
(C.Wh, W1)g = (F. V_Vl,FI/f/l) = ||F. W1H2 > 0 when Wy # 0, since F' invertible (®% is supposed to
be a diffeomorphism). Thus C est (-,)g-symmetric definite positive real endomorphism. .

Definition G.15 Let \; be the eigenvalues of C. Then the \/\; are called the principal stretches. And
the associated eigenvectors give the principal directions.
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139 G.6. Decompositions of C

G.6.4 Mohr circle

This § deals with general properties of 3 * 3 symmetric positive endomorphism, like Cf°(P).

Consider R3 with a Euclidean dot product (-, )rs and a (-, -)gs-orthonormal basis (d;).

Let M : R3 — R3 be a symmetric positive endomorphism. Thus M is diagonalizable in a (-, -)gs-
orthonormal basis (€}, €2, €3), that is, A1, Ao, A3 € R, e}, €5, €3 € R3 s.t.

A0 0
Mé; = )\151 and (€i7€j)R3 = §ij, SO [Mhé‘ = diag()\l, A27 )\3) = 0 )\2 0 . (G40)
0 0 As

And the orthonormal basis (€7, &, €5) is ordered s.t. Ay > Ay > A3 (> 0).
Let S be the unit sphere in R3, that is the set {(z,y,2) : 2% + y* + 22 = 1}. Its image M(S) by M
2
is the ellipsoid {(z,y,2) : & + Y5 + %, = 1}. Then consider 7 = Y, 1, s-t. [|i][gs = 1:
1 2

AZ T

[]je = | no with n? +n3+nj = 1. (G.41)
n3

R . A1ng
A= Mﬁ, [ ]‘é‘ = )\2712 . (G42)
)\3’!13
Then define . . . .
A, = (A Rgs, AL =A—-A,i, Al :=|AL]| (G.43)

So A= Ayii+ A, € Vect{ii} ® Vect{ii}*. (Remark: A, is not orthonormal to the ellipsoid M(S), but
is orthonormal to the initial sphere S.)

Mohr Circle purpose: To find a relation:
Al = f(An), (G.44)

relation between “the normal force A4,,” (to the initial sphere) and the “tangent forceA,” (to the initial
sphere).
(G.41), (G.42) and A,, = (M.7, 7i)gs give
n? +ni + n% =1,
A2n2 4+ X202 + A2n2 = |JA]]? = 42 + A2,
This is linear system with the unknowns n?,n2, n3. The solution is
n2 — Ai + (An — /\2)(An — )‘3)
! (A=) (M —As)
n% _ AQL + (4 — A3)(4n — A1)
A2 = Az)(A2a = A1)
a2 AT+ (A = M)(An — o)
° (A3 = A1)(A3 — A2)
The n? being non negative, and with A; > Ay > A3 > 0, we get
A% + (A, — X)(A, — A3) >0,
A%+ (An = X3)(An = M) <0, (G.47)
A2 + (A — M) (A — X)) > 0.

(G.46)

Then let x = A,, and y = A, and consider, for some a,b € R, the equation

(a—b)?
o

b
Pora—a)e-b)=0 so (z- )P +y=

This is the equation of a circle centered at (aT—&-b, 0) with radius @.
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140 G.7. Green—Lagrange deformation tensor E

Thus (G.47); tells that A, and A, are inside the circle centered at (2:£22,0) with radius 1522,
and (G.47)1 3 tell that A, and A, are outside the other circles (adjacent and included in the first,
drawing).

Exercice G.16 What happens if Ay = Ay = A3 > 07

2 2 2
n1+n2+n3=1,

A
2 2 2 _ 4An
Answer. Then { ™1 772 +78 =37, Thus A, = A and A2 + A2 = A2, thus A, = 0. Here C' = \ 1,
A2 + A%
nd+nd+nf =222
1
and we deal with a dilation: A, = 0. .

Exercice G.17 What happens if A\; = Ay > A3 > 07

2 2 2
ny +n2+n3:1,

Answer. Then { A (1 —n3)+ Asn3 = A, Thus A, = A1 — (A1 — A3)n3 € [As, \1], and Ay = £(A\] —
AT(1—nj) +A3nj = A2 + AT
(A2 —X\3)n3 — Ai)%, with A2 + A% a point on the circle with radius A3 (1 —n3) + A3n3. un

G.7 Green—Lagrange deformation tensor F
(G.15) gives (@, wa)y = (F.Wy, FWa), = (FT.FW1,Wa)g = (C.W,W)g at p = ®(P), thus
(i, 8a)g — (Wi, Wa)a = ((C = I). Wy, Wa) . (G.48)

Definition G.18 The Green-Lagrange tensor (or Green—Saint Venant tensor) at P relative to & and ¢
is the endomorphism Ep°(P) € L(R?;R}) defined by

fo(py — T, -1 FTF—1T
:%, in short |E = ¢ (= 5

El(P): )- (G.49)

(In particular F = 0 for rigid body motions.) And EJ° : €, — E(I@g; IE@Z)) is the Green-Lagrange tensor
relative to ¢y and t.

The % is introduced because %(C’., )= %(F7 F) corresponds to the “motion squared”, see the following
linearization.

And we get the time Taylor expansion of ES(t) = $(CB(t) — I,) with p(t) = ®%(¢) and (G.26):
dv +dv"  n? (d%L v’

2 2 2

= Ft)T, (hD + B2 (% +D.dv + dﬁT.D)) (t, p(t)).F2 () + o(h?).

EB(t+h) = F&(1)T (h + dﬁT.dU)) (t,p(t)).F2 (t) + o(h?)

(G.50)

G.8 Small deformations (linearization): The infinitesimal strain tensor ¢
G.8.1 Landau notations big-O and little-o
Reminder. Let f,¢g: R — R and zg € R.

e f=0(g)near zy < 3IC>0,3In>0, Vst |z—xzo <n, |f(x)]<C|lg(x). (G.51)

and f is said to be “comparable with ¢” near zy. If g # 0 near zy then it reads Iﬂ;g?f <C.
And % < C near =0 means f = O(x") near xo=0.
o f=o(g)near zy <= Ve>0,3dn>0, Vst |z—zo <n, |flz)| <elglx). (G.52)
and f is said to be “negligible compared with g near xy”. If g # 0 near z then it reads % —z—a, 0

And ‘{x(ff‘ —200 means f = 0(1‘”) near xo=0.

140



141 G.8. Small deformations (linearization): The infinitesimal strain tensor ¢

G.8.2 Definition of the infinitesimal strain tensor ¢
The motion is C2. Along a trajectory, having F¥ (ty) = I = identity in R”, we have near fo:
F(tg+h) = I + O(h), (G.53)
thus F2 (to+h).W = W + O(h) for all W e I@g, i.e., near ty, with (-,-)y = (-,")c,
[ — W|| = O(h) when &= F&(ty+h).W. (G.54)

Full notation: ||F(t).Wp — Wp||, = O(t—ty) near t,. (More precisely ||F% (t).Wp — S©.Wp||, = O(t—to)
with Marsden shifter S/, to avoid using any ubiquity gift.)

Definition G.19 Isometric framework: The same Euclidean dot product (-,-), used at all time and (&;)
a (+,-)g-orthonormal basis. The infinitesimal strain tensor at P is the matrix defined by

[F(P)]je + [F(P)]

[e(P)]je = 1 (G.55)
written .
F+F
£:= +2 — I (matrix meaning). (G.56)
o ~ to T
More precisely, at P € Q;, and between to and ¢, [ (P)]jz = [ (P)]"’;[F‘ Pz _ [1].
o RWAFTW 7 o Pl P
So e W = EWHEW _ 1 means [g]|o.[W]jz = — —— < — W]e.

Remark G.20 ¢ in (G.56) cannot be a tensor (cannot be a function) since F}°(P) : R_ﬁ) — R and
Flo(P)T : R} — R_Z and Iy, : R_Z — R_Z don’t have the same definition domain. In particular F7 (p).W (P)
is ill-defined.

So g is not a function, is not a tensor: It is a matrix... But is called “the infinitesimal strain tensor”... da

Proposition G.21 The Green—Lagrange tensor E = % € £(ﬂ§%,ﬂ§g) satisfies near ty (linearization

and matrix meaning):

E=ctolt—t) (= FEFT C T+ o(t—ty)), (G.57)
which means [E] = [¢] + o(t—to) = EEET (1] 4+ o(t—ty)).

Interpretation: (G.57) is a linearization of the “quadratic” E = §(FT.F — I) which satisfies
(BE.U,0), = %(HFﬁHg - ||ﬁ\|§) for all U € @g (“motion squared” cf. the (F-, F-), = ||F.||2 term).

Proof. (Isometric framework.) [FT] =G5 [F]T thus [C] = [F]".[F], thus

Then, near ty and with h = t—ty, (G.53) gives ([F|T — [I]).([F] — I]) = O(h)O(h) = O(h?), thus
2[E] = [F)T + [F] — 2[I] + O(h), thus (G.57).

H Finger tensor F.FT (left Cauchy—Green tensor)

Finger’s approach is consistent with the foundations of relativity (Galileo classical relativity or Einstein
general relativity): We can only do measurements at the current time ¢, and we can refer to the past.

There are maby misunderstandings, as was the case for the Cauchy—Green deformation tensor C', due
to the lack of precise definitions: Definition domain? Value domain? Points at stake (p or P)? Euclidean
dot product (English? French?)? Covariance? Contravariance?...
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142 H.1. Definition

H.1 Definition

® is a motion, #, € R, ®© is the associated motion, P € Qi, pr = O(P), t € R, F°(P) := ddP(P) €
LRY;RY), (+,)g and (-,-), are Euclidean dot products in R} and R}

Definition H.1 The Finger tensor or left Cauchy—Green deformation tensor Qf’ (p¢) at t at p; = @ (P)
relative to fy is the endomorphism € £(R?;R") defined by

B° (py) = Fo(P).(F{*)5,(pe) written in short |b= F.F” | (H.1)

i.e. is defined by (b (p;).@1,da)y = (F{*(P)" .1, F{*(P)T.a) e = ((F{°)" (pr) @y, (F°)T (py).@2) g, for
all y, Wy vectors at p; € €, written in short

(b, W)y = (FT by, FT 1) . (H.2)
(To compare with C = FT.F and (C.Wy, Wa)g = (F.W4, F.Wg)g.) The Finger tensor relative to ty is

C=Jdtr x Q) — LEHED)

b (H.3)
(t,p) — Qto (t,pe) = Qiﬂ (pe)-
NB: Qto looks like a Eulerian function, but isn’t, because it depends on a #.
Other definition found:
B :=bPo (@), ie. BP(P):=1bl(p;) = F°(P).F°(P)", written B=F.F". (H.4)

Pay attention: B (P) € £(R?; R?) is an endomorphism at ¢ at p;, not at f, at P: E.g., BP (P).a,(p;) =
Q’;‘)(pt).lfzt(pt) is meaningful, while B (P).W, (P) is absurd.

Remark H.2 For mathematicians. The push-forward by ® := ®© of the Cauchy-Green deformation
tensor C = FT.F is ®,(C) = F.C.F~' = F.FT =), cf. (8.16): It is the Finger tensor. So the endomor-
phism C in I@g is the pull-back of the endomorphism b in @? (However a push-forward and a pull-back
don’t depend on any inner dot product while the transposed F7 does...). .

H2 b

With pull-backs (towards the virtual power principle at t). With p, = ®9(P) and W;(P) =
(F{* (P) =" ii (pe):

(Wi, Wa)g = (F~ by, F ) g = (F~T.F~ by, )y = (b "y, i) g (H.5)

Sob™! = (b)~ is useful:

poy—1 - QO %ﬁ(@llv@?)
B o @) ) = B (P) TR (P = P ()T HE ()

with p; = ®°(P) and H/°(p;) = (F/°(P))~" cf. (4.44). Thus we can define

Lt} x ) — L&y Ry
()t Qo (H.7)

(t.pe) = )7t pe) = () (p2)-

Remark: (Qt‘))*1 looks like a Eulerian function, but isn’t, because it depends on t,.
In short:
b'=HT.H, tocomparewith C=FT.F, (H.8)

and with @ = F.W,

-,

Q_l.u')' = HT.W, to compare with C.W = FT 1z, (H.9)
and with Wl = F_l.wi, ie. w; = FWZ,

-

Ws)a, to compare with (C.Wy, W) a = (1, Wa)g. (H.10)

—

(Q_l'u_jla w2)9 =

51
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143 H.3. Time derivatives of Q‘l

Remark H.3 For mathematicians. p; = ®°(P), b(p;) = F(P).F(P)T and C(P) = F(P)T.F(P) give
b(p:)-F(P) = F(P).C(P), (H.11)
written b = F.C.F~!. Thus b~ ' = F.O~L.F~!, so
e R e R A ) (H.12)

i.e. the pull-back of b~ is C~', i.e. b~ " is the push-forward of C 1.

H.3 Time derivatives of l:)_l

With (H.7) let (b)~t =written p=1 = g7 [, Thus, along a trajectory, and with (4.48), we get

Dv™'  pHT DH
—= = H+H" =— = _—d¢".H".H — HT .H.dv
Dt Dr T v v (H.13)

= —b ldv—di".b "

Exercice H.4 Prove (H.13) with (H.10).

. ) )
Answer. (H.10) gives 2 (b by, wa)y = 0 = (Zo.b, i)y + (b2 diz), + (b~ vy, B82),, and
@i(t, p(t)) = F(t, P).Wto(P) gives D8i = dij.i;, thus (g1, Ta) g + (b~ ' .diby, @) g + (b~ i1, di.G2)g = O,
thus (H13) I.l

Exercice H.5 Prove (H.13) with FT.Q_I.F =1I.

-1

Answer. b' = (F.FT)™" = F~7.F~" gives FT.b"".F = I,,, thus (F*) b"".F + FT.22— F + FTb"".F' =,
-1

thus F7.di" b~ ' F + FT.22 — F + FT b~ .di.F = 0, thus (H.13). L

H.4 Fuler—Almansi tensor a

Euler—Almansi approach is consistent with the foundations of relativity (Galileo relativity or Einstein
general relativity): We can only do measurements at the current time ¢, and we can refer to the past.
At t in Q, consider the Finger tensor b = F.FT and its inverse Q_l =F"TFT = HT H f. (H.8).

Definition H.6 Euler-Almansi tenor at p, € € is the endomorphism a (p;) € L(R?; R?) defined by

a () = 5 (I~ B () ™) = 5 (5~ H(p)"-H(p)), (1.14)

written ) )
a= 5(I—Q—l) = 5(I—HT.H), (H.15)

to compare with the Green-Lagrange tensor E = 1(C — I) = J(FT.F — I) € L(R}; R}).
Remark: gtﬂ looks like a Eulerian function, but isn’t, because it depends on t;.
(H.10) gives (@; = F.W;)
(@1, 1d2)g — (W, Wa)g = 2(a.,02),, (H.16)
to compare with (W, ws)g — (W1, Wa)e = 2(E.W1,Ws)¢. (This also gives (@, a)y = (EWy, Wa)a.)

And (H.15) gives

F'aF=E, ie. a=F TEF, (H.17)

e

standing for F{*(P)T.a®(p).F°(P) = E{*(P) when p = ®{(P).

Remark H.7 g} is not the push-forward of EP by ® (the push-forward is F.E.F~!). ]
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144 H.5. Time Taylor ezpansion for a

H.5 Time Taylor expansion for a

(H.13) gives

Da b ldi+diTht
D= - TRE— (H.18)

H.6 Almansi modified Infinitesimal strain tensor ¢

Same Euclidean framework as in § G.8.2, and matrix meaning again.
We have [ —Q_l =I1-H"H=—-(I—-H").(I-H)+2I - H" — H where H stands for H/°(p;).

Thus, for small displacement we get I — Qfl =2 — HT — H + O(h), so
H+HT

a(t,p(t)) =£(t,p(t)) +O(h) where £:=1 5

(H.19)

And, with t = ty + h we have F(t,P) = I + (t—ty) dv(t, P) + o(t—ty), cf. (4.38), thus we have
HY(t,p(t)) = Flo(t,P)~! = I — (t—ty) dii(t, P) + o(t—ty) when p(t) = ®% (¢, P). Thus
Flot,P)—1=1—H"(t,p(t)) + O(t—ty). (H.20)

Therefore, for small displacements (|t — fo| << 1):

a(t,p(t)) ~£(t, p(t)) ~“ (¢, P) (matrix meaning). (H.21)

I Polar decompositions of F' (“isometric objectivity”)

Regular motion ® : (¢, Ryj) € [to, T] x Of — py = &)(t,PO;Zj) € R™, 0, = ®(t, Obj), associated Lagrangian
motion Y : (t,py) € [to, T] x Qiy — pr = B (t,py) := (¢, Ruj) € R™ when py, = ®(ty, Ry;), deformation
gradient F{(p;,) := d®® (p, ) ="ritten [ ¢ ﬁ(ﬂi%,ﬂé?)

The covariant objectivity is abandoned here, due to the need for inner dot products (-,-)¢ and (-, -),
in Ry, and R to define F* € L(Ry;R},) and build C = FT.F € L(R}; Ry). .

(E;) is a (-, -)g-orthonormal basis in R} , and (€;) a (-, -)4-orthonormal basis in R}'.

Recall: (F}*)E, (p) ="ttt FT is defined by (FT.w,U)¢ = (F.U, @), for all (U, @) € R} x R, and
C’tt?Gg (py) = (Ftto)gg (p¢) o FP°(py,) =180 ¢ = FT Fis a (-, -)g-symmetric endomorphism in R} since
(C.X,Y)g=(FT.FX,Y)g=(FX,FY),=(X,FT.FY)s = (X,C.Y)g for all X,V € R}.

I.1 F = R.U (right polar decomposition)

C being (-,)g-symmetric, Jay, ..., a, € R (the eigenvalues), 3¢, ...,¢, € @g (associated eigenvectors),
s.t.
Vie [1,n]y, C.& =, and () is a (-,-)g-orthonormal basis in K7, (I.1)

ie. (G,¢j)e = 6; for all i,j € [1,n]y. With [Clz =

D := diag(ay,...,a,) the diagonal matrix of
eigenvalues and P = [P;;] the transition matrix from (E;) to

(G), le. G =), PijEi for all j, (I.1) reads
[Clz.P=PD, and PT.P=1I (1.2)

And F being regular, 0 < ||F.G||2 = (F.¢;, F.¢;)y = (C.¢, &)a = ail|cil|g, thus a; > 0, for all i.

Definition I.1 The right stretch tensor U ="""e" \/C' ¢ £(R} ;R ) is the endomorphism defined by

Vi e [1,n]n, UG =+a;é, ie. [Ulz=diag(y/a1,...,\/an), (1.3)
the /a; being called the principal stretches. (Full notation: U := Uff’Gg(ptﬂ).) Which reads

[U],5P=PNVD (so[U]z=PvVD.P~' = PVD.P"). (1.4)

Proposition 1.2 U is (-, -)g-symmetric positive definite and C' = U o U ="Written {y gy —written 172
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145 1.2. F = S.Ro.U (shifted right polar decomposition)

Proof. (UTE“EJ)G = (a,U_})G = (Ei,,/ajé’j)g = ,/ajéij = \/071613 = (\/OTZE;,E'J)G = (Ua,gj)g for all
i,j. And (UoU).¢; =U(U.cj) = U(/a;¢;) = /ogU(G;) = \Jag/a;¢ = a;¢; = C.¢; for all j. .

Definition I.3 The orthogonal transformation R € E(I@Z); I@?) is the linear map defined by

R:=Foy~t™iten pr—1, (L5)

(Full notation: R, (py,) = F{° (1) © (UL (p1y)ag) ") And

wHiten p U s called the right polar decomposition of F'. (I.6)

Proposition 1.4 1-
RToR=1, ie. R'=R", (L7)
written RT.R = I, i.e. R sends a (-, -)g-orthonormal basis in I@’tg to a (-, -)g-orthonormal basis in R7.
2- The right polar decomposition F' = RoU is unique: If F = Ryolh with U € E(@gﬂig}) symmetric
definite positive and Ry € E(@%@?) s.t. Ry' = RY, then U = U and Ry = R.

Proof. 1- RTo R=US U ToFToFoU ' =U ' oCoU ' =U"'o(UoU)oU~" = I identity in R}.
Thus (R.E;, R.Ej)g — (RT.R.E;, Ej)g = (E;, Ej)c = 6;5 for all 4, 5: (R.E;)is a (-, -)g-orthonormal basis.

2- U, being symmetric definite positive, call /j3; its eigenvalues (all positive) and (J;) a ()"
orthonormal basis made of associated eigenvectors. We have C = (U .R1).(Ry.Uh) = Uh.(RY.Ry).Up =
Up.I.Uy = U?, thus C.J; = UQQ.J; = ﬁicf;, thus the §; are eigenvalues of C' and the d; are associated
eigenvectors. Thus, even if it means reordering (f;), 8; = «; and d; € Ker(C — «o;I), for all i, and
U.d; =13 \Jaid; = Up.d; for all i, thus Up = U. Thus Ry = F.U; ' = FU™' = R.

Exercice 1.5 Express R in terms of vectors and matrices.

Answer. Call 7j = R.E; = > Rijéi. Then [R] 5. = [Rij] = ([fi]jle ... [fn]je) and (7,75)g = i, e
[Fil{z[7)je = 6ij for all 4,5, ie. [R]5 .[R]|z.= 1.
I.2 F = S.Ry.U (shifted right polar decomposition)

We need to be more precise if the gift of ubiquity is prohibited: Because we work with the affine space R™,
we can consider Marsden’s shifter, with p; = ®(p,, ),

T, () — 1,,(22
S — S;O(pm) . p_?( t()) P,( t)_‘ - . ~ (18)
(Ptys Wio,pyy ) = S(Ptys Wio pyy ) = (Pt Whp,) where 1ty p, = Wy, p, -
Shorten notation:
R? — R
Si=Sl(p):{ " (N, (1.9)
W —a@=SW:=W (vector at p = ®(P)).

NB: 1- S is not “the identity” unless you have time and space ubiquity gift, since W is defined at to at py,
while @ = S.W is defined at ¢ at p;, and ¢ # % and p; # p;, in general;

2- S is not a topological identity since it changes the norms in general: You consider |[IW||¢ in R},
and [[S.W{|y = [[@]]y in R}

With R = F.U! of. (1.5), let Ry € £(H§%; @Z)) be the endomorphism defined by

Ro:=S8'oR"™UN g1 R s R=SRy (=SoRy). (1.10)

(Full notations: (Ro)i%, (p) = (S ()~ (R (1) € L(Ty(2): T (,)).) We have

F=So0RyoU written |F=S5RyU| (I.11)
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146 1.3. F =V.R (left polar decomposition)

Proposition 1.6 If (-,-), = (-,-)¢ (same inner dot product in I@g and R?") then

STS=1, ie. S '=45T (1.12)
And the endomorphism Ry = S™1.R € E(I@Z); Rﬁ) is a change of (-, -)g-orthonormal basis:

RIRy=1, ie Ry;'=RE. (1.13)
Proof. (ST.8.0,W)g = (S.0,5.W), "= (T, W), = (T, W) (here (-,-)y = (-)q), for all T, W € B2
thus S7.5 = I, thus S~1 = S7.

Thus I = 5.5 and Ry = ST.R, thus (RY.Ro.U,W)a = (Ro.U, Ry.W)g = (ST.R.U,ST.RW)g =
(S.ST.RU,RW), = (RU,RW), =17 (U, W)g, for all U, W € R}, thus R .Ry = I.

Interpretation of (I.11): F is composed of: The pure deformation U (endomorphism in @g)), the change

of orthonormal basis with Ry (endomorphism in @%), and the shift operator S : Tp, (,) — Tp,(Q2:) from
past to present (time and position).

I.3 F =V.R (left polar decomposition)

Same steps. Let Qiﬂ (pe) := F(py,) o (F)T (p) € L(R?; R?) (the Finger tensor), written b= F.FT. The
endomorphism b is symmetric definite positiven thus 3/, ..., 8, € R (the eigenvalues) and 371, ..., 7, €
R? (associated eigenvectors) s.t.

Vi€ [l,nln, 0.7 =fiZ, and (Z)isa (-,-)s-orthonormal basis in @{L (I.14)
The left stretch tensor V' e E(@?; @?) is the endomorphism defined by,

Vie [Lnly, V.5, =/BiZ, and v Viden \@ (L.15)

(Full notation: V,'%, (p) = \/Qio (Pt)Gg-) Then define the linear map Ry € L(R};R}) by

Ry:=V~LF, (1.16)

, called the left polar decomposition of F. (I1.17)

Proposition 1.7 1-b = V.V ="ritten 2 '/ js symmetric definite positive, R, ' = R} . And the left polar
decomposition F = V.R, is unique.

2-Ry=Rand V = RUR™! (soU and V are similar), thus U and V have the same eigenvalues
(square root of those of C): «; = B; and, with (I.1), Z; = R.¢; is an associated eigenvector of b, for all i.

so that

Proof. 1- “Copy” the proof of prop. L4 with F~% and b~' = (F~1)T.(F~!) instead of F and C' = FT.F.

