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In classical mechanics, there are two objectivities: 1- The covariant objectivity concerns the universal
laws of physics required to be observer independent (true in any reference frame); This is a main topic in
this manuscript. 2- The isometric objectivity concerns the constitutive laws of materials once expressed
in a reference frame.

Covariant objectivity in continuum mechanics follows Maxwell’s requirements, cf. [18] page 1: “2. (...)
The formula at which we arrive must be such that a person of any nation, by substituting for the different
symbols the numerical value of the quantities as measured by his own national units, would arrive at
a true result. (...) 10. (...) The introduction of coordinate axes into geometry by Des Cartes was one
of the greatest steps in mathematical progress, for it reduced the methods of geometry to calculations
performed on numerical quantities. The position of a point is made to depend on the length of three lines
which are always drawn in determinate directions (...) But for many purposes in physical reasoning, as
distinguished from calculation, it is desirable to avoid explicitly introducing the Cartesian coordinates,
and to fix the mind at once on a point of space instead of its three coordinates, and on the magnitude
and direction of a force instead of its three components. This mode of contemplating geometrical and
physical quantities is more primitive and more natural than the other,...”

And see the (short) historical note given in the introduction of Abraham and Marsden book “Foun-
dations of Mechanics” [1], about qualitative versus quantitative theory: “Mechanics begins with a long
tradition of qualitative investigation culminating with KEPLER and GALILEO. Following this is the period
of quantitative theory (1687-1889) characterized by concomitant developments in mechanics, mathemat-
ics, and the philosophy of science that are epitomized by the works of NEWTON, EULER, LAGRANGE,
LAPLACE, HAMILTON, and JACOBI. (...) For celestial mechanics (...) resolution we owe to the genius of
POINCARE, who resurrected the qualitative point of view (...) One advantage (...) is that by suppressing
unnecessary coordinates the full generality of the theory becomes evident.”

After having (unambiguously) defined motions, Eulerian and Lagrangian variables and functions, we
give the definition of the deformation gradient as a function. We then obtain a simple understanding of
the Lie derivatives of vector fields which meet the needs of engineers. Then we get the velocity addition
formula and verify that the Lie derivatives are (covariant) objective. (Maybe Cauchy would have used
Lie derivatives if they had existed during his lifetime: To get a stress, Cauchy compares two vectors
thanks to a Euclidean dot product, whereas one vector is enough when using Lie derivatives.) And a
fairly long appendix tries to give in one manuscript the usual simple and precise definitions, properties
and interpretations, usually scattered across several books (and not always that easy to find).

We systematically start with qualitative definitions (observer independent), then quantify with bases
and/or Euclidean dot products (observer dependent).
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A quantity f being given then: g defined by « g equals f » is noted g := f.

Part I
Motions, Eulerian and Lagrangian
descriptions, flows

1 Motions

The framework is classical mechanics, time being decoupled from space. R? is the classical geometric
affine space (the space we live in), and (R3,+,.) = {pg : p,q € R3} ="ritten R3 ig the associated vector
space of bipoint vectors equipped with its usual rules. We also consider R and R? as subspaces of R3, i.e.
we consider R™ and I@", n=1,2,3.

1.1 Referential

Origin: An observer chooses an origin O € R™; Thus a point p € R™ can be located by the observer
thanks to the bipoint vector Op = & € R?, and we write p = O + Z, and & = p — O (drawing).

Cartesian coordinate system: At p € R", an observer chooses a basis (€;(p)) := (€;(p))i=1

,,,,,

The basis is Cartesian if it is independent of p (possible in classical mechanics), and we write (&;(p)) = (&).
With a chosen origin O, the observer has built the “Cartesian coordinate system” Reare = (O, (€;)i=1,....n)-
His location of a point p € R™:

n Z1
p=0+F with Z=) &, ie [Ople=[Te=| : |, (1.1)
=1 T

[@]je = [(’7;5]@ being the column matrix containing the components of (7]; = 7 in the basis (€;).
Chronology: A chronology (or temporal coordinate system) is a set Riime = (to, (At)) chosen by an
observer, where ¢y € R is the time origin, and (At) is the time unit (a basis in R).
Referentiel: A referential R is the set

R = (Riime, Rcart) = (to, (At), O, (€;)i=1,....n) = (“chronologie” “Cartesian coordinate system”), (1.2)

made of a chronology and a Cartesian coordinate system, chosen by an observer.

In the following, to simplify the writings, the same implicit chronology is used by all observers, and
a referential will simply be written R = (O, (€;)).
Remark 1.1 Another observer chooses an origin O and a Cartesian basiil_);) to build R/C;;:b =

((5, (l_J;)i:L,,,,n). His location of a point p € R" is p = O+ 9. Thus ¢ = 00 + gives the relation
between the stored vectors ¥ and ¢ (drawing). ua

1.2 Einstein’s convention (duality notation)

Starting point: The classical notation x; for the components of a vector Z relative to a basis, cf. (1.1).
Then the duality notion is introduced: x; ="""e" 2% (enables to see the difference between a vector and
a function when using components). So

n n
= - i = — clas. . dual .
Z= E xi€; = E z'¢; , and [Tz = : = . (1.3)
i=1 i=1 T xn
—— —— n
classic not.  duality not.

The duality notation is part of the Einstein’s convention; Moreover Einstein’s convention uses the notation
S wte; =WHUen 2ig i e, the sum sign Y | can be omitted when an index (i here) is used twice, once
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138 1.3. Motion of an object

up and once down, details at § A.5. However this omission of the sum sign > will not be made in this
manuscript (to avoid ambiguities): The TEX-BTEX program makes it easy to print Y .- ;.

Example 1.2 The height of a child is represented on a wall by a vertical bipoint vector Z starting from
the ground up to a pencil line. Question: What is the size of the child ?

Answer: It depends... on the observer (quantitative value = subjective result). E.g., an English
observer chooses a vertical basis vector d@; which length is one English foot (ft). So he writes ¥ = x1d;,
and for him the size of the child (size of Z) is x; in foot. E.g. 1 = 4 means the child is 4 ft tall. A
French observer chooses a vertical basis vector 51 which length is one metre (m). So he writes & = ylgl,
and for him the size of the child (size of Z) is y' metre. E.g., if 21 = 4 then y; ~ 1.22, since 1 ft :=
0.3048 m: The child is both 4 and 1.22 tall... in foot or metre. This quantification is written & = 4 ft
= 1.22 m, where ft means @; and m means 51 here. NB: The qualitative vector 7 is the same vector for
all observers, not the quantitative values 4 or 1.22 (depends on a choice of a unit of measurement).

With duality notation: & = 2@, = y'by, so if 2! = 4 then y* ~ 1.22. ’a

This manuscript insists on covariant objectivity; Thus an English engineer (and his foot) and a French
engineer (and his metre) will be able to work together ... and be able to avoid crashes like that of the Mars
Climate Orbiter probe, see remark A.17. And they will be able to use the results of Galileo, Descartes,
Newton, Euler... who used their own unit of length, and knew nothing about the metre defined in
1793 and adopted in 1799 in France (after 6 years of measurements), and considered by the scientific
community at the end of the ninetieth century... and couldn’t explicitly use the “Euclidean dot products”
either (which seems to have been defined mathematically by Grassmann around 1844).

1.3 Motion of an object

Let Obj be a “real object”, or “material object”, made of particles (e.g., the Moon: Exists independently
of an observer). Let t1,t2 € R, t1 < to.

Definition 1.3 The motion of Ob in R" is the map

[tl,tz] X Oly — R"™

b (t, Ry) — p = ®(t, Ryy) : (1.4)
~—~— —_——
particle its position at ¢t in the Universe

And ¢ is the time variable, p is the space variable, and (¢,p) € R x R™ is the time-space variable. And
® is supposed to be C? in time.

With an origin O (observer dependent), the motion can be described with the bi-point vector

— ; ~
7= 0d(t, Buy) = Op """ G(t, Ryy). (1.5)

But then, two observers with different origins O and O have different description of the motion. There-
fore, in the following we won’t use . Then (quantification) with a Cartesian basis (€;) to make a
referential R, we get (1.1).

1.4 Virtual and real motion

Definition 1.4 A virtual (or possible) motion of Ol is a function ® “regular enough for the calculations
to be meaningful”. Among all the virtual motions, the observed motion is called the real motion.

1.5 Hypotheses (Newton and Einstein)

Hypotheses of Newtonian mechanics (Galileo relativity) and general relativity (Einstein):
1- You can describe a phenomenon only at the actual time ¢ and from the location p you are at (you
have no gift of ubiquity in time or space);
2- You don’t know the future;
3- You can use your memory, so use some past time # and some past position py,;
4- You can use someone else memory (results of measurements) if you can communicate objectively.
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14 1.6. Configurations

1.6 Configurations
If ¢ is fixed then (1.3) defines
~ { Oy — R"

O : = ~ d Q=% . )
t oy Hp:q)t(PObj)iz‘I)(t,}bbj)} an t +(Obj) (1.6)

Definition 1.5 €, := ;(Obj) is the “configuration at £’ (photo at t) of Obj (range = image of ®;):
Q:={peR": 3Ry, € O s.t. p= EIv>t(PObj)} = &,(0bj) (affine subset). (1.7)

If ¢ is the actual time then Q; is the actual (or current or Eulerian) configuration.
If ¢y is a time in the past then {4, is the past (or initial or Lagrangian) configuration.

Hypothesis: At any time ¢, €; is supposed to be a “smooth domain” in R", and the map &)t is assumed
to be one-to-one (= injective): Obj does not crash onto itself.

1.7 Definition of the Eulerian and Lagrangian variables

e If ¢ is the actual time, then p; = E)t(PObj) € ) is called the Eulerian variable relative to Ry; and ¢.

o If ; is a time in the past, then p, = @y (o) € €, is called the Lagrangian variable relative to Ry,
and . (A Lagrangian variable is a “past Eulerian variable”).

NB: Two observers with two different time origins ¢, and %’ get two different Lagrangian variables py,
and py,» while they have the same Eulerian variable p;.

1.8 Trajectories
Let ® be a motion of Obj, cf. (1.4), and Ry € Obj (a particle in Obj = e.g. the Moon).

Definition 1.6 The (parametric) trajectory of Ry, is the function

~ [tl, t2] — Rn,
(I)F&” : ~ ~ (18)
' t = p(t) = ®p, (t) := O(t, Ry;) (position of Ry, at t in the Universe).

Its geometric trajectory is the range (image) of CT%@, ie.

geometric trajectory of Ry := {q € R" : 3t € [t1,t5] s.t. ¢ = 51%@ )} = Im(E)B)b]) = E)Q)@([tl,tg}). (1.9)

1.9 Pointed vector, tangent space, fiber, vector field, bundle

(See e.g. Abraham—Marsden [1].) In particular to deal with surfaces S in R? (e.g. S a sphere), a tangent
vector to S isn’t simply a “bi-point vector connecting two points of S” (would get “through the surface”).
To define a tangent vector to S, or on S, let p € S, consider a regular curve c¢: s €] —g,e[— ¢(s) € S s.t.
¢(0) = p, and let @W(p) := ¢’(0) = limp 0 w: This vector is tangent ot S at p. With all possible
curves, you get all the tangent vectors ot S. And, for all p € S, the tangent space to S at p is

T,S := {set of tangent vectors to S at p} (it is a vector space). (1.10)

E.g., if S is a sphere in R? and p € S, then T,S is its usual tangent plane to S at p.
E.g., particular case: If S = () is an open set in R”, then T),S =T,Q = R™ is independent of p.

Definition 1.7
The fiber at p := {p} x T,S ={ (p,wp) € {p} xT,S}, (1.11)
——
pointed vector

i.e., the fiber at p is the set of “pointed vectors at p”, a pointed vector being the couple (p, w,) made of
the “base point” p and the vector w, defined at p.
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15 2.1. The set of configurations

Calculation rules in a fiber: if (p,,), (p,W,) € {p} x T,,S and if A € R then
(p, Uy + MNp) 1= (p, Up) + (p, A\W,). (1.12)

(You can only add vectors at one point p.)
Drawing: A “pointed vectors (p,,) at p” has to be drawn at the point p in R™. (While a vector o
can be drawn anywhere and is called a free-vector.)

If the context is clear, a pointed vector is simply noted @(p) =""*e1 4ij(p) (lighten the writing).
Particular case: If S = Q is an open set in R™, then 7,2 = R™ and the fiber at p is {p} x R™.

Definition 1.8

The tangent bundle T'S := U ({p} x T,,9), (1.13)
peS

that is, is the union of the fibers.

Definition 1.9 A vector field @ in S is a regular function (at least C2 in the following) of pointed
vectors:

(1.14)

- {S =TS
p — w(p) = (p,@(p)).

If the context is clear, a vector field is simply noted @ =""%*€2 5 (lighten the writing).

2 Eulerian description (spatial description at actual time t)

2.1 The set of configurations

Let ® be a motion of Obj, cf. (1.4), and Q; = ®;(Obj) C R™ be the configuration at ¢, cf. (1.7). The set
of configurations is the subset C C R x R™ (the “time-space sub-set”) defined by

C = U ({t} x Q) (= set of “time-space positions”)
t€t1,t2] (2.1)

{(t,p) € R x R™ : A(t, Ru;) € [t1,ta] x Oj, p = (¢, Roy)},

Question: Why don’t we simply use U, ¢, ¢, € instead of C= Usety ) ({E} X 247
Answer: Ute[tl,tz] €, is the superposition of all the photos on one image; While C gives the film of
the life of Obj = the succession of the photos €); taken at each t.

2.2 FEulerian variables and functions

Definition 2.1 In short: A Eulerian function relative to Obj is a function, with m € N*|

C — some tensorial set S
&ul : ( (2.2)

t,p) — &ul(t,p),

the spatial variable p being the Eulerian variable. Precisely: A function &ul being given as in (2.2), the
associated Eulerian function &ul is the “pointed time-space” function

- C -CxS
Eul : . (2.3)
(t,p) — &ul(t,p) = ((t,p), Eul(t,p)) = (time-space position , value),

and is called “a field of functions”. So ?ul(t,p) is the “pointed &ul(t,p) at (¢,p)” (in time-space).

NB: the range Im(éﬁ) = gu\l(C) of an Eulerian function &ul is the graph of &ul. (Recall: The graph
of a function f:x € A — f(z) € B is the subset {(z, f(x)) € Ax B} C A x B: gives the “drawing of f”).
And the Eulerian vector field at ¢ is

—~ {Qt —>th5

p — gz?lt(p) = (p, &ul(p)) = (position , value) at t.

If there is no ambiguity, Eul =vritten gy for short.
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16 2.8. Eulerian velocity (spatial velocity) and speed

Example 2.2 &ul(t,p) = 0(t,p) € R = temperature of the particle Ry; which is at ¢ at p = ®(t, Ry;);
Shortened notation of &ul(t,p) = ((¢,p),0(¢,p)). n
Example 2.3 &ul(t,p) = u(t,p) € R" = force applied on the particle Ry; which is at ¢ at p. un
Example 2.4 &ul(t,p) = di(t,p) € L(R" : R?) = the differential at ¢ at p of a Eulerian function 7. &

Question: Why introduce &ul? Tsn’t Eul sufficient?

Answer: No: E.g., if 9(t,p) € R3 it the “velocity at t at p” then the function © : (t,p) — ((t,p); U(t,p))
is a “vector field” and ¥(¢, p) must be drawn at (¢, p); While ¢(¢, p) (alone) is a “free vector” (can be drawn
anywhere). Moreover (2.3) emphasizes the difference between a Eulerian vector field and a Lagrangian
vector function, see (3.12).

Remark 2.5 The initial framework of Cauchy for his description of forces is Eulerian. .

2.3 Eulerian velocity (spatial velocity) and speed
Consider a particle Ry; and its (regular) trajectory ‘51?)@ tt—p(t) = E)I%@ (t), cf. (1.8).
Definition 2.6 In short: Its Eulerian velocity at ¢ at p(t) = ‘1;12;@ (t) is

. ~ itten O . D(t+h, Ry — O(t, Ry,
0t p(6) = B, (1) "L T ) (= i P T00) =0 )

). (2.5)

So ¥(t,p(t)) is the tangent vector at ¢ at p(t) = 5@ (t) to the trajectory &)1%@ This defines the Eulerian

~ C - CxRr R
vector field v : { ~ }, written (for short) o : { ¢ = ~ .
(t,p) — u(t,p) = ((t,p), v(t,p)) (t,pr) — (i)
Remark 2.7 dq;}?’ (t) = o(t, 63),” (t), with p(t) = CT%@ (t), is often written
dp . at . . at
By = stepw), or D =seEw), o W —0.2) (2.6

the two last notations when an origin O is chosen and Z(t) = Op(t). Such an equation is the pro-
totype of an ODE (ordinary differential equation) solved with the Cauchy-Lipschitz theorem, see § 5.
(A Lagrangian velocity does not produce an ODE, see (3.21).) wa

Definition 2.8 If an observer chooses a Euclidean dot product (-,-), (e.g. foot or metre built) with its
associated norm |[|.||,, then the length ||U(t,p)||, is the speed (or scalar velocity) of Ry, (e.g. in ft/s
or m/s). And the context must remove the ambiguities: “The velocity” is either the vector velocity
U(t,p) = &)@’(t) or the speed (the scalar velocity) ||U(t, p)]lq.

Exercice 2.9 Euclidean dot product (-,-),, Z(t) = Op(t), T(t) = ”;,/(7(:))”!] (unit tangent vector), f(t) =
[|Z'(t)||g (speed). Prove : %(t) = (Z"(t), T(t))y =""tten 27(4) o T(t) (= tangential acceleration).

Answer. E.g. 2-D and Euclidean basis: Z(t) = (;Eg) gives f(t) = (&/(t)? + ¢'(t)?)?, thus f'(t) =

o' (" W)+ (") _ F'(t) e 2" (1)
f@) IEHOIIF

. Similar in n-D. n

2.4 Spatial derivative of the Eulerian velocity
2.4.1 Definition
For all observers (English, French... (there is no inner dot product here). &ul is supposed C*.

Definition 2.10 The space derivative of &ul at (¢,p) € [t1,ta] x 2 is the differential d€ul; at p: For all
W, € RY (vector at p),

L L Gul(t, pthady) — Eul(t, p) | written O&ul .
(d&uly(p).wp =) dé’ul(up).wp—}llli% W = Tp(t,p).wp. (2.7)

So in €2 (the photo at t), déul(t,p).w, gives “the rate of variations of &ul; at p in the direction "

16



17 2.4. Spatial derivative of the Eulerian velocity

E.g., at t, the space derivative dv of the Eulerian velocity field is defined by

duo(t,p).w, = lim O, pthudiy) — Ot p)
h—0 h

(= di(p) ). (2.8)

Remark 2.11 In differential geometry (a vector is defined to be a derivation) and f = &uly, (2.7) is
written @(f)(p) = = f(p+hid) p—o: That is @(f) = df i .
2.4.2 The convective derivative dlul.v

Definition 2.12 If ¥/ is the Eulerian velocity field, then d&ul.v is called the convective derivative of Eul.

2.4.3 Quantification in a basis: Jacobian matrices

Let f € C*(;R) (scalar valued function), so df € C°(2;R™*) (differential form) and df (p) € R™* (linear
form). Let @ € C°(Q;R) (vector field). Let (df.@)(p) := df (p).@(p) (objective value).

Quantification: (&;) being a basis in R” (eventually dependent on p), let (usual definition)

of
ox;

(p) :==df(p).€;, and [df(p)lje= (a‘%(p) aaz{,, (p) ) = Jacobian matrix of f at p (2.9)

(line matrix because it represents a linear form). A Jacobian matrix is subjective (depends on (€&;)). This
defines the function 5L := df.¢; € C°(Q;R) and [df]}z € CO(Q; My).
Thus, with « = Z?:Wigi vector at p and with the usual matrix multiplication rule,

n

df (p)-i(p) = [df (p)] Z 8331 Zul 6% p) VN (7 orad) £(p), (2.10)

written df.ii = [df]|z.[il]je = Vi ol u; = Y1 ui gt =V (i grad)f € CO(R), where (if.grad) is
CHYuR) — CO(R)

f — (Ggrad)f :=df.aq |
Remark: df.@ is objective (value independent of (¢;)), so (@.grad)(f) = df.@ is objective; However
(d.grad)(f) is usually used for computational purposes (= [df]|e.[i]|z) which requires a basis (&;). Warn-

the differential operator (i.grad) : {

ing: Moreover the use of the gradient grad in mechanics implicitly means the use of a Euclidean basis.

_ For vector valued functigns f : Q - R_;", t}_{e definition of the Jacobian requires the choice of a basis
(b;) in R™ (subjective): If f =", fib;, ie. f(p) =D 1", fi(p )b; then (above steps with the f;)

oFf:
Ji (p)]i=1.....m = Jacobian matrix of f at p, and
Oz j=1,..n

[df(p)hag = [

. . . m . m . . m n 8fl . (2.11)
(@.grad) ;(f) == [df.@l; = > (dfi-@)b; = Y ((d.grad)fi)b; = Y > (u; 5 )bi.

i=1 i=1 i=1j=1

2.4.4 gradf = representation relative to a Euclidean dot product (subjective)

An observer chooses a Euclidean basis (€;) (foot, metre...) and the associated Euclidean dot product (-, -),.
Let © be an open set in R", f € C'(Q;R) (scalar valued function), and p € Q. Then the (-, -),-Riesz
representation vector of the differential form df (p) is called the gradient of f at p relative to (-,-),, and

named gradg f(p) € R7: Tt is defined by
Vi € R", (glrgudgf(p)7 )y = df (p).@, written gradf « @ = df.i, (2.12)

the last notation iff (-,-), is implicit = imposed to all observer (subjective: foot, metre ?).

S ué; and (2.9), (2.12) gives [grad f]7 [g].[@] = [df].[7] (more precisely
[d]z), thus [df]z = [grad, f][%., thus, [g]|z being symmetric, [g]|z.[grad,, f]jz =

e

Quantification: With «
[df]je-[d]je = [grad, fl-[9])e

17



18 2.5. Streamline (current line)

[df] %, thus [grad, ]z = [g] ;2" [df][z, written (subjective)

[gradf] = [g] “.[df]" = [g:) " | - (column matrix), (2.13)
of

ox,

where [g] = [gij]. That is, if gradf = i ai€; then a; = Z?ﬂgz‘j%-

NB: With duality notations, gradf = S ,a'€; and (2.13) gives a' = Z;’:lgij%: The Einstein
convention is not satisfied (the index j is twice bottom), which is expected since the definition of grgmdg f
depends on a subjective choice (unit of length). In comparison, df = Z?:l 88 g dx® satisfies the Einstein
convention (a differential is objective).

Particular case: If and only if (€;) is a (-, -)g-orthonormal basis then [gradf] = [df]7.

Application: The objective first order Taylor expansion f(p+hi) = f(p)+hdf (p).d+o(h) can therefore
be subjectively written:

f(p+ha) = f(p) + hegrad,f(p) =i +o(h) (= f(p) + D (lg) "[df]") =T + o(h)):. (2.14)

Mind the notations: The gradient gr::mdgf —written ¢4 depends on (+,")g, cf. (2.12)-(2.13); While
(ﬁ.grad) f depends on a basis: Historical gradients notations...

2.4.5 Vector valued functions

For vector valued functions JF Q= R_"”, the above steps apply to the components f; of f relative to a
basis (l_);) in R™... But, depending on the book you read:

e The differential d f is unfortunately also sometimes ambiguously called the “gradient matrix” (al-
though no Euclidean dot product is required to define df): It could mean the differential... or the Jacobian
matrix... or its transposed...!

e In the objective framework of this manuscript, we will use the differential df (objective); And

for quantitative purposes, i.e. after an explicit choice of bases (€;) and (b;), only the Jacobian matrix

[dﬂ‘g = [gg;] will be used (non ambiguous).

Exercice 2.13 Imposed Euclidean framework. Prove (7.grad)7 = %grad(\|17||2) + curld A @.

Answer. Euclidean basis (€;), associated Euclidean dot product (-, )4 =written (+,-) and norm ||.||g =written [-]]-
. ., 0|12 Ov;
7= 3" vié gives ||7]]° = va, thus % = 221;,-8”1, for any k = 1,2,3. And, the first component
- Tk - Tk
S ol Ovz  Ova . g - . .
of curld is (curld); = e Das’ dem for (curl?)s and (curl?)s (circular permutation). Thus (first component)
X2 T3
(curld A ), = (g—;; — g—z)vg — (g—:j - %)”2’ idem for (curld A #)z and (curld A 7). Thus (%grad(HﬁHz) +
curld A )1 = vlg% + ’Uzg% + vgg% + 2%1)3 — g—;ﬁvg — g—:fvg + %’Ug = vlg% + vg% + ’Ugg%; = (17'.gr5ud)v1.
Idem for the other components. =n

2.5 Streamline (current line)
Fix t € R, and consider the photo ©; = i)t(Obj). Let pr € 4, € > 0, and consider a spatial curve in )
at py, i.e. s.t.
] — &, 6[ — Qt
Cp, and ¢, (0) = ps. 2.15
Pt { 5 = q=cp, (S) Pt( ) bt ( )
So s is a curvilinear spatial coordinate (dimension = length), and ¢, is drawn in the photo ; at t.

Definition 2.14 ¥: (t,p) — U(t, p) being the Eulerian velocity field of Obj, a streamline through a point
pr €  is a (parametric) spatial curve ¢, solution of the differential equation

dep,

I (s) = U(cp,(s)) with ¢, (0) = py. (2.16)

And Im(c,,) is the geometric associated streamline (C €2, the photo at ¢).

18



19 2.6. Material time derivative (dérivées particulaires)

NB: (2.16) cannot be confused with (2.6): In (2.6) the variable is the time variable ¢, while in (2.16)
the variable is the space variable s.

Usual notation: If an origin O is chosen at ¢ by an observer and Z(s) := Oc,, (s) , then (2.16) is written

%f(s) = 4,(Z(s)) with (0) = Op;. (2.17)

Moreover, with a Cartesian basis (€;)) chosen at t by the observer and v, (Z(s)) = Y_i,v;(s)€; and Z(s) =
St xi(s)€;, we get the differential system of n equations in R (the unknowns are the functions x;)

dx;
Vi=1,..,n, dx (5) = 0i(21(8), oy 20 (5)). (2.18)
S
Also written p p
=8 g (2.19)
(%1 Un

(meaning: It is the differential system (2.18) of n equations and n unknowns which must be solved.)

2.6 Material time derivative (dérivées particulaires)
2.6.1 Usual definition

Goal: To compute the variations of a Eulerian function &ul € C*(C;S) along the trajectory (51%@ of
a particle Ry; (e.g. the temperature, the velocity, ..., of a particle along its trajectory). Consider the
function gp, : [t1,t2] — F (gives the values of &ul relative to a Ry, along its trajectory): For all t € [t1, 5],

IRy (t) = Eul(t, B, (1)) |,  written gp, (t) = &ul(t,p(t)) when p(t) := Pp, (t). (2.20)

Definition 2.15 At ¢ at p(t) := (133)@ (t), the material time derivative of &ul is

Déul . Eul(t+h, p(t+h)) — Eul(t,p(t))

o p(0) = gn, ()] (= lim .

). (2.21)

i.e. with ijﬁ( ) = @(t, p(t)) (Eulerian velocity), ZEu(¢, p(t)) := 2Eu (¢, p(t)) + d&ul(t, p(t)).U(t, p(t)) (=
Eul(t+h,p(t+h)) Sul(t,p(t)))

limy, g , l.e.
Déul  0&ul
= + déul.v |. 2.22
Dt ot ( )
Example 2.16 f € C'(C;R) (scalar valued function), thus % is the scalar valued function given by
Df _of .
— = — +df. 2.2
pi —or T4 (2.23)
ie. Dt (t p) = L(t,p) + df (t,p).0(t,p) for all (t,p) € C. With a basis (¢;) and ¥ = 3, v;€; we get
D{ = + Zz 1‘389{1 v; = —written % + (ﬁgrad)f .
Example 2.17 @ € C1(C;R") (vector valued):
Dw 0w
—_— = 2.24
D1 5 + dw.v. (2.24)
With a basis (€;) we get le = ’9“’1 +22,% awl -, forall i =1,. ua

Exercice 2.18 Let a be a C*! differential form: We have 2 22 o _(2.22) ‘%“ +da.¥; Check it with a Cartesian
basis. And prove, for all o,

Do , D(ad Do
— = (a-5) —a.—, (2.25)

Dt Dt Dt
Answer. Cartesian basis (€;), dual basis (7e;), ¥ = >_,v;€; and a = 37, a;me; we have Do — s~ Dir; with
a; al BaL da; = o day; day; Tei 9 Tei 2. __
%t —6 + do;. T = —&—Zjalj.vj,thus%—zl atW”""Zz]az U Tes = Za +Z Za Ay =

%‘; + da.v.

o vector field and o differential form, thus a.1 is a scalar valued function. Thus Dlod) _ 2(0b) 4 g(o.id).7 =
%2 5+ .28 + (do¥) . + a.(dw.v) = 220 + (dot) b + 0. 22 + a.(db.v) = 2240 + .28 Thus 220 =
2ed) . %1;, Le. (2.25). -
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20 2.6. Material time derivative (dérivées particulaires)

Proposition 2.19 % is a derivation: All the functions being Eulerian and C*,
e Linearity:
D(Eull + )\Sulg) Déulq Déuly
= . 2.2
Dt Dt A Dt (2:26)
e Product rules: If Euly, Euly are scalar valued functions then
D(Eullé'ulg) Dé’ull DgUZQ
= l . 2.2
Dt Dt Eulg + Eu 1 Dt ( 7)
e If paticular W is a vector field and T a compatible tensor (so T.w is meaningful) then
D(T.wW) DT D
=—w+T —. 2.28
Dt Dt D (2.28)

Proof. Let i = 1,2, and g; defined by g;(¢) := &ul;(t, p(t)) where p(t) = Cf)%@ (t).

o (g1 + Ag2) = g1 + Ag5 gives (2.26).

e On the one hand 200 — 200) 4 g7 5.5 = 2L 4 T.28 4 (dT.5).% + T.(d.7), and on the
other hand 2L + 7. 2% = (2L 4 4795 + T.(%E + dii.¥). Thus (2.27)-(2.28).

2.6.2 Commutativity issue
Let &ul be C2. The Schwarz theorem tells: d(%) = ‘{j(di'i“l): The derivatives commute.

0

Proposition 2.20

D(2&uby  g(LLul D(d&ul Déul
(D(?ft ) £ (8Dtt ) and (DEtu) # d( ;‘? ) in general, (2.29)
i.e. the material time derivative % does not commute with the partial derivation % or with the spatial
derivative d (because the variables t and p are not independent along a trajectory). We have:
Déul d&ul 7
005r) _ PO L e 97 aR8uty - DUEA) | e ap
ot Dt ot and Di Dt (2.30)
0%&ul o&ul ov O(d&ul) D . '
= Xl — = ——— + d*&ul. v+ d&ul.du.
92 +d T U+ déul TR ot
oB&ul (&l 4 qeul.i)  92&ul  O(dEul) o Dé&ul O&ul
Proof, — D2t — ot = T+ déul.—. And d—— = d(—— + d&ul.?¥) =
ar:;z oo g Ut dbul gy And d—m = (= o+ dEul.)
( 5 t“ ) 4 d(déul).i + deul.di = % + d€ul.d7, thus (2.30).

Exercice 2.21 If &ul is C2 and @ is C", check 2W810) _ DUED) 5 4 gy DT (i, L s a derivation),
and

D(d&ul 1% d&ul o
(deul.w) _ 08l o aeu 2% 4 (adgul).8).@ + deul. di.
agur. 22 1 098D o e, @)
= Ul —— W
Dt ot T
and D2&ul  0?%&ul o&ul ov
U T g% dgul. 2+ (d(dEul).F).T + dEul.di.T
dEul Dv n 0%&ul +d85ul 7t D(dé&ul) .
Dt = 0t2 ot Dt
Answer. 2 (dg;l'“’) = 3(d§l'w) + d(d&ulB).F = a(égt“l).w + dsul.%” + (d(dul).B) 15 + dEul.dw.T =
Dld&ul) 5 4 dSul.D—qf. And &l € C? and Schwarz give 29D = g(98uy and (d*&ul.¥).d = d>&ul(T, ),
hence (2.31). And
D6l _ DBSL  9(%5 + déul.B) | 9Eul -
D = I ()= Dt = En er(w + déul.v).v
_ 9%&ul  O(dEul) o | 08l L an . -
= o + TR + dé’ul.a + dw.v + (d”&ul.V).¥ + déul.dv.v,
with 2 od=do 2 (Schwarz), 24 = 242D 4 2gy) i and déul. BY = déul. %Y + dul.dv.7, hence (2.32). o
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21 2.6. Material time derivative (dérivées particulaires)

Exercice 2.22 Prove (2.30) with a Cartesian basis (¢&;).

DEul F) 8&1l+ d&u l‘v'i . R
Answer. 2Dt i = ( %tl 2at V) _ a;g;l +>. g;g;f. +3, %f;l.a” = a;fgl +3>. gfng 0+ dé‘ul.%. And
D(25ul) 825ul 098l i 92gu 8%gul i
Br = +22 325 “Z =S T2 atazf' :
Deul o(%5u 45, Sulohy 8%&ul , j 82 gul J 8&ul Bv' , j
And d(5¢) @ = azJ =2 e W =30 et W 2005 arioer V' w T2 oat oW =
Y, gt;u; w d2€ul(17 w) + déul.dvb. And PUED 5 = (2D 4 d(dgul).v)p = 29D 4 + dEul(T, W) =
S, Zeul iy @2 8ul(¥, ). Thus d( 284 i = M AT + d€ul.dv.B for all 1.
2.6.3 Remark: About notations
e The notation £ (lowercase letters) concerns a function of one variable, e.g. %(t) = ¢'(t) :=

limy_yo SEH=0(0),

e The notation % concerns a function with more than one variable, e.g. 6&” (t,p) =

. Eul(t+h,p)—Eul(t,p) .
hmh—>0 ( }z ( )7
D

e The notation 7; (capital letters) concerns a Eulerian function differentiated along a motion.
e Other notations, often practical which are ambiguous if composed functions are considered:

d&ul(t, p(t)) Dé&ul d&ul(t, p(t)) Dé&ul

= ! = — = / =
dt ‘= IRy, (t) = "Dt (tvp(t))a and dt =t =GRy, (to) Dt

(to, p(to)). (2.33)

2.6.4 Definition bis: Time-space definition
Consider the affine time-space R x R™ and a C! function f : (t,p) € R x R® — f(t,p).

Definition 2.23 The differential of f is called the “total differential”, or “total derivative”, and noted D f.

So, with R x R" the associated time-space vector space, if p; = (t,p) € R x R™ and Wy = (wo, W) €

R x R™ then we have (definition of a differential) Df(py )@ = lims_ w, ie.
DF(t,p). (w0, @) i= lim LU0 PHRD) = f(tp) (2.34)
h—0 h
Thus of
Df(t,p) = 5 (t,p) dt + df (¢, p). (2.35)
(Recall df is the space differentiation, so if (€;) is a Cartesian ba51s then df (t,p) = —( p)dxy + ... +
(t p)dx, and @ =), w;€; gives Df(t,p).u = 6t L(t, p)wo + Bm L(t, p)w; + ... + axn( ,D)W).
Then consider the time-space trajectory
~ [tl,tg} — R xR"
Up, : N _ (2.36)
t = Up,(t) == (t, Bp, (1) (= (t,p(t))).
(So Im(\fl%@) = graph(@%@).) The tangent vector to this curve at ¢ is
Up, () = (1,8, '(1) = (1, 3(t,p(t) € R x R" (237)
where ¥(t, p(t)) = %(t) is the Eulerian velocity at (¢,p(t)). And (2.20) reads
9ny (t) = (Eul 0 Tp, ) () = Eul(Tp, (2)), (2.38)
thus
~ ~ O&ul . itten DEul
g, (1) = DEA(T(0) T, (8) = (1 p(1)-1 + dBul(1,p(t)) e, p(1)) "8 2 (1, p(1)),  (2:39)

e. (2.22): The material time derivative is the “total derivative” D&ul along the time-space trajectory \IIB),?] .
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22 2.7. Eulerian acceleration

2.7 FEulerian acceleration

Definition 2.24 In short: If :IVJ%M is C?, then the Eulerian acceleration of the particle Ry; which is at ¢

at py = ®(t, Ryy) is

- = itten 020
At pe) = B, (1) TET S (8 o). (2.40)

In details: as in (2.3), the Eulerian acceleration (vector) field 7 is defined with (2.40) by

F(t,pe) = ((t,p), 7(t,pe)) € C x B (pointed vector). (2.41)
Proposition 2.25
Dy ov

~ = —_—— = — _’._’ . 2.42
v iy + dv.v (2.42)

And if ¥ is C? then o(dd) D)
Y = v 250 U.dv = v U.dv. 2.43
dy 5 + d°U.0 + dv.dvu D1 + dv.dv. ( )

Proof. With ¢(t) = ¥(¢,p(t)) = 5@’@) and (2.22) we get J(t,p(t)) = ¢'(t) = 2U(¢,p(t)). And ¥
being C2, the Schwarz theorem gives d2% = a(adf). o

Definition 2.26 If an observer chooses a Euclidean dot product (-,-), (based on a foot, a metre...), the
associated norm being ||.||4, then the length ||¥(¢, p;)||4 is the (scalar) acceleration of Ry;.

2.8 Time Taylor expansion of o

Let Ry € Ol and t €]t1,t2[. Suppose (f)%bj € C?(Jt1,t2[;R™). Its second-order (time) Taylor expansion
of ®p, is, in the vicinity of a t €]t1, ta],

- _ ~ )2~

i (7) = B, (1) + ()3, (0 + T (1) 4 o((r-0)?), (2.44)
i.e. ,

p(r) = plt) + (-0t p(0) + T, p(0) + ol (1)), (2.45)

3 Lagrangian description = Motion from an initial configuration

Instead of working on Obj, an observer may prefer to work with an initial configuration Q, = &)(to, Ol)
of Olj (cf. elasticity): This is the “Lagrangian approach”. This approach is not objective: Two observers
may choose two different initial times (and configurations).

3.1 Initial configuration, Lagrangian “motion”, Lagrangian variables
3.1.1 Definitions

Obj is a material object, ® : [t;, t2[x Obj — R™ is its motion, Q; = ®(, Obj) is its configuration at ¢. An
observer chooses an “initial time” # €]t;, ta[, hence €y, is his initial configuration.

Definition 3.1 The motion of Obj relative to the initial configuration €2, = 5(&), Ol) is

(I)to . {[tl,tﬂ X Qtﬂ — R"™

_ _ (3.1)
(tvpﬁj) — bt = (I)to(tvpﬁ)) = q)(tv-F)OlZ]) When pﬁj = (I)(tﬂv-POlv) :

pr = ®(t,py,) is the position at ¢ of the particle Ry which was at py, at to, and py, = D (fy, py,) is its
initial position.

Definition 3.2 f, p;, and ¢ are called the Lagrangian variables relative to the (subjective) choice &,.
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23 3.1. Initial configuration, Lagrangian “motion”, Lagrangian variables

If ¢ is fixed then (3.1) defines

Q. —=Q
plo " o . (3.2)
P — e = PP (pyy) = PO(t,pgy)-

And (3.1) gives ®%(®,, (Bw)) = @(Bp@, for all Ry, € Obj, thus ® o ®;, = Py, thus ®© is defined by

D = By 0 (D) ' | In particular ®f = (dl)7L. (3.3)

because ®} o @ = (D 0 (Dy,) 1) 0 (Dy, 0 (D4)71) = 1.
Hypothesis: For all ty,t €]t;,t5[, the map ®© : Q, — Q is a C* diffeomorphism (a C* invertible

function whose inverse is C*), where & € N* depends on the required regularity.

Then ®f (P (py,)) = pr, gives d®f (pr).dPY (py,) = 1, i.e.

d®f (p1) = d®P (p,)~" when p; = @ (py,). (3.4)

Marsden and Hughes notations: Once an initial time #, has been chosen by an observer, then
this observer writes ®% ="l & then p, =""0 P € O, (capital letter for positions at f) and
p; ="ritten 4, Q) (lowercase letter for positions at t):

p=®(t,P)=,(P) when P =d(ty,P)=d,(P). (3.5)

NB: e Talking about the motion of a position p,, is absurd: A position in R™ does not refer to a
motion. Thus ®% has no existence without the definition, at first, of the motion ® of particles.

e The definition domain Qy, of ®* depends on #: The superscript © recalls it. E.g. a late observer
with initial time &’ > #, defines ®®" which definition domain is [ty, 2] x Q4 thus & £ &% in general.

e The following notation is also used:

q)to(t7p7‘{)) = @(tﬂ,‘g,pm) (36)

The couple (ty, ps,) is “the initial condition”, or t; and py, are the initial conditions, see § 5 (flows).
o If an observer chooses a origin O € R™ then with (1.5) he can also use

— A - — iy — A - — - —
xtU=(9pt0=<pt°(t0,mt0)=X=(ﬁ and & = Op; = g (t,7,) = ¥ = Op. (3.7)

3.1.2 Trajectories
Let (ty, pt,) € [t1,t2] X 4, (initial conditions); Then (3.1) defines

. {[tl,tg] — R

B b pl) = B (1) = B (1) = B0(py) when pp =g, (o). )

Definition 3.3 @;‘?% is called the (parametric) “trajectory of py”, which means: @?fo is the trajectory of

the particle Ry; that is located at p,, = ®(¢, Ry, ) at tp. And the geometric “trajectory of p,” is

(@l ) = @4 (6] = [ (Bl (0} (=Tm(@p,)). (3.9)

tefty,ta]

)

NB: The terminology “trajectory of py,’
the trajectory ®p, of a particle Iy which is at py, at fp that must be understood.

is awkward, since a position p;, does not move: It is indeed

3.1.3 Streaklines (lignes d’émission)

Take a film between ¢ and T (start and end).
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24 3.2. Lagrangian functions: Two point tensors

Definition 3.4 Let @ be a fixed point in R™ (you see the point @ on each photo that make up the film).
The streakline through @ is the set

Eyr(@Q) ={peQ:37€[to,T): p=273(Q) = (27) 1(Q)}
={peQ:Fue0,Tt]:p=277"(Q) = (7_,) ' (Q)}
= U {ecmy= U {25 M}

TE[ty,T) we[0,T—to]

(3.10)

= the set of the positions (a curve in R™) of all the particles which were at Q at a 7 € [to, T.

Example 3.5 Smoke comes out of a chimney. Fix a camera nearby, choose a point @) at the top of the
chimney where the particles are colored. At ¢, start a film and at T stop filming. Then superimpose the
photos of the film: The obtained colored curve is the streakline. .
3.2 Lagrangian functions: Two point tensors

Consider a motion @, choose (subjective) a ty € [t1, t2], let Qy, = ®(ty, Obj) (initial configuration).

Definition 3.6 In short: A Lagrangian function is a function defined on the set of Lagrangian variables:
It is a function

[t1,t2] X €, — some tensorial set S
Lag® : o (3.11)
(tapto) — ‘Ca’g (tapto)a
(A Eulerian function does not depend on any ¢, cf. (2.2).)
Precise definition: Lag® being defined in (3.11), a Lagrangian function is a function
— 1 [tl,tQ]XQtO —)CXS
Lag : 4 N (3.12)
(t,p) — Lag (t,p) = ((t,p1), Lag” (t,py,))  when  p, = O (py,)-
And Ez?]to (t,py,) has to be drawn at (¢, p;) (not at (f, py,))-
Interpretation: (3.12) tells that Lag® (¢, p;,) is not represented at (t,p;) but at (t,p;):
— 1t .
m(Lag ) = {((t,p:), Lag®(t,py,))} while graph(Lag®) = {((t,ps), Lag" (t,pr)); (3.13)
thus S
Im(Lag ) # graph(Lag®) : (3.14)

So a Lagrangian function does not define a tensor in the usual sense. To compare with the Eulerian
function &ul which defines a tensor (in particular Im(&ul) = graph(&ul) cf. (2.3)).

Definition 3.7 (Marsden and Hughes [17].) A Lagrangian function is a “two point tensor” in reference
to the points py, € €, (departure set) and p; € Q; (arrival set) where the value Lag® (¢, py,) is considered
(the value Lag"(t,py,) is not considered at (¢,py)).