2- F = V.Ry = Ry(R;"V.R,) with R;'.V.R, symmetric (since (R,'.V.R,)" = RI.VT.R;T =
R, '.V.Ry) and definite positive (since (R, '.V.Ry.3;, 7;)g = (R, " V.Re.i, Ry T .5;) g = (V.Re.§is, R.;)g =
(V.Z,,Z;)y = Bi where the ; := R, 'Z make a basis). Thus F = R.U = R,.(R;'.V.R,) gives R = R,
(uniqueness of the right polar decomposition). Hence R.U = V.R (so V and U are similar), hence V and

U have the same eigenvalues and if ¢; is an eigenvector of U then R.¢; is an eigenvector of V: Indeed
V(REZ) = RUEZ = R(azéz) = az(Ré,) for all 1. =n

J Linear elasticity: A Classical “tensorial” approach

J.1 Hookean linear elasticity
J.1.1 Young’s modulus and Poisson’s ratio

Elastic cylindrical bar. At rest: Length Lo, transverse area Sy = 7wR3. After a longitudinal traction:
Length L, transverse area S = 7R2. Let
_L-Ly oL R—Ry OR

=22 and ep= ==t J1
I T, md ern=—p R (J.1)

€L
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147 J.1. Hookean linear elasticity

the length deformation per unit length and the radial deformation per unit length. Longitudinal force f
along the bar, o = % = force per unit area (pressure). Hooke’s law:

oL
o=FEe (= EL—), with F' = Young’s modulus € RY . (J.2)
0

Thus f =085 =Fep S = %055L, so f = kL (elastic spring) where k = %OS And

SR
ER R - : 1
vi=—— = —i = Poisson’s ratio €] — 1, 5[. (1.3)
L T

Exercice J.1 Detail the motion, give F' = R.U, E, v and the change of volume 5‘/—‘5 = %{)V"
Answer. Q;, = {(X,Y,Z) : X € [0,Lo), Y> + Z* < RZ}, volume Vo = LowR3. At t, length L = aLo, radius
R = BRo, Q = {(x,y,2) : ¢ € [0, L], y* + 2*> < R?}, volumeV = LwR? = a3V, so V‘;UVO = af? — 1. Motion
r=aX
dO(X,Y,Z) = (y =8Y = rﬁcosﬁ) defined on Q.
z=pZ =rfsind
So 6L = (a—1)Lo, e = a—1, 6R = (f—1)Ro, er = f—1, # = o0 = E(a — 1) (= pressure at (z,y,2) =
(L, Rcosf, Rsin#) on the surface L é1), so

a—1

g
E*ﬁ and Vf—ﬂ, (J4)
, a 0 0
and k6L = f = ErR*(a = 1), 50 k = =E. And F := ddP(X,Y,Z) =0 B 0], thus a,8 > 0 are the
0 0 B
positive eigenvalues hence U = F (diagonal matrix) and R = I. And FT = F, F+FT =F,e=F—-1I=
a—1 0 0
0 B-1 0 |[. Elasticity: With Lamé coefficients, see § J.1.3, ¢ = ATr(F—I)I + 2u(F—1I), so
0 0 B-1
a—1 0 0
o= A(a+25—3)1+2,u o p-1 o0 |,
B 0 0 p-1 (3.5)
o= ||g.€1|\ = AMa+28-3) + 2u(a—1) = (A + 2u)(a—1) + 2X(—1) = E(a—1).
Remark:
ol = (ATr(FttO)I + 2,uFf0> — (BA+2u)Fy°
= (A(a+25 )+ 2uF*°> (BX+2u)Fy° (1.6)
(prestl + 2uFt°) (prestOI + 2uFy )
F = Fp + Fs sum of the deviatoric part Fp (s.t. Tr(Fp) = 0) and the spherical part:
a+28 2(a—pB)
a— S5 0 0 == 0 0
FD:FTréF)I:( 0 p-e g >:< 0 5o 0), Fszo‘fﬁz. (3.7)
0 0 p— ot 0 0o &=
| |

J.1.2 Shear modulus

Euclidean basis (€1, €3,€3). Point O. Cubic bloc (O, Léy, Lés, Lés) glued on a horizontal table. Area of
the upper face: S = L2. Horizontal traction along &, on the upper horizontal face: f. Horizontal traction
per unit area: T = é Horizontal displacement of the upper face: dx. Horizontal displacement per unit

area of the upper face: ‘% = tan~y. Hooke’s law:

)
T= Gfx = Gtany, with G = shear modulus. (J.8)
(If v < 1 then tany ~+.) And
E
C2(1+v)’
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148 J.2. Classical definition of elasticity

Exercice J.2 Detail the motion, give FF = R.U.

z=X+aY
Answer. Oy = {(X,Y,Z) € [0,L]*}, a>0,at t: ®(X,V,Z)=[y=Y , upper face S = {(z,y,2) : x =
z=17

),C’—FT.F_

= 0(0* + a*6 — o?),

X+al,y=Y,z=2}, 6z =alL, tany = «

7%:7’:67‘0(. AndF—F(X,Y,Z)—<

o o =
— o O

\/OHQ

1 «@ 0 0 @ 0
a 1+a® 0 |; Eigenvalues called 8: with § = 1—3, det(C —BI) =det | @ o®+6 0
0 0 1 0 0 0
2 2
and with A = o* + 402 = a2(a? + 4), we get the three roots 0; = —=—2V*+4 314 9, = —otoyoerdd Voltt g =0,
thus the 3 eigenvalues 1 =1+ otV artd V2a2+4, Bo =14 Y210 Vot I

2 » Bs=1
2 2 0
Associated eigenvectors: v1 = | a++Va?+4 |, 0= | a—+va?+4 |, 03=¢e3=|( 0 |].
0 0 1
. o . _ o o _ a+24o0(1)
(Remark: g(a) = Va2+4 gives g(0) = 2, thus, near a=0, g(a) = 2 + o(1), thus g1 = 1+ af“ =
2 2
1+ a+o(a), and B2 = 1+a%+0(1) =1—a+o(a); And ¥ = (2+o(1)), Uy = (—Z—I—o(l)).)
0 0
And P = ( th lie [ngl\hg [é'sha) = transition matrix between orthonormal basis, P~! = PT, U =+/C =
P.diag(+/B;).PT, U™" = P.diag \;E).PT, then R= F.U L.
0 a O « .
F-I=(0 0 0],(F-D&=|0]|=aé =2""1")& = 2.8 (since (F—1)".&, = 0) is
0 0 O 0
twice the Cauchy stress vector on the upper face. =n

J.1.3 Lamé coefficients

The Lamé coefficients (Lamé parameters) are the reals A, i given by (for a Hookean solid)

F4+FT
g = NTr(g)l 4 2ug, where ¢ = % - I (J.10)
And E E 3N+ 2 A
v p
A= 2 = @ BT, A J.11
Arn1—20) "“ 20+ x50 VT 200k (3.1)

J.2 Classical definition of elasticity

Motion ® : [t1, 5] x Obj — R™, Q; := ®(t, Obj) C R™ for all t € [t1,t2], o € [t1, t2], associated motion ™ :
(t, P) € [t ta] x Q4 — (¢, P) € R™, Y (P) := ®(t, P), F}° := d®}° (deformation gradient), imposed
Euclidean basis (€;) and associated Euclidean dot product (-,-)g =written . first Piola—Kirchhoff stress
tensor B[ =WrHen B see (0.16). Then, see e.g. Ciarlet [8], Marsden-Hughes [16]:

Definition J.3 A material is elastic iff, at any ¢ € [t1,f3] and P € Q, there exists a mapping
Ko =vritten IK : Q x M, — R (constitutive equation) s.t., at any ¢ € [t;,t,] and P € €,

—~

IK(t,P) = IK(P,F(t,P)), (J.12)

short notation for }KZ) (t,P) = H/(\g’ (P,[F™(t, P)]j¢) (the first Piola-Kirchhoff stress tensor value K (t, P)
only depends on P and on the deformation gradient F}°(P) expressed in a Euclidean basis).

J.3 Classical approach (“isometric objectivity”): An issue

The infinitesimal strain “tensor” is the matrix defined relative to a (-, -),-Euclidean basis (€;) (the same
at all time) by

Fliz + [FIfz F+ FT
[é]‘gzM—I, written g:JrT—I. (J.13)
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149 J.4. A functional formulation (“isometric objectivity”)

The homogeneous isotropic elasticity constitutive law is given by, with A, u the Lamé coefficients and o
the Cauchy stress “tensor”

o = ATr(e)] + 2ue = (ATr(F)—(A+2p))I + p(F + FT)  (matrix equation). (J.14)
(Recall: F" is not an endomorphism, so Tr(F') is meaningless: It is Tr([F]jz) which is meant in (J.14)).

Issue: Adding F and FT (and I) to make 2¢ (in (J.13)) is a mathematical nonsense since they don’t

have the same domain or codomain: F': I@Z) — I@? while F7T I@? — I@g (and I is some identity operator
which codomain = domain). Thus ¢ can’t be a function: It is the matrix in (J.14) (obtained with some
Euclidean basis). B

And F is not an endomorphism, so Tr(F’) is meaningless: It is Tr([F]|z) which is meant in (J.14), and

Tr(e) := Tr([g)je) = Tr([F}'g)gTr([FT]‘E) —n = Tr([F];z) — n (trace of a matrix).
Idem

a.it = ATr(g)7 + 2ue.i. means ¢.[7i]z = ATr([g]|e)[7]|e + 2ule]je-[71] |2 (J.15)

with 77 the (-, -)s-normal unit out of €; (not out of €, ). So, despite the eventual claims, neither ¢ nor o
are tensors (they don’t have any functional meaning): They are matrices.

Remark J.4 You may read: “For small displacements the Eulerian variable p = p; and the Lagrangian
variable P = py, can be confused™ p; ~ py, (so 4, and € are “almost equal”). Which means that you
use the zero-th order Taylor expansions p; = @?ﬁ) (t) = py, +0(1). But then you cannot use the first order

Taylor expansion (in time) in following calculations (you cannot use velocities)... oa

J.4 A functional formulation (“isometric objectivity”)

Can the constitutive law (J.14) be modified into a functional expression? Yes:

1. Consider the “right polar decomposition” F' = R.U where U € E(@g,@g)), cf. (I.5). Thus C =
FT.F =UT.RT.RU = U? because U = UT and RT.R = I, thus the Green Lagrange tensor £ = <L €
E(H—é%; ]l_ég) (endomorphism) reads

27 —I,)+2U -1

Then, with U — I, = O(h) (small deformation approximation), we get the modified infinitesimal strain
tensor at ty at py, € (U,

U-1I, | € L(RY;RD), (J.17)

1o
Il

endomorphism in I@g (Full notation ét;jcg (py,) = Utt?Gg (pt,)—1I1, (p1,)-) Le., for all W e R?,
EVT/ —UW-W=R'w-W € I@g, when @ = F.W (push-forward). (J.18)

Interpretation: From @ = F.W = RUW € R)? (the deformed by the motion), first remove the “shifted
rotation” to get R™'.wf = U.W € R}, then remove the initial W to obtain R~'.@ — W = W € R}..
In particular |[E.W||g = ||(U~1I;,).W||¢ measures the relative elongation undergone by W.

2. Then you get a constitutive law with the stress “tensor” (@) =""ite? ¥ ¢ £(R?; R} ) functionally
well defined:

2 = NTv(@) Iy, + 208 | = NTe(U—~Iiy) Iy + 20(U—1). (J.19)

(The trace Tr(g) is well defined since £ is an endomorphism.) And, at p;, € €y, for any W e Rz,
SW = ANT@W + 2UEW = ATe(U—~Iy )W + 2u(UW-W) € R, (J.20)

3. Then “rotate and shift” with R to get the two point “tensor” (functionally well defined), in I@? at py,
RY =) Tr(E)R+2uRE € L(RY;RY). (J.21)

Le., for all W e I@g,
REW = XTx(Z)RW + 2uREW = XNTx(U~1I;,)RW + 2uR.(U~1I;,).W
= \NTr(U—I,, ) RW + 2u(F — R).W, (J.22)
= ATr(U—I,, ) RW + 2u(i# — RW), where @ =F.W = RUW.

149



150 J.4. A functional formulation (“isometric objectivity”)

4. You get the constitutive law for the stress “tensor” (endomorphism) in @?:

(E®) =) |G=RoSoR™|"U RE R € L(RYRY). (3.23)

T.e., for any o € €y, -
G4l =RY.R '@ € Ry. (J.24)

Interpretation of (J.23)-(J.24): Shift and rigid rotate backward by applying R~!, apply the elastic
stress law with 3 which corresponds to a rotation free motion, then shift and rigid rotate forward by
applying R.

Detailed expression for (J.23)-(J.24): With Tr(R.£R™') = Tr(€) (see exercise J.6), we get, at (¢, p;),

0 =ATr(E) I; + 2uRER™ = \NTr(U~1) I; + 2uR.(U~1;,).R™!

= = = L (J.25)
And for any o € ]@{L, and with @ = R.W, you get
G = NTv(E) @ + 2uREW = ANTx(U~1;) @ + 2uR.(U~1,, ). W (1.26)
= NTr(U—1I;,) @ + 2u(R.U.R™* .G—). '
To compare with the classical “functionally meaningless” (J.15).
Remark J.5 Doing so, you avoid the use of the Piola—Kirchhoff tensors. .

Exercice J.6 Prove: Tr(REZ.R™') = Tr(g) = Y ,(;—1). (NB: £ is an endomorphism in ﬁg while
i)
(R

R.g.R* is an endomorphism in R

for all Euclidean bases (E;) and (é) in R&O and RP. (With L = & and components, Tr(R.L.R™')

Answer. detjo(RE.R™" — A;) = detjz(R.(E-Aly,).R™") = det, 5 (R). det, 5(E-AI).det,, s(R™") = det, 5(E-AI)

SARLR )= RILU(R =Y (R RILL =3, 6L, = >, L7 = Tr(L).)
Exercice J.7 Elongation in R? along the first axis : origin O, same Euclidean basis (E}, E3) and Eu-
clidean dot product at all time, & > 0, t > &, L,H > 0, P € [0, L] @ (Y > and
0
X +§(t—t{))X0 Xo(li—f—].) T —
% L 0 _ _ _ B ey
[0} (PhE_ < Y, = Y, =1y —[Op]lE, where k = £(t—1y) > 0 for ¢ > %.

1- Give F, C, U = /C and R = F.U'. Relation with the classical expression ?

2- Spring OP = Ocy.(s) = XoEy + Yo By +sW, L.e. (ﬁg 0%] <X0+SW1
Y0+SW2

and W = W1 E, + WyE,. Give the deformed spring, i.e. give p = ¢4(s) = ®°(cy,(s)), and &', and the
stretch ratio.

> with s € [0, L]
E

Answer. 1- [F] = [d®] = (I{z}rl (1)), same Euclidean dot product and basis at all time, thus [F7] = [F]T = [F],
2
then [C] = [FT].[F] = [F]? = ((H—Bl) (1)), thus [U] = [F] = (KE)H 0> thus [R] = [I]. All the matrices are

given relative to the basis (E;), thus F,C,U, R (e.g., C.E1 = (k+1)?E; and C.E; = Es).
Since R = I and [¢g] = [g], (J.25) gives the usual result [g] = ATr([g])] + 2ulg], cf (J.14) (matrix meaning).

2- Oci(s) = O<I>tO (cto(8)) = ((XO+SW1)(K+1)) , thus &/ (s) = (Wl ("H_l)) , stretch ration W12 4 W3
|E |E

Yo-+sWo Wo ‘/‘/12+VV22
at (t,pe). =n
—_— — .
Exercice J.8 Simple shear in R? : [O@?(P)]lﬁ = <X Jr{gf to)Y) =written (X ;KY) = (;) =

[O_{j]l 5+ Same questions, and moreover give the eigenvalues of C.

Answer. 1- [F] = ((1) T)’ C] = (Ili (1))((1) T) = (i /<;2Ij—1)' Eigenvalues: det(C — AI) = 22—

(2+k%)A+ 1. Discriminant A = (2+x%)* —4 = k*(k*+4). Eigenvalues o+ = 1(2+x” £ kvk?+4). (We check that
a+ > 0.) Eigenvectors ¥+ (main directions of deformations) given by (1—a+)z+ry = 0, i.e.,, y = (k£ VK2 +4)z,
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151 J.5. Second functional formulation: With the Finger tensor

thus, e.g., U+ = (/{:I: jm> (We check that @, L #_.) With P the transition matrix from (E1, Es) to

(Hgﬁ,%) and D = diag(at,a-) we get C = P.D.P~' (with P~!' = PT since here (Hg—iu,ug—:u) is an

orthonormal basis), thus U = P.v/D.P~! (we check that UT = U and U? = C). And R = F.U L.
—
2 Ocr(s) = OB (g (s)) = ((Xo+sW1) + K (Yo+sWa) ) thus [6/(s)] = (W1 + kWa > Stretch ratio

Yo+sW2 Wa
s 2 2
% at (t7pt). un

J.5 Second functional formulation: With the Finger tensor

The above approach uses the push-forward, i.e. uses F' (you arrive with your memory). You may prefer
to use the pull-back, i.e. use F~! (you remember the past which is Cauchy’s point of view): Then you
use F~! = R~1. V! the right polar decomposition of F~!, and you consider the “tensor”

§ =V'-L € LE®:RY), (J.27)

and N ~

o, = NTvE,)I, + 24E,, and g, .7l = NTx(E,) fiy + 24iE, ;. (J.28)
(Quantities functionally well defined).
K Displacement

K.1 The displacement vector U
In R", let p; = ®(p;,). Then the bi-point vector

UL () = @ (p) — 1ty (Pt) = Pt — Py = Do (K.1)

is called the displacement vector at py, relative to ¢ and ¢. This defines the map

- Qp — R"
Z/lfo : 0 f (K.2)
Py — UL (D) =Dt — Piy = Ppbi  When  p, = @ (py,).
Thus we have defined
o T x Qp — R» . to, T] — Rn
U { o, T) x e e and U {[ ] . s (K.3)
(t,pfﬂ) —Uu (t,pm) = Ut (p&)), t —>Z/lpt0 (t) = Z/{t (p&))

Remark K.1 2" (p,,) doesn’t define a vector field (it is not tensorial), because U (py,) = pr —py, = PPl
is a bi-point vector which is neither in R nor in R} since p; € Qy and p; € Q; (it requires time and
space ubiquity gift). In particular, it makes no sense on a non-plane surface (manifold). More at § K.5. ou

Remark K.2 For elastic solids in R"™, the function U is often considered to be the unknown; But the
“real” unknown is the motion ®®. And it is sometimes confused with the extension of a 1-D spring. But
see figure 4.1: ||Wy, (py,)|| represents the initial length and ||wy,«(t, p:)|| represents the current length of
the spring, and the difference ||Why« (¢, pe)|| — || Wy (P4, )]] can be very small (< 1) while the length of the
displacement vector ||U°|| = p; — py, can be very long (> 1). n

K.2 The differential of the displacement vector
The differential of L at p;, is (matrix meaning)
dUP (py,) = d®P (pr,) — Ty = F{°(py,) — Ty, written dt = F 1, (K.4)

which means [d (p;,)] = [d®¥ (py,)] — [I1,] relative to some basis. It doesn’t defined a function, because
Flo(pg,) : @Z) — R? while I, : @Z) — Hig Idem, with W € R?, matrix meaning

-, -,

AUW = FW —W :  means [dU° (py,)].[W] = [FL(py,)].[W] — [W]. (K.5)

151



152 K.3. Deformation “tensor” ¢ (matriz), bis

K.3 Deformation “tensor” ¢ (matrix), bis
(K.4) gives (matrix meaning)
Flo(py) = Iy + dU (py,), written F = I + dU. (K.6)
Therefore, Cauchy—Green deformation tensor C = FT.F reads, in short, (matrix meaning)
C=1+dd+ddU" +dU".dd (matrix meaning), (K.7)

e, [CF (pi,)] = [Ti) + (AU (p,)] + [dUP (i)™ + [dU (i, )17 (AU (p, ))-
Thus the Green—Lagrange deformation tensor F = %, cf. (G.49), reads, in short, (matrix meaning)

i yiu
1 o o
= M + §dUT.dZ/l (matrix meaning). (K.8)

Thus the deformation tensor g, cf. (G.56), reads (matrix meaning)

E

e=FE— s (a)".dl, (K.9)

N =

with ¢ the “linear part” of £ (small displacements: we only used the first order derivative dd).

K.4 Small displacement hypothesis, bis

(Usual introduction.) Let p; = ®%(py,), i = 1,2, W; € R_"tg, @i(p) = F(py,).Wi(py,) € R (the push-
forwards), written @; = F.W;. Then define (matrix meaning)

Ai =0 —W; =dU.W;, and ||A]|s = max(||Aq]|gn, ||As][gn). (K.10)
Then the small displacement hypothesis reads (matrix meaning):
1400 = o(|[W||oc)- (K.11)

Thus @; = W; + A; (with A, “small”) and the hypothesis (-,-); = (-,-)¢ (same inner dot product at
and t) give
(W1, Wa)a — (Wi, Wa)g = (A1, Wa)a + (A2, Wi)g + (A1, Az)g.

So (K.9) gives 2(E. W1, Wa)g = 2(e.W1, Wa)g + (dUT.dU.Wy, Ws)g, And (K.11) gives
(EW1, Wa)g = (W1, W) + O(||A] %), (K.12)

F+FT _ 7 _ dd+did” (
2 = 2

SO Ef“ is approximated by gi‘), that is, Ef ~ g? = matrix meaning).

K.5 Displacement vector with differential geometry
K.5.1 The shifter

We give the steps, see Marsden—Hughes [16].
e Affine case R" (continuum mechanics). Recall (I1.8): With p = ®[°(P), the shifter is:

Stto:

. {me@g - Q x R} K13

(P, Zp) — SP(P,Zp) = (p,SP(Zp)) with SP(Zp) = Zp.
(The vector is unchanged but the time and the application point have changed: A real observer has no
ubiquity gift). So:

5P e L(RY;RY) and  [S{])z = I identity matrix, (K.14)
the matrix equality being possible after the choice of a unique basis at # and at ¢t. And (simplified
notation) S (P, Zp) ="titten glo( 7.y Then the deformation tensor ¢ at P can be defined by
(S¢°) M (F (P).Z(P)) + F*(P)".(S{°(P).Z(P))

£h(P).Z(P) = 5 — Z(P), (K.15)

— to\ — 3 tg & o
in short: £.7 = (5,°) I(F‘Z);‘FT‘(St Z) 7).
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153 L.1. Alternating multilinear form

e In a manifold: Q is a manifold (like a surface in R® from which we cannot take off). Let Tpl,
be the tangent space & P (the fiber at P), and T,8; be the tangent space a p (the fiber at p). In
general TpQy, # T, (e.g. on the sphere “the Earth”). The bundle (the union of fibers) at t, is TQ;, =
UPEQtO ({P} x TpSd,), and the bundle at ¢ is T = (J,cq, ({p} X Tp€2:). Then the shifter

to .

St

—~ TQto — TQt
: { ( (K.16)

P, Zp) — SP(P,Zp) = (p, S (Zp)),

where S (Zp) is defined such that it distorts Zp “as little as possible” along geodesics.

E.g., on a sphere along a path which is a geodesic, if 8, is the angle between Zp and the tangent
vector to the geodesic at P, then 6, is also the angle between S;O(Zp) and the tangent vector to the
geodesic at p, and S (Zp) has the same length than Zp (at constant speed in a car you think the geodesic
is a straight line, although S®(Zp) # Zp: the Earth is not flat).

K.5.2 The displacement vector

(Affine space framework, €2, open set in R™.) Let P € {,, Wp € R”, p = ®(P) € Q,, and ddP =
Fl e L(R};RY). Define
-~ Qy, X I@Z) — O X E(I@Z);]@?)

SUl (K.17)

(P,Zp) — 06U (P, Zp) = (p,0U*(Zp)) with oU°(Zp) = (Flo — S2).Zp.

Then 0UP° = Fl° — 8% : P € Qy — 8U/*(P) = Fl°(P) — S{°(P) € L(R;R}) is a two-point tensor. And

CP = (FP)T.Fj = (U + SP)T.(0UP + SP°)

K.18
= I+ (SP)T.oule + (suf)T .Sk + (suf)T .sup, ( )

since (S%)7.8% = I identity in TQ,: Indeed, ((S©)T.5% A, B)gn = (SP.A,50 B)gn = (A, B)gn,
cf. (K.13), for all fT, B. Then the Green-Lagrange tensor is defined on €24, by

(ST sufo + Sl (suf)T
2

1 1
Ef = 5(CP —Iy) = + 5 (U)o, (K.19)

to compare with (G.49).

L Determinants

L.1 Alternating multilinear form
Let E be a vector space, and let £(E, ..., E;R) =W"'itten £(En.R) be the set of multilinear forms, i.e.
m € L(E™;R) iff
m(e...,Z+ Mg, ...) =m(...Z,...) + m(.., 7, ...) (L.1)

for all Z,y € E, all X\ € R, and any “slot”.

E.g., m(AMZ1, ..., \n@n) = (Hi=1,---,n Ai) m(&q, ..., &y), for all A1, ..., A, € R and all 74, ...,%, € E.

In particular a 1-alternating multilinear function is a linear form, also called a 1-form. And the set of
1-forms is Q!(E) = E*. Suppose n > 2.
E" - R

Definition L.1 The multilinear form A/ : . . .
(U1 vey Un) — AL(VY, ..., Up)

} € L(E™;R) is a n-alternating

iff, for all 4,7 € F,
Aty .., 0, = A, T, ., T, L), (L.2)

the other elements being unchanged. The set of n-alternating multilinear forms is
O (E)={A € L(E™R) : A is alternating}. (L.3)
If A, Bl € Q"(F) and XA € R then A + ABl € Q"(E) thanks to the linearity for each variable. Thus
O"(FE) is a vector space, sub-space of L(E™; R).
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L.2 Leibniz formula

Particular case dim E=n. Let A € Q"(E) (a n-alternating multilinear form). Recall (see e.g. Cartan [5]):

1- A permutation o : [1,n]y — [1,n]y is a bijective map (i.e. one-to-one and onto); Let S,, be the set
of permutations of [1, n]y.

2- A transposition 7 : [1,n]y — [1, n]y is a permutation that exchanges two elements, that is, 3i, j s.t.
T(eoybyeers Jyer) = (eeey Jy veus 4y -..), the other elements being unchanged.

3- A permutation is a composition of transpositions (theorem left as an exercise, see Cartan). And a
permutation is even iff the number of transpositions is even, and a permutation is odd iff the number of
transpositions is odd. The parity (even or odd character) of a permutation is an invariant.

4- The signature £(0) = £1 of a permutation o is +1 if ¢ is even, and is —1 if ¢ is odd.

Proposition L.2 (Leibniz formula) Let A € Q"(E). Let (€;)i=1 be a basis in E.

For all vectors ©y,...,v,, € E, with 7; =Y, vié&; for all j,

_written (éi)

yeey TV

Zl]

ATy =c Z H )= ¢ Z Hvi(i) (with ¢ := Al(EY, ..., €x)). (L.4)
j=1 =1

oceSy,

Thus if c = Al(éY, ..., Ey,) is known, then Al is known. Thus
dim(Q"(E)) = 1. (L.5)

(Classic not.: Uy = Y 104, A(T1, ... Tn) = €D e €(0) [1imy Vo(i)s = €D res, (T) [Timy vir@)-)

Proof. Let F := F([1,n]y; [1,n]y) ="ritten [1,n]§’nh\' be the set of functions i : {

[1,n]y — [1,n]x }

Al being multilinear, A(vy, ..., ) = ZZ 1 leE(é'jl,ﬁ’g, ceey Un) (“ﬁrst column development”). By recur-
rence we get A€(vl, ,Up) = Zn 1 vt i A8, €)= | )Aé(é’](l), s €5(n))-
And A(é;,,...,€;,) #0iff i : ke {1 sn} —i(k) =1, € {1,.. 2} is one-to-one (thus bljectlve) Thus

ATy, ey Up) = desn T, i( A(Es(1ys s Ea(n)) = desn 5( )Hf 1 ;”)Af(el,..., €r), which is the
first equality in (L.4). Then ) ¢ e(0) ]2 vg(z) = s, €(0) Ty vg(i(.)(z)) since o is bijectif, thus

=1 "1

Yooes, £(0) [T 0@ = Yres, (T T, vl thus the second equality in (L.4) since e(1) ™! = (7).

=1 "1 zl'r

(See Cartan [5].) .

L.3 Determinant of vectors

Definition L.3 (€;);=1,.. ., being a basis in F, the determinant relative to (€;) is the alternating multi-
linear form det|z € Q" (E) defined (thanks to (L.5)) b

det(ey, ..., €,) = 1. (L.6)

e
N

And the determinant of n vectors v relative to (€;) is det|e(v1, ..., Uy).

Thus with 7; = Z?:W}gi and with prop. L.2 (here ¢ = 1),

dlgt(ﬁl, e Tn) = Y e H = > e[ v (L.7)
=1

ocESy j=1 TES,
and
Q" (E) = Vect{dlet} the 1-D vector space spanned by det|z. (L.8)
€
And any A € Q"(E) reads
A= A(éy,...,E) d|et (L.9)
Thus if (b;) is another basis then
det = ¢ d‘et where ¢ = det(€é, ..., €p). (L.10)
& |b

154



155 L.4. Volume

Exercice L.4 Change of measuring unit: If (a;) is a basis and l_fj = Aa; for all j, prove

Vi=1,.n, bj=\i; = det = A" det (L.11)
a |b

(gives the relation between volumes relative to a change of measuring unit in the Euclidean case).

Answer. d‘egt(l;l, b)) = dﬁt()\al, s AGn) "N det (@, oy @n) 20 A AR et (B, .. B). o

linear @ B

Definition L.5 Two bases (¢;) and (b;) have the same orientation iff det‘g(gl,...,l;,L) > 0, ie. iff
detlg(é'l, wey €r) > 0 (we use (L.10) to justify this definition).

Proposition L.6 det|z(71,...,v,) # 0 iff (¢, ...,7,) is a basis; Or equivalently, det|z(v1,...,7,) = 0 iff
U1, --., U, are linearly dependent.