Example 3.8 Scalar values: Lag®(t,p,) = O™ (t, py,) = temperature at t at p, = O (p,,) = (¢, Ry;) of

the particle Ry, that was at py, at 5. (So, continuing example 2.2, ©% (¢, py ) = 0(¢, p:).) un
Example 3.9 Vectorial values: Lag®(t,p,,) = U™ (t, p,) = force at ¢ at p, = O (py,) = (¢, Ry;) acting
on the particle Ry,; that was at py, at &. (So, continuing example 2.3, U’ (t,pfo) w(t,pt).) oa

If ¢ is fixed or if py, € Qy, is fixed, then we define (in short)

Q, =85
Lagy : (3.15)
P — Lag? (pr,) := Lag®(t,py,),

r f [tl, tQ] - 5 (3 ]_6)
ag? .
Po t — Eag?fo (t) := Lag"(t,py)-

Remark 3.10 The position py, is also sometimes called a “material point”, which is counter intuitive:
Ry (objective) is the material point, and py, is just its spatial position at & (subjective); And a Eulerian
variable p; is not called a “material point” at t...

By the way, the variable p, is also called the “updated Lagrangian variable”... .
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25 3.3. Lagrangian function associated with o FEulerian function

3.3 Lagrangian function associated with a Eulerian function
3.3.1 Definition
Let ® be a motion, cf. (1.4). Let &ul be a Eulerian function, cf. (2.3). Let ty € [t1, to].

Definition 3.11 The Lagrangian function Lag® associated with the Eulerian function &ul is defined by

’Eag? := &uly o Bl (3.17)

for all t € [t1,t2]. Le., for all (t,py) € [t1,t2] X Uy,
Lag®(t,py) = &ul(t,p;), when p; = ®L(py). (3.18)
Le., for all (t, Ry;) € [t1,t2] x Obj,

Lag® (D(ty, Ryy)) := Eul(B(t, Roy)). (3.19)

3.3.2 Remarks

e For one motion, there is only one Eulerian function &ul, while there are as many Lagrangian func-
tion Lag™ as they are #p (as many as observers): The Lagrangian function Lag® of a late observer
(te’ > to) is different from Lag™ since the domains of definition €, and Qs are different (in general).

e If you have a Lagrangian function, then you can associate the function (similar to (3.17))
Eull := Lagl® o (D)1, (3.20)

but this function depends on # (a priori).

3.4 Lagrangian velocity
3.4.1 Definition

Definition 3.12 In short: The Lagrangian velocity at ¢t at p; = 5(@ Ryyj) of the particle Ry, is the
function .
R x Qto — R?
Vi . 3 3 (3.21)
. ~ . Ry (t—|—h) — (I’I%b, (t)
(t7pto) - Vtﬂ (tapfo) = (DR)@/(t) (: }le )
—0 h
when p;, = 5(1%07]%)@-). Thus Vo (t,py,) = 53),7]’(16) = 3(t, p;) € R? is the velocity at ¢ at p, = &)(t,PObj) of
the particle Ry; which was at p,, = 5(&), Ryyj) at t, tangent to graph(¥) at (¢,p;): Drawn at (¢,p;).
Precisely: The Lagrangian velocity is the two point vector field given by

— R x Q, —C xR}

vto(t7pf()) : = =t t
(tapto) — Vto(tapib) = ((tapt)av (t7pl‘o))7 Whel’l Dt = ) (tapfo)

(3.22)

Remark: A usual definition is given without explicit reference to a particle...: Instead of (3.21),
Ot

Vo(t,py) = W(f,pm)v V(t,pr) € R x Q. (3.23)

3.4.2 Lagrangian velocity versus Eulerian velocity

Let
Vi (py) = VO(t,py), and V2 (1) := VO (t,py). (3.24)

Then (3.21) and (2.5) give, alternative definition, with p;, = (f)(to,%bj) and p, = O(t, R ),

~ ot ~
Vot py,) :=0t,p) (= W(Lpto) = ®p, '(t) = velocity of Ry, at t at p;). (3.25)
Hence
Vio =g ool | : Q, — R (3.26)

25



26 3.5. Lagrangian acceleration

3.4.3 Relation between differentials

For C? motions (3.26) gives, with p, = ¥ (p,,),
AV (py) = diy(pe).dY (py,) : Ry — R (3.27)

(The differential dV; is a two-point tensor.) Le., with

Flo = dol WHUCR 1o deformation gradient relative to ) and ¢, (3.28)
AV (pi,) = dy(p).F° (p) | R} — R} (3.29)

Abusively written (dangerous notation: At what points, relative to what times?)

dV = di.F. (3.30)

3.4.4 Computation of ¢y =Written 1, — F.F~ with Lagrangian variables

Start with a Lagrangian velocity ‘7“], then define the so-called Eulerian velocity by, with p; = <I)§0 (Pto )5
7" (t,pe) = V" (t, py,) (3.31)
(so-called Eulerian despite its dependence on #y a priori), i.e. 7% (¢, ®° (py,)) := %(t,pm). Thus

Pl O(dd OF
di' (t, pe).d® (t, py,) = d(W)(tvpto) = %(tapl‘o) = W(t,pm)a (3.32)

with ®% C? for the second equality (Schwarz’ theorem). Thus

to

oF .
div™ (t,py) = W(t,pb).F&’ (t,py,) "', written in short L :=dv = F.F (3.33)

but L thus “defined” is defined at what points? What times? Eulerian? Lagrangian?
NB: Start with Eulerian quantities and use Eulerian quantities as long as possible!, which in particular
say that L = dv doesn’t depend on #y: It is Eulerian.

3.5 Lagrangian acceleration
Let Ry € O, to,t € R, pyy = EI;R)@. (to) and py = E)R)@. (t) (positions of Ry, at tp and ¢).

Definition 3.13 In short, the Lagrangian acceleration at ¢ at p; of the particle Ry, is

T (t,p,) == Op,”(t) when p, = Tp, (to). (3.34)

In other words

I—:to(t,pfo) :=9(t,p) when p; = ®%(¢,p,), (3.35)

where (¢, p;) is the Eulerian acceleration at t at p, = ®(¢, Ry,), cf. (2.40).
Precisely: The Lagrangian acceleration is the “two point vector field” defined on R x €2, by

Tt (t,py) = ((t,pe), Pry," (1)), when p, = (¢, py,). (3.36)

In particular f“’(t,p&)) is not drawn on the graph of [t at (t,py,), but on the graph of 4 at (¢,p;).

ITo get Eulerian results from Lagrangian computations can make the understanding of a Lie derivative quite difficult: To
introduce the “so-called” Lie derivatives in classical mechanics you can find the following steps: 1- At ¢ consider the Cauchy
stress vector t (Eulerian), 2- then with a unit normal vector 7, define the associated Cauchy stress tensor g (satisfying

i= o.7), 3- then use the virtual power and the change of variables in integrals to be back into Q4 to be able to work
with Lagrangian variables, 4- then introduce the first Piola—Kirchhoff (two point) tensor B, 5- then introduce the second
Piola—Kirchhoff tensor 9K (endomorphism in Qy)), 6- then differentiate K in Q, (in the Lagrangian variables although the
initials variables are the Eulerian variables in €;), 7- then back in Q; to get back to Eulerian functions (change of variables
in integrals), 8- then you get some Jaumann or Truesdell or other so called Lie derivatives type terms, the appropriate choice
among all these derivatives being quite obscure because the covariant objectivity has been forgotten en route... While, with
simple Eulerian considerations, it requires a few lines to understand the (real) Lie derivative (Eulerian concept) and its
simplicity, see § 9, and deduce second order covariant objective results.
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27 3.6. Time Taylor expansion of &0

If ¢ is fixed, or if p;, € Qy, is fixed, then define
F0(py) = T0(tpy,), and T (8) = F(tpy). (3.37)

Thus
[/ =Fo®?, and dl}(py) = d7:(pe)-F° (pro), (3.38)
when p; = ®°(p;,) and F{° := d®¥ (the deformation gradient).
Dangerous notation: dI’ = d7.F (points? times?).

3.6 Time Taylor expansion of %

Let py, € €,. Then, at second order,

w5, (7) = @5, () + (@l (1) + 0

ol " (t) + o((r—1)?), (3.39)

i.e.

(1)’

- t

p(r) = p(t) + (r=)V (t,py) + -

NB: There are three times involved: % (observer dependent), ¢ and 7 (for the Taylor expansion). To
compare with (2.44)-(2.45): p(7) = p(t) + (7—)v(t, p(t)) + %V(t,p(t)) +o((7—t)?), independent of t.

T(t,py) +o((T—1)°)  when  p(r)®% (py,)- (3.40)

3.7 A vector field that let itself be deformed by a motion (— Lie)
th —)RZ’)

Pty — Wy (Pyy) == W(to, Py, )
field called the push-forward of Wty by @ (esult of the deformation of 1, by the motion, see figure 4.1):

C R
Wiy - { ¢ (3.41)

Fix ty and let oy, : { } (vector field in €,), and define the (virtual) vector

(t,pe) — Wigu(t, pr) == AR (t, py, )Wty (p,),  When  p(t) = D (2, py,).
Proposition 3.14 For C? motions, we have (time variation rate along a virtual trajectory)
D1
Dt
ie. LWy = 6L where Lyii := 2% — di.ii (= % + du.7 — dv.i) is the Lie derivative of a (unsteady) vector
field i : C — R™ along .

= ATy, (3.42)

Proof. p;, being fixed and d®%(t,p,) =""4en B (1), (3.41) gives Wi« (t,p(t)) = F(t).0y, (p,), thus
2R (6, p(8) = F'(0), (py) = F/(£).F ()™ g (£, p(1) =3 dii(t, p(8)- Wi (1, p(1)), i€ (3.42).

C - Rr
t,pt) — W(t,pt)

W(tp, py,). We will see that Lw(to, pyy) = limy_sy, w(t’p(t))_;fto*(t’p(t)) measures the “resistance of W to a mo-
Wiy (£p(1)) 1y (typ(t)))
)

Interpretation: Let o : {( } be a CY Eulerian vector field, and @, (p;,) =

tion”, see § 9.3.2; In particular the result LzwWy, . (to, Py, ) = 0 is “obvious” (= limy 4,
and tells that @ does not oppose any resistance to the flow.

)

3.8 Examples

Let @ : [ty,£5] X Obj — R™ be a C' motion, ty €]t, [, ® be the associated Lagrangian motion.

3.8.1 Rectilinear motion

The motion of Ry; is rectilinear iff, for all Vty,t € [t1, 2], (o, t) € R,

Op, () = Bp, () + alte,t) B, (to), ie. Pp,(t) — By, (to) || P, (to). (3.43)
And it is rectilinear uniform iff the rectilinear trajectory is traveled at constant velocity, i.e., Vty, t € [t1, t2],
Op, () = Dp, (to) + (t—10) Bpy,," (t0), (3.44)

ie. p(t) = p(to) + (t—to) V' (to, plto)) where p(t) = B(t, Ry;) and V(t,p,,) = Pp,’ (t).
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28 3.8. FEzamples

3.8.2 Circular motion

P = ®(ly, Ry;) € Q, and ®%(t) = ® (¢, P). Choose an origin O in R? and a unique Euclidean basis
(Ey, E,) at all time (in H@), and let 3% (t) = O (t) = x(t )E1 + y(t)Ey. The motion @' is a circular
motion iff, for all ¢, F%(t) = (a+R cos(f(t NE; + (b+Rsin(0(t)))Ey, i.c.

~to (=) =a+ Rcos(0(t))
[Pe®)z = ( y(t) = b+ Rsin(6(t)) ) (3.45)
for some R > 0, some a,b € R, and some function ¢ : R — R: The particle Ry, stays on the circle of

radius R centered at O¢ = <Z> The circular motion is uniform iff Jwy € R, V¢ € [t1,t2], 0(f) = wot

(i.e. 0"(t) = 0).
Thus the Lagrangian velocity of a circular motion is V2 () = (®%)/(¢) = (5%)'(t), i.e. given by

Fo sy . — po'(e) [~ S(O()
7500 = R (i) (3.4
(orthogonal to the radius vector Vlf,‘)( t) is to F5(t)). And the Lagrangian acceleration flté’ (t) is given by
21 g sin(6(t)) 12 [ —cos(6(t))
[FP( )]\ = RO"(t) ( 0s(0(t)) + R(0'(t)) —sin(0(t)) ) (3.47)
Then consider the orthonormal basis (€,(t),€y(t)) given by (normalized polar basis)
S ([ cos(6(1)) S [ —sin(0(2))
[er(t)]‘E ; (sin(@(t)) , and [ee(t)]‘E -\ cos(0(t) ) (8.48)
We get B .
VR =Ry and T'p=R(0"¢e — (0)°€,). (3.49)
Immersed in R?, with Es = E; x Ey and w(t) = 0(t) and &(t) = w(t)Es,
Vi =& x (g% —00¢), and L[l = R(Cclli: & — w?é,). (3.50)

3.8.3 Motion of a planet (centripetal acceleration)

Tllustration: Obj is a planet from the solar system. (€}, €5, €3) is a Euclidean basis fixed relative to stars
where (€7, €5) define the ecliptic plane, (-, -), is the associated Euclidean dot product, ||.|| the Euclidean

associated norm, O the center of the Sun is the origin in R3, R = (O, (&;)), F%(t) = O®%(t). So the
Lagrangian velocities and accelerations are given by
d*®p d>@p

¥ :&(t):@(t)a and  Ap(t) = a2 (t) = 12 ()-

el =5 dt

Definition 3.15 The motion of a particle Ry; is a centripetal acceleration motion iff the motion is not
rectilinear and, at all time, the acceleration vector points to a fixed point F' € R? (focus).

(3.51)

Example 3.16 The motion of a planet from the solar system is an elliptical motion, is a centripetal
acceleration motion, one of its focus being at the center of the Sun. .

Consider a centripetal motion and choose O := F the focus: We have O®p(t ) | Ap(t) for all t, i.e.

@p(t) x Ap(t) =0, Vt. (3.52)
Definition 3.17 The areolar velocity at t is the vector
_ 1. q
2(t) = 5@0() x Vo). (3.53)

Proposition 3.18 If @ is a centripetal acceleration motion, then the velocity never vanishes, the areolar

velocity is constant, i.e. . .
Z(t) = Z(t), Vt, (3.54)

and the motion takes place in the affine plane orthogonal to A (to) passing through F. And the position
vectors sweep equal areas in equal times.
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29 3.8. FEzamples

Proof;2%(t)=(3'53) j%( ) % Vp(t) +@(t) x B2 (t) = Vp(t) x Vi (t) + F(t) xffp(t) = 6+ﬁ6 thanks to (3.52).
Thus Z is constant, Z( ) = Z(ty) for all t. Then (3.53) gives: Zp(t) and Vp(t) are L Z(ty) for all ¢.

Thus if Vp(7) = 0 for some 7 then Z(7) = 0, thus Z(t) = 0 for all ¢, thus @p(t) || Vp(t) for all ¢, thus
Gp(t) || @p'(t) for all ¢, i.e. Fp(t) = f(t)Fp'(t) for all t, thus Fp(t) = Fp(to)eF'®) where F is a primitive
of fs.t. F(ty) =0, thus @p(t) || Gp(to), so OPp(t) || OPp(ty), for all t: The motion is rectilinear, which
is excluded in the definition of a centripetal acceleration motion. Thus the velocity never vanishes.

And ﬁp X Ap = Ggives ‘_/;:; 3 (QBP X pr) =0= det(V}:, ﬁp, A:D) = (‘7}3 X QEP) . A}D = Z- AID, thus A’p(t) 1
Z(ty) for all t. And the Taylor expansion gives @p(t) — @p(to) = Vi (to)(t—to) + f::to Ap(T)(t—7)2dr L
Z(fo) for all ¢, thus the motion lives in the plane @p(fo) + Vect{Z(t)}T. And Ap(t) is a vector at ®p(t)
and points towards the focus F, thus F®p(t) L Z(ty), thus the affine plane passes through F.

The area S(t, h) swept by gp between ¢ and t+h is, at first order, the area of the triangle whose sides
are Pp(t) and gp(t+h) (“angular sector”):

S(t,h) = ||S(t,h)|| with S(t,h) = %@’p(t) X @p(t+h) + o(h). (3.55)

We want 22 (¢, h) = 0 for - any (admissible) fixed h, i.e. S(t,h) = S(to, h) for all h.
We have @p(t+h) = Gp(t) + @p'(t)h + o(h) = @p(t) + Ve (t)h + o(h), thus

25(t,h) = @p(t) x (Bp(t) + Vp(t)h + o(h)) + o(h) = @p(t) X Vp(t)h + o(h). (3.56)

And S(t,0) = 0, thus w = 15p(t) x Ve (t) + o(1), thus

o8 1 _ oz, (354) 2 a8
S (,0) = 2 (1) x Th(t) = Z() “2 Z(t) = 22 (10,0) (357)
And S%(t,h) = S(t, k)2 = ||S(t,h)||2 = S(t, h) « S(t, h) gives
a(8)? B a8 = d(9)? B
o (t,h) =2 %(t h)«S(t,h), thus on (t,0)=0 (3.58)
because S(t,0) = 0. Thus the function ¢t — S(¢,0) is independent of ¢: The position vectors sweep equal
areas in equal times. ==

Interpretation. (Non rectilinear motion.) The area swept by @p(t) is, at first order, the area of the
triangle whose sides are gp(t) and gp(t + 7) (“angular sector”). So, with 7 close to 0, let

o 1. .
Si(1) = 5ép(t) x gp(t +7), and  Si(r) = 15:(m)1]; (3.59)
the vectorial and scalar areas. With @p(t+ @p(t) + Vp(t)T + o(7) (Taylor) we get

T) =
Su(r) = 590(t) x (Tolt)r + o(r), (3.60)

Since S(0) = 0 we get M = 15p(t) x Vi (t) + o(1), then

ds 1 q . -
2 (0) = 580 (1) x Vo(t) = Z(t) = Z(to), (3.61)
T 2
thanks to (3.54), thus
dS, . dS,
5 (0)=—2(0),  Vtelt,T], (3.62)

that is, the rate of variation of S; is constant. And with ||S;(A7)||2 = (S:(AT), Si(AT)) we get

d||Si |1 ds;
5 (A7) =2(——(A7), Si(aT)), (3.63)
so, since S;(0) = 0, .
%(0) =0. (3.64)

So the function ¢ — |5, (0)||2 = S,(0)? is constant, thus ¢ — S;(0) est constant, and dd—s;t(O) is constant.
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Exercice 3.19 Give a parametrization of the swept area, and redo the calculations.

Answer. Let

r(t) = llee @], 0() =pt)OP  (angle), (3.65)
then
r(t) cos(0(t))
ep(t) = | r(t) sig(@(t)) . (3.66)
Thus
B ' (t) cos(0(t) — r(¢))0'(t) sin(0(¢))
Ve(t) = | v/ (t)sin(0(t) + r(t))0' (t) cos(6(t)) (3.67)
0
With (3.53) we get
o 1 0
Z(t) = 3 0 . with 72(£)0'(t) = r*(t)#’ (to) (constant), (3.68)
()6 (t)

cf. (3.54). A parametrization of the swept area is then
~ (10,1] x [to,T] — R® . pr(t)cos(6(t))
A: { . } , A(p,t) = | pr(t)sin(6(t)) | . (3.69)
(pt) — Alp,t)

Therefore, the tangent associated vectors are

oA r(t) cos(0(t)) oA pr’ () cos(0(t) — pr(t))6’ (t) sin(6(t))
o= rsm@) |, 200 = | o ()sin(600) + o) D eos0) |, (370)
P 0 ot 0
hence the vectorial and scalare element areas are
04 0A 0
d = (5 x 50 )dpdt = 0 . do = pr’0 dpde. (3.71)
P ¢ pr20’ dpdt
Therefore the area between % and ¢ is
1 t t
A(t) = At) + / / pr*(7)0' (1) dpdT = 1 / r(7)%0 (1) dr. (3.72)
p=0J 1=ty 2 T=ty
Hence .
A'(t) = r(t)%0'(t) = r(t)?0' (to) (= constant = || Z(to)|), (3.73)
cf. (368) I.l
Exercice 3.20 Prove the Binet formulas (non rectilinear central motion):
1 dt o z3 1 d*:
2 _ 2f @y N2 __“o(t r >
Vet = 23 (5 +()?) @, Telt)=—"2(S+ 2 ) e, (3.74)
for the energy and the acceleration.
Answer. Proposition 3.18 tells that ® is a planar motion. With (3.65) and €,(t) = (Z?r?((g((::))))> we have

@(t) = r(t)é-(t) (in the plane). Let &(t) = (_ sin(6(t)) ), thus

cos(6(t))
) = 0@ )+ r0 2 (1) = v (6 (1) + (00 (060 (1).

And €-(t) L éy(¢) gives
VE() = (r'(1)* + (r()6' (1))*.

Since 6'(t) # 0 for all ¢ (non rectilinear central motion) Let s(A(t)) = r(t). Let us suppose that 6 is C', thus
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31 4.1. Definitions

0" >0o0r 0 <0,and 6 : ¢t — 0(t) defines a change of variable. And

And (3.73) and 0'(t) = TZ,Z—(Ot) give

2000)) = (s (ON2-Z0_ 42 B0 _ SO 1 e (dE NP
Thus 7(t) = s(0) and % := 2 give the first Binet formula. Then
(0) = " (08-(1) + 7' (0 57 (1) + (' (06 (8) + r(00" () 1) + ()6 (1) 2L (1),
with % || €9, and %(t) = —0'(t)é-(t), and & L T (central motion), we get
L(t) = (r" () = r(8)(8' (£)*)ex (0).
And ) i
(1) =S O (1) = ' (0) 5 = z% =25 (0),

thus 21 ) pi

(0 = 20 (0)8/ () = — 205 T2 0),
which is the second Binet formula. un

3.8.4 Screw theory (= torsors, distributors)
See https://perso.isima.fr/leborgne/IsimathMeca/torseur.pdf

4 Deformation gradient F' := d®

~ Rx Oy — R" ~
Motion ® : ~ , Q := ®(t, Obj) configuration at t. Fix fy,¢ in R, and let
(t7POl?j) — Dt = q)(t7PObj)
Qto — Qt
Pl ~ " ~ supposed to be a C! diffeomorphism. Notations
P = Plto, Bory) — pe = 2 (p1) = (¢, Loy

for calculations (quantification) to comply with practices:

1- Classical (unambiguous) notations as in Arnold, Germain: E.g., (;) and (b;) are Cartesian bases
resp. in ]l_é’tz and R?, @, (py,) = > Wei(Py ) € Hi’té, We(pe) =, wyi(pe)b; € RP. And

2- Marsden-Hughes duality notations: Capital letters at ty, lower case letters at t, (E;) and (é;) are
Cartesian bases resp. in @Tté and R?, W(P) = S, WI(P)E; € Rg, @(p) = >, wi(p)e; € Ry

4.1 Definitions
4.1.1 Deformation gradient F
Q, — LR RY)

)

Po — F(py) = d®Y (py,)
ant deformation gradient between ¢, and ¢”, or simply the “deformation gradient”.
The “covariant deformation gradient at p;, between #, and ¢”, or in short “the deformation gradient

at py”, is the linear map F}°(p,) € E(]RZ;; R?). So, for all i, (py,) € @g (vector at py,),

Definition 4.1 The differential dd =written pfo . } is called “the covari-

- D (pry+hily, (py,)) — PP (p itt - itten
FE (o) ) o= i 2P ld) Z R | (00 () ) B () (41)

vector at p; = ®P(py). See figure 4.1. Marsden-Hughes notations: & := @, F := d®, P := p,,
W (P) := W, (py,), p = ®(P), thus

F(P)T(P) = lim ®(P+hW (P)) — B(P) | written .7 (p) N 5 ()

h—0 h (4.2)
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32 4.1. Definitions

Slto /_m

Figure 4.1: Cf. (4.1). @, = W is a vector field in Q. Consider the integral curve of W = w0, in Q,
i.e. the (spatial) curve cq, : 5 — py, = ¢ (8) in Qg s.t. ¢, (8) = Wy, (cg (). Tt is transformed by ®% into
the (spatial) curve ¢; = ® ocy, = 5 — pr = c4(8)=P (¢4, (5)) in Qy; Thus the tangent vector at ¢; at p; is
i’ (8) = d®P (py,).ci,'(5) = dDP (py, )Wy, (piy) =Y Wiy« (t,p¢) (push-forward of ;, by ®°).

NB: The “deformation gradient” F{® = d®X is not a “gradient” (its definition does not need a
Euclidean dot product); This leads to confusions when covariance-contravariance and objectivity are at
stake. It would be simpler to stick to the name “F° = the differential of ®°”, but it is not the standard
usage, except in thermodynamics: E.g., the differential dU of the internal energy U is not called “the
gradient of U” (there is no meaningful Euclidean dot product): It is just called “the differential of U”...

4.1.2 Push-forward

th —)@g

Pty — Wiy (Pyy)
vector field (), () in Q; defined with p; = ®¥ (p;,) by

Definition 4.2 Let W, : { } be a vector field in Q. Its push-forward by ®¥ is the

(it (pr) =) ()i, () 1= FL () (pr)s L. ((p) =) ©.V(p) o= F(P)IW(P)  (43)
with Marsden notations and p = ®(P). See figure 4.1. That is
Biy 4 = (B0, By, = (FI2.y) 0 ()71, ie. W, = O W := (FW)od L, (4.4)
We have thus defined . by

Wi (£, P(1)) := Wy 14 () = F (L, pry) Wiy (pr,)  when  p(t) = ®(t,py ). (4.5)
4.1.3 F is a two point tensors
With (4.1), “the tangent map” is defined by

Flo.

A {Qto — O x L(RY;RY) n

P — F%(py) = (pe, F°(py,)) when py = @2 (py,).

Definition 4.3 (Marsden-Hughes [17].) F/° is the two point tensor deformation gradient, referring to
the points p;, € Qy, (departure set) and p; = O (p,) € Q (arrival set where Wy, «(t,pi) = F/° (py, ) By, (1, )

is drawn). And in short Fjo =Written ph s said to be a two point tensor.

Remark 4.4 The name “two point tensor” is a shortcut than can create confusions and errors when
dealing with the transposed: F}° is not immediately a “tensor”: A tensor is a multilinear form, so gives
scalar results (€ R), while F(P) := Fjo(P) ="ritten p, ¢ LR ;RY) gives vector results (in RY).
However Fp can be naturally and canonically associated with the bilinear form Fp € L(RP*, Ry ;R)
defined by, for all ip € I@g and ¢, € R?*, with p = &% (P),

ﬁp(fp,l_[p) = gp.Fp.ﬁp (E R), (47)

see § A.14, and it is Fp which defines the so-called “two point tensor”.
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33 4.1. Definitions

NB: The confusion between the linear function F}°(p;,) = Fp and the bilinear form fpto = Fp produces
errors: E.g. a transposed of a linear form (Fp is not (directly deduced from) the transposed of the
associated bilinear form ﬁp ! So be careful with the word “transposed” and its two distinct definitions: The
transposed of a bilinear form b(-, ) is intrinsic to b(-,-) (is objective), given by b” (i, w) = b(w, @), while
the transposed of a linear function L is not intrinsic to L (is subjective), given by (L4, @), = (L., @)p
where (-, )4 and (-, ), are inner dot products (additional tools) chosen by Human beings (L” should be
written L, ). (Details in § A.9.2 and § A.12.1). ..

Remark 4.5 More generally for manifolds, the differential of ® := ®% at P € Q, is F(P) := d®(P) :

TPth — Tth
- . with p = ®(P). And the tangent map is
W(P) — wW.(p) :=d®(P).W(P)

PW(P)) = T®(P,W(P)) := (p,d®(P).W(P)) = (p,é(p)), where p =&y (P).

4.1.4 Evolution: Toward Lie’s derivative

C={J{t} x %) >R

Consider a Eulerian vector field  : , e.g. a “force field”. Then, at

(t,p) — w(t,p)
Q, — RY

consider Wy, : ~ .
Py = Wiy (Py) 7= W(lo, Py )

}. The push-forward of @, by ®¥ is, cf. (4.3)-(4.5),

Wi (£, p()) = Fy* (i)W, (Py),  where  p(t) = D (t,py,)- (4.9)

See figure 4.1. Then at ¢ at p(t) we can compare w(t, p(t)) (real value of @ at ¢ at p(t)) with Wy« (¢, p(t))
(transported memory along the trajectory). Thus the rate, without any ubiquity gift,

W(t, p(t)) — Wi« (t, p(2)) _ actual(t, p(t)) — transp. mem.(t, p(t)) is meaningful at (¢, p(t)). (4.10)

t—1p t—1
When ¢t — t# this rate gives the Lie derivative Lzw (the rate of stress); We will see at § 9.3 that

LzW = %f’ — dU.w, the dv term telling that a “non-uniform flow” (dv' # 0) acts on the stress.

4.1.5 Pull-back
Formally the pull-back is the push-forward with (@)~

Definition 4.6 The pull-back (®)*w; of a vector field @, defined on §; is the vector field defined on Q,
by, with p, = (2£) 7! (p1),

@ 4 (p) = (D) Wi (py) = ()7 (pe)-@e(ps),  written W*(P) = F~(p).ai(p) (4.11)
by Marsden. Which defines @; by @y (to, ps,) := w5, ,(pt,) = (F)Y=(py) . (py).

We however need to give full explanations:
Q, —Q Q —Q

Plo . o ! o gives (®)~1 . ! N for—1 ;
P = pr =2 (py) pe = P = (2F) (pe)

And p, = (2P) " H(pr) = (D) H(@F (py,)) gives I = d(®) ™ (py)-dPY (py,) = d(®£) ™ (pe)-F° (1),
which defines

O - L(E ]
(Ff)™' i= d(®l) " - { ' (totfl o) o (4.12)
pe — () (pe) :== F°(py,) -
Marsden notation:
F~'(p)=F(P)™' when p=®(P). (4.13)
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34 4.2. Quantification with bases

4.2 Quantification with bases

(Simple Cartesian framework.) With Marsden notations: (E;) is a Cartesian basis in R_%, (&) is a
Cartesian basis in R, o is an origin in R” at ¢, ®% ="ritten ¢ supposed C and ¢ : Q;, — R is its
i-th-component in the referential (o, (€;)):

p=®(P)=o0+ ngi(P)gi. (4.14)

Let (%?i] (P) := d¢'(P).E; = Fi;(P); Then, (&) being a Cartesian basis, with F = d® we get

. n . Lo n 8@1 .
F(P).E; = izzl(dap’(P).EJ)ei = 2 o7 (P)é;,
In short: . 4
_, " op* . oy’ . .
FE; = 2 gx7 G te [Fligqg = [8XJ] = [Fljz4 (Jacobian matrix). (4.15)

We recover: If W = > w Eje I@g is a vector at P then, by linearity of differentials,
dOW = FW =Y F;W’e, e [FW]z=[F|z.W]z (4.16)

(128
i=1

more precisely: F}°(P).W(P) =" Fi(P)YW’(P)&;.
Similarly, for the second order derivative d2® = dF (when & is C?): With U = Z'}ZlU‘]EJ we get

o n . n 92, ~ n ~ ) ~ _

ToxXK
i=1 PR 0X 70X =1
(9" (P)] 5 = [%(P)] j=1.n being the Hessian matrix of ¢ at P relative to the basis (E;).

. . . S = F) P
Remark 4.7 J,j are dummy variables when used in a summation: E.g., df.W = Z?ZlejWJ =
SaLw? = BALwe = SLwt + 2L w? 4 L. (there is no uppercase for 1, 2...). And
Marsden—Hughes notations (capital letters for the past) are not at all compulsory, classical notations
being just as good and often preferable (because they are not misleading). See § A. .

4.3 The unfortunate notation d7 = F.dX
4.3.1 Issue
(4.3), i.e. W.(p) := F(P).W(P), is sometimes written

dZ = F.dX : “a very unfortunate and misleading notation” (4.18)

which amounts to “confuse a length and a speed”... E.g. you see: “(4.18) is still true if [|dX|| = 1”... while
dX is supposed to be small...

4.3.2 Where does this unfortunate notation come from?

The notation (4.18) comes from the first order Taylor expansion ®(Q) = ®(P) + d®?(P).(Q—P) +
o(]|Q—P||), where P,Q € Q, i.e., with p = ®P(P) and ¢ = ®?(Q) and h = ||Q—P||,

q—p=F(P).(Q—P)+o(h), written 6% = F.6X + 0(6X), (4.19)
or pg = F(P)@ + o(h). So as @ — P we get 0 = 0... Quite useless, isn’t it?
While P
% _pp).Y (1) is useful: (4.20)

As Q — P we get @, = F(P).W which relates tangent vectors, cf. (4.3) and figure 4.1. Details:
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35 4.8. The unfortunate notation dZ = F.dX

4.3.3 Interpretation: Vector approach

. . [817 82] — Qt() . . to
Consider a spatial curve ¢, : in ), cf. figure 4.1. It is deformed by @ to

s — P:=c¢y(s)
: o [s1,82] — € :
become the spatial curve defined by ¢; := ®,° o ¢y, : f in Q;. Hence,
s = pi=ci(s) = PP (e, (9)).
relation between tangent vectors:

dey z dX
— — =F— 4.21
ds ds ds’ ( )

(5) = d®P(cy, (s))%(s), written %(s) = F(X(s))cil—)s((s), written

Blit you can’t simplify by ds to get dZ = F.dX: Tt is absurd to confuse “a slope %(s)” and “a length
X =p—¢q"

NB: Hd;;“ ()| =1 %(s)” = 1 is meaningful in (4.21): It means that the parametrization of the spatial
curve ¢, in Qy, uses a curvilinear parameter s such that [|c,/(s)|| = 1 for all s, i.e. s.t. [|[Wp|| = 1 in

figure 4.1. You cannot simplify by ds: ||dX|| = 1 is absurd together with dX “small” cf. (4.19).

4.3.4 Interpretation: Differential approach
In fact (4.18) is a relation between differentials... if you adopt the correct notations: With (4.14),
T = op = 02 j - Z<Pi(P)€i vritten Zwi(P)é}, with ¢ witten ;i (function of P). (4.22)
i=1 i=1
Thus, with (dX7) the (covariant) dual basis of (E;) we get the system of n equations (functions):
n 1
dp'(P) =Y1)_, 2% (P) dX’
dd=F, ie. ,  written d¥ = F.dX, (4.23)
dg"(P) = Yoy 5% (P) dX”

this last notation being often misunderstood?: It is nothing more than d® = F' (coordinate free notation).

4.3.5 The ambiguous notation d;i" = Fd)?

The tricky notation dif = F.dX gives the unfortunate (misunderstood) notation dZ = F.dX , and then
d7 = L.d7 where L=F.F1. (4.24)

Question: What is the meaning (and legitimate notation) of (4.24)?

L]
Answer: d¥ = L.d7 means

D,
Dt

= dU.y+ | = evolution rate of tangent vectors along a trajectory (4.25)

see figure 4.1. Indeed, Wy« (t, p(t)) =42 F(t, )Ty, (p1y) = F{° (pt, )W, (pr,) gives

W to . to L
D00 1 (1)) = 22 0, ) () = 2 (1,90) FE () e 1, ()

at
= (dUdy,0 ) (L, p(L))

(4.26)

cf. (3.33). In particular ¢t = ¢, gives Dg’;’* (to, pyy) = di(to, P, )-We, (p1,) = the evolution rate of the tangent

vectors Wy, (py,) € @% at py, along “the trajectory of p;,”.

28pivak [23] chapter 4: Classical differential geometers (and classical analysts) did not hesitate to talk about “infinitely
small” changes dz’ of the coordinates z?, just as Leibnitz had. No one wanted to admit that this was nonsense, because
true results were obtained when these infinitely small quantities were divided into each other (provided one did it in the
right way). Eventually it was realized that the closest one can come to describing an infinitely small change is to describe
a direction in which this change is supposed to occur, i.e., a tangent vector. Since df is supposed to be the infinitesimal
change of f under an infinitesimal change of the point, df must be a function of this change, which means that df should
be a function on tangent vectors. The dX; themselves then metamorphosed into functions, and it became clear that they
must be distinguished from the tangent vectors 8/90X;. Once this realization came, it was only a matter of making new
definitions, which preserved the old notation, and waiting for everybody to catch up.
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36 4.4. Change of coordinate system at t for F

4.4 Change of coordinate system at t for F

Pio € oy P = PP (p1y) € U, W(pyy) € RY, (pe) = FL (pyy)- W (py,) € RY,

4.4.1 Change of basis system at ¢t for F

At 1ty in I@% a past observer used a basis (@;). At ¢ in @?, a first observer chooses a Cartesian basis

(g0]d7i) and a second observer chooses a Cartesian basis (I_)'Hew,i), and P = [P,;] is the transition matrix
from (Doid,i) 0 (Dnew,i), 1-€- bnow,j = oy Pijboa,i for all j. Let W € B} and @ = F.W € Rp. Change of
basis formula:

[ = P—l.[w]lgl , thus [F. W]‘ B = P‘l.[F.W]‘gdd, (4.27)
thus [F]ldjnm.[vf/ha =P [Flg5 . [W]|g. True for all W, thus
_ p-1 .
[Flas, =P " [Flas,, | (4.28)

Remark 4.8 (4.28) is not [L] |, = P~*.[L]jqq-P, the change of basis formula for endomorphisms, which
would be nonsense since F := F{°(p;,) : I@g — R? is not an endomorphism; (4.28) is just the usual change

of basis formula [IU]“; = P*I.[u_)']lg y for vectors of in R} (contravariant vectors). ua
new Ol

4.4.2 Change of basis system at ¢, for F

At tin ]l_éf an actual observer used a basis (57) He wants to compare results of two past observers at #:
The first used a Cartesian basis (dua,;) and the second used a Cartesian basis (Gpew,i). P = [Pi;] being

the transition matrix from (@oi;) t0 (@new.i), for any W e R,

Wliaew = P~ [Wlia - (4.29)
And FW = jj’.W gives [FW]‘E# = [FW] Ehus (Flig, 5 Wiap = [Flig 5 Wliagy, hence
[F]‘dner.P_l,[W]‘aOId = [F]Iddd,l;'[w]‘aold’ for all W. Thus [F]‘dnevv’ap_ = [F]‘doldvg7 thus

[Fla. 5= Fliz 5P (4.30)

This is the change of basis formula for linear forms (covariant vectors), which is expected since here F is
considered to be a linear function that acts on vectors in R} .

Exercice 4.9 Detail the matrix calculation which gave (4.30) with Marsden’s notations.

Answer. Let F.E_:dd“] =5 Fc';”,é}- and F.EW,J =>. Fi 7€, and W = > Ws Ede =>,W; EW J, and
Q=[Q) =P s0 Wz  =QWlg, ,ie W) =3, QWS for all J. Thus FW =¥, F ;W&

DTk Fﬁ,JQi(Wlf(é} together with FW = Dok FjﬁKWo &, for all W, thus > n,JQK = F(f’K for all z,K, thus
[F]|E,,ﬂu,§-@ = [F]\Edd,a- o=

4.5 Tensor notations: Warnings

As already noted, cf. (4.7), the linear map F = d® := d®P(p;,) € E(@g,@?) is naturally canonically
associated with the bipoint tensor F € E(@?*,@g;ﬂ%) defined by, for all (¢, W) € R?* x I@Z),

F(,W) :=(.(F.W). (4.31)
Quantification: With § 4.2 (Marsden notations), with (dX7) in R’%* the covariant) dual basis of (E})
and with F.E; = S 18XJ€1 cf. (4.15), we immediately get
F = zn:ai‘ﬁé@dx" (4.32)
52, 0X7 Z . ‘

Indeed, with (dz?) in R?* the covariant) dual basis of (&), da*.(F.E,) = da®.(3, gXigez) =
k i . — i
Y, 28 dak e, = zi o0 6k = %2 and (X, 2858 © dX7)(da*, Ey) = ¥, 225 (8.da*)(dX 7 Ey) =

g g)f, ske] = 8X : Equality for all &, /.
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37 4.6. Spatial Taylor expansion of F

Similarly, d2¢(E;, Ex) = % gives d?¢p' =" W dX7 ® dX*¥, and
- 2 - ertten 2 i 8290i J K
i=1 i=1 i, J,K=1
" n (4.33)
ie. dE(U,W)=dF(U,W)=> d*"(U,W)b = 627QPUJWK5-
g 9 - 9 - I T T J K (N
i=1 i,J,K:laX 0X

Warning 1: The tensor notation can be misleading, e.g. if you use the transposed, see remark 4.4. So,
you should always use the standard F.E; = >_1"._| F";&; notation (vector value); And avoid the use of F,

_ ~ 3,j=1
i.e. of F(£,W) (scalar value).

Warning 2: You can’t use E; instead of X7 in (4.32), i.e. you can’t use F = Y oig 5))% & ® E instead
of F in (4.32), because there is no canonical natural isomorphism between R™ and R™* (if you do then
you contradict the change of basis formulas).

Warning 3: In some manuscripts you find the notation F = d® ="'t & @ V. It does not help to
understand what F is (it is the differential d®), and must be avoided as far as objectivity is concerned:

o It could be misinterpreted because in mechanics V f is often understood to be a vector (contravariant)
while the differential df is covariant (unmissable in thermodynamics because you can’t use gradients).

e A differentiation is not a tensor operation, see the fundamental example S.1; So you should use the
usual notation d® (i.e. d®(.) = >, dy'(.)€; with a basis (&;) in R?), and never use ® ® V.

e Similarly you should use the usual notation d?® (or d?®(.,.) = Y d?¢'(.,.)€; with a basis (&;)
in ]1@?), and never use @ Vx ® Vx.

4.6 Spatial Taylor expansion of F
® = PP is C° for all #),t, and F = d®. Then, in Q,, with P € Q, and W € R} vector at P,
O(P+hW) = &(P) + h F(P).W + & dF(P)(W, W) + o(h), and

F(P+hW) = F(P) + hdF(P).W + h—z d>F(P)(W, W) + o(h?). (4.34)

4.7 Time Taylor expansion of F

o0 is C%, pr = p(t) = U (t,py,) = O (1), V%(t po) = B (tpy) = U(t,p) = B(t, @0 (t,py,)) (La-
(t, D% (t, pry)

“(t,p

grangian and Eulerian velocities), A% (,p; ) = 8t2 2 (t,py) = F(t, p(t)) = ) (Lagrangian and

Eulerian accelerations), and F(t,p;,) = d®*(t,py,) = F,> (t). Hence

to to Ppto _,
70 = 22 1) = 280 1) = a(P ) 0,py) = a7 (1) = AL F (1), (435

. 2 Ity 2 to 2pto N
10 = 20 ) = PO 1) = a0 (1) = dAS(py) = d (L) F (). (430

(In short ' = dV = di.F and F = dA = d7.F). Thus

wo (t+h) = Fyo (1) + hdVie () + h; dAY, (1) + o(h?)

, (4.37)

_ (1 Rt p1) + 2 d(1, (1)) Ff (1) + of?).

NB: They are three times involved: t and ¢+h as usual, and t; (observer dependent) through F
and V%, as in (3.39).
Particular case: ¢ =1 then F}? (ty) = I and

- hZ
Fp (to+h) = 1+ hdV,° () + o AR (to) + o(h?)
2

, (4.38)
- (I + hdi(to, py,) + - di(to,pfo)) +o(h?).
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38 4.8. Homogeneous and isotropic material

Exercice 4.10 Directly check that (short notation) F' = dv.F gives F" = d7.F.

Answer. F'(t) = di(t,p(t)).F(t) gives F"(t) = 299 (¢ p(t)).F(t) + di(t,p(t)).F'(t) with 299 — 45 — d45.7,
cf. (4.39), thus F"(t) = (dy — dv.dv)(t, p(t)).F'(t) + dv(t, p(t)).di(t, p(t)).F(t) = dy(t, p(t)).F(t).

Remark 4.11 ~ = %f + dv.v is not linear in ¢. Idem,

Dv ov

ov D(dv)
dy=d d(Z2 + di.5) = % + 5.0 + didi (= v.di 4.39
7 =d(g;) = dlg +dio) =do +d70.0+ =7 v) (4.39)
is non linear in ¥, and gives F;?o "(t) = (dav + d%0.7 + dv.d7) (t,pt).F;f;O (t), non linear in 7. n

4.8 Homogeneous and isotropic material

Let P € Qy, and F(P) := d®®(P); Suppose that the “Cauchy stress vector” fy(p;) a t at p, = ®°(P)
only depends on P and on F(P) (the first gradient at P), i.e. there exists a function fun such that

fi(py) = fan(P, F(P)). (4.40)

Definition 4.12 A material is homogeneous iff fun doesn’t depend on the first variable P of flfn, ie.,
iff, for all P € Q,,
fun(P, F(P)) = fun(F(P)) (= fi(pr))- (4.41)

(Same mechanical property at any point.)

Definition 4.13 Choose a Euclidean dot product, the same at all time. A material is isotropic at P € €y,
iff fun is independent of the direction you consider, i.e., iff, for any rotation Ry, (P) in R},

fin(P, F(P) = fan(P, F(P).Ry (P)) (= fi(p:)). (4.42)
(Mechanical property unchanged when rotating the material first.)

Definition 4.14 A material is isotropic homogeneous iff it is isotropic and homogeneous.

4.9 H = F~! the inverse of the deformation gradient

Q. —Q Q —Q
Let & = . We have & :{ ! S © b and (@710 d)(P) = P,
P —»p=9(P) p > P=3o""(p)

Thus d®~!(p).d®(P) = I;, where p = ®(P), and, with F{° = F = d® is the deformation gradient,
F~lp)=dd ' (p) =d®(P)"' = F(P)"". (4.43)
This define the two point tensor

Q — LRYRD)

Hlo = (Floy=1 Written g -t (4.44)

p = Hp)=F'(p) = (F(P)""| when p=a(P),

i.e. H(p) = (F{o)=1(p) := (F{*(P))~! when P = ®*(p). So, for all @(p) € R vector at p € (:
H(p).1i(p) = F~Y(p).b(p) = F(P) “aii(p), inshort H.b = F~ '3, (4.45)

This defines

C =t} x ) — LRy E)
HY - : (4.46)
(t,ps) — HO(t,p;) := HP(ps) = (F*(t,P))”" when p; = ®"(t, P).

NB: H% looks like a Eulerian map, but isn’t: H% depends on a initial time #, and H (¢, p;) is a two point
tensor (starts in I@? and finishes in I@g) We will however use the material time derivative % notation
in this case, that is, we define, along a trajectory t — p(t) = ®® (¢, P),
DH® OH DH®  gH%
t,p(t)) := ——(t,p(t)) + dH™ (t,p(t)).5(t, p(t ie. — =-—— +dH".¥ 4.4
e p(0) == T (6 p(6) + A (6 p() A p(0), e Cr = O b dHE, (447)

which is the time derivative ¢/(t) of the function g : t — g(t) = H™(¢,p(t)) = H(t,®%(t, P)).
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39 5.1. Introduction: Motion versus flow

Then H™(t,p(t)).F(t, P) = I, gives 22 (¢, p(t)).Fo(t, P) + H®(t,p(t)).252 (¢, P) = 0, thus with
8Ft0 (t, P) =435 dij(t, p(t)).F'(t, P) and F/° invertible we get

D; © (4 p(t)) = —H (£, p(t)).di(t, p(t)) written % — _H.di| (4.48)

Exercice 4.15 With @, (t,p(t)) = F(t, P).W(P), i.e. H'(t, p(t)).0;,.(t, p(t)) = W(P), when p(t) =
Pl (¢, P), prove (4.48).

Answer. 229 (¢ p(t)) = dii(t, p(t)). @i« (t, p(t)), cf. (4. 25)- And (H' .. )(t, p(t)) = W(P) gives 2H2 5, . +

Ho Do _ o Thus PH i@, + H.di by = 0, thus 22 = — H.d7. -

Exercice 4.16 Prove: Hj° = H{° o H* and Dgt% (t.p(t) = HP(p,). 2H DH ~(t,p(t)) for all t,t; with
ty = @2 (Pto)-

Answer. We have ®9(p,) = & (@?i (pt)), cf. (5.17), hence F/°(ps) = F* (ptl).Ftt‘lJ (py), thus Fi°(py)~ ! =
Ff (o) " F (pe) 7Y, e HP(pe) = HP () Hy' (p(1)), thus, HO(t,p(t)) = H(pe,)-H" (t,p(t)), thus
B () = HE ()25 (1,0(1)).

Exercice 4.17 Prove 1-
H" = H.(2dv.dv — d7) (4.49)

(means?), i.e. 2- (F~1)" = F~1.(2d7.dv — d7) (means?).
Answer. 1- Meaning: 22 (¢ p(t)) = H'(t,p(t)).(2dd(t, p(t)).di(t, p(t)) — dF(t,p(t))). With RHC _(448)

Dt?
—H".di we get 22H0 — _DHY g5 o DUD iy DT _(2:30) gDV _ g5 g5, thus 220 = (H.d7).dv —
H'.dy + H".dv.dv). 2- Mean;n% Wit{llg(t) = F™(t,py) " we want g (t) = g¢'(t).(2d(t, p(t)).dv(t, p(t)) —
dy(t, p(t))), abusively written 2P0 — po (¢ p )71 (2dii(t, p(t)).dE(t, p(t)) — d(t, p(t))), abusively written

(F~Y'" = F~'.(2dv.dv — d7). Having g(t) = H™ (¢, p(t), point 1- gives the result. un

Exercice 4.18 Give the order 2 Taylor expansion of H (why is it formal?), then verify H.F' = I (means?)
is recovered up to the second order.

Answer. With g(t—h) = g(t) — hg'(t) + h;g”(t) + o(h?) and g(t) = H™ (t,p(t)) and (4.48)-(4.49),

H(t—h,p(t—h)) = H(t,p:).(I — hdT + % (2d%.dT — d7))(t, p:) + o(h?). (4.50)

This is formal because H[ , : Ry, — ]R{g and HP : R — RZ), so this calculation requires ubiguity gift and a

Cartesian structure to have R}, = Ry =WHen Rh Then H.F = I means F~'.F = I i.e. HP (p,).F{(py,) = I
when p; = ®(py,), and with (4.50) and (4.37) we have (shortened notations)

2 2

HF= =H.(I —hdi+ % (2d5.d7 — d7)) + o(hz)].[(l + hdi + % df?) F + o(h?)]
-1 _» _, 2 54 g h? N - R* 2 2
=F".(I—-hdv+hd0— h"dv.dv+ ?(2dv.dv —dy) + ?d’y) +o(h%)).F =1+ o(h7).
Check done. un
5 Flow

5.1 Introduction: Motion versus flow
e A motion  : (t, Rowj) = pr = &3(t, Ryy) locates at ¢ a particle Ry, in the affine space R”, cf. (1.4),
and the Eulerian velocity field ¥ is deduced: 0(t,p;) := %(t), cf. (2.5).

dt
e A flow starts with a Eulerian velocity field #, and the motion is deduced by solving the ODE
(ordinary differential equation) 42 (¢) = #(t, ®(t)) with initial conditions.
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5.2 Definition
- {R x R" — Rn
Let U :

. be a unstationary vector field, e.g., a Eulerian velocity field which definition
(t,p) — (t,p)

R — R"
domain is C C R x R™. We look for maps ® : which are locally (i.e. in the vicinity of
t —p=2(t)
some fp) solutions of the ODE (ordinary differential equation)
d® d dz
() = (t, ®(t)), also written (1) = (L, p(t)), or —(t)=(t,Z(t)) (5.1)
dt dt dt
where Z(t) = Op(t) after a choice of an origin. Le. ®'(t) = v(t, ®(t)), or p'(t) = (¢, p(t)), or Z'(t) =
d dz
0(t, Z(t)). Also abusively written dit) = ¥(t,p) or dit; = u(t, T).
Definition 5.1 A solution ® of (5.1) is a flow of ¥; Also called an integral curve of @ since (5.1) also
reads ®(t) = ['_, #(r, ®(r))dr + D(t1).

Remark 5.2 Improper notation for (5.1):

b gy weiten U (00 (5.2

Question: If the notation d’(’i—(tt) is used, then what is the meaning of

e Aa %U(t))’ or %(t) = %(f(t))%(t): Ambiguous. So it is better to use
%(t) and to avoid dzi(tt)_ .

dp(f()) 9
dt .

5.3 Cauchy—Lipschitz theorem

Let (to, ps,) be in the definition domain of ¥. Purpose: Find ® solution of “the ODE with initial condition

(to,py,)", 1€ 8.t.
d®

dt

The couple (t, py,) is the initial condition, and the values #y and p;, are the initial conditions.

(t) =0(t,®(t)) and P(t) =py, in a vicinity of t. (5.3)

) is an open set in R™ s.t. its closure () is a regular domain, and ||.|| is a norm in R™.

Definition 5.3 Let t1,t, € R, t; < to. A continuous map @ : [t1,tz] x Q — R™ is Lipschitzian iff it is
“space Lipschitzian uniformly in time”, i.e. iff

ie. ||U(q) — ve(p)l| < kllg — pl|l- So, W < k, for all ¢t and all p # ¢: The variations of ¢ are

bounded in space, uniformly in time. (In particular implies that ¥ is continuous.)

Theorem 5.4 (and definition (Cauchy—Lipschitz)) If 7 : [ti,t] x @ — R" is Lipschitzian and
(to, Pty) E€Jt1, t2[ <2 then there exists € = ey, p, >0 s.t. (5.3) has a unique solution ® :Jty—e, lo+e[— R":

(b .
%(t)zﬁ(t,@(t)) and ®(to) =py,, and ®"TE" P (5.5)

Moreover, if T is C* then ¢z)t0 is CF+1,

Proof. See e.g. Arnold [2]. In particular ||¥]|e := sup [|T(t, p)]
t€]to—e,to+e[, pEQ

exists since ¥ € C° on the compact [t;,ts] x ), see definition 5.3, hence we can choose ¢ =

min(ty—t1, ta—tp, %) (the time needed to reach the border 92 from py,). n

ge (maximum speed)
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41 5.4. FEzamples

We have thus defined the function, also called “a flow”,

{]tth[X]tl,tz[X Qto —Q
o - - (5.6)
(t7t07pt()) —p= q)(t7t0’pl‘o) = (b?tﬂ (t) Wn:eﬂ (I)(t7t07p&))
And (5.5) reads
0P . .
o Lito,po) = U(t, @t to, pw)),  with (o3 to, i) = Poy- (5.7)
And we have defined the function, also called “a flow”,
o - [to—e, to+e] X iy — R . . 58)
(t7pto) —Pp= P (tapto) = cbpfo (t)
And (5.5) reads
o™ = to to
W(tvpfo) = ’U(t, o (t’pfo))7 and @ (to,p&,) = DPty- (59)

Other notation: @y, := O, i.e. By (py,) := PP (pyy)-

Corollary 5.5 Let €, be an open set s.t. Qy, CC § (i.e. there exists a compact set K € R" s.t.
Y, C K C Q). Then there exists € > 0 s.t. a flow ®% exists on J{y—e, to+e[x Yy, .

Proof. Let d = d(K,R"—Q) (la distance of K to the border of €. -

Let ||]|oo :=  sup  ||T(t,p)||r (exists since © € C° on the compact [t1,t2] x Q).

tE[t1,t2],pEQ

Let e = min(ty—t1, to—tp, ﬁ) (less that the minimum time to reach the border from K at maximum
speed ||v]]c0)-

Let p,, € K and t €]ty—e,fo+e[. Then @ exists, cf.theorem 5.4, and [|®p () — @ (fo)|lpn <
[t —to] sup,ejgy—c to4[(|[(25, ) (7)[[r») (mean value theorem since, ¥ being C?, @ is C*). Thus ||®f (t) -
@g’m (to)||rr < [t — to| ||v]]o0, thus @?fo (t) € Q. Thus @;‘)’10 exists on |tp—e, fo+e[, for all p, € K. -

Remark 5.6 The definition of a flow starts with a Eulerian velocity (independent of any initial time),
and then, due to the introduction of initial conditions, leads to the Lagrangian functions &%, cf. (5.8).
Once again, a Lagrangian function is the result of an Eulerian function. u

5.4 Examples

Example 1 R? with an origin O, Euclidean basis (€1,¢€2), Q = [0,2] x [0,1] (observation window),
p € R (?]5 —written z — 22, 4 y@y =WHten (g 0yt = —1,ty =1, ty €]t1, 2], a,b € R, a # 0, and
’Ul(t7 x? y) = ay,
u(t,p) =9 : (5.10)
v (t, x,y) = bsin(t—tp).
(b =0 = stationary case = shear flow.) Z(t) , T(t) Od? (t) and (5.9) give
Yo y(t) Po
dz 1
E(t) =0 (tax(t)7y(t)) = ay(t)v th) = o,
g with B (5.11)
(1) = v3(t,2(0), (1)) = bsin(t—t), ytlo) = -
e oot (0 (v +)(t—to) — absin(i—t)
i . o [ z(t) =z0+ alyo + b)(t—ty) — absin(t—ty
#(t) = Op(t) = OBP, (t) = (y(t) b beos(tto) . (5.12)
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42 5.5. Composition of flows

Example 2 Similar framework. Let w > 0 and consider (spin vector field)

Wt z,y) = (‘w“;y> —w (‘1) _01) ("5) WD G ). (5.13)

. _ > L [ xg=rpcos(wly) . t .
With ro = /2§ + y5 and 6y s.t. & = (yo — rosin(why) )’ the solution <I>pto of (5.9) is

o v x(t) = 1y, cos(wt)
Z(t) = Op(t) = O ( ( () = ry, sin(wt) ) (5.14)
oz = 1 .
St 7o)\ (ot z(t,Zo),y(t, To)) —wy(t, ffo dx(p =2\ _ =
Indeed, (gg(t,fo)) - (UQ(t7SU(t,fO),y t,70)) wa(t, @) ) thus 57 (t, 7o) = —wylt, 7o)
and %(ﬂ o) = wax(t,@o), thus —gi:ff(tjo) = —w?y(t, 7o), hence y; Idem for x. Here di(t,z,y) =
w 0 —1) _ w( P2 ") s the m/2-rotation composed with the homothety with ratio w
1 0 sing  CoS %

5.5 Composition of flows

Let ¥ be a vector field on R x € and CI)Z)«) solution of (5.5). We use the notations
e = ‘I’f?to (t) = Piypy, (1) = P2 (P1y) = Prasy (p1,) = PO (¢, piy) = Pt %0, p1y)- (5.15)
5.5.1 Law of composition of flows (determinism)

Proposition 5.7 For all ty,t1,t2 € R, we have (determinismn)

Pyl 0 B0 = DY

ta?

ie. (btz;tl o (I)tl;to = (btz;to' (516)
(“The composition of the photos gives the film”). So, with py, = @£ (py,) = Pr,1 (Pro),

= 0L (py,) = PP (pr), P pry = Puyit, (D)) = Pugity (Pry)- (5.17)

Thus
d®i! (pr,).dDE (pr,) = dOP (piy), 6. dPpyr, (pt,)-dPt, 1) (Pry) = APyt (P1)- (5.18)

Summary: The following diagram commutes:

Pty

to t1
Py P4, D110 Pty
ie.

Pro
1)

bt
Dyt ’

Proof. Let p;, = @?ﬁo (t1). (5.9) gives

aot,

(1) = Wt B, (1)),

; gfl with py, = ®f (1) = ®% ().
Pt = t
Tl(t) - U(t q)plt (t))a

Thus @?to and fbf;tl satisfy the same ODE with the same value at ¢1; Thus they are equal (uniqueness:
Cauchy-Lipschitz theorem), thus ®f} (t) = . (t) ie. &} (pr,) = PP (py,) when py, = DL (py,) = P (psy),
which is (5.16) for any ¢ = t5. Thus d®{L(L (py,)).dPY (py,) = AP (py,), i-e. (5.18).

Corollary 5.8 A flow is compatible with the motion ® of an object Obj: (3.3) gives Pyl 0 @Y = (®,, o
(q)tl)il) © ((I)tl © ((I)to)il) = (I)tz © (q)to)il = (I)ff; that is (516)
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43 5.6. Velocity on the trajectory traveled in the opposite direction

5.5.2 Stationnary case

Definition 5.9 ¥ is a stationary vector field iff %’z = 0. Hence #(t, p) =""" §(p), and the associated
flow ®%, which satisfies

O — . t

W(t7pm) = U(P°(t,py)) = U(pt) when p = PO(t,py), (5.19)

is said to be stationary.

Proposition 5.10 If ¥ is a stationary vector field then, for all ty,t1,h when meaningful (i.e. t; close
enough to ty and h small enough),

(I)ZM, = ‘I’ZW Le. @ ynity = Pogthitys (5.20)
ie. <I>2+h(q) = <I>tt3+h(q), ie. ®(t1+h;tr,q) = P(lo+h;to,q) for all ¢ € Qy, (see corollary 5.5). In other
words,

A e (5.21)

ie. @?iffl(q) = @2 (q), i.e. D(t1+h;to+h,q) = ®(t1;t,q) for all ¢ € Q.

Proof. Let g € Q,, a(h) = 9P, (q) = ®% (to+h) and B(h) = @', (q) = ®! (t1+h).
Thus o/ (h) = 2L (tg+h) = W(to-+h, B (fg+h)) = F(D0(to+h)) = F(a(h)) (stationary flow), and

B'(h) = di?“ (ti+h) = O(t1+h, @ (t1+h)) = (L (t1+h)) = T(B(h)) (stationary flow).

Thus « and (3 satisfy the same ODE with the same initial condition «(0) = 8(0) = ¢. Thus a = .
Hence (5.20). Thus, with h = t;—ty, i.e. with t; = {+h and {+h = t1, we get (5.21). .

Corollary 5.11 If ¥ is a stationary vector field, cf. (5.19), then
A (py,).U(py) = G(pe)  when py = @Y (py,), (5.22)
that is, if ¥ is stationary, then ¥ is transported (push-forwarded by ®) along itself.
Proof. (5.17), t = t1+s and t; = to+s give L1I(PL, (py,)) = P, (py,), and ¥ is stationary, thus
DL (P, 4 (p1)) = P 1o (pyy), ie. B(ty;to, Dy p,, (lo+5)) = Py p, (t1+s5), thus (s derivative)
d®(t1;to, ®(to+5;t0, Pry))-Pry py, (tot5) = Pty (t1+5),

thus d® (P(tots;5t0, Pty ))-U(to+5, Pty py, (fot8)) = T(t1+5, Piy p,, (t1+5)). Thus with s = 0, and ¥ being
stationary, d®{ (®(to; t0, D1y ))-U( Pty p,, (t0)) = (Pt p,, (t1)), thus (5.22). ia

5.6 Velocity on the trajectory traveled in the opposite direction
[to,tl] — R" g
t s pty=al (1) [ 0P

doh
is the beginning of the trajectory, p, = ® (py,) the end, 7(t, p(t)) = —;(t) being the velocity.
Define the trajectory traveled in the opposite direction, i.e. define

gt J ol 2R
Py u — q(u) = \Ilf,ltl (u) := @g’fa (to+t1—u) = @;f’to (t) =p(t) when ¢=1t+t;—u.

Let ty,t1 € R, t1 > tp, and p;, € R™. Consider the trajectory @g’b : {

(5.23)

In particular ¢(ty) = \Ilglt1 (to) = @;}’% (t1) = p(t1) and q(t1) = \Iﬂ;ltl (t1) = @;?to (to) = p(to)-

Proposition 5.12 The velocity on the trajectory traveled in the opposite direction is the opposite of
the velocity on the initial trajectory:

dvt
ﬁ(u) =q¢'(u) = —p'(t) = —0(t,p(t)) when t=ty+t1—u, (5.24)
" f . dwll d<1>;0i0 . "
Proof. \I/pltl (u) = <I)pf0 (to+t1—u) gives o (u) = — 7 (to+t1—u) = fv(thrtl—u,fI)ptO (to+t1—u)) =
—u(t, @y, (t)) when t = to+t1—u. .
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44 5.7. Variation of the flow as a function of the initial time

5.7 Variation of the flow as a function of the initial time
5.7.1 Ambiguous and non ambiguous notations

Let @ : (t,u,p) € RxR xR"™ — ®(t,u,p) € R" be a C! function. The “numbered partial derivatives” are

d(t+h —d(¢
(1, u, p) = lim S wP) = 2t wp) (5.25)
h—0 h
D(t h,p) — ®(¢t
o0 (t, 1, p) = lim —LouFP) = Ot up) (5.26)
h—0 h
D(t hw) — (¢
03®(t, u,p). W := dP(t,u,p). W = lim (t, u, phi) (t,u,p) (5.27)
h—0 h
for all @ € R" vectors at p (space differentiation).
When the name of the first variable is systematically noted ¢, then
i 0] ambiguous 0P t, s
0u8(t,u,p) "L T ) T ORLL), (5:29

- u
ot p writing ot

NB: This notation can be ambiguous: What is the meaning of %—?(t,t,p)? In ambiguous situations, use

9% (t,u,p)

the notation 9,®, or (if no composed functions inside) use “—z; , (so t is the derivation variable,

lu=
and after the calculation you take u = t).

When the name of the second variable is systematically noted u, then

i o0 ambiguous 0P t, y
yvriten 02, |y ambigious 02(6,u,p), (5.29)

0o ®(t
2 ( P 6’(,L writing 6u
NB: Idem this notation can be ambiguous: What is the meaning of ‘g—i’(u, u,p)? In ambiguous situations,
02 (t,u,p)
ou [t=u"
When the name of the third variable is systematically a space variable noted p, then

use the notation do®, or use

0P ambiguous M

03D (t, u,p) written d®(t,u,p) written 8—p(t, u,p) . (5.30)

writing 8p

5.7.2 Variation of the flow as a function of the initial time

The law of composition of the flows (5.17) gives g(u) := ®(¢t, u, ®(u, to, po)) = ®(¢, to, po), thus ¢'(u) =0,

thus
an)(tv u, q)(ua tf)vp())) + ad(b(tu u, (I)(ua t07po))'alq)(u7 t07p0) = 07

5.31
i.e. 82@(t7u7p(u)) == fd@(t,u,p(u)){)’(u,p(u)) when p(u) — @(u’to’po). ( )
In particular u = ty gives, for all (¢,t,po) € R2 x Q,
0d(t, o, B
(% ::) aZ(D(tathpO) == *d@(t,tg,po).’l}(to’po). (532)
d2(t, %o, po)

::) 82(b(t07t07p0) = _U(t()mpo)

In particular (
dty [t=to
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Part 11
Push-forward

6 Push-forward

The general tool to describe “transport” is “push-forward by a motion” (the “take with you” operator),
cf. § 4.1 and figure 4.1. The push-forward also gives the tool needed to understand the velocity addition
formula: In that case, the push-forward is the translator between observers. The push-forward can also
be used to write coordinate systems. As usual, we start with qualitative results (observer independent
results), then quantitative results are deduced.

6.1 Definition

(Simplified framework.) £ and F are affine spaces, E and F are the associated vector spaces equipped
with norms ||.||g and ||.||F, dim E = dim F' = n € N* (finite dimension), & and Ur are open sets in the
affine space £ and F, or possibly in the vector spaces E and F', and

\P:{ug = Ur

is a diffeomorphism, (6.1)
pe = pr=TY(p) }

i.e. a C! invertible map which inverse is C'.

Definition 6.1 ¥ is called a push-forward, and ¥ —! the pull-back (push-forward with ¥—1). See fig. 6.1.

Us / v w“nmﬁm‘\> Ur

W (pr)

/ pr = ¥(pe)
/ Im(ce.)
Im(cg)
Figure 6.1: c¢ : s = pe = ce(s) is a curve in Ue. Push-forwarded by ¥ it becomes the curve ce. :== Wocg
in Ur. The tangent vector at pe = cg(s) is We(pe) = ce’(s), and the tangent vector at pr = cr(s) =
U(cg(s)) is Wes(pr) = cx'(s) = d¥(pe).We(pe). Other illustation: See figure 4.1.

Example: ¥ = & : Q, — €, the motion that transforms €y, into Q, cf. (3.2).
Example: ¥ : Ugp — Up a coordinate system, see example 6.12.
Example: ¥ = O; : Rg — Ra, a change of referential at ¢ (change of observer), see § 10.

NB: ¥ being a diffeomorphism, U= (U (pe)) = pe and pr = ¥(pe) give dV 1 (pr).d¥(pe) = I.

6.2 Push-forward and pull-back of points
Definition 6.2 If pc € £ (a point in Ue) then its push-forward by ¥ is the point
pr=|V.pe = V(pe) | = pex € Ur, (6.2)
see figure 6.1, the last notation if ¥ is implicit. And if pr € Ur then its pull-back by W is the point
= Upr = U ) | = prt €l (6.3)
We immediately have ¥* o U, = I.

The notations , for push-forward and * for pull-back have been proposed by Spivak; Also see Abraham
and Marsden [1] second edition who adopt this notation.
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46 6.3. Push-forward and pull-back of curves

6.3 Push-forward and pull-back of curves
Leth:{]_e’s[ - U }beacurveinb@.
s — pe = ce(s)

Definition 6.3 Its push-forward by W is the curve

|—e,e] = Ur
U,ce :=Vocg: written (6.4)
s = pr=Vace(s) :=W(ee(s)) =" ceuls) (= ¥(m)),
where U, ce =written cex when W is implicit. See figure 6.1. This defines
‘F(] - 536[;%) - ]:(] 7678[;1/{}—)
W, written (6'5)
ce = Uu(ce) =Tocg "= Uyce = cen.
] - & 5[ — Z/{]: . .
Let cx: is a curve in Ur.
s — pr=cr(s)
Definition 6.4 Its pull-back by ¥ is
] — &, 5[ — Z/tf
Urcr =0 loce . wiitten ) (6.6)
s =2 pe=Vx(s) =V (cr(s)) = cxr(s) (=¥ " (pr)).
We have thus defined
F(CH ] —e,eliUs) = F(CH(] —e.eitk)
v written (6'7)
cr = Uer) =0 locy =" Urer = cxt.
6.4 Push-forward and pull-back of scalar functions
6.4.1 Definitions
—-R
Let fe: % (scalar valued function).
e — fe(pe)
Definition 6.5 Its push-forward by W is the (scalar valued) function
1 {UJ: — R ( )
U, fe:=feoU™": . 6.8
pr = W felpr) = felpe) "™ feu(pr) when e =97 (pr),

(noted fe,. when U is implicit), i.e. U, fe(U.pe) := fe(pe), or feu(pes) = fe(pe) when pe, = ¥(pe). We
have thus defined
{ F(Ue;R) — F(Ur;R)
v, :

fo = fr = Wa(fe) = feo U™ T g g

Notation W, (fe) = W, fe because W, is linear: ((fe + Age) o Y"1 (pr) = (fe + Age)(pe) = fe(pe) +
Age(pe) = (fe 0 T~1)(pr) + Mge 0 T~ 1) (pr) gives Wa(fe + Age) = Wu(fe) + AV (ge).

(6.9)

Ur — R
Let fr: { > (o) } (scalar valued function).

pr = [F
Definition 6.6 Its pull-back by ¥ is the push-forward by 1, i.e. is
U — R ( )
U*fr:=froW: . 6.10
pe = U fr(pe) = frpr) "5 7' (r) when pr=U(p),
ie. U fr(U*pr) := fr(pr), i.e. fr*(pr*) := fr(pr) when pr = ¥*(pr). We have thus defined
FUsiR) — F(lk;R)
v * * written o . (6'11)
fr =W (fr)=fr" = fro¥ ="V fr.

We immediately have ¥* o U, = ] and U, o ¥* = J (the first I is the identity in F(U;R), the
second 7 is the identity in F(Ur;R)).

Warning: We used the same notations ¥, and ¥* for the push-forward and pull-backs of points, of
curves and of functions: The context removes ambiguities.
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47 6.5. Push-forward and pull-back of vector fields

6.4.2 Interpretation: Why is it useful?

E.g.: Let P : R x Obj — R™ be a motion of an object Obj. An observer records the temperature 6
C={J{t} xxu) —-R
t

(t,p) —0(t,p)
scalar valued function, cf. (2.2). Then he chooses an initial time fy, considers the associated motion ®%
Qto — R
Pty = 04 (py,) == 0(to, py,)
The push-forward of 0, by ®% is (®X),0;, := 0, o (P1°)~! defines the “memory function”

at all t € [to,T] and all p € Q; = ®(t, Obj); He gets 6 : a Eulerian

cf. (3.1), and considers 6y, : { } (snapshot of the temperatures at #y in ).

Qt — R

. . (6.12)
pt = (@)ubi (pt) := 04, (py,) when p; = & (py, ),

(D)0, : {

And he writes (®%),.6,, (p,) =""t%" g, . (t,p;), so the memory transported is at ¢ at p; (along a trajectory)
by
01+ (, p(t)) = Oy (P1o)- (6.13)

Question: Why do we introduce 6;,, since we have 6,7

Answer: An observer does not have the gift of temporal and/or spatial ubiquity; He has to do with
values at the actual time ¢ and position p; where he is (Newton and Einstein’s point of view). So, when
he was at % at p;, the observer wrote the value 04, (py, ) on a piece of paper (for memory), puts the piece of
paper is his pocket, then once at ¢ at p(t) = ®* (¢, py, ), he takes the paper out of his pocket, and renames
the value he reads as 6. (t,p;) because he is now at ¢ at p;. And, now at ¢ at p;, he can compare the
past and present value. In particular the rate

0(t,p(t) — Oty (t, p(t)) _ actual(t, p(t)) — memory, (t, p(t)) (6.14)

t—% t—1
is physically meaningful for one observer at ¢ at p; (no ubiquity gift required). For scalar value functions,

we get the usual rate M‘W —> sty B2(to, pry)- Tt it isn’t that simple for vector valued functions
(the limit ¢ — #, defines the Lie derivative).

6.5 Push-forward and pull-back of vector fields

This is one of the most important concept for mechanical engineers.

6.5.1 An elementary introduction (approximations)

Consider two points pe, ¢ € Us and their push-forwards by ¥ cf. (6.2): pr = pe. = ¥(pe) and g = qes =
U(g) in Ur. The first order Taylor expansion gives

(U(g) —U(pe) =) qr —pr =d¥(pe).( —pe) +o(lle — pelle), (6.15)
Le. pFqf = d¥(pe) EE + o(||[pE@ || ), i.e.

FE E¢
w2l ) e o (6.16)

The definition of the push-forward fo vectors is obtained by “neglecting” the o(1) (limit as ¢¢ — pe):

Definition 6.7 If wg(pe) € E is a vector at pg € U then its push-forward by W is the vector
Wr(pr) =VIen e, (pr) ="IHen U Ge (pr) € F defined at pr = pe. = V(pe) € Ur by

@ (pr) = oibe (pr) = | - (pr) 1= AV () e (pe) | (6.17)

6.5.2 Definition of the push-forward of a vector field

To fully grasp the definition and to avoid interpretation errors as in § 4.3 (the unfortunate notation
dZ = F.dX), we use the definition: “A vector” is a “tangent vector to a curve” (needed for surfaces):
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48 6.5. Push-forward and pull-back of vector fields

—e,el — . :
o Let c¢ : } [ U be a C! curve in Ue. Its tangent vector at pe = cg(s) is
s = pe =ce(s)
. s+ h)—ce(s
Te(pe) = ce'(s) (= ,{lg}) el (6.19)

Im(ce)

see fig 6.1, which defines the function wg : { } called a vector field along Im(cg) C Ue.

pe — we(pe

e The push-forward of c¢ by W is the image curve cg. = Uocg (the curve transformed by W) cf. (6.4);
Its tangent vector at pr = cg«($) is

Wex(pF) 1= ces' (s) = d¥(ce(s)).ce’(s) = d¥(pe) e (pe) where pe = ce(s). (6.19)
Thus we have defined the vector field W, along Im(cg,) called the push-forward of wg by U:
Definition 6.8 The push-forward by ¥ of a C° vector field g : {% ” ]% } is the vector field
e — we(pe)
. . Ur — F
T e (W) = ) e )| ) when = W),
see figu. 6.1, the notation wg, when W is implicit. In other words,
U g = (dV.abg) o UL, (6.21)

C®Us; E) — C®°UFr; F
This defines the map U, : e H) (ﬂf ) . R .
We — VU, (Wg) = Vg = Wes

Warning: Same notation ¥, as in definition 6.5: The context removes ambiguities.

Remark 6.9 Unlike scalar functions, cf. § 6.4.2: At #, at p;, you cannot just draw a vector Wy, (py,)
on a piece of paper, put the paper in your pocket, then let yourself be carried by the flow ¥ = @?
(push-forward), then, once arrived at ¢ at p;, take the paper out of your pocket and read it to get the
push-forward: The direction and length of the vector @y, . (¢, p;) are modified by the flow (a vector is not

just a collection of scalar components). u
Exercice 6.10 Prove:
c¢" () = dig (pe)-We (pe), (6.22)
and
dig.(pF).d¥ (pe) = d¥ (pe).die (pe) + d*W (pe).we (pe), (6.23)
and
ces''(s) = dibg.(pr) De.(pr) (= d¥(pe).c2"(s) + d*V(pe).cg'(s).c¢'(s)). (6.24)
Answer. ¢¢'(s) = we(ce(s)) gives ¢’ (s) = dig(ce(s)).c¢'(s), hence (6.22).
Wew (VU (pe)) = dP(pe).We (pe) by definition of We., hence (6.23).
cr(s) = U(ce(s)) gives cx'(s) = d¥(ce(s)).cz'(s) = dVU(ce(s)).We(ce(s)) = Wex(cr(s)). Thus cx”(s) =
(d*U(ce(s)).c2'(s)).c¢' (s) + d¥(ce(s)).c2" (s) = dibe«(cr(s)).cF'(s), hence (6.24). un

6.5.3 Pull-back of a vector field
Z/{]-' - F

pr — Wr(pr)
push-forward by ¥~!, i.e. is the vector field on I defined by

Definition 6.11 If wr : { } is a vector field on Ur, then its pull-back by W is the

U — FE
Uiy — - - tton _ . (6.25)
e = | W () = AV (pr) i (o) | @ (), when pr = ().
In other words,
Uy = (AU agz) o U VN 5, (6.26)
And we immediately get
U*oW, =1 and PY,oU¥*" =1, (6.27)

because U* (W, 0 ) (pe) = d¥ 1 (pr). Vb (pr) = dV 1 (pr).dV (pe) . We (pe) = We (pe). Idem for W, o U*,
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49 6.6. Quantification with bases

6.6 Quantification with bases
6.6.1 Usual result
(@) is a Cartesian basis in E, Oz and (b;) are an origin in F and a Cartesian basis in F, pe € U,
n 1 ()
pr=U(E) = Or + > i) b, ie. OrpFlg=| : |- (6.28)
=t n (pe)

And d¥(pe).() = Zl(d@bz(%)())gu ie. dU(pe).Wg = Zi(d@/}i(pg).w'E)gi for all wr € E. Thus, if &g is
a vector field in U and We = Y, w;d;, we get W,be(pr) = dV (pe).We(pe) = iy (v (pe)Be (pe)) b =

—

> j=1w; (pe) (dui(pe).a@) b = szzlg—f;(pg)wj (pe) b, so (matrix calculation)
(W.die (pr)] 5 = [d¥ (pe)] 7 5- (e (pe) ) jas (6.29)

where [dU(pe)] ; 5 = [dvbi(pe).d;] —written [g%(pg)] is the Jacobian matrix.

6.6.2 Example: Polar coordinate system

Example 6.12 Change of coordinate system interpreted as a push-forward: Paradigmatic example of
the polar coordinate system (model generalized for the parametrization of any manifold).
Parametric Cartesian vector space R x R ="1tten R2 — {7— (7 §)}, with its canonical basis (a1, da),

and ¢ = rd; + 0dy =" (1.0), s0 [qljz = (g) Geometric affine space R? (of positions), p € R?,

associated vector space R_é, O € R? (origin), ¥ = O_]>9, and a Euclidean basis (51, 52) in R2. The “polar

. : , @i xR CR? — R?
coordinate system” is the associated map ¥ : P defined by
q=(r,0) —7=¥(q) =Y(r0),
- o . a7 . ~ x =rcosf
Z=U(7):=rcos@b; +rsinfby, ie. [x]lgz (y_rsine)' (6.30)
R — R

s — Czi(s) = q+ sa; }7
and its tangent vector at ¢g,(s) is €z,'(s) = d; for all s. This line is transformed by ¥ into the curve

. R — R?
‘Ij*(Cq,z‘) —Uo Eq‘,i _written Czit . .
s —cgi(s) =¥(q+ sd;)

The i-th coordinate line at ¢'in ]RE (parametric space) is the straight line &, {

} (in particular ¢z ;(0) = Z). So

[Ocz.1(s ]“; = (%:j:z)) Z?ﬁg) (straight line), and [Ocza(s ]‘5 = (ZZ?E((ZE;) (circle), (6.31)

and the tangent vector at cz;(s) is cz/(s) ="'t G, (%) (push-forward by ¥), so

U(r+h,0) — U(r,0) 0T

14(Z) == V,a1 (%) = dV(§).d1 = lim W = }lllg%) - = E((T)’ 6.32)
S o (q+hdz) —V(q) .. Y(r,0+h)—V(r,0) OV ’
(o4 (Z) := U, da(Z) = dV(§).d2 = lim N = }lllg%) W = %(cf)
So . . . .
a1.(Z) = cosOby +sin by  and 2. (Z) = —rsin by + r cos Oby (6.33)

vectors at & = U(g), i.e.

an@ls=(Gnp) ad @l (). (634

sin 6 rcosf

The basis (@14(Z), da2« (Z)) is called the basis of the polar coordinate system at Z (it is orthogonal but not

orthonormal since ||@.(&)|| = r # 1 in general); And [d¥(q)] ; ; = 2 (@) = (15H @) [55@)) =

([51*(5)]|g [G2x (f)]‘g) = <z?§z ;2:190) is the Jacobian matrix of ¥ at ¢ considered at & = U(g).
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50 6.6. Quantification with bases

And the dual basis of the polar system basis (@1.(Z), d2.(Z)) is called (dgi(Z),dg2(Z)) (defined by
dq;(%).djs(T) = 6i), 8

1 1
dg1 (%) = cosOdxy +sinfdzy and dge(¥) = - sinfdx, + - cos 0 dxs, (6.35)

e. [dg: (% )]| = (cosf sind) and [dga (f)]‘g =—1(sinf cosf) (row matrices: rows of [d\I/(q")]IT;E) n

Remark 6.13 The components 'yfj(_') of the vector dd;.(Z).d;«(Z) € R? in the basis (@;x(¥)) are the
Christoffel symbols of the polar coordinate system (with duality notations as it is usually presented):

i (2).3 (F) = Y 75 (8) Gk (F). (6.36)
At & = U(q), with @;.(Z) = d¥(§).d;, i.e. (djx 0 ¥)(9) = a Y we get

8%V L & &
9 0q (d)zdai*(x).aj*(x), SO Yij = Vy4 (6.37)

A}, (7).8: (T) =

for all 4, j (symmetry of the bottom indices as soon as U is C?).

= ’731- And %%(CD =

—7r and ’}/%2 =0. m

Here for the polar coordinates, 2 o Y (7) = cosBby + sinfby gives %23'(6') = 0, thus 7}, = 7%, = 0,
and aea Y () = —sinfb; + 0089b2 = 1d5,.(7), thus 712 =0=13 and 7y}, = 1

—rsinfby + 7 cos Oby gives 892 V() = —rcosOby — rsinOby = —ray. (&), thus v,

Remark 6.14 The (widely used) normalized polar coordinate basis (71 (%), 7i2(Z)) = (@14(F), +d2+(T))
is not holonomic, i.e. is not the basis of a coordinate system (and its use makes higher deriva-

tion formulas complicated). Indeed 7io(Z) = 22 (%) gives dita(Z).71(Z) = (d(2)(Z).711(Z))d2«(F) +
1dd,. ()71 (%), and 71 (F) = @1.() gives dnl( 7).72(Z) = dai.(Z )(% 1*), thus dria(Z).11 (%) —

dity(B).i5(F) = (d()(@).i(¥)d2e(F) # 0, since L = (22 + y*)72 gives d(3)(D).i(F) =
(—z(z2+92)"2 —y(a+y2) 7). Z?jz = L (—rcos?0 —rsin®0) = = £ 0. L

Remark 6.15 (Pay attention to the notations.) Let f : § € ]R?, — f(@) € R be C2. Call g its push-
forward by ¥, ie. g: 7 € R? — g(Z) = f(¢) € R when Z = ¥(3). So f(§) = (9o ¥)(3) and

& (@).3; = dg(V(@)-d¥().3; = dg(F).;. (). (6.38)
With df (¢).d; =" OL(q) and dg(7).b; ="t D2.(7) and @;.() = d¥(9).G; = 3, 5% (), we get
ﬂ _ 39 R @ wrltten 39 "

(0= 3 5 @55 @ E G @ (6.39)
. . T . . o N g mgnsﬁ . @ =\ means 8(90\11)
Mind this notation!! g is a function of Z, not of ¢, so ¢ (Z) o (q), i.e. e (Z) o0 ———=(J)...
which is [df (§)] = [dg(Z)].[dY(])... n
Remark 6.16 Then (with f and ¥ C?)
8551' _ meansaa(goqj) N
~(7) = (@) = d(dg.@s)(7).dV(q).d; = d(dg.ds)(T).dj- ()
y oy (6.40)
N = N = (= — S o = o written 629 —
= (A (). () o) + @) (0 (7)) " S 3,
So ,
89 2\ MEANS ;12 o o o o n@_,k_._._,
o " 9@ (00,8500 + 3 (Pl @), (6.41)

and Bg?q] (;v) is not reduced to d?g(Z)(a@;. (¥), @;«(Z)) (the Christoffel symbols have appeared), first order

derivatives W being still alive (contrary to %(f) = d2¢(Z)(b;, g]) with a Cartesian basis (b;)).

NB: The independent variables r and 6 don’t have the same dimension (a length and an angle): There
is no physical meaningful inner dot product in the parameter space R2 R xR ={(r,0)}, but this space
is very useful... (As in thermodynamics: No meaningful inner dot product in the (T, P) space.) oa
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51 7.1. Definition

7 Push-forward and pull-back of differential forms

Setting of § 6.1. The set of vector fields on U is called I'(lk).

7.1 Definition
U — E* = L(E;R)

pe — ag(pe)
ag(pe) is a linear form on E. Precisely: A differential form on U is a field of linear forms, i.e. a function

U — U x E*
Qg
e — (pe,oe(pe))

Definition 7.1 In short: A differential form on U is a function ag : , i.e. s.t.

} (looked at at the point pc). And

Q' (Ue) = the set of differentials forms. (7.1)

U —F

Consider a differential form ag € Q! (Ue) and a vector field g : R
e — We(pe)

} . The push-forward

by W of the scalar valued function

U —R

fe = ag.we : {pg — fg(pg) = (a’tﬁg)(pg) = Oég(PS)-YI}'E(PS)-
is, cf. (6.8) with pr = ¥(x),

VU, (ag.e)(pr) = (agle)(pe) = e (pe) - We (pe)
= ag(pe).dV(pe)™ " . dU(pe).De(pe) . (7.2)

—Written g e (pr) =wes(pF)

And U1 (W (pe)) = pe gives dU Y (pr).d¥(pe) = I, i.e. d¥(pe)~t = dVU ! (pr). Hence (compatibility):

Definition 7.2 The push-forward of a differential form ag € Q' (lf) is the differential form in Q! (Ur),
when pr = U(zs),

Ur — F* = L(F;R)

QL (Ur). _
pr o= ’ V.oe(pr) = as(Ps).dW*l(pf)‘ €V (Ur) (7.3)

(If you prefer, W, ag(pr) = ae(pe).d¥(pe)~t.) (And U,ae =10 op when W is implicit.) In other
words, W,ag(pr) = ag (P (pr))-d¥ " (pF), Le.

U,ag := (ag o U™ H.d0~ 1 (7.4)

(Warning: Once again, we used the same notation U, as for the push-forward of vector fields and
functions: The context removes ambiguities.)

Hence, for all @r : Ur — R", when pr = U(pe) and @ = We, (pr) = d¥ (pe).de (pe),

((agie)«(pr) =) ass(pr)Wex(pr) = ae(pe) We(pe) (= (as.de)(pe)), (7.5)
or
(Viae)(pr)dir(pr) = as(pe). (Vadir) (pe)- (7.6)
In particular if ag = df (exact differential form) where f € C!(Ue;R), then
d(V.f) = V. (df). (7.7)

(This commutativity result is very particular to the case a@ = df: In general d(V,.T) # U,(dT) for a
tensor of order > 2, see e.g. (8.20)).

Remark 7.3 We cannot always see a vector field (e.g. we can’t see an internal force field): To “see” it we
need to measure it with a well defined tool, the tool being here a differential form; And the definition 7.2
is a compatbility definition so that we can recover the push-forward of the vector field. .
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52 7.2. Incompatibility: Riesz representation and push-forward

Definition 7.4 The pull-back of a differential form aF € Q(Ur) is, with pr = ¥(pe), the differential
form

— L(E;R
U ar : % i ) € QN Ue). (7.8)
pe — Var(pe) == aF(pr)-d¥(p)
In other words,

U*ar := (aF o ¥).d¥. (7.9)

(For an alternative definition, see remark 7.5.)

And we have

U*oW, =] and VY,oU*=1. (7.10)

Indeed ¥* (U, ag)(pe) = Viae(pr).d¥(pe) = ag(pe).dV 1 (pr).d¥(pe) = ag(pe). Idem for ¥, o U* = .