Proof. If Z?:Niﬁi = 0 and one of the ¢; # 0 then ¥; is a linear combination of the others thus
det (1, ..., Un) = 0 (since det|z is alternate); Thus det|z(1, ..., U,) # 0 = the ¥; are independent, and
hence make a basis (n vectors in E s.t. dim E' = n). And if (¢1,...,7,) is a basis then det|z(1, ..., U)) =
1 # 0, with det|y = cdet|g, thus det|g(71, ..., U,) # 0. un

Exercice L.7 In R2. Let #), = Y-, vi& and @ = 2321 v)€; (duality notations). Prove:

det (71, ) = vivs — viva. (L.12)

Answer. Development relative to the first column: det|z(¥1,7:2) = det|g(v%é'1 + vfé’g,ﬁg) = v} detz(€1, v2) +

v? det|z(€2,T2). Then det|z(T1,v2) =0+ viv3 det(é1, €2) 4 vivs det(ez, é1) + 0 = vivi — vivs. un

. . 3 4o
Exercice L.8 In R?, with o; =, v%€;, prove:

3
det (¥, U, U3) = Z €ijrvivhY, (L.13)
i\j k=1

where e, = 3(j—1)(k—j)(k—1i), i.e. ey = 1if (4,5,k) = (1,2,3), (3,1,2) or (2,3,1) (even signature),
e = —11f (4,5,k) = (3,2,1), (1,3,2) and (2,1,3) (odd signature), and ¢;; = 0 otherwise.

Answer. Development relative to the first column then the second column give = viv3v3 + vivivy + vivivs —

21 2.1 2.1
vivivd — vivIvt — viviel. an

L.4 Volume

Definition L.9 Let (€;) be a Euclidean basis. Consider a parallelepiped in R™ which sides are given by
the vectors vy, ..., Up; Its algebraic volume and its volume relative to (€;) are

algebraic volume = det(01,...,7,), and wvolume= ’d‘qt(ﬁl, e T) |- (L.14)

E
If n =2 then volume is also called an area. If n =1 then volume is also called a length.

For mathematicians, notations: Let (€;) be a Cartesian basis and (e!) = (dz’) be the dual basis.
Then, cf. Cartan [6],

written
det = el

| X ...ox e =dxt x ... x dz". (L.15)

And, for integration, the volume element (non negative) uses a Euclidean basis (€;) and is

dQ = |det | = |dz! x ... x dz| " T gul g (L.16)
e integration
0 < volume = [Q] = / dQ :/ dzt...dz". (L.17)
Q 7eq

(cf. Riemann approach: any regular volume () can be approximated with cubes as small as wished.)
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156 L.5. Determinant of a matrix

. [(Il,bl] X ... X [an,bn} — Q A
Exercice L.10 Let ¥ : . . be a parametric
7= (g1, qn) =T = (21 =), ;20 = Vn(]))

description 2. Prove
dQ(7) = |Je(q)| dq*...dg™, and |Q|:[|J¢(®\dq1...dq”, (L.18)
q

where Jy(q) = detg[d¥(q)]je = det[ ((j’)] = detjz(p1, -- pn) = the Jacobian matrix of ¥ at ¢ = the
volume at & = ¥(q) limited by the tangent vectors p;(Z) = Oql L (7).

Answer. Polar coordinates for illustration purpose (immediate generalization): Consider the disk Q parametrized

. . 10, R] x [0,27] — R®
with the polar coordinate system W :

where a Euclidean ba-
qg=(p,0) - &= (x=pcosh,y=psinh)

sis (€1, &) is used in R? (so & = pcosf&; + psinfez). The associated polar basis at & = ¥(7) is (71(Z) =

S cos o —psin .,
520,00, 7(2) = 5500, s0 [ @ = (Song ) and (@l = (700 ). s doty @), 72(0) = o
(> 0 here), thus d2 = |p| dpdf = pdpdf. Thus the volume is [Q| = [, dQ = pr 0 f T, pdpdd = TR, un

Exercice L.11 What is the “volume element” on a regular surface 3 in R3, called the “surface element’?

asz, bz} — RS

(a1, b2] x |
Answer. Let U :
(u,v) = Z=9(u,v) =z1(u,v)e1 + ... + z3(u, v)es

} be a regular parametrization

of the geometric surface ¥ = Im(¥), where (&1, ¢é2,¢3) is a Euclidean basis in R®. Thus £1(Z) = 2% (u,v) and

t2(%) = S (u, v) are the tangent vectors at  at & = ¥(u,v). Hence a normal unit vector is 7i(Z) = %,

thus det ({1, 12, 1) = ||#1(&) x{2(7)|| is the area of the parallelogram which sides are given by ¢1 and > (volume with

height 1). Thus the surface element at & = W(u,v) is dS (&) = ||[1(Z) x t2(Z)|| dudv = 2L (u,v) x 2L (u,v)|| dudv.
b b

Thus [2] = [,y dX(Z) = fulal fvia2 | 2% (u,v) x 2% (u,v)|| dudv. un

L.5 Determinant of a matrix
M, is the vector space of m * n matrices, (E'Z) is the canonical basis in M,,; (column matrices). Let
’Iﬁj € /\/Lnl, mj - Z?:lMijEiJ M = [M”} So [mﬂ]\ﬁ = M[E]]IE: And [’Iﬁj]‘ﬁ —written 'f_ﬁj because the
canonical basis will be systematically used in My1. So M = (17y,..., 1, ) = ( M.Ey, ..., M.E, ) = [M;].
Definition L.12 The determinant of the matrix M = (4, ..., M, ) = [M;;] is

det(M) = det([My;]) := det(1in, ..., 7m,) (= det (M.Ey, ..., M.E,)). (L.19)

|E |E

This defines det : M,,,, — R.
Proposition L.13 e det(]) = 1.

e M € M, is invertible iff det(M) # 0.
o If M,N € My, then det(M.N) = det(M)det(N), and if M is invertible then det(M ') = 1

det(M) "
o If M € M, then det(M7T) = det(M).

Proof. e det(I) := det 5 <(Ey,...,En) = 1.
e Apply prop. L.6.
e If M is not invertible then M.N is not invertible, thus det(M) = 0 and det(M.N) =0, and 0 = 0.
If M is invertible, define a : M,;;" — R by a(vl,.. ) = det‘E(M U1, ..., M.U,). We have a €

Q' (M) (multilinear alternate) because the matrix products are linear and det, 5 € Q' (My1). Idem b
M1 — R defined by b(v, ..., 0 ) = detlE(N M.%y, ..., N.M.%G,) is in QY (M,1). And dim(Q"*(M,1)) =1
gives I\ > 0 s.t. b = Aa. Thus det(N.M.@y, ..., N.M.@,) = Adet, g (M., ..., M.y, ), thus with @; = E;
for all j we get det(N.M) = Adet(M), and with @; = M~1.E; for all j we get det(N) = \.
N - L.7 - o(i - 7 [
o det[My] = det (@, ., 7)) 3T (@) [[7 = 3 e [[ vy = detlM;il. &
|E o€S, i=1 T€S, i=1
Exercice L.14 Let g(-,-) be an inner dot product, (&;) be a basis, g;; = g(€&;, €;). Prove det([g;;]) > 0.
Answer. [g]|z is symmetric def. > 0, [g]|z = P".D.P, det([g]z) = det(P)* ]I, (A\:) > 0. un
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L.6 Determinant of an endomorphism
L.6.1 Definition and basic properties
Definition L.15 The determinant of an endomorphism L € L(E; E) relative to a basis (€;) in E is

det(L) == det(L.€1, .., L.,). (L.20)

This defines det s : £(E; E) — R.

Proposition L.16 Let L € L(E; E).

1- If L = I the identity, then (ﬂe/tw(l) = 1, for all basis (€;).
2- For all vy,...,v, € E,
det(L.#, ..., L.t,) = det(L) det (¥, ..., Ty). (L.21)

3- IfLé} = ZZL:lLUé; for all j, ie. if [L]‘é‘ = [Lij]7 then
det(L) = det([L]j2) (= det([Li;])). (L.22)

4- For all M € L(E; E), and with M o L ="tten V[ [, (thanks to linearity),

det(M.L) = &lgt(M) det(L) = {e}(L.M). (L.23)

E
5- L is invertible iff cigqg(L) # 0, and then

(L.24)

L) = det (L)

6- If (-, )4 is an inner dot product in E and LY is the (-, ), transposed of L (i.e., (LI, @), = (&, L.i0),
for all i, € E) then
det(Ly) = det(L). (L.25)
| |
7- If (¢;) and (b;) are two (-,-)s-orthonormal bases in Ry, then det; = +detjz with + iff (b;) and (&)
have the same orientation.

Proof. 1- (ia/t‘g(l) = det|z(1.€1, ..., [.€,) = det|z(€1, ..., €,) = 1, true for all basis.

2- Let m : (01, ..., ) = m(1, ..., Uyn) := det|g(L.U1, ..., L.U,): Tt is a multilinear form since L is linear,
and alternated since dets is; Thus m =L m(E,...,é) det|z = dAe/t‘g(L), thus (L.21).

3- Apply (L.19) with M = [L]‘g to get (L.22).

4 detjo((M.L).&1, .., (M.L).&,) = det|o(M.(L.&1), ..., M.(L.8,)) =52 det o( M) det;z(L.1, ..., L.&y).

5-1f L is invertible, then 1 = det|s(I) = det|s(L.L ") = det|o(L) det (L"), thus det|z(L) # 0.

If &g‘qg(L) # 0 then detz(L.¢€1, ..., L.€,) # 0, thus (L.€1, ..., L.€y,) is a basis, thus L is invertible. Then
(L.23) gives 1 = det|o(I) = det (L~ '.L) = detjz(L). det (L"), thus (L.24).

6- [g)jz-[Lglie = ([L]j2) ™[9]z gives det([g]j) det([Ly]jz) = det(([L]jz)T) det([g];z),

7- Let P be the change of basis endomorphism from (¢&;) to (b;), and P = [P}z (the transition
matrix from (&) to (b;)). We have (Tc;c‘g(P) = det|g(517...,gn) = det(P), and both basis being (-,-)4-
orthonormal, PT.P = I, thus det(P)? = 1, thus det|g(51, - I_;n) =det(P)=+1= idet“;(l;l, ey En), thus
det|z = :I:det“;. And apply the definition L.5. .

Exercice L.17 Prove (ig‘qg(/\L) =\" (ievtw(L).

Answer. &Ie}(AL) = dﬁt(kL.e“h oy ALE,) = A" dlgt(L.é’l, L&) = X" det(L). s
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L.6.2 The determinant of an endomorphism is objective

-

Proposition L.18 Let (@;) and (b;) be bases in E. The determinant of an endomorphism L € L(E; E)
is objective (observer independent, here basis independent):

(det([Lliz) =) det(L) = det(L) (= det([Z]5))- (L.26)

NB: But the determinant of n vectors is not objective, cf. (L.10) (compare the change of basis formula
for vectors [ﬁ]‘ 7 = P~1.[w] |z with the change of basis formula for endomorphisms L= P~1[L]jz.P).

Proof. Let P be the transition matrix from (@) to (b;). Hence [L]Ig = P~1[L]j;.P, thus (igt“;(L) =

det([L)5) = det(P~") det([L]|z) det(P) = det([L]q) = detia(L). &

Exercice L.19 Let (@;) and (b;) be bases in E, and define P € L(E;E) by P.d; = Ej for all j (the
change of basis endomorphism). Prove

- —

det(by, ..., bp) = det(P), thus det = det(P)det. (L.27)

L @ la 5

Answer. dlqt(l_)‘l,...,l_)'n) = det(P.dy,...,P.dn) (L':m)&\e/t(P) det(dy, ...,dn) = det(P) = det(P) dqt(gl, <oy b)), thus

la@ la la la

det|z = (chtm('P) detlg. .

L.7 Determinant of a linear map

(Needed for the deformation gradient Fj°(P) = d®P (P) : I@g — R7)
Let A and B be vector spaces, dim A = dim B = n, and (@;) and (5;) be bases in A and B.

L.7.1 Definition and first properties
Definition L.20 The determinant of a linear map L € £(A; B) relative to the bases (a@;) and (b;) is

det(L) := det(L.dy, ..., L.d)- (L.28)

|a@,b 15

If (b;) = (@;) then det; (L) =""" det)z(L). If (b;) = (@) is implicit then det,; (L) ="*t%" det(L).

Thus, if L.@; = Y. Lijb;, ie. [L] - ; = [Lij], then with (L.19):

det(L) = det([Ly;]). (L.29)

@b
Proposition L.21 Let iy, ...,u, € A. Then

det(L.ty, ..., L.i,) = det(L) det(iy, ..., Uy). (L.30)
|b

Proof. m : (i1, ..., un) € A" = m(ily, ..., tin) := det 3(L.ty, ..., L.ii,) € R is a multilinear alternated form
since L is linear; And m(dy,...,d,) = detlg(L.Eil, vy Ldy) =129 (igt‘a’g(L) = det (L) det|g(dy, ..., Gn).

&5

Thus m = det,; (L) det|, cf. (L.10), thus (L.30).

Corollary L.22 Let A, B,C be vector spaces such that dim A = dim B = dim C' = n and (d;), (b), (&)
be bases in A,B,C. If L: A — B and M : B — C are linear then, with M o L, ="' N[ [, (thanks to
linearity),

det(M.L) = det(L) det(M). (L.31)

a,c |@,b 5,&

Proof. i{e’g(M.L) = dlqt(M.L.dl), oy M.L.@,)) = det(M) det(L.@y, ..., L.@,) = det(M) det(L).
ac ¢ b,¢ b b, |@,b
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159 L.8. Dilatation rate

L.7.2 Jacobian of a motion, and dilatation

F = FP(py) := d®P(py,) : ]@g — R? is the deformation gradient at p, € €, relative to f and t,
of. (4.1). Let (E;) be a Euclidean basis in R_ﬁo and (&) be a Euclidean basis in R} for all ¢ > t,. Let F;
be the components of F relative to these bases, so F.E; = Y1 F;;¢&; for all j and [F}lﬁ == [Fij].

Definition L.23 The “volume dilatation rate” at py, relative to the Euclidean bases (E;) and (&;) is
J,5.6(20) (py) = ldet(F) (= d‘%t(F.El, oy F.E,) = det([F;])), (L.32)

often written Jz . := det([F}|E7€) (or simply J = det(F) if (&) = (E;) is implicit).

So, at ty at p,, (El, ey E,L) is a unit parallelepiped which volume is 1 (relative to the unit of measure-
ment chosen in I@g), and, at t at p; = @ (py,), J@yg(@?)(p@) = det|€(F.El, .., F.E,)) is the volume of the
parallelepiped (p;, F.E;, ..., F.E,) at p; = ®%(p;,) (relative to the unit of measurement chosen in K.
Interpretation: With to > ¢ > ¢y, and (&;) is the basis at ¢; and t:

e Dilatation if J 5 (P fg‘;)(ptﬂ) > Jig, @) (py,) (volume increase),

e contraction if J z (®y ) (pe) < J5, A®2)(py,) (volume decrease), and

e incompressibility if J| Evé(é‘t&‘;)(ptﬂ) J15,2(®)(py,) for all ¢ (volume conservation).

In particular, if (¢;) = (E;) then Jize(®2)(py,) = 1, and if ¢ > ty, then

e Dilatation if Jjz (®})(p;,) > 1 (volume increase),

e contraction if J|€7g(<13§°)(pfo) < 1 (volume decrease), and
e incompressibility if Jz2(®{)(ps,) = 1 for all ¢ (volume conservation).

Exercice L.24 Let (E;) be a Euclidean basis in I@g, and let (@;) and (b;) be two Euclidean bases in K7
for the same Euclidean dot product (-,-)4. Prove:

J15.a(®0(P)) = £J,5 520 (P)). (L-33)
Answer. P being the transition matrix from (@;) to (b;), det(P) = +1 here. And (4.28) gives (Fliga=PlFliz5
thus det([F] z ;) = # det([F], 5 5), thus detjz(F.E\, ..., F.E,) = £ det z(F.E, ..., F.Ey). L

L.7.3 Determinant of the transposed

Let (A,(-,-)g) and (B, (-,-)s) be finite dimensional Hilbert spaces. Let L € L(A;B) (a linear map).
Recall: The transposed L7, € L(B; A) is defined by, for all @ € A and all @ € B, cf. (A.47)

(L3 a6,10)g := (W, L.i0)p. (L.34)

Thus if (@;) is a basis in A and (b;) is a basis in B then

(L.35)

Indeed, (L.34) gives [(-, ')g]\ﬁ'[Lgthﬁ = ([Lha R -)h]ll;.

L.8 Dilatation rate

A unique Euclidean basis (€;) at all time is chosen, and (-,-), is the associated inner dot product.
C? motion._'The Eulerian velocity is @(t, p;) = %—‘f(t, Iibbj) at py = <AI;(t,R)bj). to is fixed, the Lagrangian
velocity is V(t, p,b) = 6‘1’0 (t,py) = U(t,pe) at pr = (¢, Ryj) = (¢, py,), the deformation gradient is
Flo(t, pg,) := d®P(t,py,), the Jacobian is

JO(t, py) = dlgt(Fto (t,p)), and Jh N qep(ploy. (L-36)
O is a origin in R", tO = Y ®e, Vi = S vie, vo= Y v, Vilt,py) = vi(tp) =
v'(t, @O (t,py, ), dRO(E, pm)() (d‘I’ '(t.p0)-(-))éi, F 5 = YL Fyei, Fy = d'.¢; = 5%,
[d®*) 1z = (g;l;ll ‘%Z -) —WHitten d<I>’ (row matrix)
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160 L.8. Dilatation rate

L.8.1 272t pm Jo(t, pi,) divi(t, pr)

Lemma L.25 (t pi,) satisfies, with p; = ®(py,),

6Jt0 to PR
v (t,p,) = JO (¢, py, ) divi(t, pe) (L.37)

(value to be considered at t at p;). In particular, ® is incompressible iff divd(t, py) = 0.

Proof. A determinant is multilinear thus

- L '
o t . aJw do? :
J* = det F* = det : , W:det . + ...+ det dq);lfl
aer : a(dd™

With &% ¢, 2490 (¢, m>—d< ) (tpy) = AVt py,) = dv'(t, pr).F (¢, py,). Thus

d(dot) 90! I ! o 40!
ot axz . 83:1 b 1 d(I>2 b 1
det | 9% | Zdet| T ae2 debis get | d®? [ = S8 et = 2% jto
: . alternating : Ox! : Ox!
! n . . n dom
4o 4" 4o
Idem for the other terms, thus
9Jto ovt o™ .
W(tvpl‘o) = @(tapt) J(t’pto) + ...+ a?(tvpt) '](t7pﬁ)) = le’U(t,pt) ']to(tap&))a
1.€e. (L37) e

Definition L.26 divd(¢,p:) is the dilatation rate.

L.8.2 Leibniz formula

Proposition L.27 (Leibniz formula) Under regularity assumptions (e.g. hypotheses of the Lebesgue
theorem to be able to differentiate under [) we have

d B Df
dt(/pteﬂt f(t,pe) th> = /ptth(Dt + fdlvv) (t,py) dQy
= / (% +df.0+ f div(D)) (¢, pe) A (L-38)
PtEQ:

B /ptegt (%{ +div(f)) (¢, pr) d.

Proof. Let
Z(t) ::/ f(t,p)dQy = / f(t, % (t, P)) J(t, P)dQy,.
SN PthD

(The Jacobian is positive for a regular motion.) Then (derivation under [)

a.Jt

o (1 P) d,

20= [ Hep) e+ sm e

D .o

_ / (D{ (tp1) + (b po) divi(t, po))Jo (¢ P) dS,
Peq,,

thanks to (L.37). And div(f?) = df.v + f divd gives (L.38). un

Corollary L.28 With (i), =""#°" §f « 4 (in the given Euclidean framework),

of
dt q, Ot

sum of the temporal variation within Q; and the flux through the surface 0€);.

[ 1(tpo a0 - (t, pr) S + / (F+ ) (t, py) dIy, (L.39)

o,
Proof. Apply (L.38)s. u
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161 L.9. 8JJ)0F = JF~T

L.9 0J/0F = JFT

L.9.1 Meaning of %?
ij

My = {M = [M;;] € R™} is the set of n % n matrices. Consider the function

Mpn — R

Z = det: { M = [My] — Z(M) := det(M) = det([M;]). (L.40)

Question: What does &—Z”(M) mean?
of

Answer: It is the “standard meaning” of a directional derivative 52 (&) = df(Z).€;... where here

f = Z, thus & ="rtten A7 ig a matrix (a vector in M,,,), and the canonical basis (&;) is the canonical
basis (m;;) in M, (all the elements of the matrix m;; vanish but the element at intersection of line i
and column j which equals 1). So:

YA . Z(M 4+ hmy;) — Z(M)
M) = dZ(M).my; = 1 ! R). L.41
o (M) = AZ().m; = I . (€ R) (L41)
L.9.2 Calculation of gﬁft
Proposition L.29
oz 3 . 0Z _
Vi, 7, WU(M) =Z(M) (M T)z‘j, written oM =ZM " (L42)

Proof. a‘?»—f](M) = Timy, o 2HAHRm) At - e development of the determinant det(M + him;)

relative to the column j gives
det(M + hlmy;]) = det(M) + hc;j (L.43)

where ¢;; is the (i,7)-th cofactor of M; Thus 22-(M) = limy_o w = ¢;;; And since

aMi]'
M-t = m[cij]ip, ie. [cij] = det(M)M~T, we get (;L—ZJ(M) =det(M)(M~T);;, i.e. (L.42). n

L.9.3 0J/OF =JF T
Setting of § L.8 with #, implicit: F' := d®(p,,) with F.Ej =" | Fi;é; where F;; = %(pm), and
R o L(RE;RY) —R
hea ST F oo J(F) = det(Fy]) (= det([ 9 ()] = dit (o)),
j |E,&
so, J(F) = J(®) is the Jacobian of ® at p, relative to (E;) and (é;). Thus (L.42) gives:

Corollary L.30

o - 9.7
Vi, 4, @(F) = J(F)([F]™");, written 3 JF~T, (L.45)
L.9.4 Interpretation of %?
iy
The first derivations into play are along the directions Ej at t because Fj; = % = d<I>i.E_"j, when

P = Zl ‘I)ié}, SO FEJ = Fl‘jé'i.

Question: What does DGF—JJ mean ? That is, derivative of J in which direction(s) ?

Anfwer: 1- “Identify” e ﬁ(ﬂi%,]@?) with the tensor F € E(ﬁ?*,ﬂi%;R) given by F(¢,0) = (.(F.0);
So FE] = Z?=1Fij€i iff /= Z
basis of (E;) basis in @Z)

n — - . .. = . .
ij=1Fij€ ®TEj, where €; is a basis in R} and (7gi) is the covariant dual

LR R2;R) — R

2- Define the function Jac : P Jac(ﬁ) = J(F) = det(F)
Ee
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162 M.1. Transport of volumes

3- Then it is meaningful to differentiate Jac along the direction €; ® 7g; € E(@?*, I@); R) to get

dJac (F) = lim Jac(F + hé; © 7p;) — Jac(F) written 0J

= F). L4
6Fij h—0 h 8FZ]( ) ( 6)

dJac (T _ 1 Jac(F+hé&QE”)—Jac(F)
BFj (F) = llmh*)() 7 )

4- So % is a derivation in both directions €; in I@? (present at p;) and 7g; in I@g (past at py, and
ij

(Duality notation:

dual basis vector).
So, what does this derivative mean? (The author does not know.)

M Transport of volumes and areas

Here R" = R? the usual affine space, fp,t € R, ® := ®° : R x Q, — Q; is a regular motion, and
Fp =d®(P). Weneed a (-,-)4 be a Euclidean dot product in R”, the same at all time. And (E;) and (€;)
are (-,-)g-Euclidean bases in ]R:fé and R”.

M.1 Transport of volumes
M.1.1 Transformed parallelepiped

The Jacobian of ® at P relative to the chosen Euclidean bases is

Jp = J(P) = det(FP(P)) (= det(F{(P).Eh, ... F(P).E,))), (M.1)

|E.€ 2

cf. (L.32); The motion being regular, Jp > 0. And if (Um,...,ﬁnp) is a parallelepiped at ty at P, if

—

Uip = Fp.U;p, then (Uip, ..., Unp) is a parallelepiped at t at p = ®(P) which algebraic volume is

(ilgt(ﬁlp, ooy linp) = Jp det(Uip, ..., Upp). (M.2)
€ |E

M.1.2 Transformed volumes
Riemann integrals and (M.2) give the change of variable formula: For any regular function f : Q; — R,

/ F(p) A2, = / F@(P)) | T(P)]de, . (M.3)
pEQ,

PeQy,

Here Jp > 0 (regular motion), hence

/ f(p) 2y = / F(®(P)) J(P) d€, . (M.4)
I)EQt

PeQy,

In particular, [Q| = [

pED: th - fPthﬂ J(P) thO

M.2 Transformed surface
M.2.1 Transformed parallelogram and its area

Consider two independent vectors [j]_P, Usp in I@g at fp at P, and, ® being a diffeomorphism, the two
independent vectors i, = Fp.l'jlp and gy, = Fp.ﬁgp in RT at t at p = ®(P). The areas of the associated
quadrilaterals are ||U1p x [72p||g ||t1p X Uap)||g, and the unit normal vectors to the quadrilaterals are (up
to the sign)

= (j]_p X [7213 ﬁlp X ’lzgp

NP == Py =y 5 and ﬁp = T T (M5)
|Urp x Usp, ||ty X tizp||g

162



163 M.2. Transformed surface

Proposition M.1

ﬁleﬂgp:JpFI;T.(ﬁlp Xﬁgp), in short 'L_lfl XﬁQZJFiT.(Utl X(.__jg), (MG)
and T o T nF
F,'.N - F~*.N
My = fTi_,P (#£ Fp.Np in general), in short 7 = TS (M.7)
1Ep" - Npllg |F=T.Nlg

Thus with the (unique) polar decomposition Fp =(-17) Rp.Up, WhefeﬂUg =Up >0in F(@Z),@g) and
-1 _ pT N . N ) . - _ Rp.(Up .Np) Us;'.Np
RP —_— RP E E(R&ﬂRt ) {r]g]d bOdy mOtIOH), we haVe np — m — Pm

Proof. Let Wp € R_ﬁ, and W, = Fp.Wp. The volume of the parallelepiped (1, Uap, Wy) is

(1p X Tiap, Wp)g = (%qt(ﬁlp,ﬁgp,wp) = Jp (f}%t(ﬁlp, Usp, We) = Jp (Urp x Usp, Wp),

=Jp (ﬁlP X (72PaF1;1-wp)g =Jp (F;T-(ﬁlP X (7213)71‘71))577

— i —-T = T
— Uip XU2p o JP FP (UleUQP)
for all w,, thus (M.6), thus i Tarlls — Trl|Fp T (OiexTar)l,

(here Jp > 0), thus (M.7). oa

M.2.2 Deformation of a surface
A parametrized surface ¥y, in €2, and the associated geometric surface S;, are defined by

7 :{[a,b] x [e,d] — Q

(u,v) — P =Y, (u,v) } and Sy, = Im(¥y,) C Q. (M.8)

Consider the basis (E; = (1,0), E; = (0,1)) in the space R x R D [a,b] x [¢,d] = {(u,v)} of parameters,
and suppose that Uy, is regular. Thus the tangent vectors at P = Uy (u,v) € Sy, given by

- o wri ov
Tlp = d\I/to (’U,,’U).El ert:ten T%(U,U),
U

- = wri ov
TQP = d\I/to (u, U).EQ ert:ten P fo
v

(M.9)

(u, v),

are independent: flp X TQP #+ 0.
Call ¥; := @) o ¥y, = & o ¥, and S; the transformed parametric and geometric surfaces:

[a,b] x [e,d] —

(u,v) = p =V, (u,v) = &(Vy (u,v)) (= 2(P)) } and S = ®(Sy). (M.10)

\Ijt qu)O\IJtOZ{

The tangent vectors at S; at p = ®P(P) at t:

- . Ov oW . .
thp = d¥,(u,v).Ey = a—t(u,v) = d@?(P).a—tO(u,v), ie. 1, =Fp.Tip,

5 &j 5 \17 (M.11)
top = dW,(u,v).Ey = a—vt(u,v) = dob (P).Tf(u,u), ie. ty, = Fp.Top,

are independent since ®{ is a diffeomorphism and Wy, is regular.