Remark 7.5 The pull-back ar* can also be defined thanks to the natural canonical isomorphism

L(E;F) = L(F;E") | . . . .
given by L*(ﬁp)uE = ép(LuE) for all (UEHEF) S EXF*, and L*(KF) = EFL

L - L*
is called the pull-back of ¢p by L. In particular with {p = ar(pr) and L = d¥(p) we get
d¥(pe)*(ar(pr)) = ar(pr).d¥(pe), ie. (7.8). v

7.2 Incompatibility: Riesz representation and push-forward

A push-forward is independent of any inner dot product: It is objective. Subjectivity: Here we introduce
inner dot products (-,-), in £ and (-, ), in F, e.g. Euclidean dot products in I@Z) and R (foot? metre?),
because some can’t begin with their beloved Euclidean dot products.

Let ag € Q' (L) and call 87 := U, a¢ its push-forward by U:

Br(pr) = ag(pe).d¥(pe)~" when pr = U(p). (7.11)

Then call d4(pe) € E and b (pF) € F the (-, -)g and (-, -)n-Riesz representation vectors of ag and Sr: For
all @g € I'(Ue) and all Wr € T'(Ur),

ag. i = (L_L'g,’ljg)g and [r.dr = (Eh,u?;)h. (7.12)
This defines the vector fields @, € I'(L) and by, € T'(Ur).

Proposition 7.6 Although fr = V.ag, we have by # W.d, in general: Indeed we have

bn(pF) = AW (pe) ™" iy (pe)

# d¥(pe).dg(pe) in general (7.13)

(unless d¥(pe)~1 = dV(pe), i.e. dV(pe)T.d¥(pe)~! =1, i.e. unless ¥ is “a rigid body motion”).

So the Riesz representation vector of the push-forwarded linear form is not the push-forwarded rep-
resentation vector of the linear form push-forwarded.

This is not a surprise: A push-forward is independent of any inner dot product, while a Riesz repre-
sentation vector depends on a chosen inner dot product.

So, as long as possible (i.e. not before you need to quantify), you should avoid using a Riesz repre-
sentation vector, i.e. you should use the original (the qualitative differential form) and delay the use of a
representative (quantification with which dot product?) as late as possible.

Proof. Recall cf. (A.47): The transposed of the linear map d¥(pc) € L(E; F) relative to (-,-), and (-, )y
is the linear map d\I/(pg)Z;h € L(F; E) defined by, for all @g € E and Wr € F vectors at pc and pr,
(d¥ (pe) jp W, g ) g = (Wr, AV (pe). e )p- (7.14)

If (-,-)q4 and (-, -);, is imposed to all observers, then d\I/(pg)Zh =written g (5 )7, Tt is the case here. (7.12)
gives, with pr = U(pe),

(dg(pe), ie)g = ae(pe)de = (Br(pr).d¥(pe)).de = Br(pF). (AP (pe).de)
= (bn(pr), d¥ (pe)-tie)n = (A9 (pe)" by (pr), iie)g,

true for all dg, thus dy(p) = AW (pe)T by, (pr), thus (7.13). ia

(7.15)
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53 8.1. Push-forward and pull-back of order 1 tensors

8 Push-forward and pull-back of tensors
To lighten the presentation, we only deal with order 1 and 2 tensors. Similar approach for any tensor.

8.1 Push-forward and pull-back of order 1 tensors

Proposition 8.1 If T is either a vector field or a differential form, then its push-forward satisfies, for
all ¢ vector field or differential form (when required) in Ur,

(U, T)(€&) =T(V*), written U, T(.)=T(¥"), (8.1)
ie (U.T)(pr).&(pr) = T(pe). U*E(pe) when pr = Y(pe). Similarly:
(T (&) =T(V.8), written U*T()=T(¥,.), (8.2)

ie. (W) (pe)&(pe) = T(pr)-Vul(pr) when pr = V(pe).

Proof. e Case T = ag € Q(U) (differential form = () tensor), then here f = uwr € T'(Ur)
and we have to check: (V.ag)(pr)Wr(pr) = as(pe). V*ir(pe), ie. (ag(pe).dV—t(pe))br(pr) =

ag(pe).(d¥ 1 (pe) B (pr)): True.
o Case T = wg € I'(Ue) (vector field ~ a () tensor), then here ¢ = ar € Q'(Ur) we have to
check: (U,dg)(pr).ar(pr) = We(ps).¥*(ar)(pe), where we implicitly use to the natural canonical iso-
E — E*

o written
w —w =

%f(?f)(‘ll*ﬁs)(m) = U (o) (pe) e (pe), ie. aF(pr).(d¥(pe)-de(pe)) = (oF(pr).d¥(pe)™").de)(pe) -
rue.

For (8.2), use ¥~ ! instead of W. ..

morphism J : _'} defined by w(¢) = £.ad for all £ € E*. So we have to check:
W

8.2 Push-forward and pull-back of order 2 tensors

Definition 8.2 Let T be an order 2 tensor in . Its push-forward by W is the order 2 tensor W, T in Ur
defined by, for all &1, & vector field or differential form (when required) in Ur,

VT (&1, €2) = T(V&, W7Ep)  written  W.T(,-) = T (W™, U™), (8.3)

Le. W, T (pr)(&1(pF), S2(pF)) := T(pe) (&1 (pe), ¥ E2(pe)) when pr = U(pe).
Let T be an order 2 tensor in Ur. Its pull-back by ¥ is the order 2 tensor *T in U4 defined by, for

all &1, & vector field or differential form (when required) in U,
U*T(&1,&2) =T (Vi&1, Ui&o) written U*T(-,.) :=T (U, U,.), (8.4)

Le., W*T(pe)(&1(e), &2(pe)) = T(pr) (V&1 (pF), Vi2(pF)) when pr = U(pe).
Example 8.3 If T € T9(U) (e.g., a metric) then, for all vector fields @y, Wa in Ur,

T, (@, @) & T(@,*, @) = T(d\I/_l.wl,d\IJ_l.u?Q), (8.5)
L., T () (1 (1), 0 (p)) = T(pe) (AU (1)1 (pe), AU ()T (pr)) when pr = W(pe).
B Expressmn with bases (@;) in E and (b;) in _f?*' In short we have (Ty);; = T.(bi,b;) = T(b;*,b;*) =
BT b5 = (5[], T)- [T (@], 15 [b]15) = (@], T.1T]ja.[d¥] 5)s;, thus
T.)5 = [d\ml T ] (8.6)

which means (9.7) ()5 = (@) ) " AT (0¥ (e )" when pr = W),
Particular case of an elementary tensor T' = a1 ® ag € Ty (U ), where aq, as € QY (Ue), so T (i1, iiz) =
(Oél X 042)(171,172) = (051.7._[1)(0[2 UQ) For all wl,’UJQ S F(Z/[}‘)

L L\ (83 iy (76 - .
(a1 ® ). (1, @) "= (@1 © o) (@, @) = (a0 (2.@) = (Qrs-) (ae-i), (8.7)
thus
(1 ® @)y = Q14 @ Q24 (8.8)
(And any tensor is a finite sum of elementary tensors.) un
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54 8.3. Push-forward and pull-back of endomorphisms

And for the pull-back: For all vector fields 1, 4o in U,

T (i, i) = T(dr,lizy) = T(dW. iy, dV.id). (8.9)

Thus
P,oU*=] and VY oW, =1. (8.10)

Indeed (W, o U*)(¢) = € and (U* o U,)(&) = & give (W, o U*)(T)(&1,&2) = W (VUH(T))(&, &) =G
U*(T)(U*Ep, U Ey) =89 T(W, U ¢, U, . U*E) = T(&,&). Idem with U* o .

Example 8.4 If T € T} (U ) then for all vector fields @ € I'(Ur) and differential forms 8 € Q! (Ur),
T.(B8,%) = T(B*,@*) = T(B.d¥, d¥ " .7), (8.11)

i.e., Tu(pr)(B(pr), w(pr)) = T () (B(pr).d¥ (pe), AV (pr).w(pr)) when pr =V (pe).
For the elementary tensor T = @ ® a € T{(Ue), made of the vector field @ € T'(l) and of the
differential form o € Q! (U): For all 8,w € Q' (Ur) x T'(Ur), in short,

(i ). (8,0) (@ 0 )57, @) = (@87 (0.0") =@ B)0nd) = (@ ©a)(B,5), (812
thus
(TR a)s = Uy @ y. (8.13)
Expression_‘ with bases (@) in E and (b;) in F: In short we have (Ty)i; = T*(bi,l;j) =
T(U(b'), U (b;)) = (¥ (6))[T].[97(5,)] = [b')-[AW].[T).[d% ). [b5] = ([dP).[T].[4¥ "))y, thus
[L.]5 = 4] 5 7] o [d0) (8.4
which means [(\P*T)(p]:)]lg = [d\Il(pg)]‘a,g.[T(pg)]‘d.[d\I/(pg)]l_a’lg when pr = U(pe). -

8.3 Push-forward and pull-back of endomorphisms
We have the natural canonical isomorphism

- {L(E;E) — L(E*, E;R) 5.15)

L - T, =J(L) where Tp(a,d):=a.Lid, VY(a@) e€FE" XxE.
Thus W, Ty (m, @) = T (U m, U @) = (*m).L.(V*&F) = m.dV.L.dU " 15, thus:

Definition 8.5 The push-forward by ¥ of a field of endomorphisms L on lf is the field of endomorphisms
U, L = L, on Ur defined by

U.L=|L, =dV.L.dv""
ie., L(pr) = d¥(pe).L(pe).d¥ ' (pr) when pr = ¥(pe).

(8.16)

Thus with bases we get [L*]“; = [dV] . 7 [L]ja- [d®] !

| “as in (8.14)".

|~7

So Ty, = @ ® « and L.iiy = (a.tip)i for all @y € T'(Ue)). Thus L.l = d¥.L.dVLady = dV.L.ady*

Example 8.6 Elementary field of endomorphisms L = (J2) (7 ® «), where i € T'(E ) and « € QY(E):
(2" )dV. G = (cvai2) s for all @y € T(E), thus (Tr). — @ ® a..

Definition 8.7 Let L be a field of endomorphisms on Ur. Its pull-back by ¥ is the field of endomorphisms
U*[L = L* on U defined by

VL =L =
Le., L*(pe) = dU~ " (pF).L(pF).d¥(pe) when pr = ¥ (pe).

(8.17)

8.4 Derivatives of vector fields

@ € T'(Ue) is a C* vector field in Us), pe € Ue, so dii : Ue — L(E;E) (given by dii(pe).w(pe) =
limp_s0 “(”g+hw(}‘f))_”(pg) for all @ € T'(Ue)). Thus its push-forward:

((dit)x =) V,(dit) = dV.di.dV ! (8.18)
e. (did).(pr) = d¥(pe).di(pe).d¥(pe) " when pr = ¥(pe).
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8.5 VU,(du) # d(¥.u) in general: No commutativity

Here @ is C?, @ € T(Ue), pr € U, pr = W(zx), 50 o) = A (i) i(ge) = (A (" (). (AT (pr)),
and, for all @ € T'(Ur),

(0. @)(pr) w(pr) = (d*V(pe)-(d0 ™" (pr)- @ (pF))) dlpe) + ¥ (pe).-di(pe).dV " (pF)-G(pF),  (8.19)
with W, (dit)(pr) = d¥(pe).dii(pe).dV 1 (pF), thus, in short,
d(V @) .0 = W, (dit) & + d*V(V*0, @) # V,(dif) in general. (8.20)

So the differentiation d and the push-forward ., do not commute, unless V¥ is affine.

8.6 Derivative of differential forms

Let a € Q' (k) (a differential form on ). Its derivative da : Ue — L(E; E*) is given by da(pe).u(pe) =
liny, o 2P —ale) ¢ g for all @ € D(l), ie., for all @y, @2 € D(Ue),

(dod(ge) i (pe)) il () = lim 2T PTLPE))-To(pe) — (o)1 (pe)) Walre) - (8.21)

h—0 h

With the natural canonical isomorphism L(E; E*) ~ L(E, E;R), cf. (U.17) with E** ~ E, we can write
da(pe) (@1 (pe)) o (pe) = dev(pe) (@ (pe ), o (pe ), e

da(ﬁl).ﬁg = dOé(’lIh 172) (822)
Thus the push-forward W, (do) =""ite0 (dq), of da, is given by, for all @y, W, € I'(Ur), in short,
(dov) (W1, Wa) = da(dT, W), (8:23)

)13( ) Wa(pr) = (dolpe e)-dV (pr). @1 (pF))-d ™ (pr) o (pr).

i.e., with pr = ¥(pe), (da).(pr
Wo) = d? f(dP ™y, AV by) (= & f (i}, @3)).

)«
In particular, (d?f). (0

(P

8.7 V,.(da)# d(V.«) in general: No commutativity

Here W is C?, @ € T'(Ue), pe € U and pr = VY(pe). We have V.a(pr) = a(p).dV i (pr) =
a(U=L(pr)). d\I' Y(pr), thus, for all @, € T'(Ur),

d(v.a) (pr)- 1 (pr) = (da(pe)-dV ™" (pr) w1 (pF)).dY ™ (pF) + alpe).d* 0~ (pF) 01 (pr) € F*,  (8.24)
thus, for all @y, ws € T'(Ur), in short
d(1h, ) (W, We) = da(d¥ ™ by, U 4y 4+ a.d* U (), Wy) # da(w;, W) in general. (8.25)

So the differentiation d and the push-forward , do not commute, unless ¥ is affine.

55



56

Part 111
Lie derivative

9 Lie derivative

9.0 Purpose and first results
9.0.1 Purpose?

Cauchy’s approach may be insufficient, e.g.:

e Cauchy’s approach: - Needs to compare two vectors deformed by a motion, thanks to a Euclidean
dot product (-,-), and the deformation gradient F. It uses the Cauchy deformation tensor C = FT.F
obtained by comparing (@, W), and (., w,), where i, = F.i and W, = F.i0 are the deformed vectors by
the motion (the push-forwards): We have (i, %), — (@, W), = (FT.F — I).ii,),. It is a quantitative
approach (needs a chosen Euclidean dot product; built with foot, metre...).

- It is a first order method (dedicated to linear material): Only the first order Taylor expansion of the
motion is used: Only d® = F is used (the “slope”), not d*® = dF (the “curvature”) or higher derivatives.
Remark: The use of FT is an obstacle to get simple second (or higher) order methods.

While:

e Lie’s derivative approach: - uses Lz of a vector field ¥ measures the resistance of one vector field
i submitted to a motion.

- It can “naturally” used to get non-linear materials thanks to second order Lie derivatives which uses
the second order Taylor expansion of the motion (no F7T).

- It is qualitative. So no Euclidean dot product are required to begin with. (Be reassured: The
quantification in a Galilean Euclidean framework for the first order approximation will give the usual
results of Cauchy’s approach.)

- In a non planar surface S, you need the Lie derivative if you want to derive along a trajectory.

(Cauchy died in 1857, and Lie was born in 1842.)

9.0.2 Basic results

In R? or R3. With ¥ the Eulerian velocity of the motion:
The Lie derivative Lz f of a Eulerian scalar valued function f is the material derivative

Dy
Lsf = —. 9.1
=2 91)
The Lie derivative Lz of a Eulerian vector field « is more than just the material derivative %f’:
Dii
Lo = ?‘: — i, (9.2)

the —dv.w term telling that the spatial variations dv of ¥ act on the evolution of the stress.
(9.1)-(9.2) enable to define the Lie derivatives of tensors of any type and order (consistency results).

9.1 Definition
9.1.1 Issue (ubiquity gift)...

The motion ® : [t1,t2] x Obj — R™ is supposed to be Ct, #(t,p(t)) = %(f,PObj) is the Eulerian velocity

at t at p(t) = ®(t, Ry). Recall: If &ul is a Eulerian function then its material time derivative is

Déul Eul(r,p(1)) — Eul(t,p(t)) m Eul(t+h, p(t+h)) — Eul(t,p(t))

i (w0 = iy SRR h o9

Issue: The difference &ul(r,p(7)) — Eul(t, p(t)) requires the time and space ubiquity gift to be computed
(two distinct times ¢ and 7 and positions p(t) and p(7)).

56



57 9.1. Definition

9.1.2 ... circumvented

To compare Eul(T,p(7)) and Eul(t, p(t)) along a trajectory, you need the duration h = 7—t to get from ¢
to 7 and to move from p(¢) to p(7). So, for a Ry, you must:
o At t at p; = ®p, (1), take the value &ul(t,p;) with you (for memory),

e move along the trajectory <I>1%,7 from (t,p; to (7,p;); Doing so the value &ul(t,p;) (you carry with
you) has been transported (forwarded by the flow), so has become

(®L),Euly) (p(7)) " gui,, (1, p(r))  (push-forward by the flow). (9.4)

e Now that you are at (7,p(7)), you can compare the actual value &ul(r,p(7)) with the value
Euly(T,p(7)) you arrived with (the transported memory) see fig. 9.1, and the difference

Eul(T,p(1)) — Eulyi (T, p(7)) (9.5)
is meaningful for a human being because no gift of ubiquity required. This gives an initial definition:

Eul(t,p(1)) — Eulys (1, p(7)) .

Lz&ul(t,pr) = llir% p— (9.6)
E.g. with &ul = W a vector field,
O, (pr) — d®L(py).a8
Lot pr) = lim 2rPr) = A7 (pe) Bilpe) (9.7)
Tt T—1

But this definition has a draw-back: &ul(7,p(7)) and Euls. (7, p(7)) are in the tangent plane T},(,)€2;)
which varies with 7 (on a non planar surface). Thus we prefer one the the two following definitions.

Figure 9.1: (9.5) with &ul = & a (Eulerian) vector field. At ¢, let w; : py € Qy — u_)’t(pt) = w(t,p) € R,
and consider its integral (spatial) curve ¢; : s = pr = c:(s) € Qy, i.e. s.t. ¢/ (s) = We(ce(s)). This curve
¢; is transported by ®! into the (spatial) curve ¢; = ¢ = ®L oy 1 s = pr = ®L(ci(s)) € Qr; And
e (8) = dPL(py).c/(s) = dPL(py). Wy (pr) = Wi (T, pr) is the tangent vector at ¢, at p, (push-forward).
And the difference W(7, p;) — Wi (7, p;) can be computed by a human being, i.e. without ubiquity gift.

9.1.3 First definition

The “natural” definition is given when you arrive with your memory:

e At 7 <t at p(1) = p; = p, (7), take the past value &ul(7,p(7)) (memory);

e Then consider the (virtual) value &ul,.(t,p(t)) which is the push-forward by the flow (deformed
with no resistance by the flow);

e Now, without any ubiquity gift, you can compare this value with the actual (real) value Eul(t, p;):

Definition 9.1 The Lie derivative Ly&ul of an Eulerian function &ul along @ is the Eulerian function
Lz&ul defined by, at t at p; = p,, (1),

present — memory transported

Euly(pe) — (2)").Euly_n(pe)

_ lim Euli(ps) — (PF)Eulr(ps) lim (Eul — Euli)(t,pt)
=’ t—rT1 Tt t—T1 '
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58 9.1. Definition

E.g. with &ul = w0 a vector field,

AC{;‘U_j(t,pt) — lim u_jt(pt) — d(I)Z(pT)'U_jT(pT). (99)

Tt t—T1

Remark 9.2 In classical mechanics (9.5) and (9.8) are equivalent. E.g. for vector fields, (9.9) gives

LoB(t,p) = lim,_y d@;(pT).d“(”*)’lf_ﬁg”f)*w*pf) = lim,,, d®] (p,). lim,_,, 2=l Telp) =0 ()
1. limT*)t wT(pT)_dfiipt)'wt(pt) = (97) un

Remark 9.3 Precise definition (as in (2.3)): With C = Usety 10 ([t1, t2] x€2) and (9.8), the Lie derivative
C -CxsS } )
i

of the Eulerian field of functions &ul :
(t7pt) — ((tvpt)7gUZ(tapt))

S C -CxS
L&l : - (9.10)
(tvpt) — ‘C’Ugul(typt) = ((t7pt)7£175ul(t7pt))
Shortened (lighened) notation: We write Lz&ul(t, p;) instead of Egé{u\l (t,pt)- .

9.1.4 Second (equivalent) definition

Differential geometry course: The Lie derivative is defined with pull-backs:

o At t+h at p(t+h) = ®(t+h, Ry;), take the value Eul(t+h, p(t+h));

e Go back in the past along the trajectory ® Ry, and consider the (virtual) value &ulf,, (t, p;) which is
the pull-back by the flow;

e Then compared it with &ul(t,p;) (no ubiquity gift required):

Definition 9.4 The Lie derivative of a Eulerian function &ul along a flow of Eulerian velocity ¢ is the
Eulerian function L£z&ul defined at (¢, p;) by

(®L)*Eul, (py) — Euly(py) (= lim (Eulyyy, — Eul)(t,pr)

Lz&ul(t,pr) = llglt P h—0 h

). (9.11)

In other words, let
g(r) = (27)" Eul(pr) (9.12)

(function defined along a trajectory which satisfies g(t) = &ul;(p¢)). Then Lz&ul is defined by

9(7) = g(t) written (®7)*Eul-(p:)

N T
Lz&ul(t,pr) :=¢'(t) (= ll%mt p— I |r=t)' (9.13)
E.g. with &ul = W a vector field,
d®t (p,)~Lab, (pr) — W,
Ly0(t,py) = lim o) Gr (pr) wt(pt). (9.14)
Tt T—1

Proposition 9.5 (9.8) and (9.11) are equivalent.

Proof. 1- Vector fields. From (9.9): S =d®i®r).0r(pr) _ d2{(pr).0r () —e(pe) d<I>tT(pT).wT(pT)_d(bi(p‘)‘wt(pt),

t—T T—1 T—1
because p; = ®] (p,) = 7 (PL(p;)) gives I = dP] (p,).d®L(p;). And “Product of limits = limit of prod-
W (pt) —dP{ (pr) Wr (pr Br (pr) —dPE (pr) T (pr)

) — I.lim,

ucts”, thus lim,_;

t—1 T—t )
From (9.14): “P=@) “Telpr)0e®) — gt (p,) 1 Trr)=dPepe) Welre) | Phyg Jim, _,, 0= 00 0r) “elre)
Ilim, _,; Zr@)=02= )00 - game result. Thus (9.9) < (9.14).
2- Similar for any tensor: (9.8) and (9.11) are equivalent. wa
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59 9.2. Lie derivative of a scalar function

9.2 Lie derivative of a scalar function
Let f be a C'! Eulerian scalar valued function. With (®!="), f,_,(p;) =10 f,_,(p(t—h)), (9.8) gives

L: f(t pt) — }ILIE% f(tapt) - f(}tl_hap(t_h))’ g{ g{

+ df.v. (9.15)

ie. |Lzf=

So, for scalar valued functions, the Lie derivative is the material derivative. (Full notations: Lzf(¢,p;) =
DLt p) = 9L (¢ df (t,pe).0(t
Dt( 1pt) at( vpt) + f( 7pt)‘v( 7pt)')

Proposition 9.6 L;f = 0 iff f is constant along any trajectory (at t at p; the real value = the memory
value), i.e. iff f(t,p(t)) = f(to, py,) when p(t) = ®*(t,py,) (i.e. iff f is unchanged along the flow):

Lsf =0 < V7€, T], (9L,)fi(p-) = f(t,p(t)) when p; = L (py). (9.16)

Proof. Let p(t) = ®(t, Ry) = p; for all ¢, so p(r) = (7, Ry;) = pr = D, (pr) = (T, py).
= If f, = (<I>§+h)*ft, then fr(pr) = fi(pe), thus lim,_; M =0,i.e. g{ =

=: If %{ = 0 then f(¢,p(t)) is a constant fupction on the traJectory t— <I)(t, Ry ), for any particle Ry,
so f(7,p(7)) = f(t,pe) when p(7) = @y, (pe), ie. f(7,pr) = (Rf)« felpr). o=

Proposition 9.7 If f is C? then (commutativity)

Ly(df) = d(Ls[). (9.17)
(Commutativity only true for scalar valued functions, see e.g. (9.22) and (9.57).)

Proof df is a C! thus d? f symmetric (Schwarz’ theorem) thus with a little advance see (9.52), £ (df) =
DU 4 gf.5= 290 4 2 f(3,.) +df.d7 and d(Lyf) = d(ZE +df.7) = 290 1 @2 f(5,.) + df.d7 give (9.17). 4

Exercice 9.8 Prove: Lz(Lzf) = D _ 9f +2d( )U+d2f(17; v) + df( +dv)

Dt — at2
Answer. See (2.32). .

9.3 Lie derivative of a vector field
9.3.1 Formula

Proposition 9.9 The motion is supposed C? and i is a C' (Eulerian) vector field. We have

ow
S = —— — A | = — di.i. 1
Lzw T dv.aw 5 + dw.v — dv.w (9.18)

So the Lie derivative is not reduced to the material derivative 2 o 2 U (unless d/ = 0, i.e. unless ¥ is uniform):
The spatial variations dv' of ' influences the rate of stress (e.g. U tries to bend & which is expected).

Proof. Let g(7) =12 ddt (p,) = .aii(7, p(7)). Thus thus @w(7, p(1)) = d®* (7, p;).g(7) and (9.13) gives
D 0(d*)

- — ' — . = dq)t . —/
D) == 20 ) i) rdvep). ) 0.19)
— " - ¢ N
P d Gy T B FHp)  Led(ra(r)
Thus 22(t, p,) = dvi(t, p;).@(t, pe) + I.L50(t, py), thus (9.18). .
Quantlﬁcatlon: Basis (€;), 0=}, vi€;, W = >, w;€j, dv.€; = 3, v;);€;, d.€; = 3, w;|;€;; Then
. 8wz - - R
Lz = Z wW;|jV;€; — Z Vi|jW; €5 (9.20)
i=1 i,j=1 i,j=1
So, with [-] := [],
Dw ow
] = =[— 0.0] — [dv].[d]). 21
o] = (0] e fa]| (= (2] + [ 2] — [d] ) (0.21)
(And [dw.v] = [dw].[].) Duality notations: Lyw =), dgz €+ 45 wlijvjé;- =2 v‘ijwjé'i.
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60 9.4. FEzamples

Proposition 9.10 For C? vector fields (no commutativity in general):

d(Ly0) = Lo(db) + d25(., ) (£ Ly(di) in general). (9.22)

Proof. d(Ly0) = d(ZZ + dw.v — dﬁu?) = d28 + d*0(., ¥) + db.dv — d*0(., @) — dv.dw. And dib being a
endomorphism, (9.66) gives Lz(dw) = gf) + d*@(., T) — dv.dib + db.dT # d(LyD). oa

9.3.2 Interpretation: Flow resistance measurement

Proposition 9.11 ®%® is regular motion and 10 is a vector field.
Lyl =0 <= Vtel(t,T], @ = (P°).th,. (9.23)

That is: 2% = di.1if < the actual vector w(t, p(t)) is equal to F}° (py, )Wy, (p1,) = Wi (. p(t)) the deformed

vector by the flow. See figure 9.1. So: The Lie derivative LzW vanishes iff & does not resist the flow (let
itself be deformed by the flow), i.e. iff W(t, p;) = Wiy« (¢, pe) for all t and all p; € 2.

Proof. We have L0 = 2% — di.1i and 25 ° (t,py,) = dii(t, p(t)).Fl(py,), cf. (3.33). Let p(t) = &% (py, ).

< Suppose d@i(t,p(t) = F“(t, pto) (to po)-  Then BF(tp(t) = 252(t,py)d(to, ) =

(dv(t,p(t)). Ft“(pto)) (FY (pg, )~ 1.117_(75 p(t))) = di(t,p(t)).w(t, p(t)), thus 2& — dv.w =0,ie Lzw=0
Lt p(t)) (pull-back); So wi(t, p(t)) = F*(t P

(

g/\ ||

= Suppose 2% = di.1i. Let E) (F{(p,)) )f(
and BE(t,p(t) = 25 (tpe)-f(0) + F(py).f' (¢
dv(t,p( )) (t p(t) + FP (pe,).f " (8) =P BT (¢, p(1))

thus f’(t) = 0 (because ®% is a diffeomorphism), thu

) t)
) = di(t,p(t)-F (p)-S(8) + FC (o) S (8) =
+ Fl(py,).f"(t) for all t; Thus F{°(p,).f'(t) = 0,
us f(t) = flto), i.e. @ = (®%),18,,, for all . oa

(t

9.3.3 Autonomous Lie derivative and Lie bracket

The Lie bracket of two vector fields ¢ and 0 is

- o ertten

[0, W] := dw.0 — dv.W L. (9.24)
And L% = [0, ] is called the autonomous Lie derivative of @ along . Thus

ow ow

- 7 a7 0,
5 + [0, 7] = e + L0 (9.25)

Lzw =

Remark: £%7 is generally used when @ et @ are stationary vector fields, thus does not concern objectivity:
A stationary vector field in a referential is not necessary stationary in another (moving) referential.

9.4 Examples
9.4.1 Lie Derivative of a vector field along itself
(9.18) gives

ov

LaT = 2. 9.26
U= (9.26)

In particular, if 7' is a stationary vector field then Ly = 0 (= [7,7]).

9.4.2 Lie derivative along a uniform flow
D ow

dv=0 = Lzu=— — 4+ dw 9.27
U U= (= 5 + dw.7). (9.27)

Here the flow is rectilinear (dv = 0): there is no curvature (of the flow) to influence the stress on .
Moreover, if w is stationary then Lzw = dw.v = directional derivative of « in the direction .

9.4.3 Lie derivative of a uniform vector field

ow
di=0 = L’w—a—de (9.28)
thus the stress on @ is due to the space variations of ¢. E.g. is @ is stationary then Lzw = —dv.0.
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61 9.4. FEzamples

9.4.4 1-D uniaxial stretch of an elastic material

e Motion. With X = (ﬁ lle € = [g%(t, X)]je = [0D"(t, P)]jz [Opthe, E>0,t>ty:
r=X+E(t—1t)X = X(1+&(t—t)). (9.29)
Lagrangian and Eulerian velocity V (¢, P) = £X = v(t,p) = mx, and dv(t,p) = m (indepen-
dent of p). And Az =x — X = £(t—1tp) X, restoring force f(t,z) = —kAX = —kf(t—t) X
e Deformation gradient (independent of P):
(4 (P)]je = [F° (P)]je = 1+ §(t—to) """ FP. (9.30)
Infinitesimal strain tensor (independent of P):
EP(P) = Ff* — I =¢&(t—tg) = €. (9.31)
e Stress density, linear elasticity (independent of p,):
[, (pe)]je = A = Aé(t—tg) """ g (9.32)

Cauchy stress vector T on a surface at p; (normal n:(p;) = +1 “on the right side”) (independent of p;):

[Ti(pe)]je = g, () = AE(t—to) "2 T, (9.33)

o Lie derivative (rate of stress) [LsT]|z =" £;T at (t,p) (independent of p;):

LoT(t,p) = (%f AT — dB Tt p) = A +0— m = X(1- = i(g:zo)) = +2(§_t0). (9.34)
o Work along a trajectory: W/*(P) = [y £ oI = [[(LaT0)(tp(t)dt = [* LaT(t,p(t).V(t, P)dt =
S 135(520) dt = XX log(1 +£(t1— ).

Energy: Ep () = [y_o [i" LaT.0(t,p(t)) dt dX = A5 log(1 + £(t1—1o)).
9.4.5 2-D uniaxial stretch of an elastic material
e Strain. With [W]w: [X)je = (?) with € > 0, t > o, p(t) = @ (t, P) and [Z TS

[]je = (;j) -~ (;{) () ()0() - (5“*‘5“_%))). (9.35)

e Deformation gradient (independent of P):

Flo — ddlo(P) — (1 +O“t (1’) Sy g ((1) 8) where k1 = &(t—to). (9.36)
Infinitesimal strain tensor: F7 = F gives
e°(P)=F/ —I=rx{ <(1) 8) = ¢ (independent of P). (9.37)
e Stress, linear isotropic elasticity:
a,(pr) = ATr(gl)] + 2pugl® ()\—i(—)Qu 2\) =g (independent of p;). (9.38)

Cauchy stress vector T on a surface at p¢ with normal 7 (p;) = ( )

Ti(pe) = g, i”((/\ﬁg)m) = &(t—to) ( H?“ ) T,. (9.39)

e Push-forwards: T}, (ps,) = 0, thus Ft()+h(p,{)) T, (py,) = 0.

3l
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& &
e Eulerian velocity 9(t, p) = <3X) = <5+5(t t) ) do(t,p) = < 1+5(6—t0) 8) (independent of p).

e Lie derivative (rate of stress at (o, py,)):

Tt(pt) - Ftto (pto)'fto (Py,) o (AM-2u)nq
o (to, ) = Jim ra—s =& T ) (9.40)
Remark, generic computation with £;T = —|— dT. 7 — dv.T: (9.39) gives W( ) =¢ (()\+2M) n1> and
= L 5= 0 (A+2u)n A+2 :
dl' = 0 and dv,.T; = (1+€(6—t0) 0) L(t—1o) < )\52 1) 1+€Et totz) (( OM) 1>. In particular,
di(ty, py, )T (to, piy) = 0. Thus LT (ty, py,) = € <()\~;25 nl) rate of stress at (fy,py, ).
2
9.4.6 Simple shear of an elastic material
Fixed Euclidean basis (€1, €2) in R? at all time. Initial configuration Qto = [O L ] [0, LQ] Initial position:
W Opt0 = [X]s = (‘;5) —written ¥ - Position at t: p, = P [Op( —written g
Let £ € R*, and
_ 1 to
L, (=9t X)Y)\ ([ X+Lt—H)Y\ [(X+rY
Z= (yg02(t,X,Y) =y =y where K0 = £(t—tp). (9.41)
e Deformation gradient (not diagonalizable):
1 kY 0 1
d@?(P):(O ! ):Fgﬂ, thus F/° — T =kx° (0 0)' (9.42)
e Lagrangian velocity V,(p,) = (gY) =V (py,)- Thus dV,(p;,) = <8 g) =dv.
e Eulerian velocity: 7, = Vo A 0 €Y _ 4z
v: Te(pe) = Vit (o) = ( 7 ) = 0pe). Thus dv(pe) = { () = do.
o Infinitesimal strain tensor:
Flo(P)—I+ (FP(P)-DT &kl (0 1
o py — Lt t _ ke _ o
g (P)= 5 =511 o)=2" (9.43)
e Stress. Constitutive law, usual linear isotropic elasticity (requires a Euclidean dot product):
Ot pr) = ATe(e)T + 2ue’ = pto (V1) = g0 (9.44)
g \Lpe) = =t HE, = My 1 0 =g, :
Cauchy stress vector f(t,pt) (at t at p;) on a surface at p with normal 7i;(p) = <ZQ> = n:
T:(pt) = g?.ﬁ = pklo ( n1> = p&(t—to) ( n1> =T(t) (stressindependent of p;). (9.45)
o Lie derivative, with T;O =0:
S Ti(ps) — F (py,). T 2
LoT(ty,py) = th_{% t(pe) tt_(i’ﬂt,) to (Pty) = pué ( Zl> (rate of stress at (to, py,))- (9.46)

—

- n2 ~
G—T —dv.T. (9.45) gives W( ) = ,u{( > and dT' = 0 and

e Generic computation: LT =

+dT'.7
dv.T(ty) = 0. Thus LzT (o, py, ) —ué( )
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9.4.7 Shear flow
Stationary shear field, see (5.10) with a = 0 and # = 0 (or see (9.41) with £ = A):

vz, y) = My, 0 A
v(x,y) = dv(z,y) = . 9.47
() { v (x,y) =0, (@ y) (0 0> ( )
- 0 - .. . . . —Ab
Let w(t,p) = )= W(tg, pt,) (constant in time and uniform in space). Then Lzw = —dv.af = 0

measures “the resistance to deformation due to the flow”. See figure 9.2, the virtual vector w,(¢,p) =
d®(tg, ps, ). W(ty, pr,) being the vector that would have let itself be carried by the flow (the push-forward).

&
Py VG®R)

Figure 9.2: Shear flow, cf. (9.47), with @ constant and uniform. LzW measures the resistance to the
deformation.

9.4.8 Spin

Rotating flow: Continuing (5.13):

(e, y) = w (‘1) ‘01> (Z) dii(z,y) = w (‘1) _01) — w Rot(n/2). (9.48)

In particular d2¢ = 0. With @ = W, constant and uniform we get
Lyl = —di(p).Wo = —w Rot(n/2) a0y (L (‘g) = ). (9.49)
gives “the force at which w refuses to turn with the flow”.

9.4.9 Second order Lie derivative

Exercice 9.12 Let @, be C? and §(t) = (&
We have L@ (t, p(t)) =11 /(t). Prove Ly(Lyw)(t,p(t)) = §" (1), ie.:

D% D& D(d7
T gy 20 _ DY)

Lz(Lzw) = - —_— — dv.dv.w
(Lo®) = Do Dt pp e
0w ow ow ov 00U (9.50)
2d— .0 — 2dv d.— — d— .
I I i e T T
+ (dPW.9).0 4 dib.dv.T — 2dv.dib.T — (d*0.0).40 + dv.dv.ab
Answer. (s )
L D) . . DT _di@) D@
Li(LzwW) = ~Df dv.(LzwW) = o U (E dv.)
_ D*@  D(dv) DW D&, . ..
= Dt2 — Dt W — d E — d E —+ d'U dU w,
with (2.30)-(2.31)-(2.32). o
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64 9.5. Lie derivative of a differential form

9.5 Lie derivative of a differential form

When the Lie derivative of a vector field w cannot be obtained by direct measurements, you need to use
a “measuring device” (Germain: To know the weight of a suitcase you have to lift it: You use work).

Here the measuring device is a differential form a. With @ is a vector field f = a.¥ is a scalar function,
thus Ly(a.) =19 W = Do i+ 0. 28 thus

D Dw
Eg(a.zﬁ)—??w—l—ade—i—a?t:—ade (9.51)

—(Lya). @ =a. LW

Definition 9.13 The Lie derivative of a C' differential form « along ¥ is the differential form Lzo
defined by

Da Ja
o = —— .dv — K] .dv. .02
Lz Dt—i—ozdv 8t—|—dav—|—o¢dv, (9.52)
i.e., for all vector field 0,
D
Lol == ?‘;‘.w + a.diab = %‘z‘.w’ + (da.¥) 46 + o.dvb. (9.53)

This definition immediately gives (9.51) (i.e. (9.52) is a compatibility definition):

Corollary 9.14 Lj; satisfies the derivation property:

Eg(a’lﬁ) = ([:17(1)117+ Oé(ﬁg’tﬁ) (954)
Remark 9.15 Equivalent definitions: With (9.11), g(7) = (®.)*a-(p) = ar(p,).dPL(p) =
Of(T,p(T)).d(I)t(T, pt) and
_ t ) * _ . tx
Loaltpy) = g'(t) = tim L =90 _ ) (0)"ar(pe) = aulpe) wiitten d(Prar(pe)) g 5y
Tt T —1 T T—1 dr |r=t

Indeed g(7) = a(r, p(7)).d® (1, p;) gives ¢'(T) = %(T,p(T)).dCDtT (pe)+a(r,p(7)).dV* (7, p;), hence ¢/ (t) =
Dot p(t)).I + a(t,p(t)).dv(t, p,).I, and (9.52) is recovered. n

Exercice 9.16 Prove: If f is C? (so a = df is exact and C!), then

cotar) = 2D 4 iy, (9.56)
ie. Ly(df)ad @ + d(df.7).0 = 29 i (d(df).B).T + df.(dT.D), for all @.

Answer. d(df) = d2f is symmetrlc (Schwarz), (d(df).D).7 = (d(df).7).. Thus Lg(df).d =09 a(df) 0+
(d(df).0) a8 + df .5 =52 29D o5 4 (d(df).B).T + df.(dT.5) = 24 45 + d(df.T).F

Exercice 9.17 Prove: If « is C? then

Liz(da) # d(Lza) (no commutativity). (9.57)

Answer. d(Lya) = d(22 +da.+ a.dv) = 299 | a7+ a.di + da.dv + a.d*7.

And with a little advance see (9.71), Lyda = 22 + d*a.7 + da.dV + dv*.do. un
Quantification: Relative to a basis (€;) and with [-] := [] ¢,
Do .
[Lza] = [Dt] [a].[dv] = [ ] [da.v] + [@].[d0]  (row matrix). (9.58)
Thus
Oa ~

—.[0] + [da.?).[ W] + [o].[dD].[@]. (9.59)
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65 9.6. Incompatibility with Riesz representation vectors

Exercice 9.18 Prove (9.58) with components. And prove [da.7] = [§]T.[da]? (row matrix), thus
[da.).[w] = [0]T.[da] T[] = [@]T.[da].[0].

Answer. Basis (€;), dual basis (me;), thus (9.52) gives [Lza] = [22] 4 [a.dd]. Let a = Y, aimei,
T = > ,vi€i, dU = >, v;;€ ® me; (tensorial writing convenient for calculations), ie. [dU]jz = [vi;], thus
a.di =37, v Tej, thus [.di]|r, = [&]|x, .[dT]|e (row matrix). And da =37, @i jTei ® Tej, i.e. [da]x, = [l
gives da.V = 7,5 0|jvjTe; = D, ViQj|;Tej, and [do.v]|,, is a row matrix (da.v is a differential form), thus
[da.v]jx, = [ﬁ]‘e [dozh7re (Or compute (da.v).w = 37, a;)vwi = [w] [da]z.[V])e = [ﬂﬂ.[da]ﬁe.[w]‘g.) un

Exercice 9.19 Let « be a differential form, and let a;(p) := a(t, p). Prove, when ® is a diffeomorphism,
Lya=0 <<= Vtc|t,T], ay=(DP).ay,. (9.60)

Le.: 22 = —0.di <= au(pr) = auy (p1,)-F° (pr,) ™! for all ¢, when p, = @ (py,).

Answer. <: If au(p(t)) = oy (piy)-FL®(pio) ", then a(t,p(t)).F®(t,py) = ouy(pe), thus 22 (¢, pe). F (p,) +
at(pt).‘(’g—tto(mpw) = 0, thus 22(¢,p(1)).F° (py,) + ae(pe).dvi(t, p).F°(p,) = 0, thus Lza = 0, since @ is a
diffeomorphism.

=1 If B(t) = (D)) xcrg (P1y) = e (p())-F,° (py,) (pull-back at (fo, pyy)), then B(t) = alt, p(t))-F*(t,py), thus
B'(t) = B (t,p4)-F° (i) + ax(t, pr)-d(t, i) F° (i) = 0 (hypothesis Lyor = 0), thus B(t) = B(to) = ary (pry)- e

Exercice 9.20 ¥ and o being C?, prove:

82 3@ Oa 3* 8dv
+ (d*a.0).7 + do.(d0.7) + 2(do.¥).dT + a.(d*0.7) + (o.dv).dv.
Answer.
LolLaa) = L (%‘;) + Lo(dad) + L(ondp)

= ‘?;7 + d%‘j 7+ %‘; v + a(d;;'ﬁ) + d(de.D).7 + (do.¥).dv + 8((;.;{17) + d(0.d?).7 + (a.dF).d7
= %27 + d% T+ %‘t’ dv + %a. + da g;’ (d®.0).7 + da.(dv.T) + (da.7).dT

+ %—? dv + « agltv + (da.¥).dT + a.d*T.7 + (o.d?).dT
= %27 + 2d%§‘ + 2%—?.dﬁ+ da.% + (d*.0).7 + do.(d7.7) 4 2(do.7).dT + o %

+ a.(d*0.9) + (o.d7).dT.

9.6 Incompatibility with Riesz representation vectors

The Lie derivative has nothing to do with any inner dot product (the Lie derivative does not compare
two vectors, contrary to a Cauchy type approach).

Here we introduce a Euclidean dot product (-,-), and show that the Lie derivative of a linear form o
is not trivially deduced from the Lie derivative of a Riesz representation vector of « (which one?). (Same
issue as at § 7.2.)

Let a be a Eulerian differential form. So a(t,p) € R™* (linear form); Call @, (t,p) € R its (-, -),-Riesz
representation vector:

Vi, ol = (dg, W), (= dg e W), (9.62)

(The Eulerian vector field @, is not intrinsic to a: @, depends on the choice of (-,-), cf. (F.12)).