M.2.3 Euclidean dot product and unit normal vectors

Relative to (-,-)q, the scalar area elements dXp at P at Sy, relative to ¥, and do, at p at S; relative
to W,, are

oW oW S o
d>p ::Ha—to(u,v)x 8tﬂ(u,v)||gdudv (= ||Tip x Tap||y dudv),

('“)\I/u afoU (M.12)
doy = IITJ(u,v) X Tvt(u,v)llgdudv (= [[trp x taplly du dv).
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And the areas of S, and S; are

ov
S| = / dzp—/ / 1%
PGSfG u=a Jv=c
oY,
‘LL“@T(“’” x

15, = / do
PES:

M.2. Transformed surface

ov
u, v T/Uto(uﬂv)”g dUdUa

ov,

50 — (u,v)||g dudv.

(M.13)

And the unit normal vectors Np at Si, at P at ty and 7, at Sy at p at ¢ are (up to the sign)

AN

o
ou (u,v) X T';O(uvv)

—

Tip X Tap

b=

N%(

) x 2o
0w,

ov
u (u,v) x

—

(u,v)llq

|1 Tip x Tapll,

tlp X tzp

ov,
ov

ov, (u,v)
Ot (u, v) X

= v
| (u,0)]lg

lt1p % Epllg

And the vectorial area elements d¥, p at P at Sy and dd), at p at S; are

- » W
dSp = Npdip = aa—’*o
u

%(u,v) X

0w,
v

(u,v) x
ov,
ov

—

dop = fip do, =

(u,v)dudv (=

L (u,v) dudv

flp X pr dudv)

(= t1p x lop dudv).

(And the flux through a surface is [}, f o it do =Written Jr feda.)

M.2.4 Relations between area elements

t_'lp X t_)2p = Jp FET.(Tlp X fgp), cf. (M
ov, ov,

E(%”) X W( v) =

.6), gives

Jp FRT (S

And

FpT.dSp | = Jp F5T.NpdSp,

iido, = |dd, = Jp

(Check with (M.7).)

M.2.5 Piola identity...

The divergence (in continuum mechanics) of a 3 * 3 matrix function M = [M]] is:

oM?
Z?:l ax§

OM?
Y%y (

8M,3

OM;3
axd
oM3
0X3

oM,

8X2
+ gﬁ?g +

n oM} | oM3 | OM3

2195 oxt T ax* T ax+
i+1 g ri+2 i+1 g ri+2

Cof (M)j MJLMJIQ MJIQM]il,and

Application: det([F(P)] z ;) ([F'(P)] 5, A

Cof (F(P)) (matrix meaning); So, in €,

AM;
8X1
aM?
0X1L

+

+

(de MM
= Co

Ov,,

), ct. (T.75).

<[F<P>}|E

0w,

(u,v) x B0 ,0)).

(u

ou

and do, = Jp||Fp T .Np||, dSp.

Its matrix of cofactors Cof (M

= Cof(M)T.

&)); Written in short det(F'(P)) F(P)~T

(M.14)

(M.15)

(M.16)

(M.17)

divM

) is given by

JF~T = Cof(F) (matrix meaning). (M.18)
Proposition M.2 (Piola identity)
) _ ) 8Cof OCof (F)?
Ty _ _ J _

div(JE~Ty =0, e Vi, VP, Z =0 or Jz_:l oy (P) =0 (M.19)

Also sometimes ambiguously written Z . BX (JBX )=0o0r>"_, OXJ (Jac(ax )) =0...
i1 it2 i+l it2
Proof. Cof(F)i = FiHIFiH2 — Fitlpit? = Do Dot 007 020 Thus
8C0f(F); _ 82<pi+1 a¢i+2 a(pi+1 82@1'-&-2 B 82<pi+1 8<pi+2 B 680i+1 82<,0i+2
0Xi  9XIQXItL9Xit2 = 9Xitl 9XipXit2  9Xi9Xit29Xitl  9Xit2 9XigXitl'

And summation: The terms cancel out two by two.
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165 M.2. Transformed surface

M.2.6 ... and Piola transformation

Goal: for a @ : Q — R?, find Upiopa : , — @g s.t., for all wy = ®° (wy,) (With wy, open subset in Q),

Upiola * N d¥ = / @7 do, (M.20)
Owy Owy
i.e.
/ divUpiola d, = / diva dQy, (M.21)
Wig wt
i.e., with (M.4), for all P € ,,
divUpiola(P) = J(P) divii(®(P)). (M.22)
Proposition M.3 With p = ®(P),
Upiola(P) = J(P)F(P) ™ .ii(p), (M.23)

ie., Upiola := J ®*(@), i.e. = J times the pull-back of @ by ®. Hence
d(p) « 1i(p) do = / (J(P)F(P)*l.ﬂ'(@(P))) . ]\7(P) dx. (M.24)
PEJwy PEdwy,

Proof. d(d o ®)(P) = dii(p).F(P), thus

div((JF).(@0 8))(P) "2 divp(JF1)(P).@(®2 (P)) + J(P)F(P) ™" 0 (di(p).F(P))
= div(JF~T)(P) « d(p) + J(P)(F(P).F(P)™") 0 di(p)

O 04 J(P)1, ¢ did(p) = J(P)divi(p),

thus Upiota(P) := J(P)F(P)~L.i(p) satisfies (M.22). (Check with components if you prefer.) .

Definition M.4 The Piola transform is the map (between vector fields in ©; and €,)

TQt — Tth
. . . (M.25)
i@ — Upiola, Upiola(P) := J(P)F(P) '.i(p) when p= ®9(P).

N Conservation of mass

Motion @ : [t1,t5] x Obj — R™, Q, = ®(t, Ohj), G(t,p;) = %—‘f(t, Ryy;) associated Eulerian veloc-
ity at ¢ at p; = <T>(t71%bj), ty fixed, ®® : [t1,t2] x Q — R™ the associated motion supposed reg-
ular, so with ®®(t,p,) = ®(t, Ry) = pi, F(t,p,) = dd®(t,p,) the deformation gradient and
J(t, py,) = det(F™(t,p,)) the Jacobian at t at p, = ®(t, Roy,).

Let p(t,p) = pt(p) be the (Eulerian) positive mass density at ¢ at p € €y, The mass m(w;) of a subset
wy C Qs

m(wy) = / pt(p) dws. (N.1)
PEW
Conservation of mass principle: For all w;, C Q) all ¢, and with w; = ®© (¢, wy, ),
miw) =ml), e [ po)de= [ py(P)du, (N2)
PEW Pewy,
Proposition N.1 If (N.2) then, for all t,
Py (P)
pe(p) = : (N.3)
J{(P)
and
Dby pdivi=0, ie 224 div(p) =0 (N.4)
— vy = — +div(p?) =
pt P B) P
Thus, for all w; C €y,
0
/ —pdwt——/ pU.7 doy (N.5)
we 8t 8wt



166 O.1. Definitions

Proof. The change of variable formula gives

/e plp)don = [ @ (P) TP da,

thus (N.2) gives pi (2 (P))J{°(P) = py,(P), thus (N.3). And (N.2) gives 4 ( Joyew PUEP()) dwr) = 0,
with < (f p(t)ew, PED()) dwt) =(L-38) fptewt (ap + div(p?)) (¢, p;) dw; (Leibniz formula), true for all wy,
thus (N 4). Hence the Green formula fQ div(p¥) dQ = f{m pU.idoy gives (N.5). oa

O Work and power

0.1 Definitions
0.1.1 Work along a trajectory

Let « be a differential form in [ty, 7] X © (unmissable in thermodynamics, e.g. o = dU the internal energy
density, a = 0W the elementary work, o = §@Q the elementary heat...).
And consider a regular curve c: t € [to, T] — c(t) € Q and let ¥(¢,c(t)) := &' (t).

Definition O.1 The work of the differential form « along the curve c is

T . T
W (a,c) = / o = / alt, c(t)). (t) dt """ / a.dé
c t=to t=to
T it T
= / alt, c(t).o(t, e(t)) dt =" / o.Tdt.
t=to t=to

(This definition is objective: No inner dot product and no basis needed.)

Definition 0.2 If we have a Euclidean dot product (-, -), ="ritten +, - then the work of a vector (force)

field f along the curve c is

W2 (F ) / 7 dc—/ vt / Fit,e(®) ()dt:/tT Flt, o(t)) « (¢, () dt. (0.2)

(Q.

Link between the two definitions if you use a Euclidean dot product (-,-)4: fis the (-,-)4-Riesz repre-
sentation vector of o, i.e. (f, W), = a.w for all w.

Remark O.3 If the differential form « is exact ie. iff 3U € CY (4 R) s.t. a(t,p) = dU(p) for all t,p,

then W2 (dU,c) = [,dU = [;_, dU(c(t)) = [, 29ty dt = [U o ], thus
/ AU = U(e(T)) = Ue(to)) ™80 A7 (0.3)
The work of an exact differential form is independent of the trajectory joining two points in €. .

Then consider an object Obj, a motion ® : (t, Royj) € [to, T) x O — p(t) = d(t, Ryy) = &)@ (t) e R™,
the trajectories cp, =® br, : t € [to, T] — p(t) = Bp, (1) € R, Q, = B(t, O),T(t, p(t)) = cp,’(t) (Eulerian
velocities), and py, = ®(to, Royy), pr = B(t, Rj) = P, () = o (1)

Definition O.4 The work of «a along ® is the sum of the works of « along all the trajectories, i.e.
Wto( ) = fptoeg (W?(a,(b%@))tho :fptoeszto(ﬁi% o) dy,:

Wi (3) = /p o /:to oG dt) dQy, = /,, . ( / ! oft, ¥, (0).0(1,85, (1) dt) d. (04

t=to

written with > p o, (.) instead of f%EQtO (.)dSY, for a finite number of particles.
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167 0.2. Piola—Kirchhoff tensors

0.1.2 The associated power density

Definition O.5 Definition: The power density of a differential form « relative to a Eulerian velocity
field v’ is the Eulerian function

C= |J (B} x2) —R
Y= .7 telty,T] (0.5)
(t,p) — o(t,p) = a(t,p).u(t,p).
And the power at t is, with ¢ (p) := ¥(¢, p),
Pui) = [ wn(p)d = / o (p). i (p) dp MHiLEen / 0.5 S, (0.6)
PEQ PEQ Q

E. g with a differential form Lz o (a Lie derivative of a differential form): P;(;) fQ Lza.Ud) =
fQ &2+ dol + o.dw). v dQ = th (t,p) + day(p). @ (p) + s (p).diwiy (p)). U (p) dSQ.

Partlcular case: If oy is an exact dlfferentlal form, i.e. AU; s.t. ap = dUy, then

Pt(f}'t) = / dUt.q_]'t d§) = —/ Ut diVﬁt dQ) + / Ut ’Ut . ﬁt dfQ. (07)
Q¢ Q I
With a Euclidean dot product (-,-), and with the (-, -),-Riesz representation vector i of ay we get
Pia) = [ i) -sin)do, (08)
PEQ
and if f; = gradU, then Pi(t) = fQ Uy dive, dQ + [ Uy Ty il dQ.
Remark 0.6 To measure something we need time: To get a power we must first measure work. un

0.2 Piola—Kirchhoff tensors

0.2.1 Internal power: classical presentation

First order classical hypothesis for the internal stress: At all time, a unique Euclidean basis (€&;)
and associated Euclidean dot product .e. are imposed. The power density is of the type (subjective
quantity)

:g = ZJ” 8x] (09)

i,j=1
where [g]|z = [04;], U= Y1 vi€; and dv.¢; =), g’“ . And the power at t is
Pis) = [ vt d= [ o) dn) i (0.10)
pEQ; pEQ;

This is a subjective formulation, ¢ : dv/ being a matrix product (term to term product meaningful once
a basis has been chosen).

0.2.2 Internal power: Objective presentation

First order objective hypothesis for the internal stress: At any ¢, there exists a C! (field of)
endomorphism 7, € F(£; L(R?;R?)) (we have r,(p) € L(R7;R?) for all p € ), s.t. the power density
and the density ¢ are

bi=1, 0d5 and Py(@) :/ 7.(p) O dii(p) S, (0.11)
peEQ

where 7, () dvy = Tr(z t.dUT) is the objective contraction between two endomorphisms.
Quantification. Basis (€;) at t at p, 7.€; = > 736, U= Y. 1 0;€;, dU.€; = Y ,0;;€;, 50 [T]|z = [74]
and [d?] |z = [v;);], and

n

Y= Zﬂ;jvﬂi and  Py(vh) = Z / 7i5(P)vj)i(p) d2  (objective quantities). (0.12)
PEY

ij=1 ij=1

(Duality notations : [z]jz = [r];], [d¥]je = [v;], and ¢ = sz:ﬂ;vﬂ.)
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168 0.2. Piola—Kirchhoff tensors

(Cartesian basis: v;); = % =vj; = %.)
J

(With a Euclidean basis (€;) and ¢ := [;}ljé: We get o = o : [dv]|e = ZZjﬂUingU;a ie. (0.9).

0.2.3 The first Piola—Kirchhoff tensor

The Piola—Kirchhoff approach consists in transforming Eulerian quantities into Lagrangian quantities to
refer to an initial configuration. % and t are fixed, and we write ® = ®°, F = F/° = d®, J = det(F),
V = V! (Lagrangian velocity). Recall: V(P) = @,(®(P)) gives dV (P) = dt,(p).F(P) when p = ®(t, P).
(0.11) gives (objective quantity), the Jacobian J(P) being positive (regular motion),

P = [ z@P) 0(aV(P)F(P) ) I(P)an,

Pt . (0.13)

_ / (7(P) F(P) " ,(@(P))) 0 aV(P)dey, "L / (JF~L1) 0 dV do,.
PeQy, - i B

Definition O.7 (From Marsden-Hughes definitions page 135.) The first Piola—Kirchhoff tensor at P €

Qy, relative to ty and ¢ is the linear map E(?(P) —written I (P) € £(R};R}) defined with p = &% (P)
by

IK(P):=J(P)F(P) "tz (p), ie. IK:=JF '(z0o®). (0.14)
(So B[ (P).if, = J*(P) F{*(P)~ .z, (p)-ih, for all i, € Bp)

So
Pi) = [ K gaVid, (= [ K(P) g aVi(P)dny). (0.15)
Q PeQy,
Definition O.8 Usual classic definition which requires a Euclidean basis (€;) and the associated Eu-
clidean dot product (-,-), (subjective quantification): The first Piola—Kirchhoff tensor at P € , relative

~ — Lo —T
to t,t and (-, -)4 is the linear map H(?(P) = B(?(P)g € L(RY;RY), written K := K, defined by

K = Jg.F_T ., Wwhere g = gz, (0.16)
which means, with p = ®©(P) and J (P) = det([F/° (P)]je) and [.] := []je,
(IKy(P) =) IK(P)=J(P)[z,p]".[FP)]", (0.17)
Thus
Puty) = | K :dV,dQ, (= / B (P) : dVi(P) dSy,). (0.18)
Qq, PeQy,

0.2.4 The second Piola—Kirchhoff tensor
H((P) is not symmetric: It can’t be since I (P) € E(@g; R?) is not an endomorphism.

Definition O.9 The second Piola—Kirchhoff tensor at P € y,, relative to t,¢ and (-,-)g, is the endo-
morphism SK;°, (P) —written g¢(p) ¢ L(@g; @ZJ) defined by, in short (matrix meaning),

K=F"'K=Jr"'gF T (0.19)

Thus: If o,(p) € LR R is (-, -)g-symmetric, then S is (trivially) symmetric. And then (0O.18)
gives, 9K being symmetric,

q q V.. FT + F.avT
Py () :/ (F.8K) : dV, dy, = € ¢ (dV,. FTYdSy, = gc . Vel + FdV;
Q

dQy,.  (0.20)
tg Qg Qg 2

Example O.10 Saint-Venant—Kirchhoff model: With F = %(FT.F — I) the Green—Lagrange tensor,
S = ATr(E)I +2uE is the second Piola-Kirchhoff “tensor” for classical elasticity. And W = 3 (Tr(E))? +
uTr(E?) is the associated hyperelastic potential that gives S = %—Vg. e

Remark 0.11 It is a “chosen time derivative” of 9K (t) = J(t)F(¢t)~ .a(t).F(t)~" that leads to some
kind of Lie derivative as explain in books in continuum mechanics, see footnote page 26. .
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169 0.3. Classical hyper-elasticity and the notation OW/OF

0.3 Classical hyper-elasticity and the notation 0W/J0F
0.3.1 Notation OW/OF
A and B are finite dimensional spaces, dim A = n, dim B = m, and W e ol (L(A4; B);R), so

/W:{E(A;B) —R } " dW{L(A;B) %L(L(A;B);R)}

_ b (0.21)
L — W(L) L — dW(L)

W (L + hM) — W(L)

is given by dW(L)(M) "2 W (L).M = lim for all M € L(A; B). Notation

notation h—0 h

when L is the name of the variable:

dW (L) Witen a—W(L), so  dW(L).M “riLen a—W(L).M. (0.22)

oL oL

Example 0.12 A = B = R, and W (L) := Tr(L) (the trace of an endomorphism L € £(R";R")). Here
dTr(L)(M) = limp, 0 w = Tr(M) since the trace is linear: %(L) :=dTr(L) = Tr. ua
Example 0.13 A = @n,P :ﬂn’éy, L =F = d®{(p,). Then dW (F).M =written 9W () AT ¢ R s the
derivative of W at F' € L(R};R}) in a direction M € L(R} ;RY). oa
Example 0.14 A = B = M,,, (space of n x n matrices), L = [F] = [d® (p,)], %—VE cf. (0.22). n

0.3.2 Expression with bases (quantification) and the notation 0W/0L;;

Quantification: (@;) € A™ and (b;) € B™ are bases in A and B, (mq;) € (A*)" is the dual basis of ().
Consider the basis (Li;)i-1...m —written (5, @ 7,.) in L£(A; B) (defined by L;;.@y = 8,¢b; for all 4, j, ).

The derivation of W at a L € £(A; B) in the direction of a basis vector £;; is, cf. (T.14),
oW
OL;;

Writ:ten ow (L) (: lim W(L + hﬁij) — W(L)) (023)

aﬁw‘ (L) =

notation used when the components of L are called L;;, i.e. when [L]|a.5 = [L;;], i.e. L.d; = Z;ilLijgi

for all j, written L = 37", 3" Li;Lij. So, the Jacobian matrix of W at L relative to (£;;) is

3W wrltten [

AW (L))c.,, = [aTij(L)]?:—l“”’"‘ AW (L)] 5 5 = [AW (L)), (0.24)

Soif M =3, M;;Lj, ie. if [M] a5 = [M;;], then (linearity of dﬁ/\(L))

s

- - oW _
dW(L).M =" M;; dW(L).Li; = ZMUW(L) = [M]; 5 [AW(L)] 5 (0.25)
ij ij R
(= [d/V[7(L)]‘(E 7" [M]Ia 7) with the double matrix contraction.
Duality notations: a' := ma;, L7 = b; ® a?, (L] a5 = (L] ie. Ld; =Y, Lib;, [M] 55 = [M'] ie
M.d; =Y, M';b;,
dW (L).M = gLMf (L)M';. (0.26)

ij

hence [Mha g [dW(L)]‘E ;is nothlng but a “term to term product” called “double matrix contraction

Example O.15 Continuing example 0.12: W(L) = Tr(L) gives dW(L).M = Tr(M) = >, My;, thus
gg‘;( ) = 6;; for all 4, j, thus [dW( Nie =] = [(?LTL L)] (identity matrix), and we recover dTr(L)(M) =
[Sos (D)) [M] = (1] [M] = Y2i Mi; = Te(M). .

Remark 0.16 Continuing example 0.13: gTW_j(F) = dW(F).,Cij = dﬁV\(F).(é} Q TE;) = %(F) =
) J

dW(F).(é’i ® E7) is a derivation in the directions €; at (¢, p) and 7g; at (fo, P). oa
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170 0.3. Classical hyper-elasticity and the notation OW/OF

0.3.3 Motions and w-lemma

Generalization of (0.21): With U open subset in a affine space which associated vector space is A, let
—~ [UaxL(AB) =R
W

(P,L) —>W(P,L)}’ and Wp(L):=W(P.L) (at any fixed P € Ga).  (0.27)

And let (usual notation) dﬁ/\p(L) =vritten %—?(P, L), so, for all M € L(A; B),

oW . W(P,L+hM)—-W(P,L)
3 (P 0M = i h

(= d(Wp)(L).M = 9,W (P, L).M). (0.28)

Then consider a motion ® := & : Q, — Q;, and F :=d®: P € Q) — d®(P) € L(@g;@?); And define

{0%%;90 O R)
f:

O | f(®) = W(.,dd(.) } so f(®)(P) = W(P,d®(P)) = Wp(d®(P)). (0.29)

(Toward the classical power: Only the first order derivative F' = d® of ® is taken into account.)
CH (3 ) — LIC Q3 20); C% (04 R C'(Qy; Q) — CV(Qs R
Hencedf: ( tos t) ( ( tos t)v ( tos ) ,df(q)) ( to» t) ( tos ) , nd
O — df (D) U — df(P).¥

(df (®).)(P) = df (B(P)).¥(P). (0.30)

Lemma 0O.17 (w-lemma) If f and W are O! then, for all ®,V € C*(Qy,; ), and with F = d®,

o . oW
= 5 (- d®)dV | e (df(®).W)(P) = o

df (D). P,d®(P)).d¥(P). (0.31)

Proof. df(®)(¥) = limy,_o LEHIT@) ¢ 00(Q,;0), ie. P € Q being fixed, df(®)(¥)(P) =
limy, o LEHDPI@E) _ jyyy, o We@R(P)ER AV PN -We @SP) _ g7, (dd(P)).dY(P), ie. (0.31). fa

Quantification: With bases (E;) and (&) in ]RZZ and R? and d\IJ.E"j = Z?:lg—)%éi, we get

CEEDY) S ()T () = [ ()]s (G20 = (5] 0w, (02)

9w Wt W .  9vl oW

Marsden duality notations: df (®).¥ = 2 9F7 X7 = [8F}] : BXJ] = [a—F] :

0.3.4 Application to classical hyper-elasticity: X = 0W/0F

(€;) = (E;) is a Euclidean basis, (-, ‘)¢ is its associated Euclidean dot product, the same at all times,
o,(p) is the Cauchy stress tensor at t at p = ®(P). Let I = IK(®) be the first Piola—Kirchhoff tensor:

(0.16)

K (3)(P) det(d®(P)) g, (B(P)).d®(P) 7" (0.33)

Definition 0.18 If there exists a function I : (CH(Q4y; Q) — CO(4; Q) s:t., with F = d,

K(®)=K(,F), ie HK(®)(P)=HK(P F(P)) (first order hypothesis), (0.34)

then 7K is called a constitutive function. So K (P) = l/?\((, d®).

Q4 x LRYRY) - R
Definition 0.19 The material is hyper-elastic iff IW : _ s.t.
(P,L) — W(P,L)
— W oW
K =— 1ie HK(®)(P)=——=(PFP .
e ie IK(D)(P) = S (PF(P), (0.3)

with F' = d® and for all P € Q.
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171 P.1. Framework

Quantification (Marsden notations): (E!) dual basis of (E;), F.E; = S Fié, K.E; =

S K, and [ (., )] = [ (., ®)] = [2%(, F)]. For any (virtual) motion W : €, —
J

., d®).d¥ = Zan . ov = [IK(.,F)] : [dV], (0.36)

i.e. BK(P,d®(P))(d¥(P)) =Y, , 2V (P, F(P)) 2L

o L(P) for all P € Q.

X7
Exercice 0.20 With C = FT.F = C(F), and with F =", . Fi.€; ® EX, prove

oC
OF}

F)=Y Fi(E;® EX + Ex® E') (=dC(F).(&; ® E)), (0.37)
K

e 1 -1 0C

and = (VC) T 2V/C.d(VC) = dC. (0.38)

Answer. Euclidean basis, thus (&; ® E‘])T = EJ ®el, and FT = >k F}‘Ez ® eF. Thus

C(F+h&i®E’)= (F+hé&;@ E" .(F+héi @ E') = (F" + hE; ® ¢').(F + hé; ® E”)
=F'F+h(E;@e)F+hF (&0 BE)+h (E;@e).(6oE) (0.39)
=C(F)+h()_ FkE;®E" +Y FiEx @ E))+h E; @ E’.
K K

Thus (0.37). And dC(F) is linear, hence dC(F).L=3,,L;dC(F).¢; ® E”.

With f : & = Vf(Z) := \/f(Z) we have f(IHsz) 1@ — (VF(Z+ hZ) + ﬂ(f))w, thus
h — 0 gives df (T).2, = Z\f( )df( ) Zy, thus df (%) = Z\f( %).dv/ f(Z).
In particular, f = C and & = F give dC(F) = 2¢/C(F).dv/C(F), thus (0.38). oa

0.3.5 Corollary (hyper-elasticity): 9 = 0W/0C

For the second Piola-Kirchhoff tensor X = F~L.HK: We get the existence of a function W
{Qt{) x LR RY) — R

— s.t. (constitutive function), with C = FT.F,
(P,L) - W(P,L)

o, 0) =22 0. (0.40)

oC
See Marsden and Hughes [16] for details and the thermodynamical hypotheses required.

Remark O.21 Hyper-elasticity is also often proposed in terms of %C? although the results are not

convincing when elasticity is proposed in terms of E = C' — I without any linearization of E. .

P Balance of momentum

Formerly expansion-contraction normal forces and bending forces were considered. Cauchy proposed
reducing these forces to a single force deduced from tensions exerted on three orthogonal planes; So, with
a Euclidean basis (€;) and at a point p, the force fp(ﬁ) in a direction 77 = ), n€; is linear in 7, i.e.
Tp(7) = Tp(&1)n1 + Ty(Ea)na + Tp(&3)ng = a(p).fi where a(p) = ([Th(1)] [TH(é2)] [Th(é5)])- CE. the
introduction of [7], 7 being a direction of measurement.

Later Cauchy’s hypothesis was transformed into the master balance law (to satisfy newton’s principle

> f = m#) and its consequence called Cauchy’s theorem (which is in fact Cauchy’s original hypothesis).

P.1 Framework

D : [to, T] x Oy — R™ is a regular motion, ; = B(t, O), Ty = 9 (boundary), ¥ and v = %72 are the
Eulerian velocity an acceletation fields, w; is a regular sub domaln in ; and Owy is its boundary.

An observer chooses a Euclidean basis (€;) (e.g. made with the foot or the metre) and call (-,-), the
associated Euclidean dot product. And 7i(t, p) = 7¢(p) is the outer unit normal at ¢ at p € Jwy.
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172 P.2. Master balance law

All the functions are assumed to be regular enough to validate the following calculations.

U d#x2) —R [ U darx) »re
Let p: ¢ t€lto,T] (a mass density), let f : ¢ t€[to,T] (a
(t.pe) — p(t,pe) (t.pe) — f(tpe)
U ({t} x By x R) — R»
body force density), and let T : { tefto,T] (a surface force density)

(t,pe.7i(pe)) — T(t,pe,(pr))
defined for any regular subset w; C €.
P.2 Master balance law

Definition P.1 The balance of momentum is satisfied by p, f and T iff, for all regular open subset w;
in Qt:

d . .
ﬁ(/ pUd) = | fdQ —I—/ Tdl; (master balance law). (P.1)
wt Wi Owy
(It is in fact a linearity hypothesis, see theorem P.2.) Equivalent to, with (1..38),
D i — —
l()’;”) v prdived, = | FdQ, + / T, (P.2)
wi wi Owy

Hence with the conservation of mass hypothesis % + pdivi =0 cf. (N.4):

/pwfzt:/ fthJr/ T dr,. (P.3)
wt we Owy

P.3 Cauchy theorem T = o.7 (stress tensor g)

Isometric framework: Euclidean basis (€;), associated Euclidean dot product (-,-)g = .., Q is an open
regular set in R™. Notations (for “minimal regularity hypotheses”):

HAY(Q) = (F e 12(@)" : divk € (@)},

o " . (P4)
HWY(Q)" == {g € L*(Q)

L), div(;) € L2(Q)} Ve frdiv(q),
where &; is the j-th column of g. (N.B.: If n = 1, i.e. if Q@ C R, then H¥(Q) = H(Q).)

P.3.1 Cauchy’s first law and Cauchy’s stress tensor

Theorem P.2 (Cauchy first law: Cauchy stress tensor) Hypothesis: The master balance law (P.1)
is satisfied and T is L2(Q). Conclusion: T is linear in 7i; Le., for any vector field T € L*(Q)" there
exists a G) tensor g € HW(Q)" (the Cauchy stress tensor) s.t., for all i € R" s.t. [17]lg =1 and for all
pE Q, .

Ti(p,7) = g, (p)-7i  on Owy. (P.5)

(Visualization, Tt is interpreted as a normal vector to some dwy.) Corollary:
f+ dive = py in w;. (P.6)

The proof is based on the next lemma which mainly tells: 1- If n=1 then a scalar valued function ¢
is the derivative of its primitive k, and 2- if n > 2 then a scalar valued function ¢ is obtained from n
scalar valued functions = the components of a vector field k:

P.3.2 Lemma (the divergence operator is onto)

Lemma P.3

If o € L*(Q) then Jke HW(Q) st o= divk, (P.7)

/chmz/ keiidl, (P.8)
w Ow
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173 P.3. Cauchy theorem T = g.ii (stress tensor g)

Proof. (Lemma P.3.) The divergence operator div : k € HU(Q) — divk € L%(Q) is onto = surjective,
result called “the inf-sup condition” in finite element books: It is (P.7). And [ divk dQ = Jou kedidl,
thus (P.8). For a classic proof, see exercise P.4. un

Exercice P.4 Give the classic proof of the classic form of Lemma P.3 which is:

If o € CO(Q;R), if ¢ € CH(QL,R3:R), if Vw C ©, w open, Joew #(0)d2 = [ o, ¥(p,7i(p))dT, then
3k € CH (L R?) s.t. o = (K, 1),.

Answer. Let p € Q C R®. Consider the tetrahedral defined by its vertices p, p + (h1,0,0), p + (0, h2,0) and
p+ (0,0, h3), with h; > 0 for all . (On each face of a tetrahedron, the unit normal vector is uniform.) Let X,
the side which outer unit normal is —E;: It area is o1 = Lhahs (square triangle). Idem for ¥2 and 3. Let ¥
be the fourth side: its area is o = %\/hghg + h3h? + h2h3 and its outer unit normal is 77 = %(hghg, hshi, h1hs)
(see exercise P.5), that is @ = (n1,m2,mn3) with n;, = Z& pour ¢ = 1,2,3. The volume of the tetrahedral is
Lhihahs =WHItten g3 yet N = sup,cq |¢(p)]; We have M < oo, since ¢ is continuous in . Then the hypothesis
gives

ME > | [ (p,ii(p))dl]|, so b (p,i(p)) d' = O(£%). (P.9)
Owy dwy
And 9 being continuous, the mean value theorem applied on ¥; gives: There exists p; € 3; s.t.

/ 'Z/} p7 dF - O'Z’ll)(p“ 7’74)

Thus
Y(p, fi(p)) dT' = (Uﬂﬂ(pl, —E1) + 020(t, p2, —E2) + 039(p3, —E3) + 0t(pa, ﬁ))-

Ow

Then, ¥ being continous, (P.9) gives
o1(p1, —E1) + 020 (p2, —E2) + 039 (p3, —E3) + 0(pa, i) = O(€). (P.10)
We flatten the tetrahedron on the yz face by taking ho = hs =""eD  and hy = h%; Thus oy = 1h?, o2 = o(h?),
o3 =o(h?), o ~ o1, > = Lh*, with 7 ~ —iiy = E, and p; ~ p; Then
W(p, ~Er) + ¥ (p, +Er) = 0. (P.11)

Idem with zz and zy. And for a fixed tetrahedron with h1, ha, hs given, consider the smaller tetrahedron with
ehi,eha,ehs. Then as e — 0 (P.10) with (P.11) give

V. ) = = THb(p,—Er) = Tb(p, —E2) = Z(p me (n, E

since n; = 2t pour ¢ = 1,2,3. The same steps can be done for any (inclined) tetrahedron (or apply a change
of variable to get back to the above tetrahedron). Thus ¢, is a linear map in 7, that is, there exists a linear
form ay s.t. Yp(fip) = ap.fip for any p € Ow. And the Riesz representation theorem gives: HEP s.t. ap.ip =
(Em ﬁp)g =vritten Ep * Tip. 0

Exercice P.5 Consider a triangle 7" in R3 which vertices are A = (h1,0,0), B = (0, ho,0), C = (0,0, h3).
Prove that i = (hahs, hahi, hihs) is orthogonal to T and that o = 1/h2h2 + h2h2 + h2h3 is its area.

Answer. Consider the parametric surface 7(t,u) = A+ tAB + uAC for t,u € [0, 1] describing the triangle. Thus

—h1 —h1 hahs
=2 x23 =ABx AC = | hy | x 0 = | hshi | is orthonormal. And do = ||Z} x 2Z||dudt =
0 h3 hihs

VI3hE + W3h3 + h3h3dudt. Thus o = [\ [1_ do = \/h3h3 + h3h3 + h3h3 is twice the aera of the triangle. dfa

P.3.3 Proof of Cauchy’s first law

Proof. (of theorem P.2.) Apply (P.7) to (P.2) with ¢ = ¢, := pDvl + pvi divt/ — f; the i-th component

[kl]
of 2D 4 i divi — f: We get o; = divk; with T; = k; « i, thus ¢ = [kz] .
[kes)T

Remark P.6 Let T,(i,) := T(p, iy); So T, : R" — R, dT, : R* — L(R";R"), dT,(,) € L(R";R"),
and T, (np + aiy,) — Ty (7t,) = hdT,(i,). mp + o(h) for all 7i,,m, € R™ vectors at p.

And T, linear tells dT,(7,) ="t 4T’ is independent of 7,. Thus hgp.ﬁip = gp.(ﬁp—i—hrﬁp)—gp.ﬁp =

T,y (it + hitiy) — Ty (i) = hdT,.1it, for all iy, i, € R?, 50 ¢ = dT,.
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174 R.1. Tensorial product and multilinear forms

Q Balance of moment of momentum

Definition Q.1 The “master balance of moment of momentum law”, or simply the “balance of moment
of momentum”, is satisfied by p, f and T iff for all regular sub-open set w C €2

4 pmxﬁdﬁz/pmxfdQJr/ OM x Tdr, (Q.1)
w O

dt .,

Wt

(This excludes e.g. Cosserat continua materials.)

Theorem Q.2 (Cauchy second law.) If the master balance law (so T = ¢.11) and the master balance of
moment of momentum law are satisfied then g is symmetric.

Proof. Let # = OM —= > xiﬁi, and T = ZleE_:Z = g0 = ZL] aijnjE_"i. Then (first component)

(@ x f)l = 2973 — 3T = x2(03111 + 0322 + 03303) — T3(02111 + T22na + 023ng) = (T2031 — T3021)n1 +
(x2032 — 1'30'22)712 + (x2033 — 1'30'23)7713‘ Thus fawt (f X T)l dFt — fwt 3(:v2033;1933021) + 9(3&035;;3022) +

8(@035,71?023) dQ) = fwt l’z(divg)g + .’Eg(divg)g + 039 — 023 dw.

(P.6) gives py — f = divg, thus ¥ x (py — f) = Z x divg, thus the first component of ¥ x (py — f) is
xo(diva)s — x3(divg)s. Thus (Q.1) gives fwt 039 — 093 dw = 0. True for all w C 2, thus o35 — 023 = 0.
Idem for the other components: g is symmetric. .

R Uniform tensors in L}(F)

Uniform tensors enable to define without ambiguity the “objective contraction rules”. Uniform tensors
are scalar valued multilinear functions acting on both vectors and linear forms.

NB: In classical mechanics courses, what is called a “tensor” generally not a tensor but a matrix.
E.g. you may encounter the expression “Euclidean tensor” which means: The matrix representation of
“something” with respect to a Euclidean basis (based on the foot, metre,...) chosen by some observer.

R.1 Tensorial product and multilinear forms

Let A;, i € [1,n]n, be finite dimension vector spaces, and A} = £(A;;R) their duals (set of linear forms).

R.1.1 Tensorial product of functions

The tensorial product of functions f; : 4; — R, i € [1,n]n, is the “separate variable” function f; ®...® f,, :
Ay X ... x A, — R defined by

(fi® .. ® fr)( @1y .y @) = f1(Z1).. fr(Zn). (R.1)

E.g.,n=2, Ay = Ay = R and (cos ® sin)(z, y) = cos(x) sin(y).

R.1.2 Tensorial product of linear forms: multilinear forms

Let L(Aq, ..., Ap; R) be the set of R-multilinear forms on the Cartesian product Ay x ... x A,,, i.e. the set
of the functions M : Ay x ... x A, > Rs.t.,forall i =1,...,n, all Z;,7; € A; and all A € R,

Mooy @i+ Mo ) = Mooy @) + N Mo i, (R.2)

the other variables being unchanged.
Definition: An elementary tensor is multilinear form M =/, ® .... ® ¢,,, with ¢; € A} for all 4; So

n

V(& ieim € [[Ai (0@ o @ )1, ooy Bn) = (1.8 (bn Ep) ER. (R.3)

i=1

(The dot in ¢;.%; is not an inner dot product: It is the duality outer product £;.7; := £;(Z;) = (¢, T) a, ax.)
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175 R.2. Uniform tensors in L(E)

R.2 Uniform tensors in £2(F)

Let E be a real vector space, with dim(E) = n € N*. In this section we consider the first overlay on F

made of multilinear forms M on F, called the uniform tensors of type 0 s or of type (2)

E.g., M € £L9(E) a linear form, M € £L}(E) an inner dot product, M € £2(E) a determinant...
Notations for quantification purposes: (€;) is a basis in E, (7¢;) is its (covariant) dual basis (basis in
E* = L(E;R)), (0;) is its bidual basis (basis in E** = L(E*;R)).
R.2.1 Definition of type (2) uniform tensors
LY(E) =R, and if s € N* then
LYE) := L(E x ... x E;R) is called the set of uniform tensors of type (g) on E. (R.4)
—_———

s times

R.2.2 Example: Type ((1)) uniform tensor — linear forms

A type () uniform tensor is an element of £9(E) = £(E;R) = E*: It is a linear form ¢ € £{(E) = E*.

Quantification: With ¢; := ¢(¢&;) we have, cf. (A.10),

0= limei, and [l = (6 o L) TET (R.5)
i=1
(row matrix for a linear form). Duality notations: (e’) is the covariant dual basis and £ = > | {;e".
vy
Thus, if 7 € E, =) ,v;€;, then ¥ is represented by [V]je= 1| : (column matrix for a vector),
Up,
and the matrix calculation rules give
(%1 n )
UD) = [eldle= (0 o ). | 0] =t ET 0E (R.6)
o, i=1

Duality notations: o =Y, v'¢; and £(7) = Y., /;v", and Einstein’s convention is satisfied.

R.2.3 Example: Type (g) uniform tensor

A type (5) uniform tensor is an element of £3(E) = L£(E, E;R): It is a bilinear form T € L(E, E;R)
(e.g., an inner dot product). In particular an elementary uniform tensor in £3(E) is a tensor T'= £ ® m
where ¢,m € E*.

Quantification: Let [T,z = [T};] := [T'(€;,€;)]. Then, with ¢ =" ,v;€; and & = ;" w;é;,
n n
T(@,0) = Y Tyviw,; = e[ ez, ie. T= > Tijme ® mej. (R.7)
=1 ij=1

Duality notations: T'= 3, Tjje’ ® ¢/ and T(0,w) = 3, Tijv'w’.

R.2.4 Example: Determinant

The determinant is a alternating (2) uniform tensor, cf. (L.2).

R.3 Uniform tensors in L}(E)

They are multilinear forms acting on both vectors (€ E) and functions € E* (linear forms).

R.3.1 Definition of type (2) uniform tensors
Let r,s € Ns.t. r+ s > 1. The set of multilinear forms
LI(E):=L(E*%X..xE" Ex..xE;R) (R.8)

7 times s times

is called the set of uniform tensors of type (g) on E. The case r = 0 has been considered at § R.2.
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176 R.4. FEzxterior tensorial products

R.3.2 Example: Type ((1)) uniform tensor: Identified with a vector

A uniform () tensor is a element w € L}(E) = £(E*;R) = E**. And we have the natural canonical
isomorphism

| {E — B** = L(E) (R.9)

W — J(W) =w defined by w(¢):=4£4(W) Ve E*.
And linearity gives w(£) ="rten o ¢ and ¢(@) =" 045, Hence a ((1)) uniform tensor w can be identified
with the vector @ = J 1 (w):

wl "G (= ). (R.10)
Interpretation: FE** is the set of directional derivatives. Indeed, if p € £, and if f is a differentiable
function at p, then w.df (p) =) df (p).0 is the directional derivative along 1.

Remark: In differential geometry, w.df is written @(f), so W(f)(p) := df (p).w, the definition of a
vector being a directional derivative.

Quantification: Basis (€;), dual basis (7;), bidual basis (9;). For all i, j,

written _,

8i.7rej = (Sij = 7Tej-€ia thus 81 = j(gz) = €;. (R.].].)

And w =), w;0; =written Yo, wi€; =W and £ =) lime; give wl =) w;il;.
Duality notations: 9;.e? =87 = el.¢;, w =Y, w'0; = > w'é;, L =, liTres, wl =Y, w'e;.

R.3.3 Example: Type G) uniform tensor

A uniform (7) tensor is a element T € L1(E) = L(E*, E;R), thus T is bilinear and T(¢, %) € R for all
¢ € E* and @ € E. In particular an elementary uniform (}) tensor is a tensor 7' = u ® 8 where u € E**
and 8 € E*; Also written T = @ ® 3 thanks to the identification J(u) =9 @ —written o, - Then thanks
to linearity (u® B)(6, ) = u(£)B() =VFHen (4.0)(8.45) = (£.3)(B15).

Quantification: Basis (€;), dual basis (7.;), bidual basis (9;). Let Ti; := T'(7es, €5), [T]je = [Ti5] = [T],

W= ), wi€, [W]e = [w;] = [W] (column matrix), £ = > limei, ([(]je[= [¢;] = [{] (row matrix),
T = ZT,J & ®@me;, and T(0, ) ZTUE w; = [¢].[T.[@). (R.12)
7,7=1 1,7=1

Duality notations: T%; :=T(e',&;), & = >, w'é;, £ =, e', T(0, @) = >0 . _ T lw?.

4,j=1

R.3.4 Example: Type (é) uniform tensor
Same steps: T € L3(E) = L(E*, E, E;R), duality notations 7% := T (e, €}, €),
Y Thé e @e®, and T( Z T1liudw (R.13)
i,.k=1 ij.k=1

R.4 Exterior tensorial products

The tensorial product of Ty € L1 (E) and Ty € L72(E) is the tensor T} ® T € L' 172 (E) defined by

s1+82
(T1 [ TQ)(£171, ...,6271, ceey ﬁl,l? ...,ﬁ2717 ) = T1(€171, ceny ﬁl,l» ...)T2(£271, ...,ﬁg,l, ) (R14)

Particular case: with A € L)(E) =R and T € L7(E),

A@T =T @\ := AT € L'(E). (R.15)
Example R.1 Ty, Ty € L1(E) gives T} @ Ty, € L3(E). Quantiﬁcation T1 = Z?jzl(Tl) ¢, ® e and
= km= [(T)k e @em give Ty @ Th = St ikm=1 (1) (T2)),€ @ €; @ eF@em o

Remark R.2 Another definition: Ty®T5 := "

i,j7k7m:1(T1)§'(T2)ﬁz€i®ej®€k®€m € L(E*vE’ E*, E; R)

And we get back to the previous definition thanks to the natural canonical isomorphism J:T €
L(E*,E,E*,E;R) — T € L(E*, E*, E, E;R) = L3(E) defined by T(¢,m, 7, %) = T (¢, 7, m, ). .
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177 R.5. Objective contractions

R.5 Objective contractions
R.5.1 Contraction of a linear form with a vector

Let ¢ € LI(E) = E* and @ € E. Their contraction is the value
0(a) E g T g, (R.16)

Quantification: Basis (€;), dual basis (me;), £ =Y i lime; and W = Y1 w;€; give
€w—Z€wlf 5 Zw€ =L =Tr(d®1), (R.17)

where Tr is the objective trace operator Tr : L(E; E) ~
Duality notations: Dual basis (e'), £ = ", l;e’, W

Li(E) —
> w ez,éw—ZKw

R.5.2 Contraction of a (}) tensor and a vector

Let £ € E* and 1, @ € E. The contraction of the elementary tensor w ® ¢ € L}(E) with # is defined by:

(@ ® 0).0 = (L.9)F. (R.18)
~~

contraction

The contraction of a tensor T' € £1(E) with @ € E is the linear operator

Li(EYxE — FE
(T,4) - T4

} s.t.  (R.18) is satisfied for all T = & ® /. (R.19)

Quantification: Basis (¢;), dual basis (e), T = Y TiEi®e € LI(E), i = > uwé; € E,

Tii= Y T'ulé (R.20)
ij=1
because (32, T'j€; @ el )i =3 T (€ @el)d =3, T (el d)e.
Classical notations: 7.4 = 3, T;ju;€;.

NB: With the natural canonical isomorphism (£1(E) =) L(E, E*;R) ~ L(E; E), see (U.10), any endo-
morphism L € £(E; E) defined by L.¢; =Y " L';&; can, for calculation purposes, be written

L= Z L& ¢ Writen 1 which means Lay ZLijujéi (R.21)

ij=1 j

when @ =), u’é;.

Generalization: If £ € E*, 4 € E and @ € F then the objective contraction (& ® ¢).@ € F is defined
by
(U@ 0).4 = (L.4)w. (R.22)

contraction

{

R.5.3 Contractions of uniform tensors
More generally: Let T} € L} (E), To € L2(E), £ € E* and @ € E.

Definition R.3 The objective contraction of Ty ® £ € L?,|(E) and 4 ® Ty € L2T1(E) is the tensor
(Ty ®0).(@ @ Ty) € L1172 given by

s1+S2
~——
contraction

And the objective contraction of ) @4 € L22T1(E) and (®T; € L2 | (E) is the tensor (1 @1u).({®T5) €

L7772 given by

(M @@).(0&T) =@HTIeT (=id)TeT). (R.24)
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178 R.5. Objective contractions

Quantification with a basis (€;), examples to avoid cumbersome notations:
Example R.4 T € L}(E), T = szleijé’i ®el, We LYE)=E" ~FE, @= doiw’ '€;. (R.23) gives
Tav € L}(FE) = E** ~ F and

5= Y T'wé, ie [Tab]jz=[T)e[w]z (column matrix). (R.25)

Indeed, T = Y, T'jwh (& @ ef).6p = 30,0 TP jwheEi(el.e) = 32,5, T jwk e (6 1y = > T jw ;. o

Example R.5 (=3"1" lie' € B* = LY(E), T=3",_T/1¢; ® ek € LY(E), ¢.T € L(E) = E* and

T=)Y 6T, ie [LT)z=[lz[T)z (row matrix). (R.26)
i,j=1
Indeed ¢0.T = Zijk: EiTjk(ei.é’j)ek = Zijk EiTjk(S;-ek = sz EiTik.ek. .

Example R.6 S,T ¢ L{(E), S=)/,_,5.€ ® ek and T = Z?}k:leék ® e’. Then

Y SiTféiee, e [ST)e=[S)[T)e (R.27)
i,7,k=1

Indeed S.T = (3, Spéi @ €*).(3;,, Tf'Cm @ €7) = 30 SETT Ei(eF Em) @) = 32,5, SiTFE @ el o

Example R.7 T € LA(E), 4,W € L{(E) ~E, T = 2L el ® ek, v =3 wiey, =Y u'e,

W= Y Thw'eee € Li(B), (Ta)i= » Thuwue WL 1, 15) € LY(E) ~ B, (R.28)

64, k=1 i\j,k=1

And (=Y, l;e" € E* gives

((T.%).@).L = L. Z 6T wke? = Z Ll Thw® = T(¢, i, %) = 0.T(i@, ). (R.29)
1,5,k=1 i,5,k=1

R.5.4 Objective double contractions of uniform tensors

Definition R.8 If S, T € £L}(FE) then the double objective contraction S () T of S and T is defined by
S 0T =Te(S.T). (R.30)

Quantification Basis (€;), dual basis (e’), bidual basis (8;), S?; := S(e%,€;), T%; := T(e’,€;), thus
S = Zij Sijgi ® ej; T= ij T'jkgj ® eka ST = Zijk SijTjkgi ® ek;

SOT=> 8T (=T05). (R.31)

ij=1

Proposition R.9 S () T is an invariant: It is the trace Tr(Lg o Ly) of the endomorphisms Lg, Ly €
L(E; E) naturally canonically associated to S and T (defined by ¢.Lg.i := S(¢,4) and {.Ly.4 := T (¢, @)
for all (u,¢) € E x E*).

So the real S ()T = Z” 1
compute it. (Which is not the case of the “term to term” matrix multiplication S : T ="
next § R.5.5 and example R.13.)

S';T7; has the same value regardless of the chosen basis (€;) used to
SiTY, see

i,j=1~3"77

Proof. Lg.¢; = ., 5";¢ and Lr.€5 = 3, T* ;& (immediate check), thus (Lg o Lr).€; = Ls(T.€;) =
Zk Tk](Lgk) = Zz(Zk TkjSZk)gi, thus [LS 9 LT]g = [Zk T’“jSZk];, thus TI‘(LS 9] LT) = Zk T’%Slk =

S @ T. And the trace of an endomorphism, here Lg o L, is objective. un
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179 R.5. Objective contractions

Definition R.10 More generally, the objective double contractions S () 7" of uniform tensors S € L7} (E)
and T € L?(FE) is obtained by applying the objective simple contraction twice consecutively, when
applicable.

E.g., Tl (24 6171 (24 6172 and ’l_l:QJ X L_L'272 (24 T2 give

(Th ® 11 ®€1.2). (U1 Qlze @ To) = (b1,2.U2,1)(Th ® £1,1) ® (ta,2 @T3)
—— —
first second (R'32)
= (l1,2.U2,1)(b1,1.Uz,2) Th @ To.
Example R.11 S=3),. Sé; @el @€l € LY(E) and T = 1.6, ® &5 ®e? € LI(E) give

ijk o, B,y

n n
ST= > SuTeaededgoe, and SOT= Y ST éecd. (R.33)
t,5,k,8,7=1 i,5,k,y=1
Similarly we define the triple objective contraction (apply the simple contraction three times consecu-
tively). E.g., with (R.33) we get
SOT= Z St T, (R.34)
i,j,k=1

Exercice R.12 More generally. If S € L(E, F;R), T € L(F, E;R) then prove

SOQT=T0S. (R.35)
2-If Se L(E,F;R), T € L(F,G;R) and U € L(G, E;R) then prove
SOQTU)=ST)QU=U 0(ST)=(U.S) 0T (circular permutation). (R.36)

Answer. 1- S = 3 . Sid; @ Y and T = D) Tjil_); ® a’ give then S.T = D ijke SiT (@ ® bj).(l_;k ®a') =
S e SiTi (@ @a'), thus S O T =32, SiT/. And T.8 = 3., TiSF (bi ® a?).(@k @) = 32, T3 57 (bi @ b") thus
TOS=Y,TiSI=50T.

2-5=%,Sj@aeb, T=3,Thod andU =L Uj&®d give T.U = S TLUfb; @ o, thus S ( (T.U) =
S SLTUF, and S.T = Y SiTra; @ ¢/, so (S.T) QU = Y. SpTrU™. And the second equality thanks to the
symmetry of (), i.e. (ST) QU =U ((S.T) = (U.S) () T with the previous calculation. un

R.5.5 Non objective double contraction: Double matrix contraction

The double matrix contraction of second order tensors is the “term to term multiplication” of the matrix
representations: (&) is a basis, S,T € L(E;E) ~ L(E*,E;R), 5.¢; = Y, Si;é i.e. [S]jz = [S;], and
T.ej = 3; Tijéi ie. [T)z = [T};] give
- unfortunately
[Slie: [T]je := Z SiiTij = S:T

i,j=1

- (R.37)
written

Or [S)iz: [T)je == Z?j:lSijTij with duality notations: Einstein’s convention is not satisfied.

Unfortunate notation: Because the result is basis dependent (observer dependent, not objective, not
invariant, not intrinsic...):

2 0
S:S=[S]z:[S]e=4*4+2x2=20. (R.38)

10
0 2

Example R.13 (,) is a basis, S € £(E: E) given by [S]s (0 4) (50 S.&1 = 28, and S.& — 48):

Basis (by = @,by = 2¢): The transition matrix from (&) to (b;) is P = <

e p_ (1 0Y (0 8\ _[(0 8
priser= (5 08 8)=(2 3).
S:85=[S];:[S);=8%8+1%1=65#20 thus S:S#S:5 (R.39)

To be compared with the double objective contraction: [S]z O[S]le =4%2+2%4=16=81+1%8 =
[S]; O[S]; =S © S (observer independent result = objective result).

). Thus [S]; =
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Recall that the foot is the international vertical unit in aviation, and thus the use of the double
objective contraction () is vital, while the use of the double matrix contraction can be fatal (really).

Also see the Mars climate orbiter probe crash. .

-

Exercice R.14 (d;) is a Euclidean basis in foot, (b;) = (Ad;) is the euclidean basis in metre (change of
unit with A = g5b55). Let S € LY(E). Compare [S]z : [S]|z with [S]5 - [S]‘g. (The simple and double
objective contractions are impossible here because S and T are not compatible.)

Answer. Let S = szzlsa,ijai ®adl = Z;szlsb,ijbi ® V. Since (b)) = (A\d;) we have b’ = +a'. Thus
szzlSa,,'jai %) aj = szzlSa,ij)\Qbi % bj, thus )\25(171‘]‘ = Sbﬂ']'. Thus
(S5 : [S)5 = D (Seis)® = A D (Sais)? = A'[S]ja : [S)jas (R.40)
ij=1 i=1
with A* > 185¢ Quite a difference isn’t it? un
R.6 Kronecker (contraction) tensor, trace
Definition R.15 The Kronecker tensor is the (}) uniform tensor § € £1(E) defined by
V(@) € B x B, §(0,@) = .. (R.41)
Quantification: Basis (€;), dual basis (e’), components ¢% = the Kronecker symbols:
5 iﬂ@ ‘ i&“@f ie. [0je=1=15], wh 5t Lifi=7 (R.42)
=) e = & ®el, e c=1=1[58], where ¢ = L i
= ij:ljl g ! ! 0if i # j,

(identity matrix whatever the basis). Classic notations: § = Y"1 € ® m; = Z?jzléijéi ® Trej-

Definition R.16 The trace of a G) uniform tensor 7' € L1(E) is
T(T) =80T (R.43)

(= Tr(L7) with the natural canonical isomorphism T' € L1(E) ~ Ly € L(E;E) given by T(¢,7) :=
0.Lp.0).

Thus Tr(T) = Y7, T*; whatever the basis.
In particular Tr(d) = n, and Tr(T® ) = Y, v'¢; = (.U when ¥ =, v'é; and £ = > liel.