Proposition 9.21 For all v,w € @”,

Oa . 0Oda; i o Da _,  Da,
5= ( 5t W)y, (da.¥).d = (ddy.v,W),, D0 = ( D ,W)g. (9.63)
Thus
Lo = (Lydy, W), + (dg, (dv+dv").15),, thus ’ oW # (Lyldy, W)g ‘ in general. (9.64)

So Lyd, is not the Riesz representation vector of Lo (but for solid body motions). (Expected: A Lie
derivative is covariant objective, see § 11.4, and the use of an inner dot product ruins this objectivity.)
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66 9.7. Lie derivative of a tensor

Proof. A Euclidean dot product g(-,-) is constant and uniform, thus o.i = (@4, W), gives :

- 08 a8 = (% gy 1 (T, 20),, with .28 = (@, 20),, thus we are left with 22 . = (%s ),
for all w And
2 d(0.).7 = d(d, @)g.7 for all 7,3, thus (da.)0 + a.(di.5) = (diy.¥, @), + (dg, dii.7)g, with
a.(dw.v) = (c'ig, 16 ¥)g, thus we are left w1th (do.¥). W = (ddg.v, W),
Thus 2e. ”:(Dat,_’) )
Thus (Lza)ai = % G+ .dvd = (D @) )+ (g, do.D)y = (Do — 7.3y +d0.3,, @) g+ (dT7 .3y, @)y =
(Lyiy + dv.dg, W)y + (d] g, D), ua

Remark 9.22 Chorus: a “differential form” (measuring instrument, covariant) should not be confused
with a “vector field” (object to be measured, contravariant); Thus, the use of a dot product (which one?)
and the Riesz representation theorem should be restricted for computatlonal purposes, after an ob Jectlve
equation has been established. See also remark F.12. ==

9.7 Lie derivative of a tensor

The Lie derivative of any tensor of order > 2 is defined thanks to

Ly(T®S)=(LiT)®S+T®(LyS) (derivation formula). (9.65)

to y *
(Or direct definition: LT (tp, py,) = %ff)(%)‘t:tﬂ)-

9.7.1 Lie derivative of a mixed tensor

Let T,, € TL(Q), and T}, is called a mixed tensor; Its Lie derivative, called the Jaumann derivative, is

DT, . T, . .

LiT,, = —— —dv.T,, + T},.dv|= a— 4+ dTy,.U — d0. Ty, + Tp,.dU. (9.66)
Dt ot

Can be checked with an elementary tensor 7' = W ® a: we have d(WQ o). = (di.9) @ a + ¥ @ (de.T) and

(dUwW)®a = di.(We«), and W (a.d¥) = (WRa).dv , thus (9.65) gives Lz(W@a) = (L7W) a+wWR(Lza)

:%®a+(dw.6)®a—(dﬁ.w)®a+w®%‘;+w®(da.v)+w®( A7)
= 2080 | J(F @ a).F — dv.(F @ @) + (F ® a).dd.

Quantification. Relative to a basis (€;):

DT, oT,

The signs F are mixed because of the covariant and the contravariant constitution of T,,,. “Mixed” also

refers to the up and down positions of indices with duality notations: 1}, = szleijé} ® el

Exercice 9.23 Prove (9.67) with T,, = szleijé} ® el
Answer. dT,, =

A6 T = Y,

i o i k= i o i i = i - i k= i
T k€ Qe e, 0= v'e, di = i Ufjei ® €', thus dT,,.0 = > ijk T kv ® €,

i k> j ATy, BTJ u
T kU € ® €. And Sm o= > T e1®e n

ijk

v‘kT & ®el T AV =30

9.7.2 Lie derivative of a up-tensor

If L € L(E; F) (alinear map) then its adjoint L* € L(F*; E*) is defined by, cf. § A.13,

Vme F*, [L*m:=m.L] ie, Vm,de (F*xE), (L*.m).i=m.L.i. (9.68)

(There is no inner dot product involved here.) In particular, do™.m := m.dv.

Let T, € T3(S2), and T, is called a up tensor; Its Lie derivative, called the upper-convected (Maxwell)
derivative or the Oldroyd derivative, is

DTw | o,

LsT, = T, — T,.dv" | =
Dt ot

¥ — dv.T, — T,,.dv". (9.69)

Can be checked with an elementary tensor T'= @ ® @ and Lz(td @ W) = (Ly1) @ W+ U @ (LyW).
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Quantification. Relative to a basis (€;):

DT,
Dt

[£5Tu) = [5,"] = [d0).[T] = [T].[do]" (9.70)

n

“up” refers to the up positions of indices with duality notations: T, =Y

e Qe
ij=11€ @ €.

Exercice 9.24 With components, prove (9.69).

T, __ T - _ iJ . . kE = _ i > - i = 7 —x J o1 >
Answer. S = at €i®€), dTu =3, T/ 6i®E;®e”, U =3, v'€, dv =}, vj;&;®e’, dv" =}, v),e" @€,

ot 2]
thus dT.,.0 =) ke @el, dvT, = =ik vfkajé}- ® &, Ty dv* =3 T““vljkei ® €;. un

zgk ijk
9.7.3 Lie derivative of a down-tensor

Let T; € T9(Q), and Ty is called a down tensor; its Lie derivative, called the lower-convected Maxwell
derivative, is

DT, T,
LTy = Td + TydV + dv* Ty | = sz +dTy.7 + Ty.dv + di* T}, (9.71)

Can be checked with an elementary tensor T =4 ®@ m and Lz({ @ m) = (Lzl) @ m + £ & (Lym).

Quantification. Relative to a basis (€;):

DT,

[LyTa) = [ﬁ

|+ [Ty).[dd) + [do])T.[Ty). (9.72)

“down” refers to the down positions of indices with duality notations: Ty = Z? jleijei ®el.

Exercice 9.25 With components, prove (9.72).
8T,] i

Ty _
Answer. St =53, =

thus dTy.0 =), .

ijk

J e k= _ 13 A7 = i 2. e) dit = J ol 3.
e'®e’, dla =3, Tijine' @’ ®e", 0=}, v'€, dv =3, vj;&i®e’, dv™ =}, v];e' ®¢;,

k i — k i — | 1
Tm;cv et ®el, Ty.dv= Z”k Tipvjje’ @ €, dv*. Ty = Zijk viTkje’ ® €. T

Example 9.26 Let g = (-,-), € 79(f2) be a constant and uniform metric (e.g. a unique Euclidean dot
product at all ¢). Then % =0, thus Lzg = 0 + ¢.dv + dv*.g, thus [Lzg] = [g].[dV] + [dV]T.[g]. oa

67



68

Part IV
Velocity-addition formula

10 Change of referential and velocity-addition formula

f(t,z) will be written f;(x) when ¢ is fixed. M, is the space of n * 1 matrices (column matrices).

10.0 Issue and result (summary)
10.0.1 TIssue

Issue: The velocity-addition formula is usually written (classical mechanics)

—

U4 =Up + U, i.e. absolute velocity = (drive+relative) velocities, (10.1)

4 and @ being measured by an observer A in his referential R4 = (Oa, (4;)) and @ being measured by an
observer B in his referential Rp = (Op, (B;)). This “obvious” relation (10.1) is problematic (inconsistent)
in general, e.g. it caused the crash of the Mars climate orbiter probe. E.g.

e U4 and up are given relative to the basis ([fi), e.g. in foot/s, chosen by the “absolute” observer,

e Uiz is given relative to an another basis (B;), e.g. in metre/s, chosen by the “relative” observer;
Thus, in (10.1), s + 9p adds metre/s and foot/s... relative to different bases..., Absurd. (If you prefer,
U4 — Up = U with ¥4 — Up and U given in two different referentials.)

Issue: An explicit link is missing between R4 and Rp (the “obvious” implicit relation).

10.0.2 Summary: Absolute and relative motion...

An object Obj is made of particles Ry;. Its motion in “our classic affine Universe”, independent of the
observers, is _ _
D : (t, Rywj) € [t1,t2] x Obj — position p, = p(t) = ®(t, Ry;) € R™. (10.2)

At t at p, = O(t, Ry, ), the (Eulerian) velocities and accelerations are

9%

. b . 92D .
o(t,pt) = E(t’PObj) and J(t,p) = W(t’PObj) € R~ (10.3)
Two observers A and B quantify the motion in their referentials:
X . . N —_— .
Absolute motion: @4 : (¢, Roy) — Za(t) = Ga(t, By) = [0a®(t, PObj)]\x‘Y = Tt € My,
_ ; (10.4)
Relative motion: @p : (¢, POb_g) — Zp(t) = gp(t, POb]) = [OB(I’(th)bj)]‘g = Tpr € My,
TA1t IB1t
where @4 (t) = Tar = : and Zp(t) = Ty = : are the column matrices in M,,; defined by

_ xA:Lt _ IBnt .
Oa®(t, Ryy) = > jxainA; (for A) and Op®(t, Ryj) = Y. @paB; (for B). The absolute and relative
velocities and accelerations are (Eulerian type matrices)

Lo 0% S oy 0 @a .
Ua(t, Tar) == ——(t, Royj) = [U(t7pt)]|g> Ya(t, Tar) = —5- (¢, Boy) = [’Y(tapt)]‘g,
;ﬁ gj y (10.5)
Tt Tpe) = (6 Boy) = [0t p0] 3, Tt @) = 55 (8 Boy) = Bt 2], -
10.0.3 ... The translator © and the “good” velocity addition formula...
At t the translator ©; : M,;; — M, links the quantified positions by A and B:
Tap = @t(th) when @4 = @A(t, P)Ob]) and Zp; = @B(t, Po@) (10.6)
Which defines © : [t1, 2] x My — M,1 by O(t, 2p(t)) = Za(t), i.e.
| Gat, Ruy) = Ot @ (t, Boy) | (10.7)
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69 10.1. Absolute and relative referentials

Thus
[%) 00 . 0
Sr Ry = @ Ry) + dO( @t By)- Sl (LRy) . (108)
————

absolute velocity va(t,Za:)  drive velocity Up(t,Za¢) relative velocity translated for A: . (t, Za¢)

This is “the good velocity-addition formula 44 = ip + U« to be used by A™

’ Ua (t, fAt) = Ups (t, fAt) + ’UB*(t, fAt) ., where 173*(t, fAt) = d@(t, th).ﬁB (t, th), (10.9)

i.e. Absolute velocity = Drive velocity + Translated relative velocity.

10.0.4 ... and the “good” acceleration formula

(10.8) gives,
o 9’ 00, .
Ya(t, Zar) = —5 (¢, Tpe) + d(—) (¢, Toe)- Ut (Tne)
ot 8(d0) ot (10.10)
T (t, Zpe) + d°O(t, T1) . Ui (Tp:e)) .Ut (Tpe) + dO(t, Tpi) Ve (Tpe)

which is “the good acceleration-addition formula to be used by A™ At ¢ at Za; = O4(Zpt),

+(

|Tae =i +ct + i}y ie. (10.11)
Absolute acceleration = (Drive 4+ Coriolis + Translated relative) accelerations, (10.12)
where
29
Vpi(Zar) := (t Zpy) = drive acceleration,
VBt (Zar) := d +(Zt).¥B(Zp:) = relative acceleration translated for A, (10.13)
00

Yoi(Zar) = 2d——(t, Tp).Upe (Tpt) + d*O¢(Tpt) (Ut (Zp¢), Upt (Zp:)) = Coriolis acceleration

ot (t,
(in fact called the Coriolis acceleration when R4 is Galilean). And %(t,fm) = Up(t, ©(Zpt)) gives
d22(t,&p) = dip(t, £ar).dO:(Tp:). In classical mechanics: ©; is affine thus d?0©, = 0 and d22(t) =
d’UDt.d@t and

Coriolis acceleration: "’y’Ct(fAt) = 2dUpt. U« (Zat) ‘ (10.14)

10.1 Absolute and relative referentials

Classical mechanics: Time and space are decoupled, observers A and B use the same time unit and origin
(to simplify the notations).

e The “absolute” observer A chooses at ¢ four positions OAt, PA1t, PA2t, Pase in the Universe R™ s.t. the
bi-point, vectors Aqt = OAtpAzt make a Euclidean basis in R3. He has built at ¢ his absolute referential
Rar = (Oar, (Air)). And A is “static in his referential”, so he writes Ray = Ra = (Oa, (4;)).

E.g., at all ¢, Oy, is the position of the center of the Sun in the Universe, (fflt) = (Oatpair) is a
Euclidean basis fixed relative to stars and built with the foot.

e The “relative” observer B chooses at ¢ four positions OBt,pBu,pBgt, pp3t in the Universe R™ s.t. the
bi-point, vectors Blt := Opppiy make a Euclidean basis in R3. He has built at ¢ his relative referential
Re: = (O, (B lt)). And Rp; is seen as a “rigid object extended to infinity”. And B is “static in his
referential”, so he writes Rp: = Rp = (Op, (BZ))

E.g., at all ¢, Op; is the position of the center of the Earth in the Universe, (ézt) = (Optppit) is a
Euclidean basis fixed relative to the Earth and built with the metre.

1 0
. . = 0 = : . .
e M, is the vector space of n x 1 real column matrices. Ey1 = | . |, ..., E, = | * | make its canonical
0 1

—

basis (E;). So [Au] x = [Ai] z = Ei = [Bil 5 = [Bul 5 in Ms:.
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70 10.2. Motions of Obj and Rp in our classical Universe

10.2 Motions of Ob and Rp in our classical Universe

The motions are C?, Obj is an object made of particles Ry;, and Rp is (assimilated to) an object made
of particles Qg,. Their motions in the Universe are

~ [tl,tg] X Oly — R"
D ~ (10.15)
(t, Rw;) — p(t) = ®(t, Rw;) = p+ = position at ¢ of the particle Ry,
~ [tl,tg] X RB — R"
: N (10.16)
(t,Qrs) — q(t) = Pry(t, @ry) = q: = position at t of the particle Qr,.
The associated Eulerian velocities and accelerations [t1,ts] xR™ — R” are given by
. 0% B 20
’U(t7pt) = 7(1&7]30@') and 7(t7pt) YO (t PObJ) (10'17)
ot ot

. 0P ; 0%®
s (1,00 = 5 (1,Qr) and i, (100) = T (1, Q) (10.18)

10.3 Absolute and relative motions

10.3.1 Absolute and relative “motions” of Ol

(10.15) stored by A and B gives the “absolute” and “relative” motions of Obj (matrix valued)
[t1,t2]x O — My

Ba : B ; — ) (10.19)
(t, Boyy) — Za(t) =| Ga(t, Boy) := [Oa®(t, Boy)] 5 | = Zae,

[tl, t2] X Ob] — Mnl

@ : ) ; —— ) (10.20)
(t, Roy) — Zp(t) =|&(t, Roy) == [OpR(t, Boy)], 5 | = Tt

The associated Eulerian “absolute” and “relative” velocities and accelerations [t,ta] XM, — M, are
given by

L 03, . 0?

Ua(t, Zay) := %(t,Pabj) and  Ya(t, Zay) := BtﬁA (t, Ry ) (10.21)

oL ) R . 0?

Tt i) i= o (b Roy) and Ta(t, i) i= a;’;B (t, Boy)- (10.22)
Exercice 10.1 Prove: tj(t,Z4:) = [0(¢, pt)]‘ Up(t, Zpe) = [V (t,pt)hg

And a(t, Zat) = [Y(t, pe)] x and VB (t, Tpe) = [ (t,p)l 5

~ ~ ~ -_—
Answer. ﬁ(t,pt) = ?‘T(f(m R)l?]) = limp 0 ¢<t+h7%@27¢<t7%) = limp o 24, %@)@}ft-i-h, B)bj)

_ - Oad(t+h, 7 — [Oa®(t, ¥
And @a(t,Ry) = [Oa®(t,Ry)) z gives 9% (t, By) = limh—)()[ AP (t+ I?»J)MAh [Oa®(t Ry iz _

e ——
[P, ¢ = 150 o)) 1

limy, 0 = [U(¢, pt)], 7 as wanted. Idem for 44 and B. n
|A 7

Exercice 10.2 t is fixed, p € R" (point), Z4 := [O_A;)]VY € My, @ € CY(R";R") (vector field), and
ia(%a) = [U(p)) 5 Prove: [dil(p)] 5 = diia(Za), ice. diia(Ea).[] 5 = [dii(p)] z.[i] 5 for all & € R™.

Answer. p+hd € R" is stored by A as [OAp + hw] = [OAP]M + h[@_}]m = @ +_h[>u_1’]|g €
U A (Za+h[d a Opp+hd], 7)—14 O, -
Mo Thus dﬁA(fA)-[’Lﬁhg = limyo @A (Ta+h| ]h| i)~ @a(Fa) — limyo A([Oap ]‘,2) A([Oap]| 7) _

[@(p+h)], z—13(p)], 1

E = [limy, o ZEHD=IW) o = [dii(p) 5], 5 = dii(p)], 5[], 5, true for all w.

limp—o

Exercice 10.3 Call ); the transition matrix from (/th) to (ézt) at t. Prove T4y = [OAOBt]VT + Q:.7Bt.

Answer. The fYn and ézt are bipoint Vectors in the same vector space ]RT:3 cf. § 10.1, so it makes sense to speak of a
transition matrix. Change of basis formula: [OBtpt]‘A = Q. [OBtpthB, thus Za: = [OApt]‘g = [040gt +OBtpthA' =

[OAOBt]‘A [OBtpthA = [OAOBt]|A + Q. [OBtpt]|B [OAOBt]‘A + Q+.TBt. un
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71 10.4. The translator ©y

10.3.2 Drive and static “motions” of Rp

(10.16) stored by A and B gives the “absolute” and “relative” motions of R which are called the “drive”
and the “static” motions (matrix valued):

[t1,t2] X R — Mp1

@p - —— (10.23)
(t,Qrs) — b (t) = | Pp(t, Qry) = [OaPry (t, Qrs )] 5 | = Ut

Rp — M
@s —_— (10.24)
Qra — s =| Fs(Qrs) = [0, (¢, Qry)] 5 | = U5

(@5 is independent of ¢ since Qg, is fixed in Rp), and the associated Eulerian “drive” and “static” velocities
and accelerations [t1, ta] X My — Mp1:

p(t,ipt) = &'OD(t Qr,) and Fp(t,9pt) = 86t2 (t,Qry), (10.25)

Us(t, ) =0 and Fs(t, %) =0. (10.26)
Exercice 10.4 Why introduce g5 (static)?

~4>
Answer. You can’t confuse a particle Qg, with its stored position ¥ = Fs(Qry) = [OB%(t,QRB)hg = the

|

matrix stored by B. In particular the stored position by A at ¢ is gp: = [OaDr; (¢, QRB)]M # s in general. oh

10.4 The translator O,
10.4.1 Definition

Definition 10.5 At ¢, ©; : M,,; — M, is the inter-referential function from Rz to R4 which translates
(which links) the positions stored by B into the corresponding positions stored by A: For all Qr, € Rp,

&pt(Qrs) = O(Fs(Qry ), 1€ bt = O(Ys), (10.27)
—_—> —_—
Le. [Oa®r, (1, Qry)] 5 = O[O PR, (1, Qry)] 5)- SO

(o = 01065 | (10.28)

. Y1 Mp1 — My
@t = @Dt (e} gOS N o IRECIPN (1029)
Us — bt = O1(Us) = Ppe(Fg ~ (Us))-

In other words, at ¢, the translator ©; is defined such that the following diagram commutes:

i.e.

il = Ps(Qr, ) = the stored position of Qr, at t in Rp

¥s

Qr. € Ri o, (10.30)
&pi
It = Ppt(Qrs) = ©1(¥s) = the stored position of Qr, at ¢ in Ra4.
E.g., if Qo, is the particle in Rp which is at ¢ at Op; the origin chosen by B, i.e. s.t. Opg; = ‘iRB (t,Qog),

then
Upt = [0aOBt], 7 = ¢pi(Qos) = ©,(0) = the position of Qo, stored by A at t. (10.31)

E.g., for a particle Ry; € Obj which is at t at p, = <I>(t Ryj): With 4y = [OApt]‘g and Tp; = [OBpt]‘g
(positions as stored by A and B), we have Za; = ©4(Zp), i-e. Gar(For;) = O¢(Ppe(Fon;)). Thus

B =0ro o] (03

In other words: If QRB € Rp is the particle in Rp which is at ¢t at ¢; = p, then Zar = Fpi(Qrs) = Ubt
and Tp; = Js(Qrs) = Us, and gy = =(10.27) O+(s) gives Tay = O4(Tpe).
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79 10.4. The translator O

10.4.2 O, is affine in classical mechanics

Classical mechanics: Each observer can choose the same “time independent Euclidean basis at all points”.

Proposition 10.6 O, is affine at all t, i.e., for all {jso, 51 € My,1 and all u € R,

O ((1—u)Pso+u ifs1) = (1—u)O¢(gso) + u O (¥s1), (10.33)
ie.
O (Yso+u (Y51 —8s0)) = O (¥so) + u (O4(¥s1)—O¢(¥s0))- (10.34)
Le.
dO(tso) = d@t(ﬁ) written d®©; is independent of isq. (10.35)
So, with §pio = O¢(¥s0) and §pu = O(ifs1),
Ype1 = Ypto + dOy.(Ys1—Tso)- (10.36)

Le., at t, for all positions qo;, q1; € R (our affine Universe),
[QOtQIt]M‘ = d@r[thmt]‘g- (10.37)
Proof. Consider two particles Qpo, @1 € Rp. Their positions at ¢ are qo; = ‘T)Rgt(QBO)a G = S)RBt(QBl)

in R™. Consider the straight line
+(u) = qot + u Jorqii- (10.38)

=)

For all p € R?, pg;(u) = pdot + u Jorqi; = Pdo; + wpqi; — updot, thus

T

[0aq:(u] s = (1—u)[Oaqor) 5 + v [Oaqut], 1
4 |4 U Gith [Oaall (Wl x "E" 0:(10pa: () 5). (10.39)

[OBgi(u)] 5 = (1- )[OBQOt]|B +u OBQlt B>

thus
(1-u)04([Opa0r), ) + u©:([0part] 5) = ©4((1-0)[Opaor 5 +u [Oparr] ), (10.40)

thus (1-u)O(is0) + uO¢(is1) = Oi((1—u)iso + uys1) for all iso,9s1 € My, thus O, is affine.
Thus (10.36), thus thl — thO = d@t.(ﬂgl—y_:qo) when :ltho = ®t gg()) and :lthl = ®t<gSI) thus (1037)

with 275'0 = [OBth]‘é and g:gl = [OBC]M]‘B‘ which give jlth() = [OAQOt]\A and 7 Ypt1 = [OAQU]‘A m

|

10.4.3 The differential dO,: Push-forward

Definition 10.7 Let ¢p: = O+(gs) € M,1 and ws(gs) a vector at ¢ in My1. The push-forward @t (4p+)
of Iﬁs(gjg) by @t is

st (o) = A (G6)- s (), ie. si.([Oagr) 5) = 49u([Opar] 5) s ((Opai), ) (10.41)
for all ¢; € R3. (Recall: dO(¥s).ws(¥s) := limy_o 9t(§s+hﬁs(h@7s))—@t(375) ).
In particular when O, is affine:
(it (i) = O (G) |, L. s ((Ongr) 5) = dO1.05((08a1), 5)- (10.42)

10.4.4 Translated velocities for A

The translated relative velocities and accelerations at ¢ are the push-forwards of vz; and Yg; by ©y:
Ut (Zar) := dO(Zpt).Upi(¥p:) and  Ypux(Zar) 1= dOy(Z¢). Vi (ZB1) (10.43)
when Za; = ©¢(Zp:). In particular when ©; is affine:

ﬁBt* (fAt) = d@t‘fl_}'Bt (th) and ;);Bt* (fAt) = d@t~’73t (th). (1044)

72



73 10.5. Definition of ©

10.4.5 Translated basis for A: [Ejt]lg = d@t.[éjhﬁ = d@t-[f‘fjhg

= s

. . by A as: [BjthA’ = [OBthjt]‘A'v

Bj; = Oppgjy is stored . . Thus
by B as: [Bj] 5 = [Opps;il 5

10.37 =, —
U 40,(0). B 5 =

[Ejt]lA | gives “the basis (B;) of B as stored by A at t”. (10.45)

(With the push-forward notation: [B’jt]g = ([Ej]‘B)t*.) And [B}-]g = [/_fj]g (= Ej the j-th canonical
basis vector in M,,1), thus

-,

[Ejt]g = th(O).[z‘Tjhg . 50 dO;(0) is the transition matrix from (A4;) to (B;) for A, (10.46)
i.e. the j-th column of d©,(0) stores the components of Ejt in the basis (A4;) for A.

10.4.6 dO,T.dO, = \2I

Recall: (,) = ( )B (Euclidean framework).  A\%§;; = )\Q(B'm]_?jt)B — (B’it7§jt)A _
(B ”]|A[ ]521045 B ] .de,".de,B i3> thus
1
de,".do, = X’1, ie. dO, ' = Fd@ﬂ (10.47)

10.5 Definition of ©
10.5.1 Definition
Definition 10.8 The translator from B to A is the function © : [t1,t2] x M,,; — M,,1 defined with (10.29)
by O(t, %) := O+(s), i.e., for all Qr, € Rp and all ¢,
O(t, #s(Qrs)) = Pp(t, Qrs), e O(t, %) = ip(t) (10.48)
~—> %
when g5 = [OpPr, (t, Qr,)] 5 = #5(Qrs) and iip(t) = [OaPr, (t, Oy )] 7 = P (t: Qry)-
E.g., O(t,0) = [0405(t ;]IX gives at any t the components of Op(t) := Op; stored by A.

Remark 10.9 The translator © looks like a motion, but is not: A motion gives at ¢ the position of
one particle in one referential; While © connects two referentials: It connects at ¢ the stored “matrix
positions” of one particle by two observers: It is an “inter-referential” function. (It is a motion in M,

but not a motion of physical particles.) un

10.5.2 The “O-velocity” = the drive velocity
Definition 10.10 The “©-velocity” and “©-acceleration” vg, Yo : [t1,t2] X Mp1 — M, are defined by

00 0?0

vo(t; Ot 3s)) == - -(t,45) and Je(t, O(t 1)) = 55 (t, 45) (10.49)

. . . . R . 2 . . .
(Eulerian type), i.e. To(t, 9n(t)) == G2 (t, %) and o (t, 4b(t)) = G2 (¢, 7s) when gip(t) = O(t, 7).

* Up(t, ipt) = Vo(t,Upt), so -

® Ip(t,Ubt) = Ye(t,Ubt), Yo =

Proposition 10.11

(10.50)

Proof. 7p(t,Qr,) ="V O(t, & (Qr,)) gives %Lf( Qrs) = 57 (t,@(Qry)), Le. Tp(t, A (t, Qrs)) =
To(t,O(t, Fs(Qry)))s L-e. (10.50); when §ip(t) = Fn(t, Qry) = ( 5s(Qry))- Idem with 2.
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74 10.6. The velocity-addition formula

10.5.3 d%—? versus dip

9O (t,4s) =109 G5y (O4(3)) gives d92(t, %) = dipe(ipe)-dO:(fs) when §p; = ©O(s). And
Ut (Tar) = dO1(Zpt).Upt(Zpt) (translated velocity), thus
90, . .. . oL R . .
da(t,th).UBt(I’Bt) = dUDt(xAt)-UBt* (I’At) when TAt = Gt(th)- (1051)

In particular when ©; is affine, then dO©.(%) = d©; and d(%—?)(t,gjfg) 57 (t) is independent of s,
thus dip (7p) =102V d%(t).d@fl is independent of jp;, thus

ditpe(Ype) = dip;y  when ©, is affine, (10.52)
then, when Za; = O4(Zp:),
e, . L. S
da(t)-UBt(xBf) = dUDt.UBt*(JJAt). (1053)

10.6 The velocity-addition formula
(10.32) gives

Pal(t, Ioy) = O(t, Gp(t, Ior)). (10.54)
Thus 8 96 9
SEA(t, By) = (1, Gt Boy)) + dO(t, @t Boy))- 2 (1, Royy) (10.55)
ot ot ot
Ut (Zac) Q0005 (Fae) = O (Fme)- e (Te) " T (ar)

i.e. 6At(fAt) = ﬁDt(fAt) —+ gBt*(fAt),i.e.

’UAt = Up¢ + Upix | = the velocity-addition formula for A,

(10.56)
i.e.: absolute velocity = (drive + translated relative) velocities.
In particular when ©; is affine: For all py,
[0 (pe)]| 5 = [URa, (Pe)]| 5 + dOw[Te(pe)] 5 | (10.57)
10.7 Coriolis acceleration, and the acceleration-addition formula
(10.55) gives, when Za; = O4(Z5;),
0?3, 02 00 0B
—(t, ;) = —(t, 7 d—(t, Zpt).—— (t, Pop;
o2 ( ) Obj) 12 ( 7th)+ ot ( ath) ot ( ) Ob])
Fat(Zat) Yot (Zat)
a(doe) . o . . OF3 O N
+ ( ot (t, Zpe) +d Gt(th)«W(ta -POl)j))~W(t7 o) + d9t($3t)~w(t7 Fony)
VB« (Tat)
(10.58)
Thus, with the Coriolis acceleration at t at Z4; defined by
Yor(Zae) = 2dipy(Tar). Upex (Zar) + d*O¢(Tpe) (Ue (Tpe ), Tt (Tpe)) (10.59)
we get
Yat(Zar) = Tpi(Tar) + You(Zae) + T (Tar), (10.60)
i.e.
Yar = Ypt + Yot + YBes | = the acceleration-addition formula in Ry : (10.61)
absolute acceleration = (drive + Coriolis + translated relative) accelerations. (10.62)
Particular case ©; affine: d?©; = 0 and diip;(T'a;) =1052) g3, . thus at ¢,
For(@ar) = 2dipy Upes (Far),  and | Jor = 2diips Uy | (10.63)

74



75 10.8. With an initial time (Lagrangian variables)

10.8 With an initial time (Lagrangian variables)
Let #,t € R. Consider the Lagrangian associated function ®% with the motion ® of Obyj:
Q, —Q
ol . ~ L ~ (10.64)
=P (lo, Bonj) — pe = O (py,) == P, Boy)-

And, with Zay = @Ga(t, Ry) = [OApt]M‘ and T, = @Gp(t, Ruj) = [OBpt]|§7 define the “matrix motions”
(I)Zot : /\/Ln,l — ./\/L,Ll and (I)g)t : anl — anl by

O, (Fary) = Far (= [0a®(t, Roy)) 1 = [0a® (pi,)] 1 = Pae (Poy));
(10.65)
O, (Tp1,) = Tp (= [Op®(t, Boy)] 5 = (02 (p1,)], 5 = Poe(Roy))-

And O©4(Zpt) = Tay, i.e. O Bt(;vBto)) (I)At(xAto) with Zas, = Oy, (Zpt, ), thus

O 0 By, = DY, 0Oy, |+ Mut = M. (10.66)

In other words, the following diagram commutes:

Tpt, = P (to, L) T = P, (Tpi,) (10.67)

- to
y 5

Ry € Ol O4, O,

@Ato
(I>f0
Zat, = Pa(to, Ponj) = O (Taty) A By = N, (Tar,) = O(Tpe).

Thus, for any vector field @y, in Rp,

A0, (Tp:) - AR, (Tpe,)-Unt (They) = A}, (Zar,) -dOy, (Tt )- Uty (Tpr,) - (10.68)
—_——
(translation at t) (deformation from tp to t)  (deformation from ¢ to t) (translation at to)

Exercice 10.12 Redo the above steps with Rp instead of Obj.

Answer. Consider the Lagrangian associated function @&t with the motion &WB of Rp:

QRBto =R" — QRBt =R"
(I)E)Bt . _ o - (1069)
Gty = PRy (to, Qrg) — @t = Pppy (1) 1= Prs (£, Qrs ),
then define the “matrix motions” &9, : My,1 — My1 and @Y, : M,y — M, by
to (= — i _ & _ to — 3
{ O, (Fpr0) = Gor (= [OaBr (, Qs )] 5 = (04D, (P 5 = P0r (@ ), 070
8 () =B (= [OpPry (t, Qry )] 5 = (08, (410)) 5 = F5(Qry)),

Thus g@s is a time-shift, which is also abusively noted ®%, = I (algebraic identity). So with ©:(%) = Jp: we get
@t( (i) = (I)g)t(ﬂmo), with ¢¥pio = Oy (¥s), thus

(0,00l = @8, 004, |: Muy = M (10.71)

(also abusively written ©; = CI)tO 0 Oy). In other words, the following diagram commutes:

95 = Ps(Qry i = @ (Qry (10.72)
—» ®Y = time shift

QRBGRB

q>t0
yDtO = Bty (Qrys *> Yot = Gt (Qry P, (Fp10) = O (iks)-

And (10.71) gives, for any g5 = @s(Qry) and all vector field ds (static in Rp), with ¥ = Oy, (Us),
A0 (%) . dOQ(%k)ds(fk) = d®p, (Fpo) . dOy, (1s)-Tis (1fs) - (10.73)
~—— —_—— —_—— —_
(translation at t) (time shift from # to t)  (Drive motion from ¢y to t) (translation at #)
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76 10.9. Drive and Coriolis forces

10.9 Drive and Coriolis forces
10.9.1 Newton’s fundamental principle: requires a Galilean referential

Second Newton’s law of motion (fundamental principle of dynamics): In a Galilean referential, the sum
f of the external forces is equal to the mass multiplied by the acceleration:

f=m7 (in a Galilean referential). (10.74)

Question: And in a Non Galilean referential?
Answer: You have to add “apparent forces” due to the motion of the non Galilean observer, because
the motion of an object in our Universe does not care about the observer’s motion.

10.9.2 Drive + Coriolis forces = the fictitious (inertial) force

The “absolute observer A” chooses a Galilean referential R4; Newton laws (10.74) is quantified by A at ¢

ss, with py = ®(¢, Roy;) € R™ the position in the Universe of a particle Ry,

—

[fe(pe)], z = m [Ve(pe)] 5, written Fae(@ae) = mAar(@Fa) | (€ M) (10.75)

N o P o e N N N
when Ty := [OAPt]\g; Jat(Zat) == [ft(pt)]\j and Yar(Zar) = [%(Pt)hj-
For the “relative observer B” and is referential Rp, with £4; = O(Zp:), the acceleration addition
formula (10.61) gives fa¢(Za:) = mdO:.Vp(Tpt) + mYpi(Zar) + mYce(Zae) for A, thus for B:

dO; 1 fai(Zar) = mAp(Tae) + mdO; L Ay (Far) + m dO; L Fou(Tay) - (10.76)
N——
G mApt*(Tpt) myct* (Tpe)

(We use an affine ©, to lighten the notations.) Here dO; '.fa¢(Za) = d@t_l.[f;(pt)]‘g =(1041)
[f: ()], 5 —written £ (22.) is fi(p;) as quantified by B at ¢ (= pull-back by ©,).

Definition 10.13 For B at ¢ at p;, with Zg; = [OBtpthgi

e Quantification of f,;(pt) by B: th(th) = d@fl.fAt(fAt) (= fAt*(th)).

e The drive force: fp(Tp:) := —mdO, ' Fpu(Zar) (= —mYp*(Tz:)). (1077
e The Coriolis force: foy(Zp:) i= —mdO; ' For(Zar) (= —mFer™ (Fne)). '
e The fictitious force = the inertial force := ( J%Dt + ﬁCt)(th).

(The pull-backs by ©;.)

Then (10.76) is the fundamental principle quantified for B (living in a non Galilean referential):

Fe(@ne) + fope(Tpe) + foce(Tpe) = mTp(Tp:) |, (10.78)

i.e. for B at ¢: The (external + drive + Coriolis) forces = m times the acceleration.

10.10 Summary for a “merry-go-round”

. Referentials.

Galilean referential. Observer A chooses a referential R4 = (Oa, (ffl, ffg)) where Oy is the center of the
merry-go-round and (A}, A,) fixed on Earth is an horizontal Euclidean basis. And (-,-)4 and ||.||4 are
the associated Euclidean dot product and norm. R4 will be considered Galilean with an approximation
“good enough” for a usual merry-go-round (for a more precise result, you can apply next §).

Relative referential. Observer B chooses a referential R = (Op, (él, ég) where Og = O4 and (él, gg)
fixed on the merry-go-round is an horizontal Euclidean basis. And (-,-)p and ||.||p are the associated
Euclidean dot product and norm.

For A, Rg is Rp; = (OBt,(§1t7§2t)). For B, R4 is Ra; = (OAt,(Elt,A'gt)). And the bases being
Euclidean, ||.]|4 = A||.||z and (+,-)a = A2(-,-)p where A > 0. E.g. (+,) 4 is built with the foot and (-,-)p

is built with the metre, A = 5ot (because 1 f6=0.3048 m).
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i 10.10. Summary for a “merry-go-round”

2. Motions, velocities, accelerations. Given in (10.15)—(10.18), here with [t1,t2] = [0, t2].

3. Absolute and relative motions, velocities, accelerations. cf. (10.19)-(10.22).

4. Drive and static motions, velocities, accelerations.

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

%
Static motion (in Rp), cf. (10.23)—(10.25): Consider a particle Qr, € Rp s.t. OpPg,(t,Qr,) =
Rp(Qry ) (cos(fgr, )B + sin(Ogx, )B5), the position of Qg, is stored by B as the matrix

Q) = (000t 0 1o = R (@) (Son) ) =5 = (). (1079

~4>
so with Rp(Qrs) = [|Op®Pr, (t, @rs)|| 5 the distance from Op and g, €] — 7, 7] the angular position

in RB.
Drive motion (in R4): With w the angular velocity of Rp in R4 supposed constant to simplify, we get

Op®(t,Qr,) = Ra(Qrg ) (cos(wt+bly, VA, + Sin(wt—&-QQRB)Eg), and the position of Qg, is stored by A as
the matrix

olt.0r,) = (0380.Q, )1 = Ba(@e,) (Snics T ) =m0 = (1220)). (a0so)

M 11 lace t by t— d wt by 6(¢).) And (ch f unit of t) R =
( ore generally, replace ¢ by tp and wt by 6(t).) And (change of unit of measurement) Rs(Qrs;)
1OA®(t, Qrs)lla = Al|O@(t, @rs )l B = ARB(QR; )

Drive velocity:

i (t, i (1)) = 515 (1) = wRa (@) (Zi?ﬁi@iﬁ) —w ()

(8 ) wo=(2 ) o,

so it is a rotation of angle 7 times ¢jp(t) times w. So, with the chosen origin O4 at the center of the merry-

do-round, 9p (¢, 9p(t)) L 4p(t), and the velocity ¥(t,q) = &%?B(t, Qrs) of the particle Qg, is orthogonal

(10.81)

0
to Oaq; the radial position vector. Immersed in R3, o (¢, 4 (¢)) = dp X yp(t) where dp =w | 0
1
Differential of the drive velocity: i, (7) =(10-81) (2 Ow> .Y gives
o . e 0 —w . 0 -1 written
(dop(t,y) =) dip(§) = (w 0 ) =w <1 0 > = dip (10.82)
(time and space independent). Immersed in I@, dUp.W = & X 0.
Drive acceleration = centripetal acceleration toward Og:
R N . N (10.81) _, 0 —w R t o
Torlioe) = Tt () "L G (1) = a(0) =~ (P10 = g
v 0 upz(t) (10.83)

= dip.Up(t,ipt) = w (_UZ)Dl?g)) -

Its magnitude is w?Ra(Qr,). And the minus sign in (10.83); tells that it is centripetal (from gjp; toward
the center); Interpretation: A particle glued on Rp is not ejected from Rp despite rotation. Immersed
in B, 7pi(ifoe) = & X 0t(ilpe)-

Centrifugal force in Ry felt here by a particle of mass m fixed on Rp at t at ¢; s.t. [m}lg = yp¢: The
retaining force (because the particle is glued on Rp) is, Newton’s principle,

UVp2 (t)

le(t)> L e (Upt)- (10.84)

retaining force(t, iipt) = myp:(Upe) = m dip . Up (¢, Upt) = mw <
It is centripetal because ¥p(t, ¢p¢) is. And the centrifugal force is the opposite (it is the “felt force”):

centrifugal force(t, gp:) = —m dip.Up (t, Ypt) = mw (_UUD?g)) . (10.85)
D1

Immersed in R3: = —m & X Up¢(§pt)-
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78 10.11. Summary for “Sun and Earth” (and Coriolis forces on the Earth)

Translator from B to A.

Defined by ©:(%s) =01027) ¢, In particular @t(ﬁ) =0 (null matrix) because Oy = Op. And O is affine
(classical mechanics).

d©: Characterized by d©,.[B;] 5 =1"%) [By) 1. With Rp(Qr,) = ||Billz = 1 we have Ra(Qr,) =
|| Bil] i = A (change of unit of measurement) and

= = 1
) and [Bu]lg = d@t.[Bﬂ‘g = d@t. (O),

cos(wt)

® e, =0 gives [Blth,ci =A (sin(wt)

o= — sin(wt < < 0
o g, =7 gives [Bal ;= A ( c?s?fﬁ))) and [By] ;= dO.[Ba] 5 = dO. (1) Thus

- cos(wt) — sin(wt)
O, = A (sin(wt) cos(wt) ) (10.86)

— —

= the transition matrix from ([éit]‘g) = ([Biljg) = (Bi) = ([Ji}lg) to ([éit]|g) in M,1: The expected
rotation matrix expanded by A (change of unit of measurement).
Coriolis acceleration.

N N 10.63 S S N i - —
FYCt(xAt) ( = ) 2 dUDt.’l}Bt*(iBAt) =2 d’UDt.d@t.UBt(l’Bt). (1087)

In particular, a particle fixed on Earth (tp; = 0) is not subject to a Coriolis acceleration (Yo; = 0), which
is obvious since then 44 = Up.
Coriolis force:

diip;.dO; = A <O 01) . (COS(M) Sin(“’t)) — (Sm(“’t) COS(“’”) — dO,.dip;  (10.88)

1 sin(wt)  cos(wt) cos(wt)  —sin(wt)

(the matricies commute: Composition of “rotations around (_)3’, which read Mwe'Z et = \wellztwt) =
Aw et et5). Thus dO; . Yo (Zar) = 2 dips.Upe (Zp:), and (10.77) gives

2 o oo o vpa(t P

Iot(@pt) = —2m dipy.Up(Te) = 2mw <_5;((1)) (L tge(ZBe)), (10.89)
pointed vector at Zp; orthogonal to Uz:(Zp:). Immersed in R_'?’, _fT];eCt<th) = —2m& X Upt(Tpt)-
Drive force: ( : :

- 10.77 1. . .(10.83 1oL L

fBDt(th) = —m d@t 1.7Dt(xAt) = —m d@t 1.dvpt.vpt(xAt), (1090)

. ~1 _(10.86) 1 cos(wt)  sin(wt) TN I
with dO; 3 <—sin(wt) cos(wt) )" Immersed in R3, fpp:(Zpt) 2mdO; " .(J X Upt(Tpt)).

Inertial force: . .
(fct + fope) (@) = —m dip,. (2UBt(th) + de)t_l'ﬁDt(fAt))' (10.91)

Immersed in ]R?:’j’ (fréct + f_‘éDt)(th) = —mwA (2 gBt(th) + d@til.UDt(fAt)) .

10.11 Summary for “Sun and Earth” (and Coriolis forces on the Earth)

Simplificaions: The Earth is a spherical rigid body Rp which rotates around its South-North axis fixed
relative to stars (no precession nor nutation), and its center rotates around the Sun.

. Referentials.

Absolute Galilean referential. Observer A first chooses a referential Ras = (Ous, (/Yl, ffm /YL;)) where Ogg
is the center of the Sun and (A'h 14'2, fl},) a Euclidean basis fixed relative to the stars with ffg along the
rotation axis of the Earth and oriented from the south pole to the north pole. And (-,-)4 and ||.]|4 are
the associated Euclidean dot product and norm.

Because it takes more that 365 days for the center of the Earth to complete a rotation around the Sun,
the motion ¢ — O4(t) = O of the center of the Earth will be considered “rectilinear at constant velocity

in a short interval of time”, “short enough” for the computation of the Coriolis acceleration to be “accurate
enough” (simplifies the calculations). Hence Observer A writes Oa; = O4 and Ry = (Oa, (41, As, As)).
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79 10.11. Summary for “Sun and Earth” (and Coriolis forces on the Earth)

Relative referential. Observer B chooses a referential Rg = (Op, (él, B, ég)) with Og = O4 = the center
of the Earth and (Bi, By, Bs) a Euclidean basis fixed on the Earth with Bs along the South-North axis
and oriented from the south pole to the north pole. And (-,-)p and ||.||p are the associated Euclidean
dot product and norm.

For A, Rp is Rp: = (OBt,(élt,égt)). For B, R4 is Ra; = (OAt,(Elt,A'Qt)). And the bases being
Euclidean, ||.|[a = A||.||[s and (-,-)a = A?(:,-)p where A > 0. E.g. (-,-)4 is built with the foot and
(-,-)p is built with the metre, A = 5ot (because 1 ft=0.3048 m). In particular Bs = AAj; because
|Bs||p = 1 = ||As||a = A|| 45| = || A 3|5 and same direction and orientation.

2. Motions, velocities, accelerations. Given in (10.15)...(10.18).

3. Absolute and relative motions, velocities, accelerations. Given in (10.19)...(10.22).

4. Drive and static motions, velocities, accelerations.

4.1.

4.2.

4.3.

44.

4.5.

4.6.