S Tensors in 7T (U)

S.1 Fundamental counter-example (derivation), and modules

Recall: Let A and B be any sets and F(A; B) be the set of functions A — B. The “plus” inner operation
and the “dot” outer operation are defined by, for all f,g € F(A; B), all A € R and all p € A,

{ (f+9)p) = f(p) +9(p), and
ADP) = A (), Af AL

(F(4; B),+,.,R) is thus a vector space on the field R (see any elementary course) called F(A4; B).
But the field R is “too small” to define tensors which are “tools that satisfy the change of coordinate
system rules”:

(S.1)

Example S.1 Fundamental counter-example: Derivation. U being an open set in R, the deriva-
tion d : @ € CYU;R™) — dit € CO(U; L(R™; R™)) is R-linear: In particular d(A\@) = A(dw) for all
AeR..

...but d doesn’t satisfy the change of coordinate system rules, see (T.28).

So a derivation it not a tensor (it is a “spray”, see Abraham-Marsden [1]).
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In fact, one requirement for T to be a tensor is, e.g. with T' € TY(U): For all ¢ € C*°(U;R), and all

w € T(U) (C-vector field),
(o) = 9 T(d). (5:2)
While
d(pW) # pd(wW), because d(pw) = @d(wW)+ d(p).w. (S.3)
Thus the elementary R-linearity requirement “7T.(Aw) = A(T.w) for all A € R is not sufficient to charac-
terize a tensor: The R-linearity has to be replaced by the C°°(U;R)-linearity, cf. (S.2).

Thus we will have to replace a real vector space (V,+,.,R) over the field R with the “module”
(V,+,.,C>®(U;R)) over the ring C°°(U;R), which mainly amounts to consider (S.1) for all A = ¢ €
C*(U;R). Remark: The use of a module is very similar to the use of a vector space, but for the use of
the inverse: all real A # 0 has a multiplicative inverse in R (namely 1), but a function f € C*(U;R)

“that vanishes somewhere” doesn’t have a multiplicative inverse in C*°(U;R). ia

S.2 Field of functions and vector fields

U is an open set in an affine space £ which associated space is E . The definition of tensors is done at a
fixed time ¢ (concerns the space variables in classical mechanics). The approach is first qualitative, then
quantitative with, at any p € &£, a basis (€;(p)) and its dual basis (7.;(p)) = (e’ (p)).

S.2.1 Framework of classical mechanics

€ is the affine space R, R? or R? made of points p, and E = R™ is the usual associated vector space @,
R2 or R3 made of bipoint vectors @ = pg ="t ¢ — p and we then write ¢ = p + «, which means: If
O € & (an origin) then @} = 0_{7 + w0 (which is Chasles’ relation pg = m + @]), relation independent
of the choice of O; And hence the vectors @ in E are called “free vectors”: congruence relation: @R« iff
il = 0, i.e. p1qi Rp2qs iff Prqt = Pags.

S.2.2 Vector fields

U —-FE
Let 0 : . be a vector valued function. The associated vector field is
p — w(p)

w :

~ U ->UxEFE
”'{ (S.4)

p — w(p) = (p,w(p)) called a vector at p.
So the range Im = {(p,wW(p)) : p € U} is the graph of w, and the use of @ tells that the vector wW(p) has

to be drawn at “the so called base point” p (first component of ;T)’(p)), And 15'(}9) is called a vector at p.
+ and . (usual) rules for vector fields: @ + @ and A& are defined by

(@ + @)(p) = (p,@(p) + @(p)), and (Ad)(p) = (p, \ii(p)) (S.5)

(usual rules for “vectors at p”). To lighten the notations, w(p) =""*e" 5(p), but then don’t forget it is a
pointed vector.
Notation:

T(U) =Ty (U) == the set of vector fields on U = the set of (;) tensors on U. (S.6)

More precisely, we will use the definition of vector fields (see e.g. Abraham—Marsden [1]): A vector
field is built from tangent vectors to curves. It makes sense on non planar surfaces, and more generally
on differential manifolds.

Example S.2 Discrete case: n “force vectors” f;(pl) applied at n points p; € R? give the discrete vector
field f: p; € {p1,..,pn} C R3 — f(pl) = (pl,f_;(pz)) € R3 x R3 where p; is “the point of application”

of fi(p;), and f(p;) = (ps, f;) is a pointed vector. Essential in mechanics, e.g. see screws (torsors). ua
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182 S.3. Differential forms

S.2.3 Field of functions

U —-R
Let f: be a C'*° scalar valued function. The associated field of functions is
p — f(p)

_ (5.7)
p — f(p) == (p, f(p)),

_ {U S UxR

and the first component p of the couple f(p) = (p; f(p)) is called the base point. So Imfz {(p, f(p)) :
p € U} is the graph of f.
Notation:
TQ(U) := {field of functions} = the set of (J) tensors on U, (S.8)

or the set of tensors of order 0 on U. Abusive short notations (to lighten the writings):

Fp) " f(p), and  TYU) E o= (UR), (.9)

but then keep the base point in mind (no ubiquity gift).
+ and . (usual) rules:

(f+3)®) =@ fp) +3(p), and (Af)(p):= (p,Af(p)) (S.10)

S.3 Differential forms

The basic concept is that of vector fields. Then a first over-layer is made of differential forms (which
“measure vector fields”):

U - E”
Definition S.3 Let o : S ap) (so a(p) is a linear form at p). The associated differential form
p a(p
(also called a 1-form) is “the field of linear forms” defined by
N U —-UxE*
a: _ . (5.11)
p — a(p) = (p,a(p)) called a linear form at p.
And p is called the base point, and Ima = {(p, a(p)) : p € U} is the graph of a.
Notation:
QY (U) = TY(U) := {differential forms} = the set of ((1)) tensors on U. (5.12)

Thus, if & € Q'(U) (differential form) and @ € T'(U) (vector field), then &.w € TO(U) (field of scalar
valued functions) satisfies

- (U -UxR
T . . ) (S.13)
p — (a.d)(p) = (p, (a.d)(p)) = (p, (p).w(p)) €U xR.
Abusive short notations (to lighten the writings):
a(p) "E" a(p), instead of G(p) = (p, a(p)), (S.14)

but then keep the base point in mind.

S.4 Tensors
S.4.1 Definition of tensors, and 77 (U)

A second over-layer is introduced with the tensors with are “functions defined on vector fields and on
differential forms” (which “measure vector fields and differential forms”).

182



183 S.4. Tensors

U — LL(E)

Letr,s e N, r+s>1,andlet T :
p = T(p)

} (so T(p) is a uniform (7) cf. (R.3.1)). And consider

the associated function

- (U = UXxLLE)
T: ~ (S.15)
p = T(p) = (p;T(p)
Abusive short notation: N ) N
T(p) "8 T(p)  instead of T(p) = (1:T(p)), (3.16)

but then keep the base point in mind.

Definition S.4 (Abraham—Marsden [1].) T is a tensor of type (0) iff T is C*°(U; R)-multilinear (not only
R-multilinear), i.e., for all f € C°(U;R), all z1, zo vector field or differentiable form where applicable,
and all p € U,

{ T()(..., z1(p) + z2(p), ...) = T(P) (..., 21(p), ...) + T(p) (..., 22(p), ...), and $.17)
T(p)(.... f(p)z1(p),...) = f(p) T(p)(.-.; 21(p), --.)s '
written in short
T(yz1+22,...) =T(...;21,...) + T(..., 22,...), and
T(yfz1,) = FT(ory 21, .00). (5.18)
And
T7(U) := the set of (]) type tensors on U. (S.19)

Remark S.5 Differential geometry vocabulary: A tensor is a section of a bundle over a manifold. For
classical mechanics, definition S.4 gives an equivalent definition (Abraham-Marsden [1]). ]

S.4.2 Type ((1)) tensor — differential forms

If T e TY(U) then T(p) € E*,s0 T = a € QY(U) is a differential form: TP(U) c Q' (V).
Converse: Does a differential form o € QY(U) defines a ((1)) type tensor on U? Yes: We have to
check (S.17), which is trivial. So o € TY(U), so QY(U) C TY(U).
Thus
(U) = QY (U). (S.20)

S.4.3 Type (é) tensor (identified to a vector field)

Let T € TY(U), so T(p) € L{(E) = L(E*;R) = E** for all p € U. Thus, thanks to the natural canonical
isomorphism E** ~ E, T(p) can be identified to a vector, thus TP (U) C T'\(U).
Converse: Does a vector field @ € I'(U) defines a () type tensor on U? Yes: We have to check (S.17),
which is trivial. So I'(U) C T4 (U).
Thus
T)(U) ~T(U). (S.21)

S.4.4 A metric is a (g) tensor
Let T € T9(U), so T(p) € L(E) for all p € U, and T (@, W) € T{(U) for all @, € T'(U).

0
2

_written

Definition S.6 A metric g on U is a (
an inner dot product on FE.

) type tensor on U such that, for all p € E, g(p) gp is
S.4.5 (}) tensor, identification with fields of endomorphisms

Let T € TL(U), so T(p) € LI(E) for all p € U, and T, @) € TY(U) for all o € QY (U) and @ € T'(U) (so
T(p)(a(p),w(p)) € R for all p).
- {U — U x L(E; E)

The associated field of endomorphisms on U is Ly : ~ } where Lr(p) is
p — Lr(p) = (p, Lz (p))

identified with T'(p) thanks to the natural canonical isomorphism L(E; E) ~ L(E*, E;R) = L1(E) given
by
Ve E*, Vb e E, {.(Ly(p).w)=T(p)(¢ ). (5.22)
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184 S.5. Unstationary tensor

S.5 Unstationary tensor

Let t € [t1,t2] C R. Let (T})iefr, 1o be a family of (7) tensors, cf. (S.15). Then T : t — T'(t) := T; is called
an unstationary tensor. And the set of unstationary tensors is also noted T7 (U). E.g., a Eulerian velocity

field is a ((1)) unstationary vector field.

T Differential, its eventual gradients, divergences

Classical framework. £ are F affine spaces associated with vector spaces E and F', and ||.||g and ||.||p
are norms in F and F s.t. (E,||.]|g) and (F,||.||F) are complete (we need limit “that stay in the space as
h — 0”). If applicable, £ and/or F can be replaced by F and/or F.

. . U—F . : :
U is an open set in £, and ® : is a function. Reminder:

p —pr=2(p)
® is continuous at p € U iff ®(q) — -, (p) relative to ||.||g and ||.||F, i.e. iff

[|2(q) — @(p)||F ! T OO, written ®(q) = ®(p) + o(1) near p (Landau Notation) (T.1)
q—PllE—

and called “the zero-th order Taylor expansion of ® near p”. It means:
Ve >0, In >0 : Vq € € satistying ||¢ — p||g <n we have ||®(¢) — ®(p)||r < €. (T.2)

And C°(U; F) is the set of functions that are continuous at all p € U.

T.1 Differential

The definition of “derivative” or “differential” is observer independent: All observers (English with foot,
French with metre...) have the same definition. So it is an objective (qualitative) definition: Does not
require any man made tool like a basis or an inner dot product.

T.1.1 Directional derivative (Gateaux)

pe U, d€ E. Define f: R — F by
f(h) :== ®(p + ha). (T.3)

(In a manifold: f(h) := ®(c(h)) where cis a C! curve in U s.t. ¢(0) = p and ¢/(0) = @.)

Definition T.1 The function ® is differentiable at p in the direction « iff f is derivable at 0, i.e. iff the
limit f/(0) := limy,_o 2EHD=2@) _written g () (7) exists in F, i.e. iff, near p,

®(p + hii) = O(p) + hdd(p)(id) + o(h) (T.4)

(first order Taylor expansion of ® near p in the direction ).
Then d®(p)(«) is called the directional derivative of ® at p in the direction .
And if, for all @ € E, d®(p)(@) exists (in F) then ® is called Gateaux differentiable at p.

Exercice T.2 Prove: If ® is Gateaux differentiable at p then d®(p) is homogeneous, i.e., for all @ € F
and all A € R
4D (p)(AT) = A d(p)(@). (T.5)

Answer. lim,_.o q’(P+h(Ag))*¢(P) = Aimp_o ‘1’(P+)\f>b\i)*‘1’<17) = Aimp_so ‘1’(?+ki)*‘1’(17). -~

T.1.2 Differential (Fréchet)

Definition T.3 If ® is Gateaux differentiable at p in all directions @ € E and if d®(p) is linear and
continuous at p, then @ is said to be differentiable at p (or Fréchet differentiable at p).

Hence, If ® is differentiable at p then (T.4) gives near p, for all ¥ € E and h near 0,

O(p + hii) = ®(p) + hd®(p).u + o(h), (T.6)

since the linearity of d®(p) enables to write d®(p)(«) written d®(p).u.
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185 T.1. Differential

Definition T.4 The affine function aff, : ¢ € U — aff,(q) := @(p) + d®(p).pg € F is the affine approxi-
mation of ® at p (the graph of aff, is the tangent plane to the graph of ® at p).

Definition T.5 ® : U — F is differentiable in U iff ® is differentiable at all p € U. Then its differential
is the map

U — L(E;F)
dd - (T.7)
p — d®(p).
And CY(U; F) is the set of differentiable functions ® such that d® € C°(U; L(E; F)).
And C?(U; F) is the set of differentiable functions ® such that d® € C1(U; L(E; F)).
. And C¥(U; F) is the set of differentiable functions ® such that d® € C*=1(U; L(E; F))....
If ® € CY(U; F) then d® exists (and is C°), and
. CHU; F) — C°(U; F) (T.8)
“ ® — 03(®) := d®.ii, so defined by 0z(®)(p) := d®(p).i(p), '

is called the directional differential (or derivative) operator along . .
(And 0z(®) ="ritten 47() in differential geometry thanks to E ~ E** which gives 0 ="r'tten 4)

Proposition T.6 The differentiation (or derivation) operator d :

CHU;F) — COUL(E;F)) | .
o — do 15

R-linear: d(® + AV) = d® + Ad¥. (In words: “a derivation is linear”.)

Proof. d(® + AU)(p).d = limj_0 (<I>+/\‘I')(p+hi)—(‘l>+/\\lf)(p) = limy, 0 <1>(P+hﬁ)—<b(p)+2‘ll(p+hﬁ)—/\‘If(p) —
limy, o 2EHD0@) 4\ ji, o YDV — go(p).i + AU (p).id = (dD(p) + AdU(p)).i for all
O,V eCHU;F),peU,aecT(U), \eR. L

Exercice T.7 f € CY(U;R) (scalar valued), ® € C1(U; F), @ € E. Prove (differentiation of a product)
d(f®).it = (df.@)® + f(d.iD), written d(f®) = ® @ df + fdd (T.9)

(tensor notation for computations with contraction rules).

e e iy SO [ )20
~ Jim f(iD-l-hu)‘I)(p-i—hu}z fP)2(p+hd) | f(p)P(p+h ﬁ}z f(p)2(p) (T.10)
= Jim LD TN 4 p) 4 (1)) + Jim 7y 2D =2
= (df (p)-@)®(p) + f(p)(d®(p).10). o
Exercice T.8 f € CY(&;F),ge CH(F;G),p € E, @ € E. Prove (differentiation of a compound)
d(go f)=dg(f).df, ie d(gof)(p)=dg(f(p)).df(p), VpeU. (T.11)

Answer. g(q) — g(qo) = dg(q0)-(¢—qo) + 0(g—qo) and f(p)—f(po) = df (po).-(p—po) + o(p—po), with ¢ = f(p) and
g0 = f(po), give
g(f(p)) — g(f(po)) = dg(f(po))-(df (po)-(p—po) + o(p—po)) + o(df (po)-(p—po) + o(p—po))
= (dg(f(po))-df (po))-(p—po) + o(p—po) + o(p—po)

since dg and df C° give ||dg(f(po))|| < oo and ||df(po)|| < oo (bounded) near po thus ||dg(f(po)).df (po)|| <

1dg(£ (o))l [1df (po)]| < oo (bounded) near po.

(T.12)

Remark T.9 In differential geometry, the tangent map is

UxFE — FxF
T(D'{ (T.13)

(p,u) — T®(p,u) = (®(p),d®(p).u).

The two points p (input) and ®(p) (output) are the base points, and the two vectors @ (input) and
d®(p).d (output) are the initial vector and its push-forward by . oa
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186 T.2. Coordinate system, associated basis, Christoffel symbols

T.1.3 Quantification: A basis and the j-th partial derivative (subjective)

Quantification: Let (€;(p)) be a basis at p in E.

Definition T.10 The j-th partial derivative of ® € C*(U; F) at p is

Oz, ®(p) := dP(p).&(p) = lim op+ he”j;p)) - o(p)

written 0d
=T 0,0() = 5 (0) = By(p).  (T14)
J

And the j-th directional derivative operator is

5 CYU;F) — CYU;F)
g = 0; = — : T.15
08 D —[9;® :=dd.¢ =aa¢>=‘l?=q> . (T-15)
J J 3J 8€j |3

Cartesian case: (€;) is a Cartesian basis in E, O is an origin in &, & = O_]; =>" |x;6; € E, then
0z, @(p) " T (p) EN D (p), Le. 0,0 TET Vg (T.16)
! 81‘]‘ ’ 8l‘j

Warning: This notation % is ambiguous since it depends on the names (here z;) of the components.
J

T.1.4 Notation for the second order Differential

Let ® € C?(U;F); Thus d® € CY(U;L(E;F)) and d(d®) € C°(U; L(E; L(E; F))); So, for p € U and
4,v € E, we have d(d®)(p).4 € L(E; F) and (d(d®)(p).u).v € F.

And thanks to the natural canonical isomorphism L € L(E;L(E; F)) <» T, € L(E, E; F) given by
Ty (i, iiz) := (L.ily).iiy for all i, iy € E, we get the bilinear map d?®(p) defined by

42 (p) (@, 7) = (d(d®)(p).q).7. (T.17)

And then we get the usual second order Taylor expansion of ® near p in the direction «:
h2
®(p + hii) = @(p) + hdd(p)i + = d*®(p) (i, @) + o(h?), (T.18)

which is the second order Taylor expansion of f : h — f(h) = ®(p + hi) near h = 0.
And Schwarz’s theorem tells: If ® is C? then d?®(p) is symmetric, i.e. d*®(p)(i, ¥) = d*®(p)(7, @).

T.2 Coordinate system, associated basis, Christoffel symbols
T.2.1 Coordinate system

Classical framework. n € [1, 3]y, R™ is the geometric affine space we live in, R™ is the vector space of
bi-point, vectors, (@;) is a chosen Euclidean basis in R™. ) in a set in R™, O is a point (an origin) in R™,
p € Qis located with & = Op = 3, 2;d@;, and (4 = {& = Op : p € Q} C R",

Let m < n. I@gfn =R x ... x R (m-times) is the theoretical Cartesian vector space called the space of

parameters, (ffl) is its canonical basis, and Uy, =]a1,b1[X...X]am, by [ is non empty.

o e . . 2 1 . Upa'r' —
Definition T.11 A coordinate system on € is a C<-diffeomorphism ¥ : . . And
7 —p=9(q)
U por = 6 is th iated vector valued coordinate syst
: is the associated vector valued coordinate system.
§ —&=0p=0%g)

Notations:

n n T = \Ill(q_)
P 0@ =Y W@ =S i e (7] = [B(@))s = : . (T.19)

i=1 i=1 )
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187 T.2. Coordinate system, associated basis, Christoffel symbols

Example T.12 Polar coordinate ¥: m = n = 2. Cartesian vector space Rpar =RxR={7=(q1,42) =
(r,0)} of parameters (length,angle), Un,, = R% x| — 7, 7[; Geometric affine plane R?, an origin O € R?,

(d@;) a chosen Euclidean basis in the associated vector space R2, and Q = R2 — {(z,0),z < 0} (the
affine plane without the left part of the x axis); The polar coordinate system is the diffeomorphism
U:G=(r,0) € Uy — p € Qgiven by p = U(r,0) = O + rcosd; + rsin fdy, thus

x = rcos&)

y = rsinf (T-20)

@ = [B(r.0)] s = (

(You can replace | — 7, [ by any |0p—m, 8o+7[.) n

Example T.13 Polar coordinate ¥ on the circle: m = 1, n = 2: It is the restriction of (T.20) when
r =R > 0is fixed. So: Cartesian vector space Ry, = {¢ = 0} of parameters (angle), p = ¥ (), and

T = Rcos@) (T.21)

. — -
) = O0a = (80 = (= peng
(You can replace | — 7, 7| by any |6g—, Op+7[.) oa

T.2.2 Coordinate basis

Definition T.14 The W-coordinate system basis in the tangent plane of Im¥ at p = ¥(qg) is the basis
(€i(p)) in R™ defined by, for j =1,...,m

v ov’ o (@
Gi(p) = dV@). Ay | = 55(@, e 2 G DT e E0la=| (T.22)
@

(the j-th column of n * m Jacobian matrix [d\II((j)]‘L a,)- (It is a basis in the tangent plane at p at Im¥

since ¥ : Upgr = ®(Uper) is a diffeomorphism.)

And its dual basis at p is made of the m linear forms named 7;(p) =written 7. (p) € R™* with classical
notations, named ¢e’(p) =" dgi(p) with duality notations, defined by, for all j € [1,m]x,

{ clas. not.: m¢;(p).€;(p) = d;5, written dg;(p).€;(p) = dij, (T.23)

dual. not.: €‘(p).€j(p) = d;;, written dg'(p).€;(p) 5;

Example T.15 Polar coordinate basis at p = W(q), cf. (T.20): [d¥(q)] 5 ; = [8%] = (@SG - 51n9>’

g’ sinf rcos6
gives
cos @ —rsiné . €1(p) = cos B d; + sinf dy,
c1p)la = | ,le2(p)la = , e T.24
4] <s1n9> &(r) < rcosd > v { é>(p) = —rsinfd; + rcosf ds. (T-24)

cos —rsind . . . ~ . _
So P = (sin@ v cos ) = [dq/(‘j)]\ff,a is the transition matrix from (@;) to (&;(p)). Let (mq) = (dz;)

cos 0 sin 6

be the dual basis of the Euclidean basis (@;). We have P~' = (| sing 1L COS@); thus the dual basis

(e!(p), €*(p)) = (dq1(p), dg2(p)) = (dr(p),dd(p)) of (€1(p),€e2(p)) at p = ¥(q) is given by

{ [d (p)h (C080 sinﬂ), ‘ dr(p) = cos 6 dzr; + sinf dxs,

i.e. 1 1 T.25
(—;sln@ %0089), df(p) = ——sin O dzy + — cos 0 dzs. ( )
r r

=Y
>
—
S
=
Bl
I

With r = R fixed, basis (é‘) where €(0) = €;(R, 0), dual basis (df); So €(6) = —Rsinf d; + R cosf dy and
do(p) = —= sm9dac1 + £ cos 6 ds. oa

Remark T.16 Pay attention to the notations that could contradict themselves: In U, the dual basis
(ma;) = (A?) of the canonical basis (A;) is a uniform basis, independent of ¢ = (g1, ...,qn), and, in the
context of coordinate systems, is not written (dg;) nor d(q*) (unless expressly indicated): In the context of
coordinate systems the notation dg; means dg;(p) at p cf. (T.23). E.g. dg1(p) = dr(p) and dgz2(p) = db(p)

for polar coordinates are defined at p in the geometric space (not at ¢ in the parametric space). .
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188 T.2. Coordinate system, associated basis, Christoffel symbols

T.2.3 Christoffel symbols

We use duality notations for readability and usage: (€;((p)) is the coordinate basis at p = ®(g) and
(e*(p)) is its dual basis at p = ®(q).

Definition T.17 The Christoffel symbol *yzj (p) € R are the components of déj(p).&;(p) ="ritten gi;{f(p)
in the basis (€;(p)), i.e. d€;(p).€i(p) = > i 1%’“] ()& (p) =Written 861( ) € R™. So

n - n
JE _ | written aej . k k 3o — . - k - i
dej.ei = E YijCk = qu’ Le. 7 t=¢€ .dej.ei, 1.e. dej = E i€k R e, (T26)
— ik=1

this last notation for calculations with contractions. (And dé; = 3, ;6 © eF = 3, €& ® wi where the
wh =, 7i;e” are called the connections one forms.)

€;

Warning: The €;(p) depend on p, not on ¢, thus gqi (p) is nothing but the notation for dej;(p).€;(p).

Trivial: The Christoffel symbols vanish if (€;) is Cartesian, because then the €; are independent of p.
Proposition T.18 A coordinate system ¥ being C?, at p = V(q), for all i, j, k,

L »’v Lo o
de;(p).€i(p) = W(q’), thus déj.¢; = dé;.€¢; and ij = 'y;-“i (T.27)

(symmetry of the lower indices).

Proof. &(¥(7)) =122 d¥(q).A, glves dej( )d\p(q)/f = d®V({)(A;, A;) with d>W (q) symmetric

(A
(Schwarz theorem), thus dé;(p).€;(p) = aqlaqj (@) = aqaaq (q) = del( ).€;(p), thus 'y” = 'yﬂ un

Exercice T.19 Polar coordinate system, prove: 72, = %, 725 = —r and the other Christoffel symbols
vanish.

Answer. With (T.24), déi.¢1 = 61 =0, thus v{; =%, =0.

dei.ex = a;;l = —sinfa; + cos@ag = —sinf(cosber — ;sin@é’g) + cosf(sinf e + %cos@é’g) = % thus
’Y%z =0= 7211 and 7%2 = % = 7221-

déy.eo = 68%2 = —rcosfdy —rsinfds = —r cos O(cos f&1 — % sinf ) — rsinf(sin b &1 + % cosf éz) = —réi, thus
'7212 = —r and 732 =0. n

Remark T.20 Differential geometry in manifolds: The 7}, = ¢'. V¢, €} are the component of a connec-
tion V; The usual connection in a surface in R™ is the Rlemanman connectlon and in this case Vg, €y is
the orthogonal projection of déj.€; on the surface relative to a Euclidean dot product. oh

Exercice T.21 Consider two coordinate system bases (@;(p)) and (b;(p)) at p, and P(p) = [P} (p)] the

transition matrix from (@;(p)) to (b;(p)). Let Q = P~!. Using the generic notation dé,.¢; = > 1Yok oG
prove the change of basis formula for the Christoffel symbols:

’Y_;-’k:,b = Z Q)\PHPIC ’Yp,lla + Z QlAPJM(dPI?C_iH) (: Z Q)\Pupkr ’y;u/a + Z Q&(dplg\b]))
A p,v=1 A,p=1 A p,v=1 A=1
(T.28)
(Because of the term 3, QiAPJ” (dPp.d,), a derivation is not a tensor although it is linear.)

Answer. bi(p) = 3., P/ (p)dv(p) gives dby.b; = 3., (dPY.b;)a@, + X, PY(dd,.b;) = 3, PH(dPY.d,)d, +
>, PEP(dd,.d.); And b' =3, Q4a’, thus

Viko = b'dbi.by =D QA\PH(dPY dy)a @y + Y QAPIPYa  (ddy.du) = QAPL(AP.du) + > QAP Pl Viv.a,

Apv Apv Ap Apv

thus (T28) n
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189 T.3. Scalar valued functions

T.3 Scalar valued functions

T.3.1 Differential of a scalar valued function

U—=R . . . . :
=f: S ) is a C! scalar valued function, so df € C°(U; E*) (a C° differential form), with
p p

df (p).4 = im0 w € R, for all p € U and 4 € E. Hence the first order Taylor expansion near
any p e U: for all ¥ € E,

f(p+ha) = f(p) + hdf (p).d + o(h). (T.29)
T.3.2 Quantification

(€i(p)) is a basis at p and (7¢;(p)) is its dual basis. Call f; = df.€; the components of df:
qu D) i WONe=(fup) - fup) (owmauix). (130

Thus df (p).i(p) = [df (p)]e-[d]je = 2, flju; when @ = 377 u;€;.
Duality notations: @ = Y7 w/€;, df =37, fi; €/, df-i = 327, flu’.

Cartesian basis: O_}; =7 =) x;€ and fij = 8f and m.; = dx;, thus

df (p) = Z aaxfj(p)cl:vj7 and [df]je = (% aami ) (row matrix), (T.31)
Thus
. . of of
f(p+ hi) = f(p) + hdf(p).i+o(h) = f(p) + h(aTQ( plug + ...+ %(p)un) + o(h). (T.32)

Duality notations: O_Z) =Z =", 2'¢ and f; = % and e’ = dz’, thus df = 377 18‘95] dxd, and
fp+hi)) = f(p) + h3k(p)ul + ... + h 2L (p)u™ + o(h).