%
Static motion (in Rp). Consider a particle Qr, € Rp at distance Rp(Qr,) = ||Os®(t, Qr,)||5 from Op,

at longitude 0q, €] —m, 7| and latitude ¢q., € [~75, 5]: Its position is stored by B as the matrix
— cos(blr, ) cos(gr, ) Ys1
s = [Op®(t, Qrs )15 = P5(Qry) = Bp(Qry) | sin(fpr, ) cos(vor,) | = | us2 | - (10.92)
Sin(g@QRB ) Ys3

(E.g. on Earth Rp(Qgr,) ~ 6371 km.)

%
Drive motion (in R4). With w the angular velocity of the Earth in R4 and Ra(Qr,) = ||Oa®(t, Qry)l| 4,
the position of Qg, is stored by A as the matrix

- cos(wWt-+boy, ) COS Yoy, yp1(t)
o (t) = [Oad(t, O ) 1 = Folts Ore) = Ra(@ry) | sin(eot+0gny ) cosm. | = [ upa(t) | . (10.93)
Sin Py, yps(t)

(The latitude is constant and on Earth R4(Qr,) = ARp(Qr,) =~ 20902 231 foot).
Drive velocity:

— sin(wt+bgy, ) COS PQr, —ypa(t)
Ut b (t)) = iip (t) = wRA(Qr,) | cos(Wi+ipe,) cos oy, | =w | ypi(t)
0 0 (10.94)
0 —w O 0
= w 0 0 .gD(t) = LUD X gp(t), where QD =w| 0
0 0 O 1

So, with ¢, = ®r, (£, Qr,), the velocity T, (t,q;) = B%’B(L Qr,) of the particle Qg, is a pointed vector
at ¢, orthogonal to @ = wAj, thus in the (z,y)-vectorial plane.
Differential of the drive velocity: (10.94) gives @ip: () = dp X ¥/, thus dip(§) = &p x . =" dijy - with

0 —w 0
dip=dpx.=|lw 0 0 (time and space independent). (10.95)
0 0 0

Drive acceleration = centripetal acceleration of a fixed point on Earth: w being constant,

(10.94) 11 ! 2 yDl(t)
Yot Upt) = "Tp (t) = dp X Yp (t) = &p X Upe(Upt) = dtp.Upe(Ypt) = —w* | ypa(t) | - (10.96)
0

So its magnitude is w? R4 (Qr, ) cos(PQr, ). The minus sign tells that it is centripetal relative to the Earth
circle parallel to the equator (a particle glued on the Earth is not ejected from the Earth despite rotation).

Centrifugal force felt by a particle of mass m fixed on Earth: It is —m times the centripetal acceleration
Yp(t,4pt) in Ra:

centrifugal force = —myp (¢, Upt) = —mp X Upt(Upr) (= —m dip.tp(Ypt))- (10.97)

On the Earth, the gravity force mg directed toward the center of the Earth is large compared to
—mAp(t, ypt) (we are not ejected from the Earth because w is small enough and § strong enough).
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80 10.11. Summary for “Sun and Earth” (and Coriolis forces on the Earth)

Translator.
Defined by ©,(gs) =(1927) 7,,. In particular ©,(0) = 0 (null matrix) because Oy, = Op,, with ©, affine.
— - - —_—
Calculation of dO,. Given by dO,.[Bi] 5 =""*) [By] ;. With ||Op®(t,Qr,)llp = Rp(Qrs)=1, so
~—>
[|Op®(t, Qrs)||la = Ra(Qrs)=A (change of unit of measurement), and

. . cos(wt)
® o, =0 and ¢g, =0 give d@t.[Bl]Ié = [Bu]‘g =\ | sin(wt) |,
0
. . — sin(wt)
® O, =5 and g, =0 give d@t.[Bg]‘é = [Ba] g =A| cos(wt) [,
0

—

0
° HQRB =0 and PQr, = % give d@t.[Bg]‘é = [Bgthg = [)\Ag]‘g = )\[Ag]‘g =A (1) . Thus

cos(wt) —sin(wt) 0
dO; = A | sin(wt) cos(wt) 0 ]. (10.98)
0 0 1

It is the expected transition matrix from ([B;h 5) to ([Elt]‘ ) (with the change of unit of measurement).
Coriolis acceleration.

Yot (Zar) = 2 dpt.Upe (Zar) = 2 diip:.dOy .U (Tpt)

- ~ - . L 10.99
= 2Wp X U« (Zar) = 2dp X (dOy.Up:(Tpt)) ( )

E.g. a particle fixed on Earth (Uz:(#p:) = 0) is not subject to a Coriolis acceleration (Yo¢(Zat) = 0),

Ll

which is obvious since then v4 = vp and Y4 = Vp.
Coriolis force: We have
—sin(wt) —cos(wt) 0
dipt.dO; = dO;.dUps = Aw | cos(wt) —sin(wt) 0 (the matrices commute), (10.100)
0 0 0

thus '?Ct (fAt) :(10'87) 2d®t.dﬁDt.ﬁBt (th); And ,f;Ct (th) :(10'77) —m d@til.?ct (fAt), thU.S
foct(Zpe) = —2m dip:. s (T:) = —2mdp X Uge(Tp:)- (10.101)

Thus ﬁ;c,g(fgt) is a pointed vector at #p; orthogonal to Up:(Zp:) and &Wp (so in particular in a plane
parallel to the equatorial plane). And fgoy(Z5¢) vanishes for a particle fixed on the Earth (Zp; = 6).
Drive force:

> (077 1 e e o o
fept(ZBt) B e, Y Ype(Ear) = —m dO; " .dip Upy (Far) (10.102)

cos(wt)  sin(wt) 0 .
with d@t_lz(lo‘%)% —sin(wt) cos(wt) 0 |. Le. fept(Zp:) = —mdp X (d@fl.UDt(fAt)), cf. (10.100).
0 0 1

Inertial force: . B
(fce + fope)(@5¢) = —m@p X (QﬁBt(th) + d@fl-ﬁDt(fAt))- (10.103)
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81 11.1. “Isometric objectivity” and “Frame Invariance Principle”

11 Objectivities

Goal: To give an objective expression of the laws of mechanics; As Maxwell [18] said: “The formula at

which we arrive must be such that a person of any nation, by substituting for the different symbols the

numerical value of the quantities as measured by his own national units, would arrive at a true result”.
Generic notation: if a function z is given as z(t, ), then z,(z) := z(¢,x), and conversely.

11.1 “Isometric objectivity” and “Frame Invariance Principle”

This manuscript is not intended to describe “isometric objectivity”:

“Isometric objectivity” is the framework in which the “principle of material frame-indifference” (“frame
invariance principle”) is settled, principle which states that “Rigid body motions should not affect the
stress constitutive law of a material”. E.g., Truesdell-Noll [26] p. 41:

« Counstitutive equations must be invariant under changes of frame of reference. »
Or Germain [12] :

« AXIOM OF POWER OF INTERNAL FORCES. The virtual power of the "internal forces" acting on a
system S for a given virtual motion is an objective quantity; i.e., it has the same value whatever be the
frame in which the motion is observed. »

NB: Both of these affirmations are limited to “isometric changes of frame” (the same metric for all), as
Truesdell-Noll [26] page 42-43 explain: The “isometric objectivity” concern one observer who defines his
Euclidean dot product and consider only orthonormal change of bases to validate a constitutive law.

If you want to interpret “isometric objectivity” in the “covariant objectivity” framework, then “isometric
objectivity” corresponds to a dictatorial management: One observer with his Euclidean referential (e.g.
based on the English foot), imposes his unit of length to all other users (isometry hypothesis). (Note:
The metre was not adopted by the scientific community until after 1875.)

Moreover, isometric objectivity leads to despise the difference between covariance and contravariance,
due to the uncontrolled use of the Riesz representation theorem.

Remark 11.1 Marsden and Hughes [17] p. 8 use this isometric framework to begin with. But, pages 22
and 163, they write that a “good modelization” has to be “covariant objective” (observer independent) to
begin with; And they propose a covariant modelization for elasticity at § 3.3. .

11.2 Definition and characterization of the covariant objectivity

Consider a regular motion ® of an object Obj, p; = &)(t, Ryj) € R™ the position at t of a particle in our
Universe, 2; = ®(t, Obj) the configuration at ¢, and C = Usefa,o ({4 x €2¢) the set of configurations.

Consider two observers A and B and their referentials Ry = (O, (4;)) and Rp = (Op, (B;)). E.g.,

—

(A;) and (B;) are Euclidean bases in foot and metre, (-,-)4 and (-,-)p is their associated Euclidean dot
products. And O is the translator, cf. (10.27).

Let Za; := [m]‘g € M1 and Zp; = [O.Tp:]lg € M,1, the stored components of p; relative to the
chosen referentials, M,,; and M, being the spaces of n * 1 matrices.

11.2.1 Covariant objectivity of a scalar function

C -R
Let f: be a Eulerian scalar valued field of functions (e.g. temperature field). And
<t7pt) - f(t7pt)

I RxM,; — R and [ - RxM,; - R
) G Ew) = falt, ) = f(tpr) POV (4 Es) — fa(t @) = f(tpr)

Definition 11.2 f is objective covariant iff, for all referentials R4 and Rp and for all ¢,

fae(Zat) = fBe(@pe) when Zay = O4(Tpy), (11.1)
i.e. far = fBis is the push-forward of fp; by Oy cf. (6.8).

Remark 11.3 NB: If e.g. f gives temperatures, then we supposed that f4; and fp; gives values in the
same unit, e.g. Celsius, because it is the covariant objectivity and the isometric objectivity which are at
stake: We are only interested in the changes of referential characterized by the translator © : Rg — Ry
which links positions between two referentials cf. (10.27). oa
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82 11.2. Definition and characterization of the covariant objectivity

11.2.2 Covariant objectivity of a vector field

; C —»R" : ;
Let w . be a Eulerian vector field (e.g. a force field). And Wy
(t,pe) — (L, pe)
RxMp1 — Moy . RxM,1 — My
- - - - and Wp : R - ~ . are the quan-
(t,Zas) — Walt,Zar) := [W(t,pe)] 5 (t, %) — Wp(t,Tpt) := [W(t,pt)] 5

tifications of @ by A and B, wWa(t, Za;) and Wp(t, ;) being the column matrices of the components
of W(t,p;) in R4 and Rp.

Definition 11.4 0 is objective covariant iff, for all referentials R4 and Rp and for all ¢,
Wat(Zar) = dO(Zpe) Wt (Zp:) when Zay = Oy(Zpy), (11.2)
i.e. Way = Wpys is the push-forward of Wg, by ©; cf. (6.20).

Example 11.5 Fundamental counter-example: A Eulerian velocity field is not objective, cf. (10.56),

because of the drive velocity 7p # 0 in general. un
Example 11.6 The field of gravitational forces (external forces) is objective covariant. ua

Remark 11.7 Recall: “Isometric objective” implies
e The use of the same Euclidean metric in Rp and Ry, i.e. (+,-)a = (-, ") B,
e The motion &)RB of Rp in Ry is a solid body motion, and
e O, is affine (so d?©; = 0 for all t).
e Covariant objectivity implies isometric objectivity, the converse is false. .

11.2.3 Covariant objectivity of a differential form

C - R™
Let a : be a Eulerian differential form (a measuring device). And ayx
(t,pe) — a(t, pe)

RXM—H —>./\/L,7,1 and an - RX/\/Lnl —>Mn,1
_ - B - - _
(t,Zar) — aalt,@as) = [Ot(t,pt)]g (t,Zpt) — ap(t,¥pt) = [Oé(tapt)]g
tifications of @ by A and B, a4 (t, Za¢) and ap(t, Zp:) being the row matrices of the components of a(t, p;)
in RA and RB.

} are the quan-

Definition 11.8 « is objective covariant iff, for all referentials R4 and Rp and for all ¢,
aAt(fAt) = aBt(th).d@t(th)71 When fAt = @t(th). (113)
i.e. @a; = apys is the push-forward of ap; by ©, cf. (7.3).

NB: (11.3) and (11.2) are compatible: If « is an objective vector field and if « is an objective differential
form, then the scalar function «.w is objective:

aAt(fAt)'wAt(fAt) = OéBt(th)~wBt(th) (: (a(tapt)'u_j(tapt))? (11-4)

—

since aAt(fAt)-wAt(fAt) = (OéBt(th)d@t(th)il)-(d@t(th)-wBt(th)) = aBt(th)-wBt(th)-

11.2.4 Covariant objectivity of tensors

A tensor acts on both vector fields and differential forms, and its objectivity is deduced from the previous §.
So, let T be a (Eulerian) tensor corresponding to a “physical quantity”. The observers A and B
describe T" as being the functions T4 and 7.

Definition 11.9 T is objective covariant iff, for all referentials R4 and Rp and for all ¢,
Tat(Zar) = This(Zar) (11.5)

i.e. T4y is the push-forward of T; by ©;.
(Recall: TBt*(fAt)(Oél(fAt)a ceey ”(171 (fAt)) = TBt(th)(Oél*(th), veny u_)'l*(th)))
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83 11.3. Non objectivity of the velocities

Example 11.10 (Non covariant objectivity of a differential dw) Let @ be an objective vector
field, seen as Wy by A and @Wp by B; So wWar(Za;) =112 dO,(Zps).Wp: (L) when Zay = O;(Zp;), thus

dibipg (T4:).dO (Tp;) = dOy(Tp;).db s (Tpi) + (2O (Tps) Wi (Tpt)), (11.6)

hence

A (Tar) = dO(Tps).dibps (Tp:).dO(Tps) ™ + (d*O4(Zp¢). Wt (T:)).dO (Tpe) !

- . oo (11.7)
7é det(th)~det(th)~d@t(th) ! when d2@t 7é 0.

Thus dw is not covariant objective in general. However in classical mechanics for “change of Cartesian
referentials” O is affine, so d20, = 0, and in particular ditf is objective when 0 is. Similarly

(d War(Tar).dO(Tpy)).dO (Tpy) + diiar (Tay). d29t(th)

(11.8)
= dOy(Tp).d*Wp(Tpe) + 2 d*Oy(Zp:).dB i (Tpe) + d*Oy (Tp) Wi (Tpe),
thus d?w is not covariant objective in general (but if ©; is affine then d? is objective if 1 is). ..
11.3 Non objectivity of the velocities
11.3.1 Eulerian velocity ¥: not covariant (and not isometric) objective
Velocity addition formula: With Up..(Zat) = dO¢(Zpt).W(Zp:) when Za; = O4(Tpt), cf. (10.56),
Ua¢(Tar) = Uew(Tas) + Upe(Tar) (11.9)

# Upe(Zae) when  pg(Za;) # 0,
thus a Eulerian velocity field is not covariant objective (and not isometric objective).
11.3.2 dv¥ is not objective
The velocity addition formula (ta; — Up¢) (Zar) = Ui« (Zar) = dO(Tpt).Upt(Zp:) when T4, = ©,(Zp;) gives
d(Tar — Tp¢)(Zaz).dO(Tps) = dO(Tpy).dUp: (Tpt) + d* O (Tpt). Ut (Tpe), (11.10)
thus dv is neither covariant objective nor isometric objective, especially because of dijp:
ding (Zay) = dipy(Za;) + dUBes (Tay) + d2Oy(Tpy).Upe (Tp:).dO (T5,) ™1 # dUpey(Zay) in general. (11.11)

Exercice 11.11 Prove that d?¥ is “isometric objective” when 5725 is a rigid body motion.

Answer. (11.8) with @4 — Up instead of Wa, and ¥p instead of Wg give, in an “isometric objective” framework,
d? (Tar — Upt) (Zar) (@Bts, Bpie) = dOy (Zp:).d> Ui (Zp: ) (Ui, Tp). (11.12)

Here d*#ip; = 0 (rigid body motion), thus d*7 is “isometric objective”. .

Exercice 11.12 Isometric setting. Prove, with Q; the (orthonormal) transition matrix from (4;) to (B;):
[d7,], 5 = Qe-ldT] z-Q7 ' + Q'(1).Q; ", written  [L] 5 = Q.[L] +Q" +Q.Q. (11.13)

(Used in classical mechanics courses, to prove that dv isn’t “isometric objective” because of Q.Q*".)

Answer. #,t € R, pto = D(lo, Ry), pr = D(t, Ryy) = P (py,), B(t,ps) = %—%(t,}%)bj), and F{°(py,) = d®p (py,).

So #(t, ® ( 0)) = i 52 (t,pyy), thus di(t,p.).Fyo (t) = f () And (4.28), with Fjo ="Ten p o gives
[F®))a, .5 = Q )[F(t>] o 00 thus [F'()] 7, 5 = Q'(1).[F(D)] 5, Q-IF' (1)), 4 Thus [di(t, pt)hB =
[Fé?o’()Fi;()} = [F, ()]‘B-[ wWls = (Q®)[F®)]4, g+Q()[ ‘Oz, - F ()}_ SR =
QM)W +QM).IF ()] 4, & lF ()],‘;O,A-Q(t)*:Q’(t)-Q() + Q(t).[dV(t,p)] & () '. And cf. (3.33). o
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84 11.4. The Lie derivatives are covariant objective

11.3.3 dv + dvT is “isometric objective”
Proposition 11.13 If &, is a rigid body motion then dv, + dvl is “isometric objective”
diiny + dit, = (digs + dik,)«. (11.14)

(Isometric framework: The rate of deformation tensor is independent of an added added rigid motion.)
Proof. Q.Q" = I gives @.QT + (C.Q.QT)T = 0, then apply (11.13). u
Exercice 11.14 Prove that Q = M is not isometric objective.

. >, >, >, diig,—dvT, dTpe—di s dipy—dvp, AT g, —dTh .
Answer. (11.11) gives diif, = dvp,. + dipy;, thus “AL AL — S8t Chee 4 SDL-CD1 o OBt SRt even if
L]

= p ¢ — AT, R . . R
is a solid body motion (then de—d1 — G is a rotation times a dilation). -
2

11.3.4 Lagrangian velocities

The Lagrangian velocities do not define a vector field, cf. § 3.2. Thus asking about the objectivity of
Lagrangian velocities is meaningless.

11.4 The Lie derivatives are covariant objective

Framework of § 10. In particular we have the velocity-addition formula us; = U« + Ups in R4 where
ﬁBt* (fAt) = d@t(th).ﬁBt(th) and th = et(fAt); cf. (1056)

The objectivity under concern is the covariant objectivity (no inner dot product or basis required).
The Lie derivatives are also called “objective rates” because they are covariant objectives.

11.4.1 Scalar functions

Proposition 11.15 If f be a covariant objective function, cf. (11.1), then its Lie derivative Lzf is
covariant objective:

ﬁgA fA = @*(ﬁgB fB), ie. ,CgAfA(t,fAt) = ,CgB fB(t,th) when Za; = @t(th); (11.15)
ie., BIA(t Bay) = BB (t, Epr), Le. (B + dfata)(t, Ear) = (Y2 + dfp.Tis) (¢, Fp).-

Proof. Consider the motion ¢t — p(t) = ®(tRy;) of a particle Ry, and Z4(t) = [Oap(t ]IX and Zp(t) =
[OBp(ti]lg. With f objective, (11.1) gives fp(t,@5(t)) = fa(t,©(t, Tp(t))) (= fa(t,Za(t))), thus

D - 0 - R 09, - S
DIa 1 1)) = 202 (1, 20(00) + dan(a )20, (1) + 04 (1)) e (35 (1))
Upt(Zat) Upts (Zar) (1116)
d . N = o D "
= %(ta Tar) + dfar(Tar) - Vae(Tar) = Dif;(t,xAt)v
thanks to velocity addiction formula s = U + Upe. Ly

11.4.2 Vector fields

Proposition 11.16 Let W be a covariant objective vector field, cf. (11.2). Then its Lie derivative LW
is covariant objective:

Lz Wa = 0.(L5Wa), (11.17)
i.e., when fAt = Gt(th);
L Wa(t,Zar) = dO(Tpt). Loy Wp(t, Tnt), (11.18)
ie.,
Dw oL . . Dw L .
(T2 — g i) (t, Bay) = dO(t, Tpy). (S — difg i) (L, Fpe), (11.19)
Dt Dt
ie.,
OWa oL L. . . owp L L .
(W + dWg.Up — dUs.Wa)(t, Zar) = dO(t, th).(W + diip.vg — dUg.Wg)(t, ). (11.20)

But the partial, convected, material, and Lie autonomous derivatives are not covariant objective (not

84



85 11.4. The Lie derivatives are covariant objective

even isometric objective because of the drive velocity tp): We have

(dibat-(Tas—0pe) ) (Tas) = (dOy.(diWps-Tgt) + (2O p¢).Tgt ) (Tpe), 11.21)

(d(Ta—pe) - Wae) (Tar) = (dO¢.(dtipy W) + (d°Oy.Tpy) W) (Tpe),
(d(gAt_ﬁDt)~(UAt UDt))( ) (d9t~(d173t~173t) + d29t(773t7 gBt))(th)v
E(UAt th),lEAt(f ) = d("‘)t((EBt) £{;‘Btht(th)

0wy 0up

11.22)
11.23)
11.24)

~ o~ o~ o~

5 (b3 + LY war(Zar) = dOy (1) — = (1, Tm), (11.25)
Dwy . oL . . . D, 9 L .
Di (t, Za¢) — dipy.Way (%ay) = d@t-(th).iDt (t, Zpt) + d“O¢(Upt, Wpt) (Tpt), (11.26)
O(Ua—7 . L . L . 01 N
HBI) (1 530) + £, (54—T) (1 F) = O () 2 (1, ). (1L.27)
Proof. e lBAt(@t(th)) = d@t(th).’LﬁBt(th) giVGS
dWay (.’fAt).d@t (th) = d2@t (th).wBt(th) + dO; (th>.de (th>, (11.28)

thus, with dO:(Zp:).Us:(Zst) = (Uar—Upt)(Zar) = Upex(ar) (velocity-addition formula),
diia (Far).(Uar—tpe) (Tar) = (d*Ou(Tpe). Ut (Tpe)) - Wpi (Tpe) + dO (Tt ).dipe(Tpt ). Ut (Tpe),

hence (11.21). In particular dwas(Zat).Uat(Zat) # dO(Tpt).(dWp:(Zpt).Up:(Zp:)) (the vector field dw.v is
not objective).

o (Uar—Upt)(O4(Zpr)) = dO(Tpt).Ust(Zp:e) gives
d(Tae—Tpe) (Tar)-dO (Tpe) = d* O (Tpe). Ut (Tpe) + dO(Te) . diipe (Tpe),
so, applied to Wp; (resp. Upt), we get (11.22) (resp. (11.23)). Hence (11.24).
o If %4y = O4(Zp), then Wa(t,O(t, 7)) = dO(t, Zp).Wp(t, ¥p), so, with %(t,fB) = Uot(Zaz), we get

ow 00 ow .
atA (t, Zar) + dWiar(Zar) Vot (Zar) = d— 5 (t,Zp). Wp(Zp) + dO(TR). a—tB(t, B)
L T L, Oup,, |
= (dVoi(Za1).dO(TR)) Wr(ZTp) + d@t(xB).W(t@B),
Thus (11.25) since g = ¥p; Then (11.21) gives (11.26).
L] ’UB* (t, @(t, fB)) = d@(t,fB).gB(t,fB) gives
00« _ oL . ode , Lol NG .
a—]:(t, Zar) + dUB«(Zar). Vo (t, Tar) = W(t,xB) g (Zp) + d@(t,xB).a—f(t,xB,)
—_——
dTet(Zar).dO(Tp)

since 8{‘;? (t,7g) = d(a—@)(t Zg) and %(t,fg) = Vo (t, Zar) = Vo, (0+(Z5)); hence (11.27). un

11.4.3 Tensors

Proposition 11.17 It T is a covariant objective tensor, then its Lie derivatives are covariant objectives:

L5,Ta = 0,(LsTs). (11.29)

Proof. Corollary of (11.15) and (11.18) to get Lz(a.w) = (Lza). W + a.(LzwW); Then use Lz(t] @ ta) =
(Lat1) @ta +t1 @ (Lyta). on
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11.5 Taylor expansions and ubiquity gift

11.5.1 First order Taylor expansion and ubiquity issue

Let @ : RxR™ — R™ be regular and p(t) = ® (¢, p,, ). With f(t) = @(t, p(t)), f(t) = fto)+(t—to) f'(to)+
o(t—1ty) (first order Taylor expansion), we get

(1, (1) = W0, )+ h 2 (1, i) + ol1—1o) (11.30)

Issue: The left hand side w(t,p(t)) lives in 7,,(€2;) while the right hand side (calculation) @(ty,py,) +
h 25 (ty, py,) lives in 15, (). Thus (11.30) is meaningless: To be meaningful, the @(t, p(t)) term should
ﬁrst be pull-backed by ®¥ (p;,) to be compared with 1 (ty, ps,) (or the @ (ty, ps, ) term should first be push-
forwarded by ®(p,) to be compared with @(t,p;)). E.g., in a non-planar manifold (e.g. in a surface
in R?), @(t,p;) and w(ty, p,) don’t belong to the same vector space (the “tangent spaces” T,,(§;) and
1, (€, ) are different in general).

Ok with Lie: With the Lie derivative defined with pull-backs, i.e.

11) d® T — 20—
odn A2elpe) AP ZWor) oy (= QECZOMOI) o)), (1.1

to
It is an equation in Ty, (%,) which gives the first order Taylor expansion in Tp, (Q4,): With h = t—t:

sW(to, Py, )

DY (pry) " (t, p(t)) = W(to, pry) + h Law(to, pry) + 0(h) (= P w(to, pyy))- (11.32)

Or with push-forwards: We have obtained the first order Taylor expansion in 1,,(€;): With h = t—ty:

W(t,p(t)) = d2f (py,).(W(to, i) + h Ld(to, pry) + o(h))
= dO (py,)- W (to, piy) + hd®y (p,)-Lir(to, piy) + 0(h) (11.33)
= (@, D) (t,p(t)) + h . (Lyw)(,p(t)) + o(h).
Proposition 11.18 In R", with the gift of ubiquity, (11.33) gives (11.30) (of course).

Interpretation: Because ubiquity gifts don’t exist, (11.30) is meaningless while (11.33) is meaningful;
Which tells that “The Lie derivative is the meaningful derivative in physical sciences”.

Proof. With d®® (ty+h, py) "2 I+ hdi(ty, py,) + o(h) and Lyw 2 %1: — di.ii, (11.33) gives
w(t,p(t)) = Aoy (py,) . (@(to,py,) + h Ladi(to,py,))  +o(h)
(I + hdito, p) + o(h) (5 + h (2E — i) (lo, ) + o(h)

- (w+h(%‘t” — dv.a8) + hdi.10) (o, py, ) + o(h),

which is (1130) . un

11.5.2 Second order Taylor expansion

Jto—¢, to+e[ — R™ N i} )
. Th 027 d _
2 t = ft):= w(t,p<t>)} us fis €%, and f(t) = f(to) +

hf'(t) + h—;f”(to) + o(h?) where h = t—tq (second order Taylor expansion). Thus, near (to, py, ),

In R", with @ € C? let f : {

D@ h? D*w
3(t, p(t)) = h— h?). 11.34
@t p(t) = (@ + h S + 5 5o, p(to)) + o(h?) (11.34)
Once again there is an ubiquity issue. Without ubiquity gifts, we have “the second order Taylor expansion:

B0, p(t)) = (0 + hLati + o Lol L)) (o, )+ 002) (11.35)

(L)) (to, piy) + 0(h?) (pull-back),
t,p(t)) + o(h?) (push-forward). Indeed:
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Proposition 11.19 In R™, with the gift of ubiquity, (11.35) gives (11.34).

Proof. (4.37) gives F;ff’o( ) = Iy, + hdi(ty, py) + % d7(to, p1,) + o(h?). Thus, omitting the reference to
(to, py,) to lighten the writing, (11.35) gives

2
d® (py,). (W + hLyb + %Lgﬁgw +o(h?))

W Do 2 (11.36)
- (I + hdi+ - d(57) + o(hz)) . (w + WLt + - Lol + o(h2))
The h° term is I.%W0 = . The h term is L0 + d0.70 = %. The h? term is the sum of
o %ﬁgﬁg’u_f = %(%itg} — 2d17.%1f - Dl(;lj) AW+ dU.dvad), cf.(9.50),
o dU.LzwW = dﬁ.% — dv.dvad = (2d % — 2dv.dv.aD),
%d(%).zﬁ = %(Dl(iﬁ) A0+ dv.dvad), cf.(2.30),
which indeed gives % 2. 5

11.5.3 Higher order Taylor expansion

Exercice 11.20 Let @ € C™ and E%”) = Lzo...0 Lz (n-times). For all n € N*, prove (Taylor expansion)

(to)

W(t, p(t)) = dD (pyy).( + (t—to) L + ... + ——L— LLV) (b, pr,) + o((t—0)™), (11.37)

e, F{(po) ™1 (t p(t)) = (Sheo S5 (L) M) (to, piy) + 0{(t—t)") i Ty, ($2)-

Answer. (Proof similar to one of the classical proof of Taylor’s theorem.) ty and p;, are fixed, p(t) = ®% (¢, py, ),
and H® (t,p(t)) := H{(p(t)) := F*(p,)"". With

fan(t) = (H D) (t,p1t) — (0 + (t—to) Lo + ... + L5%) (to, pry ), (11.38)

(t—to)"™
n!
we have to prove: f.,(t) = o((t—t)") (which means Ve > 0, 3h > 0, Vt € [to—h, to+h], || fan ()]s < €).
Recurrence hypothesis: With n € N*, for all @ € C™ | || fun(t)|ly = o((t—t)™).

This is true for n=1, cf. (11.32). Suppose it is true for n.
Let @ € C" 1. With 2H° — _H' 45, cf. (4.48), we get

r ’ - = D i — t— " n —
fant1 (t) = (—H™ .dv.5 + H’“.—w)(t,p(t)) — (04 LW+ ... + %E% +1>w)) (to, pty)

Dt
= (1 Led)(t,p(0) — (Lo + ..+

(11.39)

—

£3.L5T) ) (o, ) = fegmn ().

N F,mt1 ()= F et (

to)|| g g .
(=] <UD eyt ||t (T)lg5 And fig s (f0) =112

And the mean value theorem tells

0, thus w < SUP- ety —h,to+h] |[fzpa.n(T)]lg- And, Ly& € C™, hence the recurrence hypothesis tells:

1 zgn(®)lly = o((t—to)"). Thus Wzt @lie — o((~to)", thus || Fnia (1)l = of(t—t0)"+".
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12 The virtual work and power principles

12.1 Newton fundamental laws

. . .. . ‘ o « e
2. ) > , i

(See e.g. Germain [11]). Consider N > 1 distinct particles Ry, of mass m; which make the “body” Obj =

{ Ry, ---, Fonjpy }- In our universe, at ¢ call p;; —written 5, ¢ R™ the position of PObjj and Q; := {p1¢, ..., DNt }-

) __written 3

Each Ry, is subject at ¢ to the acceleration ¥ (ps ~:, to the external force f;(pit)
and to the internal forces f_t)’p].t (pit) =Written f;l due to the other POlzjj-

__written f
- 19

Newton postulates: There exists a Galilean referential R, (called absolute) s.t. at any ¢:

o 1st law (Galileo law of inertia): “a body not acted upon remains at constant speed”. (12.1)
N

e 2nd law (Newton): Vi=1,...,N : m; = f; + Zf_;l (12.2)
j=1

e 3rd law (of action and reaction): Vi,j =1,...,N : f;l = —f_;j and f_;j | pips- (12.3)

Remarks: - If N = 1 (one particle), then (12.2) reads m7 = f and (12.3) is trivial.
- fi = 0 for all i.
- The laws apply to any subset of Obj (the other particles being considered external).

12.2 D’Alembert formulation

12.2.1 The virtual power formulation, discrete framework

At t, with the above discrete Eulerian vectors fields 7, f:, ﬁvpjt 0 — R_’?’, consider any discrete Eulerian

—

vector field @, : p € Q — 1,(p) € R3 called virtual vector field, and let 7, (p;) ="ritten ;.
Then choose a Euclidean dot product (-,-), =Wen . in R3.

Definition 12.1 At ¢, the acceleration virtual power, the external virtual power, the internal virtual
power relative to i are the scalars

N N N
Pu(t) = Zmﬁi ety Pe(U) = Z fietii, Bu(d) = Z(Z fyi) « U (12.4)
i=1 i=1 i=1 j=1
Remark: If N = 1 (one particle), then P, (@) = m7 « @, Po(if) = f » @, and By () = 0.
D’Alembert virtual power formulation® (variational formulation of 2nd and 3rd Newton’s laws).
There exists a Galilean referential R, s.t. at any ¢, together with Galileo’s law of inertia,

Vi € F(QuR3),  Pu(@d) = P.(@d) + Bul). (12.5)

Interpretation (Germain): To measure a force needed to move Obj, you need to move the Ry, i.e.
you need to measure a work (subsequently a power), i.e. you need d’Alembert’s formulation. Germain’s
words: “to know the weight of a suitcase you have to move it” (it is not enough to look at it).

Proposition 12.2 1- (12.2) is equivalent to (12.5).
2- (12.3) is equivalent to: B (@) = 0 for all discrete rigid body velocity field @ € F({p1, ..., pn }; R3).

Proof. 1- (12.2) & (mﬁl — ﬁ — Z#i f;l =0 for all z) = ((mfy’l — ﬁ — Zﬁéi f;l) «i; = 0 for all ﬁl) &
(Zi(mﬁi i =0 fii) it = 0 for all (ﬁi)i:L..,,N) = (Pa(ﬂ’) D) — B (@) = 0 for all @ € (R’B)N).
2- Consider the body B = { Ry, by, } (the others particles being considered external). A rigid body

Bt (@) = for « @y + fro + @ :_’(ﬁl t]?lQ) #171 + fi2+ (@ qu1p3)ﬁ= (fo1 + fi2) « W1 + @« (P73 X fi2).
21- Suppose (12.3), i.e. fo1 + fi2 = 0 and p1p5 x fi2 = 0: A rigid body motion of {p1,p2} gives
Ru(@) =0+0.

motion of B is characterized by iy = u; + & x pyps. Having f;z = 0, the internal virtual power is

3Also called Lagrange, Euler, ... virtual power formulation
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89 12.2. D’Alembert formulation

22- Suppose B (1) = 0 for all rigid body motion of {pl,pg} f}l + ﬁg) o Uy + fiz (o"j X M) =

all @1,d. In partlcular G=0 (translatlon) glves (f21 + f12) « 7 = 0 for all u;, thus f21 + f12 0. We

are left with f12 o (& x pips) = 0= (Pip% % flz) for all &, thus p1ps x f12 =0.
23- Idem for any two particles at Ry;, and R, for all i,j. And a rigid body motion of ; =

{10y, - Iowj v } implies a rigid body motion of any { I, fow; }- .

12.2.2 Towards continuum: L?(Q2) framework

Q is an open set in R™. The space of finite energy scalar valued functions, its usual inner dot product
and norm are:

L*(Q) :={u:Q — Rs.t. / u(p)? dQ < oo},

pes (12.6)

()1 1= /  ulpyu(p)an " [ wwde. el = vz = ( / oy )",

Choose a Euclidean dot product .. in R? with its associated norm ||.|[g= ="*it*" || ||. The space of
finite energy vector fields @ € Tg(Q), @ : p € Q — d(p) € R™ (simplified notations for @ : p € Q —
(p,u(p)) € Q x R"), its usual inner dot product and norm are:

LHQ)" = {if: Q- B st. / [i(p)][2 d2 < o},

pee (12.7)

W=

@i = [ ) a0, il = V@D = ([ 1ae)irae)”

12.2.3 D’Alembert formulation, continuous framework

In (12.4), replace the sum sign > by the sum sign [: Consider a body Obj made of particles Ry, and
~ [tl,tg] X Oly — R"
a motion P : ~

(t, POb?) — Pt = (I)(tv PObJ)
at all t. Choose a Euclidean referential R, and, at any t, call ¥;(p;) the acceleration of Ry;, fi(p:) the
external force on Ry, p¢(p¢) the mass density, and take a (so-called virtual) vector field u; in €.

of Obj where Q; := ff)(t, Olj) is an open subset in R”

Definition 12.3 The acceleration, external and internal virtual powers relative to « at t are

,Pa(ﬁt) = /GQ p(p)f?t(p) ’ﬁt(p) A0 Writ:ten /

P’Yt ° ut aq ertten / pa(t7 ﬁt) an
Qq Q

Puiy) = / Fip) +iiy(p) d2 VT [, g vritten / pe(t, @) dS2, (12.8)
PEQ Q Q

Pouliiy) = / poa (b, ) (p) d "R / Pt 01) A2,
peEQ: Q¢

where pg, pe, Pi¢ are the virtual “acceleration, external force and internal force densities”.

D’Alembert virtual power formulation. There exists a Galilean Euclidean referential R, s.t., to-
gether with Galileo’s law of inertia, at any ¢ for all (regular enough) vector field w,

Pa(tir) = Pe(ti) + Fut (1) (12.9)

12.2.4 Remark: Rigid body motion and Germain’s notations

Choose a Euclidean basis (€;), call . +. and . x . the associated Euclidean dot product and vector product,
let
SC' = the screws := {7 : R3 — R3 s.t. 30 € R3, Vp,q € Q, i(q) = @(p) + & x pg}

T T . ) - (12.10)
={u:R3 > R3s.t. 35 € R3, Vg € Q, i(q) = d(0O) + I x Og}

independent of a chosen “origin” O € R? (trivial check: # is affine). And SC is a vector space (trivial
check), and dim(SC) = 6 because %(O) and & characterize a screw (6 degrees of freedom).
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90 12.3. D’Alembert formulation and linear hypothesis

Recall:
e The velocity field of a rigid body motion is a screw called a twist or a kinematic screw or a distributor.
e A screw which is the moment of a force field is called a wrench.

Germain notations: R R R
e A virtual twist is noted @ (with a “hat”), u(q) = u(p) +d x Pq, and is represented by the 6 * 1 matrix

>~
—

{C} = ([ [( ])][e> written (u(f)) (reduction elements of i at D).
& w ﬁ
e A wrench is noted i (for moment), 7 (q) = m(p) + F x ¢, and is represented by the 6 * 1 matrix

[F] = ( lF} e ) =written ( _,F ) (reduction elements of 7 at p in this order).
[ (p)) (e 1i(p)

o SC’ is the dual of SC, i.e. the set of linear forms ¢ : SC — R.

o If SC' = the twists, then SC’ = the wrenches; If SC = the wrenches, then SC’ = the twists.

e The dual product of an element M € SC and an element N € SC’ is noted M.N.

Proposition 12.4  is bounded, p € Q, ¢ € SC' represented by [F] = (n‘i{p)) (s0 17(q) = m(p) + F x

) (so 5’(q) = a'(p) +@ x Pq) we have

g

pq). For all e represented by {6} = (u

0= Fiilp) + m(p) » @ "Hem (£ {C). (12.11)
(In fact should be noted [F]T.{C} if the matrix product is understood; The notation [F].{C} means that
the canonical inner dot product in the vector space Mgy of 6 x 1 matrices is implicit: [F| and {C} do not
belong to a same space, so [F|.{C} can’t be anything else.)

Proof. © bounded implies SC C L*(Q): Indeed, [, [[ii(p)|[*d2 = Jq [|i(0) + & x Opl|2dQ <
Jo 2l@(0)]1? + 2[|d]| \|Op||2 dQ) < oo, since the volume of €2 is bounded.

And SC is a vector space (sub-vector space of L%(Q)); Indeed, i(q) = ii(p) + &z x pg and ¥(q) =
U(p) + 5 x Py give (@ +\0)(q) = i(q) +A0(q) = (@+A7)(p) + Tz + Ag) x B = (@ + AT)(p) + Daxc % P
where Wz g := Jz + Mg € R3; Thus 4,7 € SC implies 4 + A7 € SC.

And SC being finite dimensional (dim SC = 6), SC is a closed sub-vector space in L?(2), thus
(SC, (+,+)r2) is a Hilbert space, and any ¢ € SC’ is (linear) continuous. Hence we can apply the (-,-)2-
Riesz representation theorem: If ¢ € SC”, then 37 € SC, Vi € SC,

Tlg) ~ iiq) d2 = / )+ (o) +5 % ) 49
€ (12.12)

—

= Feil(p)+ @D eme(p) where F = / U(q)dQ and mi(p) = / g x £(q)dS,
qeN qeN
Thus (].2].].) un

12.3 D’Alembert formulation and linear hypothesis

Setting: Geometric vector space I@", n = 1,2,3, Euclidean basis (€;) imposed by an observer, associated
Euclidean dot product. In this § the “tensor writing” is in fact a matrix writing.

12.3.1 First order linear hypothesis

With E?T“j = du.€; and Vu = Z] 59“ €;, let (Hilbert space of order 1 needed for “deformation gradients”)

e H'(Q):={uecl?Q):Vj=1,..n, %‘ e L2(Q)} VM £y € L2(Q) : Vu € LA(Q)"),
J

° (U,'U)Hl _ u v L2+Z ou 31} L 7\/ f dQ+/ VU ) Q (1213)

ax] (’930] 2eQ

] HUHHl = (U,U)Hl.

—

(H'(S2), (-,-) 1) is a Hilbert space (Riesz—Fisher theorem). And [, Vu(Z) « Vo(Z) dQ ="ritten (Gy, Vo) e,
$0 (u, v) g =" (4 ) o 4 (Vu, Vo) .
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91 12.3. D’Alembert formulation and linear hypothesis

The dual space of Hl(Q) is H'(Q)' the space of continuous linear forms ¢ : H'(Q) — R. We use
theorem V.12: If £ € H*(Q) then 3(f, §) € L*(Q)x L2(Q)" s.t., Vi € H' (),

@) = (f2)1e + (F, 99) 12 = /Q o+ Ge T da. (12.14)

Application to vector valued functions: With Vi = [g;?] (matrix), let
J

HY Q)" ={aeL*()":Vic LQ(Q)"2} ={i=> wé e L*(Q)":Vi,j, g;” )},
2 J

(12.15)
(17:, 17)].]1 = (’L_L', g)Lz + (Vﬂ:7 Vz’;’)Lz, Hﬁ”Hl = (’J ﬁ)Hl
where (7,7)12 = [, @+ TdQ and (V@ V)2 == 307, [, §at Gt dQ =211 [ Vid : VIdS where the

double matrix contraction Vu : VU = Z:LJ 1 gil g;l is used.

The dual space of H'(Q)"is H'(Q)"' = {P : H(Q2)" — R linear and continuous}. Thus (application
2
of (12.14) component wise): If P € H'(Q2)"' then 3(f,a) € L2(Q)"xL*(Q)" s.t., V& € H(Q)",

P(@) = (f,0)12 + (g, V)12 = /Qf~17+g: V7 dQ (12.16)

P .
when @ =), vié;, f =3, fi€i, @ = [o45], and v; j = 3;?]

12.3.2 Application: Usual Cauchy’s result

The (linear approximation of the) virtual internal power By is in H' ()™, hence of the type (12.16),
and in a Galilean Euclidean referential:
1) B (¥) = 0 for all ¥ uniform (i.e. dv = 0). Thus (12.16) glves (f,¥) 240 = 0 for all # uniform, also

true for any subset in Q. Thus f = 0 and 3o = [oy;] € LZ(Q)n s.t., Vo € H' ()™,

B (7) = / 0 VidQ = — divg-UdQ+/(g.ﬁ)-17dQ (12.17)
Q Q - r

where divg is the matrix divergence cf. (T.88).
2) B () = 0 for any rigid body motion, i.e. s.t. V& + VoT = 0. Thus 0 = [, 0 : W%Wdfl for

any ¥ s.t. Vi 4+ Vol = 0. Also true for all subset in ©, thus a(p) : w =0 at all p, thus ¢ is
symmetric:

Vi + Vit

c=07, and Ru(?) = / o %d(l, Yo e HY(Q)" (12.18)

g=g 0=
Example 12.5 Pressure in a perfect fluid: f: 0 and a = p.I where p,. € L2(Q) (pressure), thus

P (V) z/prdivﬁdﬁz —/ gl‘?ldpr-ﬁdQ—F/p,«ﬁOﬁdF. (12.19)

(Germain’s notations: P fQ Dy dive dQ with p- the pressure and ¥ a virtual velocity.) oh
Exercice 12.6 What is the correct notation for (12.17)?
Answer. RBu(0) = [,lalie : [V]jed = — [, div([g]e) « [0]jedQ + [.([g]|e.[7])e) * [0]1e A2 where (€;) is a chosen
Euclidean basis, [g]‘e = [04j] € Mun, [V]je = [vi] € Mnl, [V1)e = [8”1] € Mun, [A] = [n;] € Ma1, div([g]je) € M
is the divergence of the matrix [g]|z cf. (T.88), and . « . is the canomcal inner dot product in M. un

12.3.3 Second order linear hypothesis

Generalization to
H2(Q) = {u € L*(Q) : gradu € L2(Q)", d®u € L2 Q)" }. (12.20)
)

with its inner dot product (u,v)gz = (u,v)z2 + (gradu, gradv) 2 + (
[|lul|grz = \/(u,u)p=. And (similar to the HY(Q)" case): If P € (H*(Q

2u,d?v) 2 and associated norm
)
on H2(Q)) then 3(F, o, x) € LA(Q)"xL3(Q)" xL3(Q)" s.t., for all @ € H?