Exercice T.22 A unit chosen in R (e.g. 1second), 7 € CH(R;R"), 7(t) = (x1(t), ..., za(t)), g € C1(R%;R),

f=gor ie. f(t) =g(F(t)) = g(x1(t), ..., xn(t)). Prove

’ _ / _ — S/ _ dg ’ - /

(f1(t) =) (gor)(t) =dg(r(t)).7"(t) = 5 =(F(£))21(t) + ... + T%(x(t))%(t)a (T.33)

the last equation with a Cartesian basis (€;).

Answer. 7(t+h) = 7(t)+h7'(t) + o(h) = 7({t)+h (7' (t) + o(1)) = 7(¢) + hi(t) with @(t) = 7'(t)+o(1), thus
(go7)(t+h)) = g(F(t+h)) = g(F{(t) + hii(t)) =" g(7(t ))+hd9(F(t ).t(t) +o(h) = (goF) +hdg(r(t)).7 (t) +o(h),
thus (g0 ™)' (t) = dg(7(t))-7' (t) = (2, 2= (F(t))mei).(3,; 25(1)é) (= [dg(F(t)]je-[7' (1)]je)- o=

T.3.3 A partial differential % is subjective

An English observer chooses a Euclidean basis (d;) made with the foot, writes Z = ), x;d; and uses 885 .
A French observer chooses a Euclidean basis (51) made with the metre, writes & =) 2;b; and uses gj-

But the English E?Tfi is not equal to the French %'"!
Indeed, if & = 33, #a,:@; = 3, @b,ibs, then 52—(p) = df (p).@; while 2 (p) = df (#).5;, and e.g.

- 7] 8
if b; = A\d;, Vi, then r_ / (change of unit formula), (T.34)
axb i 8xa i

since df(p).gj = df (p).(\@;) = Adf (p).@; (linearity of df (p)). (Duality notations: % = )\%.)
x}) 7,

More generally, with P(p) the transition matrix from (@;(p)) to (bi(p)), we have (change of basis
formula for linear forms):

[df]“;:[dfhd.R ie. of :zn: of P;;  written Z of ax‘”. (T.35)

Oxpj = O%a 8 b, «0xq,; O,

(Duality notations: % =3, 6‘1{ P!, written ﬁ%‘ =y Of Ouy

J i=1 9x? J
b a Oy,
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190 T.3. Scalar valued functions

Remark T.23 Why this last notation P,; ="'itten 9%e.ip

Answer : []jz = P.[Z] 5, tells that [7]z is a function (?FIE%}“;: Full notation: (] a([]5) = P.[7];, i-e.
wi(mé,,mf) Z;:lp]lxl]) P i
: = : . thus azj (z1,..,20) = P!, Vi, j. (T.36)
xé(mé, ,,’.Eg') ;L:lpjnxi b

More details: With an origin O € € and ¥ = 679, define fo, fo € C*(Mn1;R) by fa([])2) := f(p) and fo([@]5) ==
f(p). Thus fo([7];5) = fa([Z]ja) = (fa o [#]1a)([#] 5), hence (T.35) should be written (with no abusive notations):

() = Zaf“ (1)) 222 11 (1.37)

Question: Why did we need to introduce f, and f, (and not just keep f)? Answer: Because £ € R™ while
[@])a, [#] 5 € Mn1 and [7]jz # [2] 51 A vector & can’t be reduced to a matrix of components (which one?). .

T.3.4 Gradient (subjective: requires an inner dot product)
Let f € CY(U;R) (a C! scalar valued function). Choose (subjective) an inner dot product (-,-), in E.

Definition T.24 The (-, -),-conjugate gradient gradgf(p) —written ﬁgf(p) of f at p € U relative to (-,-),
is the vector in F defined by

i ertten =

Vi€ B, |df(p).d= (grad, f(p), @)y |=grad,f(p)s, @ " = Vyf(p)e, @ (T.38)

If an inner dot product (-, -)g is imposed then gradgf =written grg,df = 6]“ is called the gradient of f.

So gradgf(p) (ig)ﬁg(df(p)) is the (-, -)4-Riesz representation vector in E of the linear form df (p) € E*.

Fundamental: An English observer with his foot, his Euclidean basis (@;) and associated Euclidean dot
product (-,)q, and a French observer with his metre, his Euclidean basis (b;) and associated Euclidean
dot product (+,-)s: They have the same differential, but they do not have the same gradient. E.g. if
(b;) = (Ad@;) then
- L (F12) 5 = . 5

grad,f =" A°grad,f with \°> 10. (T.39)
So gradb f is quite different from grada fisn’t it? And to forget this fact leads to accidents like the crash
of the Mars Climate Orbiter probe, cf. remark A.17.

Subjective first order Taylor expansion: With a chosen inner dot product (-,-)4, the first order
Taylor expansion (T.4) gives

f(p+hit) = f(p) + h (grad, f(p), @)y + o(h) (= f(p) + hegrad, f(p) ¢, i + o(h)). (T.40)

Fundamental once again (we insist):
e An inner dot product does not always exist (as a meaningful tool), see § B.4 (thermodynamics),
hence, for a C! function, a gradient does not always exists (contrary to a differential).

e df(p) is a linear form (covariant) while gradg f(p) is a vector (contravariant). In particular the
change of basis formulas differ, cf. (A.25):

[Af ) new = [df)jaa- P, while  [grad, f]jne = P~ [grad, f]|qa- (T.41)

e df cannot be identified with grad f (with one?) (Recall: there is no natural canonical isomorphims
between E and E*.) Vocabulary: The differential df is also called the “covariant gradient of f”, while the

vector gradg f is called the “contravariant gradient of f relative to (-,-),”".

Isometric Euclidean framework: If one Euclidean dot product is imposed to all observers (foot?
metre?) then grad, f =written grad f = Vf and (T.38) is written df.ii = gradf«ii = Vf « @.

Exercice T.25 Cartesian basis (€;) and (-,-), given by [g]fz = (é g) Give [grgdyfhg
- af
Answer. [df]jz = (2 811 g—zfz) (row matrix), thus (T.38) gives [grad, f]z = ( 1895110 ) (column matrix # [df]”). du
2 Ozo
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191 T.4. Parametric expression of a differential: notation g—i(p)

T.4 Parametric expression of a differential: notation g—({(p)

Q —>R
With a coordinate system V¥, a function f : can be studied thanks to
p — f(p)
foW Upar = R (T.42)
g:=foW: . .
7 — g(q) := f(¥(q)) = f(p) when p = ¥(q).

Polar example: g(r,0) = f(x,y) = f(rcosf,rsind).
Thus with f C*:

dg(@) = df (1) A(@) where p—W(3), (T.43)
ith the canonical basis ﬁi in the parameter space, with the coordinate basis (€;(p)) ="
T.11). With th ical basis (A h h th d b (T22)
(dd)((j). 1;) at p = ¥(q), and with the notation %Jj(q") =dg(q).A;, we get
0 > > . itten Of
=2(g) = dg(). A, = df (p).d(@).4; = df (p)-&;(p) "2 25 (p),
dq; 9q; (T.44)
of o(fo¥) , '
so ——(p):= ...l (Attention please!).
o) = 2@ )
Warning (notations): f is a function of p, not of ¢, so the notation é%(p) is absurd... unless it is
defined to be := 89 (q) = fo‘l’) (¢) at p = ¥(q) see (T.44). This is a source of misunderstanding.
Historical notations (also see remark T.16).
Thus with (dg;(p)) the dual basis of the coordinate basis (€;(p)) at p,
df = Z% dgj, 1ie. Z p) dg;(p (T.45)
j=1 J —

(Check: (3; 5 (p) daj(p))-€ (p) = ZJ 5L () (da;(p)-€i(p) = 2, %fj(p) 0ij = 5L (p) =" df (p).€;(p).)
Duality notations: df = Z ; aqj dg’.

T.5 Differential of a vector field

F=E=R" &= cI(Q) is a vector field. Thus dii(p) € L(F; E) and dib.@ is a vector field in E for
all 7 € (), given by (di.@)(p) = di(p).d(p) = limy,_, LEHEPN-CW) ¢ p.

Quantification: (€;(p)) is a basis at p and (e'(p)) is its dual basis. « = >21" w'é; € T(Q) and
wl] = e'.duw.ej:

di.é; = whé, ie. [di]jz=[w];] (Jacobian matrix), ie. di= Y w;é®e  (T.46)

i—1 ij=1

(tensorial notation to be used with contractions). Classic notation: @ = 3, w;€; gives dif.€; = 3, w;|;€;,
dw = Z” wi‘jei ® 7Tej, [dUI]‘é‘ = [’LU,L‘]]

In a Cartesian basis: The ¢; are uniform, thus de; = 0 (so 'yji.k = 0 for all 4, j, k), thus

;. ouw' ow? ;
wfy = and [dilje = [57] = [} (T 47)

»J

In a coordinate system basis, with the Christoffel symbols cf. (T.26): & = Y " w'€; gives di.€; =
Zl(dwié})é’z + El w’ dé;é}, thus

diw.€; = el+ Zw vﬂek Z@ - ez+ Zw vjke“ (T.48)
= i,k=1 i,k=1

thus, for all 4, j,

w‘] +Zw ’yjk ) (T.49)
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192 T.6. Differential of a differential form

Example T.26 @ =¢&, = ), 0.¢;, gives back déy.¢; = >, 06 + > ., (Sffy;ké} =227} cf. (T.26).) ou

Exercice T.27 du(p) being an endomorphism, with @ = Y, u‘a; = Y, vib; and Q = P!, check with
exercise T.21:

i)y = P~V [didf]ja. P, e of; = Z Qjuf,Pf. (T.50)
k=1
Answer. [u]; = Q.[0]z, i.e. v =3, Qiu” for all i, thus dv’ by = =", (dQ4.b b + >, Q5 (du? .b;), thus

T26) | ; - ;
fj( -26) dv'.bj + ka'y;hb
%

(T.28) i o i - wy i v i v oo
=73 W PRAQNAL) + Y QAP (dutd) + Y (QEuT QAP P+ Y (QAuM)QL P (dPY )
A A kwApv kApv

And QE P} = 6} gives (dQF.a,)P) + QF(dP}.d,) = 0, thus the fourth term reads
> wrQLPIQN(APY ) = = > urQLPIPY(dQK.y) = — > u PI(dQA.dy),

kApv kApv Ap

which cancels the first term: Thus vfj = QiPJ“(du )t U "QAP”ny > QA“IJ ,i.e. (T.50). om

T.6 Differential of a differential form

F=R, ®=/cQYQ) (differential form) in C*(Q; E*), p € Q; So (p) € E*, dl(p) € L(E; E*), and with
iich,

14 hit) — ¢ 14 hit).v — £(p).T
d0(p).i = tim SLEPD D) g (d0p).@) = lim CRFRDTZERLT gy
h—0 h h—0 h
Quantification: (€;(p)) is a basis at p and (e’(p)) is its dual basis. £ = Y[ (;e’,
ey = Lige’, ie [dlje=[l;;] and dl= ) L’ @l (T.52)
= ij=1
(tensorial notations to be used with contractions). Classical notations: ¢ = >0 (i, dl.€; =

Z?:leﬂjﬂ—@’i? [thg = [&‘j}, and dg = sz=1£i‘j’frei X 7Tej-

In a Cartesian basis: Here (¢;) is uniform, thus dé; = 0 (so v}, = 0 for all 4, j, k), thus

by =didy = 5t "N, so (dl)e= [55) (T.53)
Classic notations: £;); = gﬁz (p) ="ritten ¢, - and [df]|¢ [g—fi;}

In a coordinate system basis, with the Christoffel symbols cf. (T.26): ¢ = >, (;e’ gives dl.e; =
S(dle;)et + 3, bi(det.ey) = > (dl;.€5)et — > Emji-kek, thus

oL ~
bijj = Zﬁm . where  55(p) = dbi(p)-E(p)- (T.54)
In particular ¢ = e’ gives €'.€), = 4, gives (de'.€;).€) +€'.(dé).€;) = 0, thus (de'.€;).6, = —€'. >, 7§k€z =

—'y;.k. Thus the _%i‘k are the components of de'.€; € E*:
n
de'.€; = —Z’y;»kek. (T.55)

Exercice T.28 With ¢ a differential form and W a vector ﬁeld, [ =104 =Y, ;w is a scalar valued
function; Check d(¢.w) = df = ZJ 7€ =2 9l i 4 ¢; 2% The Christoffel symbols vanish.

ij OqJ

K2 6(]7 .
Answer. f = > L' gives df.€; = 3 ,(dl;i.€;)w’ + £;(dw'.€;) with ¢; and w’ scalar valued function, thus

dl;.é; = 52 and dw'.; = 5% For the vanishing of the Christoffel symbols: d(£.w).¢; = (dl.&;).@ + L. (d@’ &) =

2 Ziljei)'w‘f’€~(21 w\ijé’i‘) =2 (W‘Zk Kk%z)w +2 i (aqg 2 opw ’Y]k) and — 37, ékfyﬂw Y liw® Vik =
=S levhwt + 3, 'yl = 0. un
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193 T.7. Differential of a 1 1 tensor

T.7 Differential of a 1 1 tensor
Q — L(E*,E;R)
p — z(p)

defined by dr(p).il = limy,_o ZEDZP) ¢ £(p BiR), so (dz(p).-@)(C,T) = limy_g
(e R), for all 4, ¥ € F and ¢ € E*.

Quantification (duality notations): Basis (€;(p)) in E at p, dual basis (¢’(p)), call 7}(p) the components
of 7(p), call T;‘k(p) the components of dz(p):

Consider a C! G) tensor T :

) . Q — L(E; L(E*, E;R))
. Its differential dr :
= p — dz(p)
)8, 5

T(p+hii) Zv) z(

\H

= E Tij€ ® €7,
ij

ZleeﬂE@e , or dr= Z T;‘k€i®€j®€k. (T.56)
,j=1 g, k=1

(Classical notations: 7 = Z,L-j Tij€i ® Tej, AT.€ = Zu Tij|k€i @ Tej, and dr = Zwk Tij|k€i @ Tej ® ek )

Cartesian basis: dz(p).¢, = Zij(dT;(p).é'k)é} ®el = Zijk %(p)é} ® el @ ek gives

A OT! i . A
Tie = a—xi written Tir (:=drj.éy). (T.57)

Coordinate system basis: 7(p) = szle; (p)é;(p) @ e’ (p) gives, for all k,

dr €}, Zij(dT;'ék)gi ®el + >oii 71 (dé;.Ex) ® € + > 1€ © (de?.éy)
= Zij(dT;'gk)gi ® el + Zijf ijigé ®el — Zije Tj’Y]ggé"L ® et (T.58)
= Zij(dT;~€k)€i ®el + D e j’Ykeez ® el =D ije Tzi%éjéi ® el
thus
. ort & . L ori .
0 0 >
Tk = 87(12 + ZTj'ﬁd — ZTZ'ij where 3(12 = dT}.€). (T.59)

(We have the + sign from vector fields, cf. (T.49), and the — sign from differential forms, cf. (T.54).)
Exercice T.29 If @ € E, ¢ € E* then for the elementary ( ) tensor 7 = @ ® ¢ prove:

AU ®YL).€, = (di.ex) 9L +Uu® (dl.e;), and (T® 6) k= ulkﬁ + u'l)k, (T.60)
when @ =), u'é;, { = Z‘é-ej, di.é, =), u‘iké}, dl.ex =3 ; e’

Answer. 7 =d®( =3, /& ©@ €/, where 7} = u'l;, and dr.éx = o= Tk€ ® € where T = (u'l;)), =

ulikéj +ullj = (T® Z)J‘k Thus (51m11ar to the derivation of a product):

(i ® )(p).7(p) = lim (ﬁ®4)(p+h€k(:)) — (@20 _ lim @(p+héx(p)) ®£(p+Z€k(p)) — u(p) @ £(p)

d@(p+heék(p)) ® L(p+hek(p)) — Ulp+her(p)) ® L(p) i(p+heéx(p)) ® £(p) — u(p) ® £(p)

= h + fimy h
= lim (@(p-+hek (p ))®(€(p+hé’k(’z:))—Z(P))_i_}ll%(ﬁ(wrhék(]f))—ﬁ(P))@)Z(p)
= t(p) ® (dl(p)-€x(p)) + (dii(p)-€x(p)) ® L(p),
thus (T.60):. Which gives d(7 @ £).&, = (32, u'@) @ (32, £jke’) + (3, ul€) @ (3 £;¢’), thus (T.60)o.

T.8 Divergence of a vector field: Invariant
['(Q) is the set of C! vector fields in €2, and Tr : L(E; E) — R is the trace operator.

Definition T.30 The divergence operator is

Q) — C°(YR)

T.61
@ — divis == Tr(dw), (T-61)

div:=Trod: {
so divw(p) = Tr(dw(p)) is the trace of the endomorphism dw(p) € L(E; E).
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194 T.9. Objective divergence for 1 1 tensors

Tr and d are linear, hence div = Tr o d is linear (composed of two linear maps).

Proposition T.31 The divergence of a vector field is objective (is an invariant): Same value for all
observers (intrinsic to ).

—

Proof. The differential and the trace are objective. (Computation: @ = Y, u'd; = Y., v'b; gives
v = D ke Q%uf}Pf, see (T.50), thus >, v = Y ke PfQ}cu‘k‘é =D 1 Jiu‘ké => u"“k) un

Quantification: « € T'(2), (€;(p)) is a basis at p, & = > w;€;, and w;|;(p) are the components of the
vector du(p).€;(p) in the basis (€;(p)), i.e. dii(p).€;(p) = >, w;;(p)€i(p) and [dw] |z = [w;;] . Thus

divid = Y “w;; | (T.62)
=1

Duality notations: & = 371 w'e;, d.¢; = 32i_ wi; &, [d]je = [w])], divd = 31 wi;.

Cartesian basis (¢;): dw;.¢; = g%’; and
ow; = dw;
K3 . — K3
w;; = —, thus divw = E . T.63
i 8$l v P 6$l ( )
(Duality notations: divid = >, %7{ y

Coordinate system basis (€;) (duality notations): With the Christoffel symbols, cf. (T.26), (T.49)

gives
n

L 0wt & ; o w' i
wy; = Era + ;wkﬁk, thus diva = Z g + Z w - (T.64)

i=1 ik=1

n

Exercice T.32 Prove:
div(fw) = df @ + f divd. (T.65)

Answer. d(fw) =@ @df + fdw gives Tr(d(fw)) = Tr(@ @ df) + Tr(f d) = df. & + f Tr(dw). Use a coordinate
system if you prefer. oh

Remark T.33 If a = Z?:laiei is a differential form then da = Z?:lozﬂjei ® e’ where a;)j = €;.da.ej.
Here it is impossible to define an objective trace of da like Z?:1ai\i3 The result depends on the choice of
the basis (the Einstein convention is not satisfied, and e.g. with a Euclidean basis the result depends on
the choice of unit of length: Foot? Metre?). Thus the objective (or intrinsic) divergence of a differential

form is a nonsense. Similarly the trace of an inner dot product (-,-), is a nonsense. .

T.9 Objective divergence for 1 1 tensors

;736 ® ¢ € T{(U), having

dr =150 37, 71,8 ® ¢/ @ ¢¥, we have to contract an admissible index with the “differential index k",

To create an objective divergence for a second order (}) tensor 7 = .

So, no choice: We have to contract i and k to get &R/; = EZj:lT;|iej'

Definition T.34 (qualitative.) Let @ € I'(Q) and ¢ € Q*(Q2) be C*. The objective divergence of the

elementary G) tensor @ ® ¢ € T} (U) is the differential form div(7 ® £) € Q1(2) defined by
div(Z @ 0) := (divi)l + db.@, ie. div(d® 0).0 = (divd)(£.0) + (di.@). o (T.66)

for all & € E. (No basis and no inner dot product needed.)

— (THU) =)
The objective divergence operator div : i is the linear map defined on elementary
T —dive

tensors with (T.66).
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Quantification for &R/(ﬁ@ {): At p, basis (€(p )) dual basis (e‘(p)):
=Y, ue, = > lied, i@l = Z” e @ el divi = Z?Zlu‘ii, dt = Z” 1167 ® €'; Hence
(T.66) gives

div(@® ) = > (u'ly)e! = Y uliliel + Y ulye, € QY(Q). (T.67)
i,j=1 i,j=1 i,j=1
Hence @ = ), w'e; gives
div (@ ® 0).0 = Z u'ly) ! = Zu‘lﬂ w? + Zuwmuﬂ = [div(@ ® £)] . [i] - (T.68)
3,7=1 i,j=1 i,j=1

(Recall [div(@ ® £)]z is a row matrix because div(u ® £) is a differential form.)
Remark: d(@ ® £) = Y27, (u'l;)|x€; © ¢/ @ €, and the contraction of i and k gives (T.67) as
announced.

uantification for 7 € T1(U): For any 7 = S°"._ 7,,¢, ® €7, the linearity of div gives
L 1 L 17ij g

4,j=
dr = Z Tik€i ® e’ ® e®,  and divr = Z T;ﬁe] (T.69)
ijk ij=1
(we have contracted i and k). Thus [leT] = (2 Tl\l 2 T”i1|i) (row matrix).
(Classical notations: CTi:JT = Zij,lnﬂﬂrej, ie. [d1VT] = (2Tl 2 Tinli)-)
In particular with a Cartesian basis: 7 k= =77 gmk and leT =i dad

Exercice T.35 Check (T.69) using (T.67).

Answer. 7 =) T/ ®€ = =>,05 TiE) ®el = 20 ® e’ with @; = Y, 7jé; = >_,(#;)"€; Linearity of div

m]

and (T.66) give dlv; =2, div(d; ® e) = Zj(divﬂ’j)ej + Z . dej.ﬁj.

Cartesian basis we get &Rg =2 (divij)e! +0=3", , thus (T.69).
87';

Coordinate system: (divi;) =9 i s a(u]) + Zlk(uj) Ve = 3, 3ar T ik 7Fyke and > ded iy =

N . X - 3 . R S a7t
ij(u]-)kde].ek =(T-%5) _Zijk TJk'Yiiez' Thus leg = Zij 3qz‘ + Zuk Tgk%ke] - Zijk Tjkwiiel = Zij(aq]i +
L]
-m

e TEN = S Tk ) = > i) T;”ej. It matches with the T;” in (T.59). Qed.

i az'b

Exercice T.36 Prove: If f € C'(;R) and 7 = szle;é'i ®el € THU) N C! then
&Rl(fg) =df.+ f(ﬁf; (T.70)

é}lswer. fr=2>%2 frjé ® e’ gives d(f1) :~Zijk(f7—;)|k€i Qe ek = Zijk(ﬁkT; + fT}lk)a- ® e’ ® e, thus
div(fr) =>_,; (flir + fT}li)ej. And df.z + fdivc =37, furied + f > 75i€”, thus (T.70). un

Exercice T.37 Prove: If 7 € T} (U) and & € I'(Q) then

div(z.4) = div(z).W + 1 () di |, (T.71)

Answer. 7 =3, Tigi®el and @ =Y, w'e; give 7.0 =>4 Tjw! &, thus div(r.@) = > Jhw '+ Tjw un
Exercice T.38 If r € T} (U) check with component calculations (since dlv( ) € TY(U) is objective):
[dlv( Dl = [dlv( 7)]ja-P  (covariance formula), (T.72)

where P is the transition matrix from a basis (&;) to a basis (b;).

Answer. Let 7= 3", Ual®a —Z”TJb ® b, so 7/ —Z/\HQA AP".
1- Cartesian bases: >, 7} ]‘Z = >, drj b = > d(z/\u Qio AP") (ZU PP.dy) = Y Qf\P}‘Pi”(daﬁ.d',,) =
Do 3P} (dojdy) =30, , Pl (doy.dxn) =32, (3, u\A)Pf as desired.

195



196 T.10. Euclidean framework and “classic divergence” of a tensor (subjective)

2- Coordinate system bases: >, 7; J‘L =3 driéi+>, Tf’yfz,b — > TZ'yfj,b (with 7 fixed); With

D (dribi) = > QN (dopbi) P+ (dQABi) op P+ Y Q4 oy (dPLb)

2 I I TAL
= Y Q\P!'P!(doj.d,) + Y op PIPY(dQN.) + Y op QNP (P .dy)
IApY TApY TApY
= > Pl(doy.dx)— Y op PLQN(AP.d@) + Y op (dPL.dy)
A IApUY Ap

since PY QY = & gives Py (dQ4.@.) — Q4(dPY.@.,). And, with (T.28),
Domivies = 2 QAouP) (Y QuP P+ Y Qo (AP d5))
it

il A afBw apf

A pp AN pr a - (T73)
= ZO—MPJ' YaX,a + Z O—;LQ/\P]' (dPZ 'aa)y
Apa CApa
and
=Y Tivie = —»_ O QienPH (O Pf PﬂQmamﬁ-ZP Qu(dPy .da))
174 W Ap afw (T74)
= _Za Pﬁ%\ﬂa ZU’ dP“ ax).
AppB
Thus >, T;‘Z > b (dop.ax) + 2 aua O'NP Yora ZM,@ aMPj Yga = 2oan Pj“aiu as desired. .

T.9.1 Divergence of a 2 0 tensor

Letz € Tg(U)and £ = Y7, 79 & ®€;, thus dz = szykleij‘-ké'i@e*j@ek; Then two objective divergences
may be defined: by contracting & with 4, or k with j. (The Einstein convention is then satisfied.)

T.9.2 Divergence of a 0 2 tensor

Let 7 = >0, mje' @ ¢/ € TP(U). Thus dz = 327, Tijjre’ @ ¢/ ® €, and there are no indices to
contract to satlsfy Einstein convention: There is no objective divergence of 0 2 tensors.

T.10 Euclidean framework and “classic divergence” of a tensor (subjective)
Definition T.39 The divergence of a matrix fonction M = [M;;] € M,,, is the column matrix div(M) €
M, given by
OMy,
E?:l aw?
div(M) := : . (T.75)

Zn ‘8M"J
j=1 0OxJ

So: Take the divergences of the “row vectors” (M;1 ... My, ) of M to make the “column vector” div(M).

Let ¢ € T}(U) be a (;) C* tensor. An observer chooses a Euclidean basis (€;), uses its associated

Euclidean dot product, and calls g the components a : He writes g =), 0 y Jez ® e’ and uses the matrix

lg]je = [0}]. In particular leO' =8 ol =3 217 el (objective divergence).

Definition T.40 In continuum mechanics, the usual (classical) divergence dive is the column matrix

n  Odoij
(T.75) J=1 0wt LI Y
dive := div([g]je) = : , le. dive= [leU]g = Z 3 SR (T.76)
n ' o nj ij=1 Ly
Zj:l Gr]
where (7;) is the canonical basis in M,;. (It is not a vector in E.)
Exercice T.41 Prove that, for any order two tensor g, the quantity
9]
divg = Z i (T.77)

8.1‘]

’L

is not a vector of any kind (neither contravariant nor covariant).

196



197 U.1. The adjoint of a linear map

Answer. We have to prove that: If (d;) and (l;l) are bases, if P is the transition matrix from (d;) to (51), then
neither [divo]; # P_l.[divghd nor [divg]‘ql; = [divghg.P, (T.78)

i.e. the divergence as defined in (T.77) is neither contravariant nor covariant (does not satisfy any change of basis
formula). (Compare with (T.72))
Consider the simple case b = \@;, for all 4, A > 1: Transition matrix P = X\, and P~' = 11

X
For a () tensor: g = 32,.(03)bi @ ¥ = 3, (0a)}d@i @ o, [a]; = P~ '[a]ja-P = 5.[o
)

\E'A = [g]‘a', i.e.
= A’diveo. Thus

=. X
(0a); = (0v)§ for all i, j. Thus (T.77) gives divg = 3, .(d(03)}.b;)bi = 3, (d(0a)}.(A;)) (NG
[diva] )z # P~ [diwg]|z and [divbg]‘% # [divag]@.P.