)
(

(i.e. linear and continuous
n
o,

P(@) = (f, @)z + (g, Vid) 12 + (x, d°@) 2. (12.21)

Gives “micropolar materials”. See e.g. Germain [12].
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92 13.1. The weird classical justification of the linear approach

13 First order virtual power formulation with Lie derivatives

13.1 The weird classical justification of the linear approach

The classic approach for elastic materials is clever but weird. Clever because it uses the comparison
between two vectors to measure a relative deformation. Weird because it starts by squaring the a linear
motion and then... linearize it... Moreover it produces a spurious FT. Details:

. Take two vectors Wl and Wg at ty; They become wq = F.Wl and Wy = F.Wg at t (linear hypothesis).
. Compute (W1, ws), = (F.Wl,F.Wg)g = (FT.F.Wl,WQ)G: doing so the motion has been “squared”
(product of two deformed vectors), and you have built C = FT.F, see (G.15).

. Compare (1f,15), (at t) with (W3, Wa)g (at o) thanks to (ZrT2le=(Wi.We)e _ (FLE=D.Wi.Wa)a e

1 because it is a squared quantity (the linearisation of f(z) = % gives f'(x) = x). You have obtained
the Green-Lagrange tensor E = £(FT.F —I) = 2(C —I).

. Linearize E: E is approximated by g = F"'QFT — I. In doing so, you have introduced the spurious F'7

(in g), which does not exists in the first order Taylor expansion O(P+hW) = &(P) + h EW + o(h),
which isn’t ®(P+hW) = &(P) + h EEEZ W + o(h).

This classic approach rises the questions:

1- Is it "normal" (convincing) to start from a constitutive law with E that does not give good results,
to deduce (legitimize) a linear constitutive law, moreover with a spurious F7'?

2- Can we get a linear law without E (without squaring first), thus without the spurious F7? Yes:

13.2 ¢ with Lie derivatives of vector fields
The Lie derivative of a Cauchy stress vector T along ¥ at t at p € ; (rate of stress along ¥) is, cf. (9.18),

. q or . .

LT = 2= —aoT (= = +dT.5 — dv.T). 13.1
o ~ WL (=5, +dl.v—diT) (13.1)
Choose a differential form o to measure LT to get the internal power density a.ﬁgf, i.e. the real
objective values a(t, pt).L7T'(t, pt) at t at each p; € ;. You get the internal virtual power

DT

B, ) ;:/ 0Ly TdY= | a.— — (T ®a) ( dvdS, (13.2)
Qt Qt Dt

since a.dv. T = (a® f) @ d¥ (objective double contraction between (}) tensors). The use of the Cauchy
stress vector field T' (order 1 tensor) is explicit (the obtained order 2 tensor @® T is obtained thanks to a
choice of a direction of measurement «). No initial time ¢ (Eulerian approach), and covariant objective
approach (no basis and no inner dot product required).

Restrictions to get admissible constitutive laws:

e Galilean referential: 72, vanishes when dv' = 0, true for all subset of ;. We are left with

Ry ) = —/ T, 0dvdQ, where 7 =T®a (13.3)
Q

t

NB: The use of the Cauchy stress vector field T (tensor of order 1) is explicit, the obtained tensor
z,=Toa of order 2 being obtained after a choice of a direction of measurement o.

e Isometric framework: Choose a Euclidean basis (€;) and its associated Euclidean dot product
(-, )y ="1ten o “and call 77 the exterior (-, -)g-normal unit vector field on I'. We get

Rut(eoy ) = / c/l\i;/ga.ﬁde/(z v)eiidl’,  where T =T®a
e f (13.4)

—

= / (divf)a.ﬁﬂda.f).ﬁdﬂf/(a.ﬁ)(T.ﬁ)dr,
Q4 T

where a;/(ga) = &RI(T ® @) = (divT)a + da.T is the objective divergence of ., see (T.75).
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93 13.3. g with Lie derivatives of differential forms

e Classical formulation recovered with representation matrices relatlve to (&;): With 7 = Y, v'é;,
dve; =5, g;J &, T = > T, (e') the dual basis of (€;), a =", aje, [z ]= T®al = [Tia;], call
= [z )" = [T’] = [o0;5] (matrix). (13.5)
With the canonical inner dot product in M, also called... and with the matrix double contraction
[M;;] : [Nyj] == ZZ] Nij, (13.3) gives

Ry ) = —/Q o, [du]dQ (:/Q divgeo[ﬁ]—/r(%.[ﬁ])-[ﬁ] dar),

o (13.6)
written .
=7 — | g,:dvdQ (= dive -ﬁ—/(g i) v dl).
= e [ e
Moreover B, must be independent of rigid body motions (frame invariance principle), thus
o,+aoT v T
Pulona) = — Mdgz_/ g, tg, di+di" o
Q % 2 Q 2 2
' . ' T (13.7)
dv + dv ag,+a
:—/ gzwivd(l:—/ o:dvdQ) where o==—=_.
Q- 2 Q- = 2
We have recovered the usual classical formulation: By = — fQ g : dvdSd.

Remark 13.1 T is the main unknown with its 3 components, not ¢ with its 9 components (or 6 com-
ponents thanks to symmetry). And for the oncoming second order theory with Lie, a second order term
Lz(L5T) will be introduced (see § 13.5), which only introduces 3 more unknowns with 75; To compare
with the 81 unknowns (number that can be reduced with symmetry considerations) with the tensor y

which gives the linear model (12.21), cf. Germain [12]. oa

13.3 a with Lie derivatives of differential forms

Germain [12] and others have proposed that the Cauchy stress is a (Eulerian) differential form 7' (which
objectively acts on vector fields). Its Lie derivative along a (Eulerian) vector field ¥ is

DT T
LT = - +Tdi (= %—t +dT.5 + T.dv). (13.8)

LT acts on a vector fields @ (measurement direction) to give the density of power m;,; and the power B;:
Tint (T, 0, @) := LT, and Bp(Q, T,7, 1) = L;T.0dS2. (13.9)
Q

The use of the Cauchy stress differential form T (order 1 tensor) is explicit, no initial time # (Eulerian
approach), and covariant objective approach (no basis and no inner dot product required). Notation for
Germain’s “distribution” (duality) approach: B (@) = (LT, ).

e Galilean referential: 7, vanishes when ¢ is uniform (dv' = 0), true for all subset in §2;. Hence

/ T.dﬁ'.ﬁdQ:/ (GeT) O dvd
Q Q

= —/ T, 0 dvdS), where Iﬁrz—ﬂ'@T,
Q

Rt (..., @)

(13.10)

since (T.dv0).@ = (€ ® T) @ dv = objective double contraction between (1) tensors. (The — signs for
comparison with the usual classic approach.)

e FEuclidean isometric framework:

Bt (@) = cﬁ;fgﬁ.deQ - / (z,-0)+ndl', where 7_:=-u®T,

o h (13.11)

. / (divil) T + (dT.i7).7d2 + / (T.5)(@ « ) dT".
Q

I
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94 13.4. Non linear first order virtual power formulation with Lie derivatives

e Classical formulation recovered:

g, = lov;] = [z, )" = [@oT)" = [Tiv], (13.12)
thus
Pmt (13 10) / o, dQ ertten / o,: . AT dO. (13‘13)
And BBy is independent of rigid body motions, thus
dv + dv™ g, +a,’
Bu(.) = —/g LAV g —/g;dmﬂ, where o= == (13.14)

which gives the classical formulation.

13.4 Non linear first order virtual power formulation with Lie derivatives
Add to (13.2) a differential form oy (measuring tool) imbedded in the flow to measure some internal force
" subject to the flow:
Bulo,ay, 0, T,T)) = / o.LiT + Lo . (LyTh) dS. (13.15)
Q

(May be an alternative to Cosserat material or viscoelastic material.) A first choice is @; = a and T, =T.
(Lzay = aal + day .U+ a.dv is the rate of deformation of a; along 7).
Then choose «y uniform and stationary, so Lya1 = «y.dv, and

PM():/Q (aa—zthrdvadv T + ay.d7. (%erTlvfdv 7)) dQ. (13.16)

It is non linearin ¢. The internal power has to vanish whenever dv' = 0, true for all subset of €, hence
the a.(% + df.’[)’) term vanishes, and, with 1 := T ® «a and I, = T, ® a1, we are left with

. DT, .
Bul...) = /—a.dﬁ.T+a1.dﬁ.(7t1—dﬁ.Tl)dQ
Q (13.17)

Dt
= /Q—; 0 di+ 2t 0 di -z, 0(dv.dv)dQ.
Recall: Only Lie derivatives of the vector fields T and T} are used (no derivative of order 2 tensors).

13.5 Second order virtual power formulation with Lie derivatives

We add the second order Lie derivative Eg(ljgﬂ) =written 5572)7_“'2 of a vector field Th (not the first order
Lie derivative Lzg of a tensor g cf. e.g. the Jaumann derivative). E.g.

Bu(o, ¥, T, Th) = / a. (LT + LPTh) do, (13.18)
Q

A simple choice is fg = cT.
Galilean framework: R, vanishes if dif = 0, thus moreover choosing a stationary o (so 22 S = =0),

. oT. . . . .
RBul...) = / o (—di.T — 2dv. 222 + dTy.dv.0 — 2d.dT.7 — (d*0.0). Ty + dv.dv.Th) dS
@ ot (13.19)

DT
:/ (= dvT—ZdvD—Q—Fdngvv—(dvv)Tg—i-dvdng)dQ
o

Restrictions on T and TQ in a GalileanﬂEuclidean framework: R, vanishes when dv + doT = 0.
Then define 7 :=T ® o and 7, := T5> ® o (for constitutive laws) and choose o uniform: We get

Dt
Ru(...) = / —7 (Q dv— QD—:; 0 dv+dr, O(dv.v)d+ 1, O(dv.dv— d*v.7). (13.20)
Q - -
NB: The result (13.20) is given with tensors 7 and T, to be able to compare classical results, e.g. with

Jaumann derivatives (Lie derivative of G) tensor). But here we only used Lie derivatives of the vector
fields: No derivative of order 2 tensors.
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Part V
Appendix

Bertrand Russell (beginning of the 20th century):
“Studying Mathematics I had hoped to penetrate the essence of truth...
... But all I was learning was cheap calculating tricks.”

And isn’t this still too often the case in continuum mechanics: “Studying Continuum Mechanics I had
hoped to penetrate the essence of truth... But all I was learning was cheap calculating tricks”?

It is... Mainly due to the lack of basic math definitions, e.g.:

What is a motion? A Eulerian variable? A Lagrangian variable?

Why domain and codomain of a function are rarely mentioned (hence errors and misunderstandings)?
What is a “canonical”, a “Cartesian”, a “Euclidean” basis?

What is a transposed (of what)?

What is pseudo-vector versus a vector?

What is covariant vector versus a contravariant vector?

Why a linear scalar valued function can’t be identified with a vector?

What is the difference between a differential and a gradient?

What is a tensor?

Why the infinitesimal tensor g is not a tensor?

Why a endomorphism E — FE can’t be identified with a bilinear form E x E — R?

What is the definition of Einstein’s convention?

What is the Lie derivative? And why is it “The natural derivative in continuum mechanics”?
What is a distribution?

What does gTVZ mean (derivation relative to components?)?

)

One of my teachers: “This is the big advantage of not giving definitions: It allows you to say anything.’

In this appendix, we give standard simple definitions and results, useful in mechanics, often scattered
in the existing literature, and sometimes difficult to find. Hence no ambiguity is possible. We avoid
notations which are of no use or add to confusion, or come like a bull in a china-shop.

All the definitions apply to electromagnetism, chemistry, quantum mechanics, general relativity... and
continuum mechanics (solids, fluids, thermodynamics...): Mathematics applies to everyone.

For simplicity, we mainly consider finite dimensional vector spaces.

A Classical and duality notations

A.1 Contravariant vectors, covariant vectors

Let (E,+,.) =""it%" E he a finite dimension real vector space (= a linear space on the field R).
Definition A.1 An element & € F is called a vector, and it is also called a “contravariant vector”.

A vector is a vector... So why is it also called a “contravariant vector”?
Historical answer: Because of the change of basis formula [Z]|,e, = P~'.[Z]|44, P being the transition
matrix see (A.25), which uses the inverse P~1.

Definition A.2 A linear form is a function F — R (real values) which is linear. A linear form is also
called a covariant vector.

The space E* := L(E;R) is the space of linear forms on E called the dual of E. (It E* is a vector
space, sub-space of F(F;R),trivial check.)

Why a linear form is called a “covariant vector”?
Historical answer: Because of the change of basis formula [¢]|,,a, = [{]jaq-P, which uses P, see (A.25).

Interpretation: A covariant vector is a linear measuring tool for vectors, because it is a linear form /¢
that gives reals values ¢(Z) € R to vectors Z € E.
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96 A.2. Bases

A.2 Bases
A.2.1 Basis

e n vectors €, ...,€, € F are linearly independent iff for all A, ..., A, € R the equality > .-, \;&; = 0
implies \; =0 for all ¢ =1,...,n.

® n vectors €1,...,¢, € E span E iff : VZ € E, I\, ..., A, € Rst. =) 1 \i€;.

e A basis in F is a set {€,...,€,} C E made of n linearly independent vectors which span E. In
which case the dimension of E is n (all the bases in E have the same number of vectors: exercise). And
{€1,...,en} =Written (€:)i=1,...n =written (€;) if n is implicit.

A.2.2 Canonical basis

Consider the Cartesian product R x ... x R (n times) with its usual vectorial structure. Its canonical basis

—

(4;) is defined by
Ay =(1,0,...,0), ..., A, = (0,...,0,1), (A.1)

with 0 the addition identity element used n—1 times, and 1 the multiplication identity element used once.

Remark A.3 Consider the 3-D geometric space “we live in”, and the associated vector space R3 of “bi-
point vectors”. There is no canonical basis in R3: What would the identity element 1 mean? 1 metre?
1 foot? And there is no “intrinsic” preferred direction €. .

A.2.3 Cartesian basis

(René Descartes 1596-1650.) Let n = 1,2,3, let R™ be the usual affine space (space of points), and let
Rn = (an’ +,.) be the associated usual real vector space of bipoint vectors. Let p € R™, and let (€;(p))
be a basis in R" at p (e.g. the polar coordinate system see example 6.12).

Definition: (€;(p)) is a Cartesian basis in R" iff &(p) is independent of p for all i and p; And then
(a(p)) _written (éi)-

Remark: A Euclidean basis described in § B.1 is a particular Cartesian basis.

A.3 Classic and dual representation, Einstein’s convention for vectors

There are to equivalent notation systems:

e the classical notation (non ambiguous), e.g. used by Arnold [3] and Germain [11], and

e the duality notation (can be ambiguous because of misuses), e.g. used by Marsden and Hughes [17].
Both classical and duality notation are equally good, but if in doubt, use the classical notations.

Definition A.4 Let # € F and let (€;) be a basis in E. The components of Z relative to (€;) (or in (&;))
are the real numbers z1, ..., z,, (classical notation) also named z?, ...,z (duality notation) by

it ;171
T=1161 + ...+ Tp€p = 28 + ... + 2"E,, le. [©]je = : = , (A.2)

n

clas. dual Tn T
[7]|e being the column matrix representing 7 relative to the basis (¢;). (Of course a; = ' for all i.)

If a chosen basis is imposed to all then [7])z is simply named [Z]. With the sum sign:

n

=) xié = zn::vié} (= zn::w = zn: 1Y€y, (A.3)
i=1

i=1 J=1 a=1
—— =
clas. dual

the summation index being a dummy index.

Definition A.5 The Einstein’s convention uses the duality notation. And then you can omits the sum
sign 1 So ¥ = Z;”:laﬂé’j =witten pje. = pig; = 27¢; = 1*¢€,. This omission was motivated by the
difficulty of printing 2?21 in the early 20th century. We won’t omit the » sign in the following, thanks

to TEX-BTEX which makes the writing of >°7_, simple.
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97 A.4. Dual basis

Example A.6 In R_é, let ¥ = 31 + 4é5 = 23:1 Ti€; = 2?21 x'€;, so x1=2'=3 and zo=x2=4. And

; A =1ifi=j
[©]|e = 3[€1]|e + 4[e2]1e = 21‘2:1 zi[€ije = Zle r'[€i]je. So with 0% = §;; = . j (Kronecker),
= 0if i#j
1 0
n L 0 :
é} = Z(Smé; = Z(S;é'“ i.e. [61]|g = . y ey [é'n]‘g = 0 s (A4)
i=1 i=1 :
clas. dual
that is, the components of €; in (€;) are ¢;; with classical notations and 6; with duality notations. un

Remark A.7 The basis ([€]]¢) is the canonical basis of the vector space M, of n * 1 column matrices.
A column matrix [Z] is also called a “column vector”. So a column vector [Z])z is a matrix representation
of a vector in a basis. See the change of basis formula (A.25) where the same vector is represented by
two different “column vectors” (two different representation column matrices). nn

A.4 Dual basis

General usual notations: If E and F are vector spaces then (F(E; F), +,.) =""ten £(E; F) is the usual
real vector space of functions with the internal addition (f,g) — f+g¢ defined by (f+g)(z) := f(z)+g(x)
and the external multiplication (A, f) — A.f defined by (A.f)(z) := A(f(z)), for all f,g € F(E;F),z € E,
AeR. And \.f ="ritten \ 7 for all A € R and f € F(E; F).

A.4.1 External dot notations for duality

Recall definition A.2: The dual of E is the vector space E* := L(E;R) (set of linear real valued functions),
and an element ¢ € E* (a linear form) is called a covariant vector.

Notation: If / € E* then )
Vie B, (@) """ 0. (A5)

The dot in £.47 in (A.5) is “the distributivity dot” since linearity £(i@ + A0) = £(@) + A(7) follows the
distributivity rule a(z + \y) = ax + Aay : so (@ + \T) =N ¢ (7 4 A\F) = £.4 + M.7. And it is an
external dot for computations: E* # E (and E* can’t be intrinsically identified with E), thus ¢ and @
are in different spaces, thus £.4 is not an inner dot product.

(@) is also written £(@) =""MeN (0 @) p. m where (.,.) - g is the duality bracket (and written ¢, )
for short).

NB: Co-variant refers to: 1- The action of a function ¢ on a vector @ that gives the real £(), the
calculation of ¢(@) being called a co-variant calculation, and
2- The change of coordinate formula [{],e = [€]|qq. P, see (A.25) (covariant formula).

Remark A.8 More precisely, E* is the algebraic dual of E. If F is infinite dimensional, then we may
need to define a norm ||.|| for which £ is a Banach space. E.g. E = L*(Q) and ||f|[72 ) = [, f(Z)? dQ.
In that case E* is the name given to the set of continuous linear forms on F, called the topological dual
of F: It is essential in continuum mechanics.

(If F is finite dimensional then all norms are equivalent and a linear form is continuous.) un

Remark A.9 E* being a vector space, an element ¢ € £E* is indeed a vector. But E* has no existence
if E has not been specified first! And ¢ € E* can’t be confused with a vector ¥ € FE since there is no
natural canonical isomorphism between E and E* (no “intrinsic representation”), see § U.2. So if you
want to represent a £ € E* by a vector then you need a tool which is observer dependent; E.g. you need
some inner dot product (observer dependent) if you apply the Riesz-representation theorem, or you need
to specify a basis (observer dependent) to represent ¢ with its matrix of components (in the dual basis). o

Remark A.10 (continuing.) Misner-Thorne-Wheeler [19], box 2.1, insist: “Without it [the distinction
between covariance and contravariance], one cannot know whether a vector is meant or the very differen

object that is a linear form.” on
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98 A.4. Dual basis

A.4.2 Covariant dual basis (functions that give the components of a vector)

Notation: If @y, ..., @y are vectors in F, then let Vect{wy, ..., @} be the vector space spanned by 1, ..., .
Let (€;)i=1,....n be a basis in E. Let i € [1, n]y.

Definition A.11 The scalar projection on Vect{€;} parallel to Vect{€é1,...,€;_1, €it1, ..., €n} is the linear
form named m.; € E* with the classical notation, named e' € E* with the duality notation, defined by,
for all 7,

(A.6)

clas. not.: 7 (€;) =9d;;, i.e. €5 = dij,
{ dual not. : €'(&;) = 5;», ie. e.¢ = 5;
(The dual basis (me;) = (e') is intrinsic to the (€;): The same for an English and a French observer...)
Tei = €' being linear, if & = 37" ;€ then me; (&) = Y7_ 2 mei(€)) = 2

Tei T clas. T, = et 798 01— the ith component of Z relative to (€&;), (A.7)

see figure A.1.

Figure A.1: Parallel projections: m.1(%) = 21 and meo(%) = 22 (dual not.: e!(7) = x! and €2(¥) = 2?).

NB: Fundamental. ;.7 is not an orthogonal projection: Because orthogonality depends on the choice
of an inner dot product (subjective), and 7.;.Z is not an inner dot product because m; = €' € E* and
Z € E do not belong to a same vector space, and (A.7) is independent of any inner dot product.

Definition A.12 Particular case: If (€;) is a Cartesian basis, then usually 7; =written g, (or dx® with
duality notations). So dz; (%) = x; = «* = dz".Z with classical and/or duality notations.

Proposition A.13 and definition . (7¢;)i=1,..n = (€")iz1,..n —written () — (¢') is a basis in E*,

called the (covariant) dual basis of the basis (€;). Thus dim E* = dimE = n. And { = m € E* iff
0(€;) = m(é;) for all i. And for all ¢ € E* the reals {; := {.€; are the components of ¢ in the dual basis:

¢ C]%S' Zfﬂrei du:aI Z&el where {; = (.¢€;. (A8)
=1 i=1

Proof. If Z?:lAiﬂ—ei = 0, then 0 = (Z?:lAiWei)(éj) = Z?:lAiWei(gj) = Z?Il)\iéij = )\j for all j, thus
(Tei)i=1,...,n is a family of n independent vectors in E*. If £(€;) = m(€;) for all i then 4(Z) = )", z;4(€;) =
Yo xil(€) = >, xym(€;) = m(Z) for all Z, thus £ = m; And the converse is trivial. Then let £ € E* and
m =) .(L.€;)me;. Thus m € E* (since E* is a vector space), and m.€; = >, (£.€;)(7ei.€5) = >, (£.€;)0i; =
L.€;, for all j, thus m = ¢, thus £ = ) ({.€;)7¢;, thus Vect{(me;)i=1,.. n} span E*, thus ¢; = (.€; and
(Tei)i=1,....n is a basis in E* and dim E* = n. (Use duality notations if you prefer.) un

Example A.14 The size of a child is represented on a wall by a bipoint vector .

1- An English observer chooses the foot as unit of length and thus makes a vertical bipoint vector
“one-foot long” @. And then defines the linear form , : Vect{t} — R by m,.d = 1. And s, := 7,.4 is the
size of the child in foot (7, is a measuring instrument which gives values in foot).

2- A French observer chooses the metre as unit of length and thus makes a vertical bipoint vector
“one-metre long” b. And then defines the linear form mp : Vect{@} — R by Wb.g = 1. And s := mp.1 is
the size of the child in metre (m, is a measuring instrument which gives values in metre). un

-

Exercice A.15 Let (@;) and (b;) be bases and let (m,;) and (m;) be the dual bases. Let A # 0. Prove:

- 1 ) .
If Vie [1,%}1\] b; = )\Ziu then Vi e [1,77/]1\] Thi = X Tai (1e bt = %az). (Ag)
Answer. my;.b; = 8;j = Tai.G; = TFM'.% = %ﬂ'ai.gj for all j (since mq; is linear). un
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A.4.3 Example: aeronautical units

Fundamental example if you fly. International aeronautical units:
e altitude = English foot (ft).
e Horizontal length = nautical mile (NM).

Example A.16 First runway oriented South: First basis vector €5 one NM long oriented South. Second
runway oriented Southwest: Second basis vector €2 one NM long oriented Southwest. €3 is the vertical
vector of length 1 ft. O = the position of the control tower. The referential of a traffic controller is
R = (O, (€1,€3,€3)). The dual basis is (71, Te2, Te3) (S0y 7ei(€j) = 6;5 for all ¢, j). A plane p is located
at t at £ = Op. The air controller uses ¥ = Z?zlxié} € I@’% hence z; = 71 (&) = the distance to the
south in NM, zo = 7m.2(&) = the distance to the southwest in NM, x5 = 7.3(Z) = the altitude in ft.
Here the basis (€;) is not a Euclidean basis. This non Euclidean basis (€;) is however vital if you fly:
A Euclidean basis is not essential to life... Also see next remark A.17. u

Remark A.17 The metre is the international unit for NASA that launched the Mars Climate Orbiter
probe... But for the Mars Climate Orbiter landing procedure, NASA asked Lockheed Martin (who uses
the foot) to do the computation. Result? The probe burned in the Martian atmosphere because of A\ ~ 3
times too high a speed during the landing procedure: One metre is A ~ 3 times one foot, and someone
forgot it... As a matter of fact NASA and Lockheed Martin both used a Euclidean dot product... But not
the same: One based on a metre, and one based on the foot. Objectivity and covariance can be useful! au

A.4.4 Matrix representation of a linear form

(€ E*, (&) is a basis, (7,;) the dual basis, £ = Y7, £;m¢;. The matrix of of ¢ relative to (€;) is the row
matrix

Wi, = (6 o £y) " [1]; (row matrix). (A.10)

Thus, if 7 € E and & = 3711 %€, then 07 = (3L limed).(30)_ 25€5) = D0 - biwj(mei€y) =
> i j=rlizidiy = 301 Lixi, thus, with the usual matrix multiplication rule,

n

03 = [, e = Y i " [l 21z (A.11)

i=1

product of a 1 % n matrix times a n * 1 matrix. With duality notations: £.Z = Y7 {;z" = [(] . .[2] e
In particular for the dual basis (7;) = (e?) (classical and duality notations),

[mejlie=1[e"]e=(0 ... 0 _1_ 0 ..0) (= rowmatrix [&]]), (A.12)
Jth position

and we recover x; = T¢;.Z = [T¢j]|e.[T]je = [é}']ﬂ.[fhg = el.& = [ef]o.[2])e = 2.

Remark A.18 Relative to a basis, a vector is represented by a column matrix, cf. (A.2), and a linear
form by a row matrix, cf. (A.10). This enables:
e The use of matrix calculation to compute .7 = [{] z.[Z]s, cf. (A.11), not to be confused with an
inner dot product calculation & « § := (Z,9), = [Z] ﬁ; [9]r. -[7]|e relative to an inner dot product (-,-), in E.
e Not to confuse the “nature of objects” Relative to a basis, a (contravariant) vector is a mathematical
object represented by a column matrix, while a linear form (covariant vector) is a mathematical object
represented by a row matrix. Cf. remark A.10. u

A.4.5 Example: Thermodynamic

E.g.: Cartesian space R? = {X = (T, P) € R x R} = {(temperature,pressure) }. There is no meaningful

inner dot product in this R2: What would [|(T, P)|| = VT?+P? mean (Pythagoras): Can you add Kelvin
degrees and pressure (kg.m~!-s72)? Here a (covariant) dual basis is fundamental for calculations.

Here, after a choice of temperature and pressure units, consider the basis (E,=(1,0), E;=(0,1)) in R?,
and its (covariant) dual basis (71, Tgo) =" (dT,dP). Let X = TE| + PE, ="rtten (T p),
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100 A.5. FEinstein convention

The first principle of thermodynamics tells that the density « of internal energy is an exact differential
form: U € C(R%;R) s.t. a« = dU. Thus a(X ) =dU(X ) (the internal energy density at X) is a linear
form in (R2)* with components oy (X) = gg (X) and ay(X) = g—g()?):
oUu
or

()?)dT+a—U()Z')dP and [dU(X)] z = (2%(X) 2%(X)) (row matrix). (A.13)

dU(X) = e 2y

Thermodynamic notations: dU = 9% pdT + gng dP and [dU] = (%‘P g%lT )-

With matrix computation, column matrices for vectors, row matrices for linear forms:

- 1 - 0 - T - 6T
.[El]“?,:(o)a [E2]|E:<1), [X]E:(p>» [5X]|E:<5p>v and (A.14)
o [EY5=[dT)z=(1 0), [E*z=[dPlz=(0 1), [dU]z=(5% $5%)
give
dU(X).6% = (%) ggo@).(ﬁﬁ) gg( )5T+‘;—g()?)5p. (A.15)

Thermodynamic notations: dU. AX = 6T|PAT+ ap\TAP
This is a “covariant calculation” (in particular no inner dot product has been used).

A.5 Einstein convention
A.5.1 Definition

When you work with components (after a choice of a basis), the goal is to visually differentiate a linear
form from a vector (to visually differentiate covariance from contravariance).
Framework: a finite dimension vector space F, dim F = n, and duality notations.

Einstein Convention:
1. A basis in F (contravariant) is written with bottom indices: E.g., (€;) is a basis in E.

2. A vector ¥ € E (contravariant) is quantified relative to (&;) with its components written with up indices:

.’171

=" ,2'¢; and is represented by the column matrix [Z]; =

l,n

3. The (covariant) dual basis of (¢€;) (in E* = L(E;R)) is (e*): Written with up indices.

4. A linear form ¢ € E* (covariant vector) is quantified relative to (e?) with its components written with
bottom indices: £ = Y7 ,/;e" and is represented by the row matrix [(]jz = (£, ... £y).

5. Optional: You can use “the repeated index convention”, i.e. omit the sum sign > when there
are repeated indices at a different position. E.g. Y1 aie; =WUeN gig S fiet =WHten giel
S LiE; =written L€, 30 i1 9ia'y’ =written g, .iyi .. In fact, before computers and word pro-
cessors, printing Z _, was not an easy task. With I¥TEX it’s easy: In this manuscript the sum sign )
is not omitted (and confusions are avoided).

A.5.2 Do not mistake yourself

1. Einstein’s convention is just meant not to confuse a linear function with a vector.
2. It only deals with quantification relative to a basis.

3. Classical notations are as good as duality notations, even if you are told that classical notations cannot
detect obvious errors in component manipulations... But duality notations can be easily (and are often)
misused in classical mechanics (cf. the paradigmatic example of the vectorial dual basis treated at § F.8),
and then add confusion to the confusion.

. The convention does not admit shortcuts; E.g. with a metric (-,-)g: g(Z,9) = >} ;_,9ij2'y’ shows the
observer dependence on a choice of a basis and on the chosen metric (with the g;;); And even if g;; = J;;
you cannot write g(Z,4) = >, 2"y’ You must write g(Z,5) = >7';_,d;;2'2’: Unmissable in physics
because you need to see the metric and the basis in use.

. Golden rule: Return to classical notations if in doubt. If not applied correctly, Einstein’s convention can
add confusions, untruths, misinterpretations, absurdities, misunderstandings...
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A.6 Matrix and transposed matrix

The definitions can be found in any elementary books, e.g., Strang [25].
e M,,, is the vector space (with the usual rules) of m x n matrices.
e Product: If M = [M;j]i=1....n.. € My, and N = [Njj;]i=1...... € My, then their product is the m % p
j=1,...,n i=1,...,p

,,,,, i=1,...,

> k=1 MirNi;.-
e Transposed : If M = [M”] i=tom € M., then its transposed is the matrix M7 = [(MT)W];; .......... n €
M, defined by
(MT);5 2= Mj;. (A.16)

(Swap rows and columns).

e M is symmetric iff MT = M (requires m=n).

o (M.N)T = NT.MT (because Y, MjpNy; = >, (NT)ix(M7T)y;).

e M € M,, is invertible iff AN € M,,, s.t. M.N = I, then N =written 37=1 53nd N-1 = M and
N.M=1.

Exercice A.19 Prove: If M is an n * n invertible matrix then M7 is invertible and (M7)~! = (M~1)T
( =wntten pr=Ty. And if M is symmetric, then M ~! is symmetric.

Answer. M.M~" = I gives (M~")".MT = I” = I, thus M” is invertible and (M7T)~! = (M ~1)T =Written /-7
Thus if M = M” then M~' = M~T = (M~ 1)T. ou
A.7 Change of basis formulas

FE is a finite dimension vector space, dim E' = n, (€uq,;) and (€pew,;) are two bases in E, (Tqq,;) and (Tpew,;)
are the associated dual bases in E*, written (e,;) and (el ) with duality notations.

A.7.1 Change of basis endomorphism and transition matrix

Definition A.20 The change of basis endomorphism P € L(E; E) from (€yq,;) tO (Enew,:) is the endo-
morphism (= the linear map E — E) defined by P.€uqd,; = €new,; for all j € [1,n]y, so

€new,j = P-€oid,j- (A.17)
And the transition matrix from (€oid,i) t0 (€new,i) is P = [P]jz =clas.[p, ;] =dual [pi ] “thus the matrix
whose j-th column [gﬂﬂ”aj]|5old stores the components of €pew,; in the basis (€ua,i):
1
n n P P
gnew7j = ZPZ‘J‘ gold,i = ZPZJ' g01d7i7 i.e. [gnewvj]léold = = . (AlS)
=1 i=1 P’I’Lj Pnj

You can find other component notations: P;; = (P;); = P'; = (P;), i.e.

n n (Pj)1 (P!
Cnew,j = Z(Pj)i €old,i = Z(Pj)l Cold,is 1€ [Cnew,jlley = : = : . (A.19)
=1 =1 (Pj>n (Pj)n

A.7.2 Inverse of the transition matrix

The inverse endomorphism Q := P! € L(E; E) satisfies Q.€pew,j = €ga,; for all j € [1,n]y, so

n n Q1; Q'
Cold,j = D-Crew,j = ZQijgnew,i = ZQljgnew,ia [Coid, 5],y = : = : , (A.20)
=1 =1 an an
i.e. Q is change of basis endomorphism from (€new,i) to (€oia,i), and Q := [Q]jz = [Qy;] = [Q")] is the
transition matrix from (Enew,;) tO (€oid,i)-
Proposition A.21
Q=P (A.21)
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Proof. €ew,j = P-Codj = Y iy Pij€oidi = Doimy Pij (X imy QriCnewr) = 2pmy (Oie) QriLij)new e =
S r_1(Q.P)yj€new for all j, thus (Q.P)g; = dx; for all j, k. Hence Q.P = I, i.e. (A.21). ua

Remark A.22 P? # P~1in general. E.g., (€u,i) = (a@;) is a foot-built Euclidean basis, (€new,i) = (b;)
is a metre-built Euclidean basis, and b; = A\d; for all i (the basis are “aligned”): Here P = AI; Thus

PT = Xl and P! = 11 # P7T, since A = g5bx # 1. Thus it is essential not to confuse PT and P71,
cf. the Mars Climate Orbiter probe crash remark A.17. .

Plieas = Plicnew = £ }: ie.

Exercice A.23 Prove {
[Qieey = [Qliggy = @

P.gzlm,j = Z;L)j:lpijalew,i (: szzlpijgnew,i = Z?,jzl (Pj)ignew,i)7 (A 22)
Q.oaj = Y1 1o Qig€oidi (= 21 io1Q 5o = 2ot i1 (Q5) Coiai)- '
J J J
Answer. 7 = [Zij] = [Plig,,, means P.uey; = >.; Zij€new,is 1€ €new; = Q.(3°711ZijCnew,i)
Z?:1Z1'J'Q-é‘new,i = Z?:1Zij(22:1Qki€new,k) = ZZ:1(Z?:1QkiZij)€new,k = ZZ:1(Q-Z)kj€new,k for all j, thus
(Q-2)kj = dx; for all j, k, thus Q.Z = I, thus Z = P. Idem for @Q, thus (A.22). un

A.7.3 Change of dual basis

Proposition A.24 (7)) = (€%,,) and (Tqq;) = (e;) being the dual bases of (€yew,i) and (€yq,;), we
have, for all i € [1,n]y,

T new i Cﬁs.z@ijﬂ-o]d,j = eflew du:a] ZQijeZICP (A23)
j=1 j=1
ie. . ‘ ‘
[Wm’z]lgold = (Qzl e an ) = [eZHEW]IE()]d = (Qll eee an ) (Z—th Irow Of Q). (A.24)

Proof. mpew,i(Coa.k) =2 Mnew (3 Qjkrew) = 225 Qi Tnew,i(Enewj) = Y., Qjrdi; = Qu, and
Zj QijWM,j(gold,k) = Zj Qijéjk = Qik; true for all ’L',k, thus Tnew,i — Zj Qijﬂ-old,ja i.e. (A23) And
the matrix of a linear form is a row matrix. n

A.7.4 Change of bases formulas for vectors and linear forms
Proposition A.25 Let ¥ € E and ¢ € E*. The Change of bases formulas are

o [7] = Pil.[fhgol g (contravariance formula for vectors: between column matrices),

ey (A.25)
o [Uie,, = Wiey P (covariance formula for linear forms: between row matrices).
And the real ¢.Z is computed indifferently with one or the other basis (objective result):
K‘f = [Z] |501d : [f] ‘é‘OId = [6] IgHeW. [f] |5new : (A26)

PI’OOf. .’f = Zyzlxjé’old,j = Zyzlxj(Z?leijgnew,i) = Z?:1(Z?:1Qijzj)€llm,i and f = Zi yignew,i give
yi = >_; Qijx; for all 4, thus (A.25),.

= Z?:lgiﬂ'dd,i = Zij fiPijﬂ-new,j and / = Z]‘ M Thew, j give m; = Zz &PZJ for all j, thus (A.25)2.

Thus [Z]@nm.[fhgqm = ([Z]|gold.P).(P_1.[f]‘gOId) = [E]‘gold.[f]‘gold, hence (A.26).

Use duality notations if you prefer. un
Notation: Let © € E, ¥ = Zj Tj€oid,j = »_; Yi€new,i- Hence (A.25) give y; = Z?:lQijxja which tells:
y; is the function defined by y;(z1,...,z,) = Z?ﬂQijzj, thus Q;; = %(zl, <oy &p); Similarly with P;j;

J
Which is written

Qi = gi’j and Py = gzﬂ (A.27)
(Use duality notations if you prefer: Q%; = g—gj- and P'; = %)
Exercice A.26 Check that (A.25) applies to €pew,; and ey, i-
Answer. Let (EZ) be the canonical basis in M, the space of n x 1 matrices. Thus [é’new’j]‘gnew = Ej and

P[Goew.iliepmy =(4.25) [Crewjlieyy r€ads P.Ej = [Enew ;e = column j of P : True.
[ﬂw’i]‘é'old = EZT, thus [Wm‘i]lgneW'Q :(A'25> [ﬂw’i]‘e—o]d reads ElTQ = [ﬂm’i]‘éold = row 7 of Q : True. l.l
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A.8 Bidual basis (and contravariance)

Definition A.27 The dual of E* is E** := (E*)* = L(E*;R) and is named the bidual of E. E** is also
called the space of contravariant vectors (= the space of directional derivatives see § T.1).

If (€;) is a basis in E, (me;) is its dual basis (basis in E*), then the dual basis (9;) of (m¢;) is called
the bidual basis of (€;). (Duality notations: (9;) is the dual basis of (e?).)

Thus, for all ¢, the linear form 9; € E** = L(E*;R) are characterized by, for all j,
Opmej =03 (=7ej&), so L= lime if £;=0;L (=L&), (A.28)
i=1
since 81(6) = [“)Z-(Z?:l@jﬂej) = Z;—l:l[jai(ﬂ'ej) = Z?Zlﬁjéij = 52 (Dual. not.: 8i.ej = (Si, and £1 = 824)

Remark A.28 0; refers to the derivation in the direction €; because 9;(df (Z)) = df (¥).¢;. And thanks

E — E*
to the natural canonical isomorphism J : < o ¢ given by J(@).¢ := £.4 for all £ € E* (observer
u — J(U)
independent identification see (U.8)), we can identify @ and J(@). Notation in differential geometry:
J (&) = 0; ="rtten g and (df (%).€; =) 0;(df (¥)) ="1tten g, (£)(x). n

A.9 Bilinear forms

FE and F are vector spaces.
A.9.1 Definition

- . : : ExF —R
Definition A.29 e A bilinear form is a function S8(-,-) : . o L. St
(U, @) — B, w)

Bty 4+ Aa, W) = B(ty, W)+ A3 (U2, W) (linearity for the first variable) and (@, W + Awa) = B(d, W) +
AB(t,Ws) (linearity for the second variable) for all @, @y, ds € E, W, W, ws € F, A € R.

e L(E, F;R) is the set of bilinear forms E x F' — R.

e An elementary bilinear form in £(F, F';R) is a bilinear form {®m € L(E, F';R) made with a ¢ € E*
and a m € F* and defined by, for all (@, %) € E x F,

(6 ® m)(@,@) = H@)ym(F) (= (£.3)(m.D)). (A.29)

A.9.2 The transposed of a bilinear form (objective)

Definition A.30 If 3 € L(E, F;R) then its transposed is the bilinear form 87 € L(F, E;R) defined by,
for all (W, %) € F x E,

This definition is objective = observer independent, i.e. same definition for all observers; In particular
the definition of A7 doesn’t require a basis or an inner dot product.

Warning: Not to be confused with a transposed of a linear map, subjective because it depends on a
choice of an inner dot product, see e.g. (A.49).

A.9.3 Inner dot products, Cauchy—Schwarz inequality, and metrics

Definition A.31 Here F' = F and 8 € L(E, E;R).
e 3 is (semi-)positive iff, for all @ € E, 5(u, @) > 0.
e 3 is definite positive iff, for all @ # 0, 8(w@, @) > 0.
e 3 is symmetric iff 37 = , i.e. iff B(u, ¥) = B(v, @) for all 4,7 € E.

Definition A.32 e An “inner dot product” (or “scalar dot product”, or “scalar inner dot product”, or
“inner scalar product”, or “inner product”) in a vector space F is a symmetric and definite positive bilinear
form g € L(E, E;R), and

wen gy e Ly, YN L L e g(il, @) = (@, @)y = i, W, Vi, € B, (A.31)

e A “semi-inner dot product” is a symmetric and semi-positive bilinear form.
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104 A.9. Bilinear forms

Definition A.33 Let (-,-), be an inner dot product in E.
e Two vectors @, w € E are (-,-)g-orthogonal iff (@, @), = 0.
e The associated norm with (-, -), is the function ||.||, : E — Ry defined by, for all @ € E,

[illg = +/ (@, @)g- (A.32)
It is called a semi-norm iff (-,-), is a symmetric and semi-positive bilinear form.
NB: orthogonality is subjective : It depends on a chosen (-, ).
Proposition A.34 (Cauchy-Schwarz inequality.) If (-,-), is an inner dot product in E then
Vi i e B, |(d@,d),] < ||l (A.33)

and |(u, W),| = ||d]|g||wW|| iff @ and W are parallel. Thus ||.||, in (A.32) is indeed a norm.

Proof. Let p(\) = |[d+d]|Z = (G-+M0, i+D) 4, 50 p(X) = aA® + bA 4 ¢ where a = [|@]|2, b = 2(u@, W),
and ¢ = [|d]|2. With p(\) > 0 (since(-, "), is positive), we get b — dac > 0, thus (A.33).

And ||u||g =0 iff (¢,u)y =0 iff @ =0 since (-, ), is definite positive.

Then |(@, @) 4| = ||d]|4|[w0]]4 iff b* — dac = 0, i.e. iff IX s.t. p(A) = 0 i.e. T+ = 0

And ||u||4 > 0 since (-, ), is definite positive, and [|Ad||, = /(AT Ad)y = \/A2(4, = |Al]|d]|q4, and
[t + ]| = (@ + 0, i + ) = ||| + 2(i, @)y + [|d][§ < ||u|\2 2l ||w\|g + ||w||2 (||u|\g+ ||l )
thanks to Cauchy—Schwarz 1nequa11ty, thus ||@ + ||y < ||dllg + ||W]|g; Thus ||.]|4 is a norm. n

Definition A.35 (Metric.) 1- In R™ our usual affine geometric space, n = 1, 2 or 3, with R" = the
usual associated vector space made of bipoint vectors. Let  C R™ be open in R™. A metric in  is a C*°
( )Wriﬁcen

Q — L(R",R";R)
function ¢ :
p —gp 9p

Case: If the g, is independent of p then a metric is simply called a inner dot product (e.g. a Euclidean
metric is called a Euclidean dot product).

2- In a differentiable manifold 2, a metric is a C*® (g) tensor g s.t. g(p) € L(TpQ, T, R) is an inner
dot product at each p € Q (with T,Q the tangent plane at p). A Riemannian metric is a metric s.t. g(p)
is a Euclidean dot product at each p € .