For a (J) tensor: ¢ = > b @Y = >4 Oa,ija’ ® a?, and o]z = P [g]ja.P = N[a]ja, i-e. 0bij = N20ais
for all i,j. Thus (T.77) gives divg = 3, ;(dov,i;.b;)bi = \? > (doa,i;-(AG;)) (Ad:) = /\4divag. Thus [divg] 5 #
P~ [diwg]|z and [divbg]ljg; # [divaghg.P.

For a () tensor: o = > 07b; @b; = D) o9d; ® @j, and o]z = P " [o]ja. P = J5(o)ja, ie. o)) = S50l
for all 4,j. Thus (T.77) gives divg = Zij(d(fzj.gj)gi = /\%Zij(daij,()\d'j))()\d}) = divag. Thus [divg]; #

P~ [divg]|z and [divbg]ljll) # [divag]{5.P. oa

Exercice T.42 Prove: If @ € I'(U) (vector field) and g € T} (U) then

[div(g.@)]|e = dive”.[d]z + [g]lqé : [did] . (T.79)

Answer. 0. is a vector field, thus (T.71) gives div(c.7) = div(e).@+a () di, thus [div(c.@)] s = [div(0)]je[@] -+

lo]je 0 [dd]e = [div(e)]”.[@]e + [o]f : [did]je. Or direct calculation.

U Natural canonical isomorphisms

E and F are finite dimensional vector spaces, E* = L(E;R) and F* = L(F;R) are their dual spaces,
L(E; F) is the space of linear maps, £;(E; F) is its sub-space of invertible linear maps.
U.1 The adjoint of a linear map
Definition U.1 The adjoint of a linear map P € L(E; F) is the linear map P* € L(F*; E*) canonically
defined by

~ F* — FE* U.1)

1 ¢ = P*):=LoP, written P*L=(P '
(dot notations since ¢, P and P* are linear), i.e., for all ({,%) € F* x E,
(P*0)d=L0P.ua (eR). (U.2)

Interpretation: If P is a push-forward of vector fields, then P* is the pull-back of differential forms,
see remark 7.5. And P € £;(E; F) (linear and invertible) is a change of observer.

Application: P** := (P*)* € L(E**; F**) is given by, for all u € E** and ¢ € E*,

P*u=uP* ie (P u)l=u(l.P) (=uP"L). (U.3)

U.2 An isomorphism F ~ E* is never natural (never objective)

Two observers A and B consider a linear map L € L(E; E*) (a “change of variance operator”), and they
want to check their results: With P € £,(E; E) the change of observer endomorphism from A to B, they
(“naturally”) consider the diagram

L

E — FE* . ¢ computation by observer A
Pl TP (U.4)
E —L> E* < computation by observer B

Definition U.2 (Spivak |22].) L € L(F; E*) is natural iff (U.4) commutes for all P € L(E; E):

L e L(E;E*) is natural <= VP € L(E;E), P*oLoP =L. (U.5)
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198 U.3. Natural canonical isomorphism E ~ E**

In that case, if A computes L.@ (top line) and if B computes L.(P.%) (bottom line) then they can
easily check their results: They must have L. = P*.(L.(P.10)).

Theorem U.3 A non-zero linear map L € L(E;E*) is not natural (a change of variance operator is
subjective):
IPe L(E;E) st. L#P*oLoP. (U.6)

(So the observers can’t check their results with a diagram like (U.4).)

Proof. (Spivak [22].) Take P = 21 € L(E; E). Thus P*(¢) ="V foP = 2/ for all ¢ € E*, thus P* = 21,
thus P*.(L o P) = 21.(2L) = 4L # L when L # 0, thus (U.6). .

Remark U.4 The definition U.2 was made to generalize: 1- A representation with matrices is not
objective (see exercise U.5), 2- A Riesz-representation vector is not objective (see exercise U.6). ia

-,

Exercice U.5 dim E = 1, bases (@) and (b), b = 8d@, 8 # +1 (change of unit of measurement), dual
bases (m,) and (7).

1- Consider the L € L(FE; E*) that sends the basis (@) onto its dual basis (), i.e. defined by L.d := 7,.
Prove: L.b # m, (i.e. L does not send (b) onto its dual basis (m)), then L is not natural.

2- Let L4 and Lp be defined by L4.d = 7, and LB.EZ m,. Prove: La # Lp.
Answer. 1- b = Ba gives mp1 = %ml, thus L.b = BL.4 = B, = 2wy # w1 since B2 # 1. Here P = BI, P* = I,
thus P* o Lo P = 82L # L because L # 0 and 5% # 1.

2 b= Bad gives mp = %ﬂ'a, thus LA.gj = fBLa.d; = Pra; = 5271'1,]' = /BQLB.gj #* LB.gj since 52 # 1. e

Exercice U.6 E = R_’”, (+,-)g Euclidean dot product in R_‘", and ﬁg € L(E*; E) is the Riesz representa-
tion map ]%Q € L(E*; E) i.e. defined by ﬁg(€) = 6:, where (Z_;],U)g = 0.7 for all 7 € R", cf (F.3).

1- Prove: If (+,-), = A%(-,), is another inner dot product, A\? # 1, then Ry, #* ﬁg.

2- ﬁ;l € L(E;E*) is not natural (R, and ]:Tig’l change the variance), and R, € L(E*; E) is not
natural.
Answer. 1- R,.0 = (, and R0 = 0}, with (0, %), = 0.5 = ({1, 7)n for all T € R*. And (0n, D) = A2(h,7)g =
(A20),,7), for all T € R7, thus £y = A20,. Thus Ry = A2R), # Rj, because A? # 1.

2- Choose P = 2I, thus P* = 2I. Thus P.R, . P*.m = 4R;'.m # R;'.m, thusR, is not natural. To

prove that Rg is not natural, we use the natural canonical isomorphism E** ~ FE, see next § U.3: we get
Ry € L(E*,E) ~ L(E*,(E*)*) and same steps as with R, un

U.3 Natural canonical isomorphism F ~ E**

Let E** := (E*)* (= L(E*;R)). Two observers A and B consider a linear map L € L(E; E**), and they
want to check their results: With P € £,(E; E) the change of observer endomorphism from A to B, they
(“naturally”) consider the diagram

E £> E** o computation by observer A,
Pl JP (U.7)

E ? E** <+ computation by observer B.

In particular they consider the linear map L = Jr € L(E; E**) (the derivation operator in the direction @)

canonically defined by
7o E — E* (U8)
PV @ s u=Tp(d), u(l) =04, Ve E* ‘
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199 U.4. Natural canonical isomorphisms L(E; F) ~ L(F*, E;R) ~ L(E*; F*)

Proposition U.7 Jg is a natural canonical isomorphism, i.e., for all P € L(E; E),

the diagram P L P commutes, ie. JgoP =P*oJg, (U.9)
E

and we write E ~ E**. Thus we can use the unambiguous notation (observer independent)

Tp(@) " g and @l = 0.4 (U.10)

More generally, if F is a vector space s.t. dim F' = dim E then, for all P € L(E; F),

the diagram Pl L P commutes, ie. JpoP =P oJg. (U.11)
fa

Proof. (Spivak [22].) Jg and JF are linear and bijective (trivial): They are isomorphisms.
(U.3) (U.8) (U.8)

PoTu(@)(0) L Zu(@)(e.P) D (0.P) (i) = e(P(@) L Tr(P(@))(0), forall € € F* and all i € E,
thus P** o Jg(d) = Jr(P(d)), for all 4 € E, thus P** o Jgp = Jp o P. un
Notation: Jg ="Mtten 7 and Jp =Written 7 (implicit notations), thus, for all P € L(E; F),

E L g

Pl 1 P™ commutes, ie. P*oJ =T oP. (U.12)

Proposition U.8 (A characterization of J.) J sends any basis (@;) onto its bidual basis.

Proof. Basis (d;), () its dual basis. J(@;).ma =U®) m,,.d; = 6;; for all 4, j, thus (7 (d@;)) is the dual
basis of (7,;), thus the bidual basis of (@;). True for all basis (a;). oa

U.4 Natural canonical isomorphisms L(E; F) ~ L(F*, E;R) ~ L(E*; F)

Consider the canonical isomorphism

L(E;F) — L(F*,E;R)
folol ~ ~ . . . (U.13)
L - L=Jgr(L), L(m,u):=m.Li,,V(m,d)e€F*xE.

Exercice U.9 With (@) and (b;) bases in E and F, with (a?) and (b°) their (covariant) dual bases,
prove:
i=1 ij=1
Answer. L(b*,d,) ="' 0¥ Ld, = L*. And (3,; L';bi @ o )(b*,d@0) = X, L' (bs.bF) (o d@e) = X, L5006 =
L*,. True for all k, £, thus L =", L';b; @ a’. '
A, B are also finite dimensional vector spaces. Let Py € £;(E; A) and Py € L(F; B), and consider the
diagram
C(B:F) S £(r EBiR)
Ip | \Zp (U.15)

L(A;B) — L(B*, A;R)
JaB

where Zp and f;;- are the push-forwards of the linear map L € L(FE; F) and of the bilinear form Le
L(F*, E;R) (we need P; invertible), i.e.

Ip(L) := Po.L.P;" and Zp(L)(b,@) := L(b.Po, Py 1.@) V(b,d@) € B* x A. (U.16)
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~ [(E,E;F) ~ L(F*,E,E;R)

U.5. Natural canonical isomorphisms L(E; L(E; F))

200
Proposition U.10 The canonical isomorphism Jgr is natural, that is, the diagram (U.15) commutes

for all P, € L;(E,A) and all Py € L(F, B):
IpoJor = Jap o Ip, and L(E;F)~ L(F* E;R) ~ L(E;F). (U.17)
Proof. Jus (Zp(L))(b,@) "2 b.2p(L).d 2V 0.(Po.L P )G = (0.P).L.(P7L.3) "2 T (L) (6.7, PLL.E)
V20 To (Jow (L)) (b, @), thus L(E; F) ~ L(F*, E; R).

Thus L(E*; F*) ~ L((F*)*,E*;R) ~ L(F,E*;R) ~ L(E™™; F) ~ L(E; F). u
Then consider the canonical isomorphism (transposed of a bilinear map)

i,7) € E x F, (U.18)

L(E,F;R) — L(F, E;R) o L
: T =T
K‘EF { T ICI_:]F(T) 3 I(;E'F( )(U,’U) (’U,U), V<U,
and
L(E,F;R) — L(A, B;R) - o o=
ZaB { T s Zu(T) . Zap(T)(a@,b) :=T(Py a,Pyth), V(ab) € AxB. (U.19)
Proposition U.11 The canonical isomorphism Kgp is natural: For all (P1,Pz) € L;(E; A) x L;(F; B)
L(E,F;R) & Ker L(F,E;R)
the diagram ZaB | 1 Zpa commutes: L(E,F;R)~ L(F,E;R). (U.20)
L(A,B;R) — L(B,4;R)
Kas
Proof. _/;EF(ZAB(T))(E, @) = Zup(T)(@,b) = T(Py b, Py 1.a@) and Zpa (Kir (T))(@,b) = Ker(T)(PyL.a, Py L) =
T(PyL.b, PyL.@), thus Kap o Zap = Zpa o Kar.
U.5 Natural canonical isomorphisms L(E; L(E; F)) ~ L(E,E; F) ~ L(F*,E, E;R)
~ d%d. Let @ € TO (U), and use the notations
., d*i e THU), ..

E.g. for application to the second order derivative d(du) =~
di € TH(U) (since di(p) € L(E; E) ~ L(E*, E;R)), then d?i € Ty (U), .

Consider the canonical isomorphisms
(U.21)

L(E;L(E;F)) — L(E,E; F)
= Tl(ﬁl).ﬁQ € F, Vﬂl,ﬁg € E,

Ji2E ¢ L.
{ Ty =Ty = Jee(Th), Ta(u, i) =
and
L(E,E;F) — L(F*,E,E;R)
J23E Lo . S " (U.22)
T2 — ._723E(T2) = Tg, Tg(f,u,v) = E.Tg(ul,ug), Vul,ug S E, Ve e F*.
Proposition U.12 Ji» and Jb3 are natural. Thus [Jo3 o J12 is natural
Proof. 1- We have to prove that the following diagram commutes
ZAB(T1>(61)62 = Tl(Pfl.(_fl).('Pfl.C_iQ), (U23)

L(E;L(E; F)) Jizp L(E,E;F)
L Yap  where o RN
YAB(TQ)(alaaQ) = T2(7)1 -a177)1 .ag),

ZaB |
L(A;L(A;B)) — L(A,A;B)
J124
(the “push-forwards) for all @;,ds € A and Lap € L(A; B).
Let Ty € L(E; L(E; F)). We have
jlgA(ZAB(Tl))(d ) 6 ZAB(Tl)( ) Tl(Pflﬁl)(Pfldg), and
a1, @) = Jop(Th) (P al,Pl‘l.@) =T\ (P L.d1).(Py h.d2),

Yap(J126(T1))(
thus J124 © Zap = Yap o J12E, thus Ji2 is natural
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2- We have to prove that the following diagram commutes:

o Jo3 . .
L(E,E;F) 28 £(F*, E,E;R) 5. Zas(To) (@1, @2) = (£p.P2). To(Py t.dy, Py ),
ZaB | 1 Yap where o 1l
L(A,A;B) —s L(B*, A, A;R) Yap(T3)(Lp, a1, d2) = T3({p. P2, Py .1, Py .d2),

J234
(U.24)

(the “push-forwards) for all @;,ds € A and {5 € B*.
Let Ty € L(E, E; F). We have
Toza(Up, Zag(To)(@1,d2)) = €p.Za(Ta)(@1,d2) = (05.Pa).To(Py a1, Py .dy), and
Yag(Ja3a(To))(Lp, @1, @) = Jaza(To) (. Pa, Py tdy, Py tdz) = Lp. Po.To(Py t.dy, Py t.da)
thus j23A o ZAB = YAB o jggE, thus j23 is natural. an

V Distribution in brief: A covariant concept

For a full description, see the books by Laurent Schwartz.

V.1 Definitions

Usual notations with Q an open set in R?: p € [1,00[ (e.g. p = 2 for finite energy functions), and L?(Q)
is the space of functions f such that |f|P is Lebesgue integrable, and ||.||, is its usual norm:

D)= {1 QR [ f@P 2 <och ad il = ([ F@Pai ()
And L*(9) is the space of bounded functions, and ||.||s is its usual norm

L¥@)={f: Q=R §1€18(|f(35')|) <oo}, and |[fllec = S}elg(lf(f)l)- (V.2)

We have: (LP(2),].||,) is a Banach space (a complete normed space) for all p € [1, 00], see e.g. Brezis [4].

Definition V.1 If f € F(Q;R), then its support is the set

supp(f) :={Z € Q: f(&) # 0} = the closure of {Z € Q: f(Z) # 0}. (V.3)

The closure in the definition of supp(f) is required: E.g., n = 1, @ =]0,27[ and f(z) = sinx:
{f #0} :={zx € Q: f(x) # 0} =|0,n[U]m,2x[. Here w7 ¢ {f # 0}, but 7 is a point of interest since
sin varies in its vicinity: f/(wr) = —1 # 0. So the set {f # 0} is “too small”’, and it is its closure
supp(f) := {f # 0} = [0, 27] that is needed: supp(f) is closed.

Schwartz notation:
D(Q) :=CF (4 R) = {p € C°(R) s.t. supp(yp) is compact in Q}. (V.4)
Eg.,Q=R, ¢o(z) = e T if g €]—1,1[ and ¢(x) := 0 elsewhere: ¢ € D(R) with supp(y) = [-1,1].
Result (Schwartz): D(Q) is a vector space which is dense in (LP(Q),||.||z») for any p € [1, co].

Definition V.2 A distribution in 2 is a linear D(Q)-continuous* function

D) - R
T: written (V‘S)
e = T(p) =" (T,9)
The space of distribution in €2 is named D’'(£2) (the dual of D(1)).
The notation (T, ¢)pr)p) = (T,¢) is the “duality bracket” = the “covariance-contravariance

bracket” between a continuous linear form 7' € D’(Q2) and a vector ¢ € D().

4The D(Q)-continuity of T is defined by: 1- A sequence (¢, )n+ in D(Q) converges in D(Q) towards a function ¢ € D(Q)

ok _ " on
1.4.81% 81i1~~81ik

iff there exists a compact K C Q s.t. supp(pn) C K for all n, and || 5 [loo —>n—00 0 for all k,i;; 2-

T is continuous at ¢ € D(Q) iff T'(pn) — T(y) for any sequence (on )y € D(Q)N ¥ in D(Q).
n oo n oo
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Definition V.3 Let f € L?(Q). The regular distribution Ty € D’(€) associated to f is defined by

Ve € D(Q), Tylp) = Qf(f)w(f)dﬁ =/</7(’f) (f(@) d2), (V.6)

Q

i.e. Ty is a measuring instrument for the density dm(Z) = f(Z) dZ at Z: Ty(p) := [, o(F) dmy(Z).

Definition V.4 Let Zy € R™. The Dirac measure at Iy is the distribution T’ written 8z, € D'(R) defined
by, for all ¢ € D(R),
0z, () = @(Zo), 1e. (dz,,¢) = p(Zo). (V.7)

0z, is indeed a distribution (easy check). But d,, is not a regular distribution (4., is not a density
measure): There is no integrable function f such that Ty = d,,. Interpretation: J,, is an ideal measuring
device: The precision is perfect at zy (gives the exact value ¢(xo) at xp). In real life d,, is the ideal
approximation of T, where f, is e.g. given by f,(z) = ”1[m0,z0+%] with n “very large” (drawing): We
have Ty, (¢) —n—o0 (T0) = 04, () for all p € D(Q) (easy check).
Generalization of the definition: In (V.5) D(Q) = C2°(Q;R) is replaced by C2°(Q;R™). So if you
consider a basis (&) then @ € C°(Q;R") reads @ = S, '@ with ¢ € D(Q) for all .

Example V.5 Power: Let a : Q — T?(Q) be a differential form. Then the distribution P, defined by
Po(0) = [, a.0dS2 gives the virtual power associated to « for any vector field 7 € C2°(Q; R). ua

V.2 Derivation of a distribution
(&) is a basis in R™. Generic notation: Z = Y"1 z,¢;.
Definition V.6 The derlvatlve of a distribution T' € D’(Q) is the distribution in D’() defined by,
for all ¢ € D(),
oT Op . oT de
=T .€. = —(T .
TR = -T2, e (goiwhi= —(T52)
T

(- is indeed a distribution: Easy check.)

(V.8)

Example V.7 If T = T} is a regular distribution with f € C*(Q ) nli T sz, Tndeed, for all

v € D), aézf)(cp) —T( arl = — [, f@) P2 dQ = + [, 2L o(F)d + [, 0dT, since ¢ vanishes on
I' = 99 (the support of ¢ is compact in Q), thus 8(5)?:)( )= T(%)( ) for all ¢ € D(Q). oa

Example V.8 n = 1. Consider the Heaviside function (the unit step function) Hyp := 1g L and the as-
sociated distribution T = Tg,. Then ((Tg,), ¢) := —(Tu,,¢') = — [o Ho(x)¢' (z) dz = — [° ¢/ (z) da =
©(0) = (89, ¢) for any ¢ € D(R), thus (Ty,) = dp. Written Hy' = dy in D’(Q) which is not in a equahty
between functions, because Hy is not derivable at 0 as a function, and §y is not a function; It is equality
between distributions: The notation Hy' can only be used to compute (Hy', ) := —(Ho, ¢'). .

V.3 Hilbert space H'(Q)

V.3.1 Motivation
=z+1ifzxe[-1,0],
n = 1. Consider the hat function A(z){ =1— =z if x € [0,1], (drawing). When applying the finite

= 0 otherwise
element method, it is well-known that, if you use integrals (use the virtual power principle which makes
you compute average values) then you can consider the derivative of the hat function A as if it was the
usual derivative, i.e. at the points where the usual computation of A’ is meaningful, that is,

=1ifz €] —1,0]
N(x)< = —1if z €0,1], (V.9)
=0ifzeR—([-1,0]U][0,1])

(drawing).
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203 V.3. Hilbert space H' ()

Problem: A’ is not defined at —1,0,1 (the function A is not derivable at —1,0, 1);
Question: So does (V.9) and the “usual” computation I = [, A’(x)p(z) dz gives the good result?

This is not a trivial question: E.g., with Hy = 1g, instead of A, we would get the absurd result
H{, =0, absurd because Hj = dy.

Answer: Yes in the distribution meaning, i.e.:
1- Consider Ty the regular distribution associated to A, cf. (V.6);

2- Then consider (Th), cf. (V.8): We get ((Th),¢) (‘;8)—<TA,<p’> = —/RA(x)gp’(x)dac =

0 1 0 1

- [ M@ [ M@ @ de =+ [ @)t [ e do for any ¢ € DR)
—1 0 0
3- Thus (Tx)" = Ty where f = 1)_1 o; + 1jo,1], that is (T)" is the regular distribution T%.

4- Then Ty = (Ty)" ="ritten A’ When used Wlthln the distribution framework, i.e. when used with the
Lebesgue integral [, A’(x == Jo A( z) dx: Ok for finite element methods.

V.3.2 Definition of L?(2) and its dual
n = 1: The space of finite energy functions L?(Q) := {f : Q = R : [, |f(2)]* dz < oo} is equipped with
its usual inner dot product and associated norm defined by

(u,v) 2 :/Qu(x)v(x)dm and ||v||zz =V (v,v) 2 :(/Qv(ac)2 dac)%. (V.10)

Result: (L2(f2),(-,-)z2) is a Hilbert space (Riesz-Fisher theorem).
The dual space of L?(f2) is the space

L*(Q) = L(L*(Q):R) := {£: L*() — R linear and continuous}, (V.11)

i.e. the space of linear forms ¢ : L?(Q) — R s.t.: 3C > 0, Vv € HY(Q), |¢(v)| < C||v]|pe.
L2(9) equipped with tbe norm I[€l[z2(ay ==  sup  |[¢(v)] is a Banach space.
[lv L2(Q):l

Duality bracket:
If € L2(Q) then £(v) S (0,0) 20 2, Yo € L2(Q). (V.12)

And thanks to the (-, -)z2-Riesz representation theorem, a ¢ € L?(Q)" being linear and continuous,
¢ € L2(9)' can be represented by function f € L2(€2):

if (e L?(Q) then 3f e L*(Q), Vo€ L*(Q), ((,v) = / flz (V.13)

NB: L?(Q) is called the “pivot space” (the central space).

n > 2: Idem with ¢ € LQ(Q)"/, after an inner dot product .. in R” has been chosen:

if £€L*Q) then 3f € L3(Q), Vv e L3(Q), ({,v) = /ff ) (V.14)

V.3.3 Definition of H!(f2) and its dual

The space C*(£2;R) is too small in many applications (e.g., for the A function above). We need a larger
space where the functions are “derivable is a weaker sense”: The distribution sense.
(€;) is a Cartesian basis in R

Definition V.9 The Sobolev space H'() is the subspace of L?(£2) restricted to functions whose gener-
alized derivatives are in L?(Q):

ov

HY(Q) :={ve L*Q): pr

€ L), Vi=1,..,n} " 1) € L2(Q) s gradv € LXH(Q)"). (V.15)

Remark V.10 So to check that v € H(Q), even if % does not exists in the classic way (see the above
hat function A), you have to: 1- Consider its associated fegular distribution T, 2- Compute % 8T” in D'(Q),
3- and if, for all i, there exists f; € L?(2) s.t. 9f= = T, then v € H'(2). 4- Then be ()?;” is noted
2% when used with ¢ € D(2) and the Lebesgue integral: [, 7 (2)p(z) dz == [, v( ( ) dzx. .

203
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With the inner dot product .« . defined by €; « €; = d;; for all ¢, j, define

- - " Ou v i - . - .
(gradu, gradv) 2 := 2(8751’ T%)L2 wren /Qgradu(x) « grado(Z) dQ. (V.16)

i=1

Definition V.11 The usual inner dot product and associated norm in H!(f2) are

(u,v)gr = (u,v)p2 + (gradu, gradv)Lz, and ||v]|g = (U,v)il, (V.17)
Thus (HY(Q), (-,-) 1) is a Hilbert space (Riesz—Fisher).
The dual space of H(Q) is

/

HY(Q) := L(H'(Q);R) := {¢: H(Q) — R linear and continuous} (V.18)

i.e. the space of linear forms ¢ : H'(Q) — R s.t. £ is linear and 3C > 0, Vv € H*(Q), |[¢(v)| < C||v|| a1 -
And (duality bracket) if ¢ € H'(Q)" then £(v) =Written (p, V) g1 g =written (p ) for all v € H'(Q).

Theorem V.12 (€ H'(Q) iff: 3(f, @) € L2(Q)xL3(Q)", Vi € H'(Q),
) = (f, )2 + (i@, grady) 2. (V.19)

Proof. From Brézis [4] (application of the Riesz representation theorem). The space Z = L?(Q)xL?(Q2)"
with its inner dot product ((f, ), (g9,7))z = (f,9)r2 + (@,¥) > is a Hilbert space. Let T : H*(Q) — Z
be defined by T(¢) = (¢,grady); T is linear and |[T(¥)||z = ||¢||g:, thus T(¥) = 0 imply
Y = 0, so T is one-to-one, thus 77! : ImT — H'(Q) is well defined. And T~! continuous since
T=1(), gradyp) = 1. (Remark: ImT is not closed in Z.) Let £ € H'(Q)', then define L : Im(T) — R
by (L, (¢, grade))) 2z 5 = (L, T71(¢,grzld¢)>H1/7H1: so L = ¢ oT~! is linear continuous since ¢ and 71
are, and (L, (z/),gradw»zl,z = (0,¢) g1 gr; With Hahn-Banach theorem, extend L : Im(7T) — R to
Ly : Z — R linear continuous. Apply Riesz representation theorem: 3(f, %) € Z s.t. (L, (¢, W)z 7z =
((f, @), W,0)z = (f,¥)r2 + (€@, W)z for all (¢¥,W) € Z, in particular for all (¢,@) € ImT, thus

() g g = (f, ) 12 + (@, grade) 2 for all ¥ € H'(Q).

V.3.4 Subspace H}(Q) and its dual space H ()

Definition: )

HY(Q) :=D(Q)"  the closure of D(Q) in H'(Q). (V.20)
So H}(Q) is closed in H(€2), hence (H}(Q), (,+) g1 ) is a Hilbert space. If the boundary I' = 99 of Q is
bounded and regular then

Hy(Q) ={ve HY(Q):vp =0} | (V.21)

(See Brézis [4].) The dual space of (H}(Q),||.]|z:) is the space

written

(H3(Q)) := L(H}(Q);R) := {£: H}(Q) — R linear and continuous} HYQ), (V.22)

i.e. space of linear forms ¢ : Hj(Q) — R s.t. 3C > 0, V¢ € H{(Q), ()] < C|[¢]|gr. And then
() ="M (4 p) ypoa g (duality bracket).

Theorem V.13 (¢ H-Y(Q) = (H}(Q)) iff 3(f,§) € L*(Q) x L*(Q)" s.t.
(= f—divg (€ D'(Q)), (V.23)
i.e., for all 1 € H{(Q),
() gr gy = /sz/) o+ /Q .G dQ. (V.24)

And if Q is bounded then we can choose f = 0, and moreover if § € Hg;, () then
(€ = = [ dvg(o)i(o) do. (V.25)

Proof. Apply (V.19) here with ¢ € D(Q) (or ¢» € Hg(Q2)) and with ¢ = 0 for the integration by
parts. un
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W Basics of thermodynamics

See https://perso.isima.fr/leborgne /IsimathMeca/Thermo.pdf
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