} such that g, is an inner dot product in R™ at each p € Q. Particular

A.9.4 Quantification: Matrice [3;;] and tensorial representation

dimE = n, dimF = m, 8 € L(E, F;R), (@) is a basis in E which dual basis is (74;) = (a?), (b;) is a
basis in F' which dual basis is (73;) = (b%) (classical and duality notations).

Definition A.36 The components of 3 € L(E, F;R) relative to the bases (@;) and (b;) are the nm reals

,81']‘ = B(C_l'i, bj), and [ﬁhd,g = [ﬁij];f%”"’m ertten [,8”} (A34)

is the matrix of 3 relative to (d;) and (b;). If F = E and (b;) = (@;) then 18ia,a —Witten 1Bl

Proposition A.37 A bilinear form € L(E, F;R) is known as soon as the nm scalars 3;; = ﬂ(&’i,gj)
are known: We have

B = ZZﬂijﬂ'ai ® Ty = ZZ&jai @b, and

1=175=1 i*lj*l (A 35)
7-_’: u_j Z szuzwj Z Bzgu 'wJ T [Bha‘j[u_ﬂw
B,j=1 4,j=1

for all @ =Y jw;d; =y . u'd; € E and @ = Z:;lwil;i = Z?zlwigi cF.
Duality notations: § =1 3" Bija* @b and B(@,w) = Y7, Bijutw.
And dim L(E, F;R) = nm, a basis being given by the nm functions m,; ® m; = a’ @ b’.
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105 A.10. Linear maps

—

Proof. § being bilinear, @ = Y7/ u;d; and & = 37 Jw;ib; give B(d, @) = doi jmrwiwiB(d@;, by) =
> i e wiBijw; = ([ﬁ]m)T.[B]‘ 7 [u_f]l Thus if the j;; are known then £ is known.

And (mq; @ ;) (@, be) =429
are zero except the element at the intersection of row ¢ and column j which is equal to 1).

Thus szzlﬁij(wai@mbj)(ﬁ, 117) = E?] 1Bijuiwj = /B(ﬁ 17) for allﬁ u_} thus 6 = Z?J 1ﬁij(7rai®ﬂ'bj),
thus the 7,; ® m; span L(E, F;R). And Z Xij(Ta; @ mp;) = 0 implies 0 = (Z Nij (Tai @ ;) (g, be) =
ZU Xij (Tai @7p5) (ks Eg) ZU Xij0ikdjr = Age = 0 for all k, ¢; Thus the m,; ® mp; are independent. Thus
(Tai @ mp;) is a basis in L(E, F;R) and dim(L(E, F;;R)) = nm. o

(Tai-Ax) (0. bg) = 0;,0;¢ (all the elements of the matrix [m,; ® ij]‘ a5

0 3
Bliz, b1) = Bo1 = 0, B(da, bs) = Bz = 3. And Brz = [@1]].[8), ;5. [b2] 5 = (1 0). (é g) . ((1)) =2 M

Example A.38 dimE = dim F = 2. [] ;= (1 2) means (@, 5) = i1 = 1, B(@1,52) = s = 2,

Exercice A.39 Prove

B=Y Bijmai @my; = B = Bjimy @maj, ie. [T =((8lz5)" written [37]=[8]". (A.36)
i ij
Ile. g = Z” Bijat @b = BT = Zw Bjib" @ al.
Answer. 87 =30, (8")ijmei ® ma; € L(F, E;R) gives (87)i; = 87 (bi, d@;) =% 8(d;,b:) = Bji. o

Exercice A.40 3 € L(E, E;R) and (@;) and (b;) are two bases in E, and let A € R*. Prove:
if, Vi€ [l,nly, b=\, then [B];=\[8]z (A.37)

(A change of unit, e.g. from foot to metre, has a big influence on the matrix of a bilinear form.)

Answer. b; = Ad@; give (b, b;) = B(\di, Ad@;) = A2B(d;, a@,) (bilinearity), thus Bl5 = N [8]a- .

A.10 Linear maps

FE and F' are vector spaces.

A.10.1 Definition

Definition A.41 e A function L : E — F is linear iff L(t@; + AMio) = L(t1) + AL(42) for all @y, € F
and all A € R (distributivity rule). And (distributivity notation):

L(@) "™ L@ so  L(idy + Ads) = L.(y + Mdz) = L.@y + AL.is. (A.38)

NB: This dot notation L(&@) =""t%" [ i is a linearity notation (distributivity type notation);
e It is an “outer” dot product between a (linear) function and a vector;
e It is not an “inner” dot product since L and @ don’t belong to a same space.
e It is not a matrix product (no quantification with bases has been done yet).

Definition A.42 L(E;F) is the set of linear maps E — F' (vector space, subspace of (F(E; F),+,.)).
If F = E then a linear map L € L(E; E) is called an endomorphism in E.
If F =R then a linear map F — R is called a linear form, and E* := L(F;R) is the dual of E.
L;,(E; F) is the space of invertible linear maps E — F, i.e. L € L,(E; F) iff 3M € L;(F;E) s.t
LoM =1Ip and M o L = Ig where Ig and I are the identity maps in F and F.

Vocabulary: If F is a finite dimension vector space, dim E = n, then, in algebra, the set (L;(E; E),0)
of invertible endomorphisms equipped with the composition rule is called GL,,(E) = “the linear group”
(it is indeed a group, easy check).

Particular case: GL,,(M,,) = (L;(M,; M,),.) is the set of invertible n * n matrices equipped with the
matrix product.
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106 A.10. Linear maps

Exercice A.43 (Math exercise.) E = (E,||.||g) and F = (F,||.||r) are Banach spaces, and L;.(E; F)
is the space of invertible linear continuous maps E' — F with its usual norm [|L|| = supy z, =1 [|L-Z]|p.

Li.(E;F) — Li.(E; F)
Let 7 :

[ } Prove: dZ(L).M = —L YoM o L=}, for all M € L;.(E; F).
%

Answer. Consider limy, o w = limp—o W, —written ;5 (L).M if the limit exists. With
N = L™'.M we have L + hM = L(I + hN), and (I + hN) is invertible as soon as ||hN|| < 1, i.e. h <
its inverse being I — hN + h*N — ... (Neumann series); Thus I + AN = I — hN + o(h), and

1 1
TN = TIZ=1m) IR
(L+hM)™" = (I+hN)"".L™" = (I = hN + o(h)).L™" = L™" — hN.L™' + o(h). Thus LML~ _

L’l—hNAthl-FO(h)—L*l — _NL '+ 0(1) —>ho _N.L-L =

A.10.2 Quantification: Matrices [L;;] = [L']

dim E = n, dim F = m, L € L(E; F), (@) is a basis in E which dual basis is (m4;) = (a?), (b;) is a basis
in F which dual basis is (m,;) = (b°) (classical and duality notations).

Definition A.44 The components of a linear map L € L(E; F) relative to the bases (a@;) and (b;) are
the nm reals named L;; (classical notation) = L?; (duality notation), which are the components of the

—

vectors L.d; relative to the basis (b;). So:

m m

L.ﬁj = ZL”E; = ZLijgi; i.e. Lij = wbi.L.d’j = Lij = bZLﬁ:J (A39)
i=1 i=1
And
i written i
[Lag = [Ligliztem = [Lh]imtom =0 [Lig] = [LY] (A.40)
is the matrix of L relative to (@;) and (b;). So
Iy LY;
[L.&’j]lg = = = j-th column of [L]\a 7 (A.41)
Limj Lm;
Particular case: E = F, so L is an endomorphism in E, and (b;) = (&,): [L)|a,z =""%en [L] 5.
Example A.45 n=m = 2. [L]|a,5 = <(1) §> means L.@; = b; and L.@s = 2b; + 352 (column reading).
Here L11:1, L12:2, L21:O, L22:3 (duahty notations: Lllzl, L12:2, L21:O, L22:3). un
Let L € L(E; F). Forall 4 € E, @ =7 u;d; = > ) ud;, we get, thanks to linearity,
L= Liusb =Y > L'juwby, e |[Lil]y=[L] ;5[] (A.42)
i=1j=1 i=1j=1
Shortened notation: [L.@] = [L].[@] when the bases are implicit.
Proposition A.46 A linear map L € L(E;F) is known as soon as the n vectors L.ds, ..., L.d, are

known. And, for i,k =1,...,n and j = 1,...,m, the linear maps L,;; € L(E; F') defined by L;;.d) = 5jkl;z-
(all the elements of the matrix [Eijha,l? vanish except the element at the intersection of row i and column j
which is equal to 1), constitute a basis € L(E; F'). So, dim(L(E; F)) = nm.

(Duality notations: L;; —written i and L£.d), = 5%1_7;)

Proof. L is linear, @ € E and @ = }_; u;d; give L. = } >, u;L.a;. Thus L is known iff the n vectors
L.d; are known, j = 1,...,n; And (Z” Li;L;5).qr = Zij Lijojkb; = >, Litb; = L.dy, for all k, thus
Zij LijLi; = L,ie. L = Zij L;;L;;, thus the £;; span £(E;F). And Y ", ;L:l)\ij['ij = 0 implies
S NijLig.dy = 2212?:1)‘1‘3‘5]‘165@‘ = " Airb; = 0 for all k, thus Ay, = 0 for all i,k (because

(b;) is a basis). Thus the £;; are independent. Thus (L£;;) i=1,.n 18 basis in L(E; F). ia

Exercice A.47 L € L(E; E). If b; = Ad; for all i (change of unit of measurement), check [L]ja = [L]Ig'

Answer. L.gj = ZZ NZJEZ gives L(AC_I:]) = ZZ N»L'j ()\51)7 thus L.ﬁj = ZZ Nijﬁi, thus N = M. e
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107 A.11. Trace of an endomorphism: Invariant

A.11 Trace of an endomorphism: Invariant

Recall: The trace of a n * n matrix [L;;] is Tr([L;;]) = >_1L;; = sum of its diagonal elements.
E is a vector space, dim E = n, (@;) is a basis in E.

Definition A.48 The trace of an endomorphism L € L(E; E) is the real
Tr(L) = Tr([L]jz) thus Tr(L) = Li=» L' (A.43)
when L&] = Z?ZILMEL’Z- = Z?zlLichi for all j

: . L(E;E) - R
And the trace operator is the linear map Tr : .
L — Tr(L)

Proposition A.49 If L,M € L(E; E) then Tr(L.M) = Tr(M.L), which means

Tr(Lo M) =Tr(MoL) ZLl]Mﬂf ZLZ M7, = Tr([L) 7. [M]a)- (A.44)
7,7=1 7,7=1

And the real Tr(L) is independent of a chosen basis in E: If (@;) and (b;) are bases in E, then
Tr([L]z) = Tr([L]“;) =Tr(L) (invariant). (A.45)
Proof. Lc_i] = Zz L”(—il and MEL} = Zz Mljd’l give (L o M)EL} = L(Ma}) = Zk MkjL.d’k =

doin MijLiwdi = 52,37, LieMiy)d@;.  Thus Tr(L o M) = 37,030, LiMyi) = >, LijMy; =
TI‘([L]W[M]‘[,;) = Zij LjiM" = T‘I‘(MOL)

And [L]IE = P '[L]|z.P where P is the transition matrix from (d;) t o (b;) (change of basis
formula see (A.93)), thus Tr([th) = Tr(P'.[L)jz.P) = Tx((P~.[L]jz).P) = Tx(P.(P'[L});z) =
TI‘((PPil)[L]‘E) = TI‘([LM&) =n

Exercice A.50 For L := @ ® ¢, defined by (@ ® ¢).@ = (£.@)w for all 4, check:
Tr(w @ 0) = L0 (A.46)

Answer. @ =), wid; and £ =Y, lima; give [0 ® £) = [wily], thus Tr(W® L) = >, wils = >, Liw; = L.10. an
Remark A.51 The “trace” of a bilinear form g : F x E — R (e.g. an inner dot product) defined with a

basis (@;) by Tz(g) = >, gii is useless (not used) because it depends on the choice of the basis (@;): E.g.
if b; = Ad@; then Ty(g) = A\*Ts(g) # Ta(g) when \ # =£1.

A.12 Transposed of a linear map: depends on chosen inner dot products

Not to be confused with the transposed of a bilinear form which is objective cf. (A.30).

Not to be confused with the transposed of a matrix cf. (A.16).

Not to be confused with the adjoint of an endomorphism which is objective see § A.13.

(E,(-,-)g) and (F,(-,-)s) are Hilbert spaces, and L € L(E;F) (supposed continuous when E and F
are infinite dimensional). E.g., £ = Rg, F = R?, deformation gradient F = d®®(P) ¢ ﬁ(@g;]@?),
cf. (4.1), (-,-)q is the foot built Euclidean dot product chosen by the observer at #, (measurements at t),
(v, *)n is the metre built Euclidean dot product chosen by the observer at ¢ (measurements at t).

A.12.1 Definition (depends on inner dot products)

Definition A.52 The transposed of L € L(E; F') relative to (-,-)4 and (-, ) is Lgh € L(F; E) defined
by, for all (¢, w) € E x F,

(LgTh.u'}, U)g = (W, L.@W)p, written (Lgh W) o U = W e, (L.10). (A.47)

where we used the dot notation Lth(u_i) =Written L?;h.u'i since L?;h is linear. This defines the map

O .{E(E;F) — L(F;E) Aag)

. h .
’ L = ()5(L) = LT,

(A linear map has an infinite number of transposed: depends on inner dot products, see exercise A.55.)
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Particular case of an endomorphism: L € £L(E; E) and (-,-)4 is an inner dot product in E. Then

ng written L; = the (-, -)4-transposed of an endomorphism L. (A.49)

Isometric framework: (-,-); is an imposed Euclidean dot product (English, French,...); Then
LY =written. 17" and (A.47) reads

(LY A0 o i = 0 o (L.10). (A.50)

Exercice A.53 Prove: If F and F are finite dimensional, if L € L(E; F) is invertible then 1- LgTh is
invertible, and 2- (Lz;h)’l = (Lil)zg.

Answer. 1- L invertible, thus dim £ = dim F'. Suppose 3w € E, @ # 0, s.t. L;h.u')’ = 0. L being invertible,
3¢ € E s.t. L.it = &, with @ # 0 because L is linear and @ # 0; We get LghlL.ﬁ = 0, thus (LghAL.'J, U)g =0=
(L.@, L.@), = ||L.d||3, thus L.@ = 0, thus @ = 0 since L is linear invertible; Absurd because @ # 0. Thus L}, is
one-to-one with dim £ = dim F', thus invertible.

2- (Lip (L™ hg i, 0)g = (L) k@, Lad)n = (4, L' .Lab)g = (4, W)g = (Lap-(Lip) "4, @)y for all @, . da

Exercice A.54 Prove: If (E, (-,-),) is an Hilbert space and if L € L(E; E) is continuous, then L] exists,
is unique, and is continuous (apply the Riesz representation theorem F.2).
(If E is finite dimensional then see next § for a direct calculation.)

Answer. Let W € E, let gy : U4 € E — Lgg(@) := (W, L.¥W)y € R. £, is linear (trivial since L is linear and ( g 18
bilinear) and continuous: |lg4.%@| < ||W||4||L.T||g < ||W]]q ||L|| [|d]]q gives |[lag|lex < ||L]|||W]|g < oo. Let Emg €er
be the (-, -)4-Riesz representation of bgg € E*: So Ly U = (ng, )4 for all @ and ||€wg||g = ||lsg||E+. Then define
LY weE— LT (w):= U5y € B; So (LT( ), @)y = (Lg, @)y = Ly = (W, L.@0) 4, thus LY is linear (since (-, "), is
bilinear) and continuous: ||LT .||y = ||lallg = |[Cagl|z+ < ||| ||@]]4 gives [|LT|| < ||L]|z(z:z) < oo. Uniqueness:
if M also satisfies (M .0, @)y = (@, L.@)y then (M, .0,%)y = (L} 10, @)g, for all @,, thus M, = L.

A.12.2 Quantification with bases
(@:)i=1,...n and (51)1:1m are bases in F and F. Let

e gij = g(di,d;), [g] = [9ij], hij = h(bi, i), [h] = [hij], and

n - n A51
o Lij =Y Lid, [L]=[Lyl, Libj=> (LD, [Lix) = [(Lin)ij], (A.51)
i= i=1
ice. [g] = [gljas 0] i= W], (2] o= (Ll g [E5,] 1= [E5,] e
(A.47) gives [d]T.[g]. [Lgh w] = ([L.d))T.[h].[w] for all i,w, thus
[QHL;J =[L)". Zgzk oh)ki = ZLM hugj, (A.52)
ie. o
[Lan) = o) VLI [R) ], e (Lg)e = DY () inLenhay. (A.53)
k=1¢=1
Duality notations:
S g L)k =Y LFihg, e (LL)= > g"L'%hy where g7 :=([g]" )i (A.54)
k=1
Particular case of an endomorphism:
[Lg] =g " [L]" [g] (A.55)

Particular case (d@;) is (-,-)g-orthonormal: [g] = [d;;], thus [L]] = [L]T, i.e. (L]); = Lj;, (L) = L7;.
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0 1
1 0

products (+,-)4 and (+,-), in R2 such that LT # L} (a transposed endomorphism is not unique, is not
intrinsic to L, because it depends on a choice of an inner dot product by an observer).

Answer. Apply (A.55):

Exercice A.55 Basis (d;) in R2, L € £(R?;R?) defined by [L] :==[L]jzg = ( > Find two inner dot

9] = ((1) ?) — [1]. Thus [Z7] = [Z].[L).[1] = (g’ (1)) ie. LT.d) = Gz and LT.d@, = a.
] = ((1) g) Thus [LT] = [B]"".[L].[] = (ﬁ; g) ie. LT.dy = G, and LT3 = 241

Exercice A.56 Prove: Two proportional inner dot products give the same transposed endomorphism:
If L€ L(F;E) and 3\ > 0s.t. (+,")q = A2(-,+)p then LT = LT.

Answer. (LI .40,@), = (@, L.@)y = N (0, L.@0)q = N(LY 0, @) = (LT @, @)y, for all @,w, so LT = LT, "
Exercice A.57 Let L € L(E; E). Prove: Tr(L]) = Tr(L) (independent of g).
Answer. Tr(Lg) = Tr([Lg]je) = Te([g] ;2" [L]fz[9]1e) = Tr(lg)je-lo] o - [L][2) = Tr([L)j) = Tx([L]je) = Tr(L).  ow

Remark A.58 In fact g*/ in (A.54) is the short notation for (¢%)¥, see (F.30). Use classical notations
to avoid misuses and misinterpretations. ==

A.12.3 Isometry

(+,-)g and (-, ) are inner dot products in E and F.
Definition A.59 An invertible linear map L € £;(E; F') is an isometry relative to (-,-), and (-, )y iff
Vii,w € E, (L.ii, L&), = (i, W)y, ie. L}, oL =Ig (identity in E). (A.56)

Thus, if L € L(E;F) is an isometry and (¢;) is a (-, -)g-orthonormal basis, then (L.€;) is a (-,)p-
orthonormal basis, since (L.€;, L.€;), = (€, €;)q = J;; for all 4, j.
In particular, an endomorphism L € £;(E; E) is a (-, -)4-isometry iff

Vi, i € E, (L.i,L.w)y = (ii,d)y, ie. LJoL=1I (A.57)

Exercice A.60 Let f: E — F. Prove:

— —

If, Vii,w € B, (f(@), f(@))n = (@, @), then fis linear (and is an isometry). (A.58)

—

Answer. Let (€;) bea (-, -)g-orthonormal basis; Thus (f(¢€;)) is a
And @ = Y, w;& and @ = 3, w;ié; give f(@) =" 3, (f(@), f(&

>

thus f(@ + M) = 2, (ui + Aw;) f(&) = 3, wif (&) + A X, wi f(&

(-, -)n-orthonormal basis, cf. hypothesis in (A.58).
DF(E) =" (0, 8),f(6) =" 5, (@),
) = f(@) + Af(i%), thus f is linear. .

Exercice A.61 R” is an affine space, R™ is the usual associated vector space, (-,-)g is an inner dot
product in R™ and ||.||4|| is the associated norm. Definition: a function f : p € R" — f(p) € R" is

[|.||g-distance-preserving iff
1F @) F@)lls = |IFlly, Vg € R (A.59)

Prove: If f is a distance-preserving function, then f is affine.

Answer Let O € R™ (an origin) and f: Z = Op € R* — f(Z) := f(O)f(p) (vectorial associated functlon) Let
— " 7)

z = Op and ¥ = Og. Then the remarkable identity 2(f( ) (g_{ g = Hf( )Hg + Hf( e — I1f(@)—f(7 7)||; gives

2f(&), F(@)g = IF@NHIFDI - IIF QI G = I17@)] |g+|\fq($g 1@Bll5 = [1/15+1715- 11235 = 2(Z, 7)s,

+ f(Op) 1

—

thus f is linear cf. (A.58), thus f is afﬁne since f(p) = f(O)

A.12.4 Symmetric endomorphism (depends on a (-,-),)

Definition A.62 An inner dot product (-,-), being chosen, an endomorphism L € L(E;E) is (-,)4-
symmetric iff Lg =L:

L (-,-)g-symmetric <= L] =L <= (L., W)y = (i,L.w),, Vi,dcE. (A.60)

(Depends on (-,-)q: L can be (-,-)g-symmetric and not (-,-),-symmetric, see exercise A.55; IL.e. the
symmetric character of an endomorphism is not intrinsic to the endomorphism.)
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110 A.12. Transposed of a linear map: depends on chosen inner dot products

A.12.5 Deformation gradient symmetric: Absurd

The symmetry of a linear map L € L(F; F) is a nonsense if E # F.

E.g.: The gradient of deformation F{°(p;,) = d®® (p, ) ="'itten f ¢ E(I@Z),@f) cannot be symmetric
since FT e L(RY; I@g) Idem for the first Piola-Kirchhoff tensor H[°, which motivates the introduction
of the symmetric second Piola-Kirchhoff tensor [°, see Marsden-Hughes [17] or § 0.2.4.

A.12.6 Dangerous tensorial notation

To simplify the writings, we consider F' = E.

The transposed 37 € L(E, E;R) of a bilinear form 8 € L(E, E;R) is objective cf. (A.30): We don’t
need any tool like an inner dot product to define 7. And (quantification) with a basis (€;) and its dual
bases (e?): If 3 = > Bije' @ el then BT = > Biiet @ el ie. [BT) 1z =[] -

The transposed L;F of an endomorphism L € L(E; E) is subjective because it depends on a choice of
an inner dot products (-,-),. And with a basis (€;) (quantification), [L]]jz # [L]|z" in general because
(L5 ]1e = [g) - [L]" Lg].

Hence it is dangerous to represent an endomorphism in a basis with its “bilinear tensorial represen-
tation” when dealing with the transposed. Details: L € £(F; E) is naturally canonically represented by
the bilinear form My, € L(E*, E;R) (mixed tensor) defined by My, (¢,4) = ¢.L.@ for all £ € E* and @ € F
(so My, ¢ L(FE, E;R)). Quantification:

LE =316 ~ My=Y L& @¢ hence M 2V Y i wa,. (A.61)

i=1 ij=1 i,j=1

And, (-,-), being chosen, Lg € L(F; E) is represented by the bilinear form MLgT € L(E*, E;R); And

3

Ly = (Ly)& ~ Myr = > (L})';& ©¢’; Thus | Myr # M." (A.62)

i=1 ij=1

because: 1- € ® e/ # e’ ® €; (!), and

2- (L3)'5 = g1 (gl )irL h ge; # L7 in general, while (M,")"; = (Mg)7; always: (f)" is
independent of any inner dot product, while LgT depends on a chosen inner dot product.

3- Mz € L(E*, E;R) ~ L(E*; E*) is the tensorial representation of the adjoint L* of L, see (A.68).

So in continuum mechanics it is strongly advised not to use the tensorial notation for linear
maps when dealing with transposed (you should not confuse covariance with contravariance). It can be
only used for computations when a Euclidean basis and associated Euclidean dot product are imposed
(isometric framework).

A.12.7 The general flat > notation for an endomorphism (depends on a (-, Jg)
The ® notation deals with change of variance. Let L € £(E; E). Choose an inner dot product (-,-),.

Definition A.63 The associate bilinear form L} € L(E, E;R) is defined by, for all @, @ € E,
L (@, @) = (@, L.w), (it is (,-)y dependent). (A.63)

The bilinearity of L’ is trivial.) (Thus L € T}(Q) implies L° € T9(€).
g 1 2

Quantification: (¢;) is a basis in E, (¢') is its covariant dual basis, g = >, gije’ @ ¢ ie. [g] = [95],
L& =Y L&, [L=[L], L= (L)ge e, [L]=I[(L)) (A.64)
i=1 ij=1
This explains the ” notation: The up index in L?; becomes a down index in (LZ)U.

And (Ly)ij = L}(&, &) = (&, L.8)g = (&, 2 LFj@k)g = 0 L¥5(Es@k)g = 2op LF jgan = ([9).[L)) 5,

thus
(L) = LFigu. ie. |[L3]=I[g][L]| (A.65)
k

110



111 A.13. The adjoint of a linear map (objective)

Remark A.64 (A.63) defines the (-,-),-dependent operator

70 :{E(E;E) ~ L(E*,E;R) — L(E,E;R) (A.66)

L — Jy(L) =L,

This operator is a contravariance—covariance exchange operator. With the natural canonical isomorphism
L e L(E;E) ~ Ty, € L(E*, E;R) given by Ty, (¢,w) = ¢.L.w see (U.13): The “mixed tensor” L has been
transformed into the “twice-covariant tensor” L';. With a basis:

L~Tp = Z L';é;®el  and L'; = Z (LZ)ijei ®el, (A.67)

i,j=1 1,5=1

Wlth (A65) n

A.13 The adjoint of a linear map (objective)

A linear map L € L(E; F) has one and only one adjoint L* (intrinsic to L), while it has an infinity of
transposed LT := L;h (needs chosen inner dot products). So they can’t be confused.

A.13.1 Definition
E and F are vector spaces, E* = L(E;R), F* = L(F;R).

Definition A.65 The adjoint of a linear map L € L(E; F) is the linear map L* € L(F*; E*) canonically

defined by
F* — FE*
L . , . (A.68)
m — L*(m):=moL, written L*.m =m.L
thanks to the linearity of m, L and L*. So, for all (@,m) € E x F*,
(L*.m).@ =m.La (A.69)
thanks to the linearity of m, L and L*.

(Remark: ||L*.m||g« = ||m.L]
continuous when L is.)

g < |Im||p<||Ll|z(z5ry gives ||[L*||cpemey < |IL|2(E;r), thus L* is

A.13.2 Quantification

(@) and (b;) are bases in E and F, (a') and (b') are the (covariant) dual bases, L € L(E;F), so
L* € L(F*; E*). Let

n

L.@:ZL%, (L) =[L%], LW =Y (L)%a', [L*]=[(L");’]. (A.70)

i=1

(So [L] = [L] 5 and [L*] := [L*]jpq). (A.69) gives (L*.b/).d; = b/.L.G;, thus (307 (L*)x’ a).a; =
W .(5, L¥iby,), thus

(L*);9 = L%;, thus [L*]=[L]T (transposed matrix). (A.71)
Classic notations: L.C_ij = Z;llLijgi’ L*.ﬂ'bj = Z?:l([’*)ijﬂ-ai: and (L*.Tl'bj).c_ii = 7Tbj.L.C_L’i, thus

(e (L) iy mar) @ = ms. (X ey Luibi), thus (L*);; = Ly;, thus [L*] = [L]T

A.13.3 Relation with the transposed when inner dot products are introduced

We need the (-, -),-Riesz representation mapping ﬁg e B — ﬁg () = Zg € E defined by .4 = (Zg, U)g
for all ¥ € F, valid when E* is the space of continuous linear forms.

Let L € L(E; F) be continuous, and (-, )4 and (-, -);, be inner dot products in E and F: The transposed
of L is defined by LT := L;Fh is defined by (LgTh.u'i7 )y = (W, L)y, for all @ € E and w € F.
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112 A.14. Tensorial representation of a linear map (dangerous)

We have
(L*m).@ "2 m(L.@), thus (R,(L*.m), @), = (Rn(m), L., (A.72)
thus ((ﬁg oL*)m, ), = ((Lz;h o Ry).m, @)y. Thus ]% Lz;h o Ry, ie.
LT
_ E < F
gh =RyoL*o(Ry)™t| e R, 1 + Ry, is a commutative diagram. (A.73)
E* «— F*
L*

Exercice A.66 From (A.73), recover (A.52), i.e. [L],] = [g]~".[L]".[A].

Answer. [L],] =79 [R).[L*).[Ry] ! =57 [g] 7 (L] [h].

A.14 Tensorial representation of a linear map (dangerous)
Consider the natural canonical isomorphism (between linear maps E — F and bilinear forms F* x F — R)
~ [ L(E;F) — L(F*,E;R)
VE N where G (m, @) == m.(L.@W), Y(m,@) € F* x E, (A.74)
L —p,=J(L)
see § U.4.

Quantification: (d;);=1._ . is a basis in F, (l;i)izL___,m is a basis in F which dual basis is (m;) = (e%),
Le L(E;F). let

ZLZ]bZ) BL = ZZ ﬁL ’ij ®7Taj7 [L] = [Llj]7 [BL] = [(611)%]} (A75)
(A.74) gives
[(6L)ij = BL('/Tbi,aj) = Wbi.L.afj = Lij, thus [BL] = [L] (A76)

Duality notations: L.@; = 3, Li;b; and f, = Zij(ﬁL)ijl_);- ®a’ and [LY;] = [(BL)"].

Contraction rule. With @ = """, u;d,,

Br.i = ZZL”b @waj = ZZL”I) (Taj. T ZZL”ujb = L. (A.77)

1=175=1 i=15=1 j=1li=1
contractlon

because L.i =Y ujL.dj =}, u]L”l_;
Duality notations: Br.u = ZLl b ®d’ ). 4 = ZLl b, ") = ZLijujZ;i =
—— -

1 1
J contraction J

Remark A.67 Warning: The bilinear form f; should not be confused with the linear map L: The
domain of definition of 5y is F* x E, and £ acts on the two objects £ (linear form) and @ (vector) to get
a scalar result; While the domain of definition of L is F, and L acts one object i to get a vector result.

You can use the tensorial notation for L... only to calculate L.i as in (A.77) (contraction rule). ia

A.15 Change of basis formulas for bilinear forms and linear maps
A.15.1 Notations

Let A and B be finite dimension vector spaces, dim A = n, dim B = m. (E.g. application to the change
of basis formula for the deformation gradient F: A=R} — B=R}.)

(@ota,i) and (@pew,;) are two bases in A, ( oid,i) and (l_)'new’i) are two bases in B, (a’y), (al,.), (biy), (0%n,)
are the (covariant) dual bases (duality notatlons). Let 24 and 75 be the change of basis endomorphisms
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113 A.15. Change of basis formulas for bilinear forms and linear maps

from old to new bases, and P, := [Pi]|z o = [Py;] and B := [733]“; y
O
matrices, and Q4 = P! and =K L,

n
— - i -
Qpew,j = 7?4-a01d,i = § PA jQold,i s a’new E Q4 ]aojda

ij*l
11ewg % bo]d i § % bOId i) 11ew - § % JboId
4,5=1 1,5=1

Classical notation: Cpew,j = Y_; 1:;Coid,i» Tenew,i = Zj QijTedd,i-

A.15.2 Change of coordinate system for bilinear forms € £(A, B;R)

= [B5;;] be the associated transition

(A.78)

Let 3 € L(A, B;R), B=73_,, M;jaly @ bOId > Nij Hew(X)bneW, ie., for all (4,7) € [1,n]y x [1,m]n,

. 5 . N ) [ﬂhdds =M= [sz]]l;l ________ N
ﬁ(aold,ia bold,j) = Mija ﬂ(anew,iv bnew,j) = Nij7 Le. B _ 1 o

Proposition A.68 Change of basis formula:

[Bljnews = " [Bjgas- I |, ie. N=RBR".MB.

(A.79)

(A.80)

In particu]ar, if A= B and (aold}z) = (gold,i) and (6new,i) = (Enm,i); then Bq = % :Written P, and

[Blnew = P.[Blaa-P|, ie. N =PT.M.P.

Proof. Nij = (@uew.i, buew.j) = D ke BF B 8o g, Do) = S BF M B =30,

Exercice A.69 Prove (objective result):

B, @) = [z, [Blinews-[@ 5

= (i -8 1]

new | bold”

Answer. [d][;  [Blinews: (@5 = (B [@)a,,)" (A" [Bljaas-B)-(B " [@] 5 ).

new new ] 1®oid

A.15.3 Change of coordinate system for bilinear forms € L(A*, B*;R)
Let z € L(A*, B*;R), and, for all (¢,j) € [1,n]y x [1,m]n,

2(atg bl ) = MY, z(al,,, b N9 e ‘ Cmim

( old oId) ( ew new) [Z]‘Wé — N = [NU] 3

Proposition A.70 Change of basis formula:

Epnews = 2~ [2)jaas- BB, de. N=DR "M

(A.81)

BT My 5.

(A.82)

(A.83)

(A.84)

In particular, if A= B and (dgq,;) = (l;old,i) and (Gpew;) = (l_)'new,i), then P, = I ="ritten P, and

Zinew = P T [2]aq.P~Y, ie. N=P T MPL
\

Proof. N;; =

113
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A.15.4 Change of coordinate system for bilinear forms € £(B*, A;R)

(Similar to linear maps L € L(A; B) ~ L(B*, A;R) thanks to the natural canonical isomorphism.)
Let T € L(B*, A;R), and, for all (i,7) € [1,n]y X [1, m]y,

T(bf)ldv aOld»j) = Mijv T(b;ewv 6H8W7j) = Nijv Le. _ i j‘=1 ‘‘‘‘‘ " (A-SG)

Proposition A.71 Change of basis formula:

Tnews = B [TNjgas-Ba |, ie. N=Qu.MB. (A.87)

—

In particular, if A = B and (Goq,i) = (boia,s) and (Gpew,i) = (gnew7i), then P, = I ="ritten p_and

[T)jnew = P~ .[T]ag-P|, ie. N =P '.M.P. (A.88)

Proof. N = T(biy,, Gnew.j) = S ope @ kB 5T (Vs Goid ) = e Q' kM7 B

A.15.5 Change of coordinate system for tri-linear forms € £L(A*, A, A;R)

(For d?ii(p): For a vector field @ € T'(U) ~ T¢(U), i(p) € R™, its differential satisfies dii(p) € L(R?; R") ~
L(R™* R R), and d?i(p) € L(R™; L(R";R")) ~ L(R™*,R",R™; R), see § T.1.4.)

Consider a tri-linear form T € L(A*, A, A;R), and [T]z_, = [M;,] and [T]jz = [N};], so where
;k = T(aéldaaold,ja Gold,k ) N;Lk = T(aiew7 Gnew,j» Qnew,k)- (A.89)
Then .
=Y. Q\P'PY M), (A.90)
Ap,r=1
Indeed 7, ,, M), Gotan ® aljy @ aky = 3" iie Min QAP PY inenyi ® gy, ® i,

A.15.6 Change of coordinate system for linear maps € £L(A; B)
Let L € L(A; B) and, for all j =1,...,n,

L.dog; = ZMijgold,i = ZMijgoId,i ie. [Lljowas = M = [M;;] = [Mij]gj«-wt:a
i=1 i=1

o o (A.91)
L.&,E.W,j = ZNijgneW,i = ZNingeW,i i.e. [L]|news = N = [NZJ] = [N’LJ] 2::11 ..... 2,,
i=1 =1
with classical and duality notations.
Proposition A.72 Change of bases formula:
Lljnews = B~ [L]jaas-Br|, ie. N=I"'MD. (A.92)

—

Particular case L endomorphism: A = B, (dgd,:) = (bod,i), (Gpew,i) = (l_)’newyi), P, = Iy =Written p 459

[Lljnew = P~ [L)jga-P|, ie. N=P 'M.P. (A.93)
Proof. L-dnew,j = Zz Nijgnew,i = Zik Nij%kigold7k = Zk(%'N)kngId7kf and L.Cﬁl‘newd =
L(ZZ Bﬁlljaold,i) = Zi Bﬁj Zk Mkibold,k = Ek(M-&)kjbold,k: for all j, thus B5.N = M. E,. un
Exercice A.73 Prove: (.L.4 = [é]lgnm'[l’]\ws'[ﬁhdnm = [E]lgold.[L}|dds.[ﬁ}|dOId (objective result).
Answer. [(] 5 [Linews- [, = (€], -)- (B [Ljaae- ). (B [il] 2 )- =
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115 B.1. FEuclidean basis

Remark A.74 Bilinear forms § € £L(A, A;R) and endomorphisms L € L£(A; A) behave differently: The
formulas (A.81) and (A.93) should not be confused since P~' # PT in general. E.g., if an English
observer uses a Euclidean (old) basis (@;) = (daq,) in foot, if a French observer uses a Euclidean (new)
basis (b;) = (Gpew,i) in metre, and if (simple case) b; = Ad; for all i (change of unit), then P = AI and

[Ljnew = [Lljas  while  [Bljnew = A2 [B]jaa- (A.94)
>10
Quite different results! Here P~ # PT. Cf. remark A.17 (Mars Climate Orbiter crash). L

B Euclidean Frameworks

Time and space are decoupled (classical mechanics). R™ is the geometric affine space, and R™ is the
associated usual vector space made of “bi-point vectors”, n = 1,2, 3.

B.1 Euclidean basis

Manufacturing of a Euclidean basis.

An observer chooses a unit of measurement (foot, metre, a unit of length used by Euclid, the diameter
a of pipe...) and makes a “unit rod” of length 1 in this unit.

Postulate: The length of the rod does not depend on its direction in space.

e Space dimension n = 1: This rod models a vector €; which makes a basis (&1) called the Euclidean
basis relative to the chosen unit of measure.

e Space dimension n = 2 and 3:

- The observers, with his unit of measurement, makes three rods of length 3, 4 and 5, to build a
triangle (A, B, C) (vertices A, B and C) and A is not on the side on length 5.

- Pythagoras: 32 + 4% = 52 gives: The triangle (4, B, C) is said to have a right angle at A.

- Two vectors @ and @ in R" are orthogonal iff the triangle (A4, B, C') can be positioned such that AB
and AC are parallel to @ and .

- A basis (€;)i=1,... »n is Euclidean relative to the chosen unit of measurement iff the &; are two to two
orthogonal and their length is 1 (relative to the chosen unit).

Example B.1 An English observer defines a Euclidean basis (d@;) using the foot. A French observer

-

defines a Euclidean basis (b;) using the metre. We have (international yard and pound agreement 1959)

1
1foot = pmetre, p =0.3048, and 1metre = Afoot, A= — ~ 3.28. (B.1)
i
E.g., “aligned” bases: For all ¢, .
b =Ad;, and P =M\l (B.2)
is the transition matrix from (@;) to (b;). NB: PT =\ =P # P~! = +I and PT.P = N\2I. oa

Remark B.2 The bases used in practice are not all Euclidean. E.g., see example A.16 if you fly. .

B.2 Associated Euclidean dot product

Definition B.3 An observer has built his Euclidean basis (€;). The associated Euclidean dot product is
the bilinear form g(-,-) = (-,+), € L(R",R™; R) written .+ . defined by

Vi, g, gij = g(€;,€5) = 045, ie. [gle=1. (B.3)

Le., with (7.;) = (¢*) the (covariant) dual basis (with classical and duality notations),
.og.:(.’~)g = Zwei@)wei:Zei@ei. (B4)
i=1 i=1

With Einstein’s convention, (-,-)g := >, dije' @ e
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116 B.3. Two FEuclidean dot products are proportional
Thus, for all Z,§ € R™, with @ = Y7 ;& =Y i 2'¢; and §= > i€y = > Y €,

'gg: (fa y) \e 27]|P Zmzyz Zlﬂyl (B5)
=1

With Einstein’s convention: &'« § = (Z,¥)g := >_;; dij2’ yd

Definition B.4 The associated norm is ||.||g := 1/(,-)g, and the length of a vector & relative to the
chosen Euclidean unit of measurement is ||Z||y := \/(Z, ), = /T« T.

With & = >0 2,6 = Y 1 2'e; we get ||Z]|g = /D27 = /Doy (27)2

Einstein convention: |[Z||g = /> ;. d;;x'®d.

Definition B.5 The angle 6(Z, i) between two vectors Z, 7 € R® — {0} is defined by

- r g
cos(0(Z, ) = (=—, —=1)g- (B.6)
12l [171ls "
(With a computer, this formula gives 6(Z, §) = arccos(( Hffllg’ ;1717| )g) in [0, 7].)

g9

B.3 Two Euclidean dot products are proportional

Consider two Euclidean bases in R (@;), e.g. built with the foot, and (b;), e.g. built with the metre.
And let (-,-)g and (-, ), be the associated Euclidean dot products: (d;,d;)y = di; = (i, b;)n.
Proposition B.6 If A = Hl_;ng, then ||l_);||g =Aforalli=1,..,n and

(g =A2(, Jns and [[[lg = Ml[][n- (B.7)

Proof. By definition of a Euclidean basis, the length of the rod that enabled to define ( ;) is independent
of i cf. § B.1, thus A = ||b1||, = ||bs]|, for all i. Thus ||b; 12 =X = A2||b;||? for all i. If i # j then

(bl,b )g =0= (bl,b )n since (b;), (,-)g and (-,-), are Euclidean cf. § B.1. Hence (bl,b )g = A2 (bi,b )
for all 4, j, thus (Z,7), = N(Z,§)s, for all Z, 7 (bilinearity of (-,-), and (-,)s), thus (B.7). oa

Example B.7 Continuation of example B.1: (-,-), = Y. ;a’ ® a” is the English Euclidean dot product
(foot), and (-,-)p = > ;- b* @ b" is the French Euclidean dot product (metre). (B.7) and (B.1) give:

(v )a=A2(,)p and [|lla = Alllls, with A=~328 and A?~ 10.76. (B.8)

E.g. if |||, = 1 (length 1 metre) then ||@||, = A (length X ~ 3.28 foot). ua

B.4 Counterexample: Non existence of a Euclidean dot product

1- Thermodynamic: Consider the Cartesian vector space {(T, P)} = {(temperature,pressure)} = RxR.
There is no associated Euclidean dot product: An associated norm would give ||(T, P)|| = vT? + P2 € R
which is meaningless (incompatible dimensions). See § A.4.5.

2- Polar coordinate system ¢ = (r,0) € R x R: There is no Euclidean norm ||g]| = vr2 + 62 that is
physically meaningful (incompatible dimensions), see example 6.12.

B.5 Euclidean transposed of a deformation gradient

Consider a linear map L € L‘(H@g); R?) (e.g., L = F{*(P) the deformation gradient).

Let (-, )¢ be a Euclidean dot product in @?O (used in the past by someone), and let (-,-), and (-,-)n
be Euclidean dot products in @? (the actual space where the results are obtained by two observers, e.g.,
()¢ built with a foot and (-, -), built with a metre). Let L, and L, in L(R};Ry) be the transposed

of L relative to the dot products, cf. (A.47): For all (X,7) € @g x R7,

(LE, 9, X)e = (LX), and (LE,.7. X)e = (L.X, §)n. (B.9)

116



117 B.6. The Euclidean transposed for endomorphisms

Corollary B.8
If (,)g=A(,)n then L&, =NLE,. (B.10)

(Do not forget A\?, e.g. \> ~ 10 if (-,-), in foot and (-,-), in metre).

Proof. (L5, 7, X)e "2 (L.X, ), "2 N (L.X, ) "2 N(LE,.4, X)g for all X € B2 and all § € Rr,
thus LT .57 = N2LL,, i for all € Rp, thus LT, = A?Lgh.

B.6 The Euclidean transposed for endomorphisms

Consider an endomorphism L € E(I@?; I@?), E.g. L = dv;(p) the differential of the Eulerian velocity. Let
(,-)g and (-,-)n be dot products in R". Let L} and L{ in L(R7;R?) be the transposed of L relative

to (-,-)g and (-,-)s: For all Z,7 € R?,
(L5, 2)g = (LZ,4)g, and (Ly.§,2)n = (L.Z,§)n. (B.11)

Corollary B.9
It ()g=A(,)n then LT =Lf"erpr (B.12)

(an endomorphism type relation). Hence we can speak of “the Euclidean transposed of an endomorphism”.

Proof. (LT.5,7), "= (L., ), "L N(L.Z,7)n P2V XL 5, 2), "2 (L] ., %), for all & § € B, thus

LT.§= L] g for all j € R", thus LT = LT.

B.7 Unit normal vector, unit normal form

The results in this § are not objective: We need a Euclidean dot product (need a unit of length: Foot?
Meter?) to get a unit normal vector. Choose a Euclidean dot product in R”, and for all @, @ € R”

written o,
= Ue, W

(@, %), Y (B.13)

and ="Tten 7 .45 when the chosen Euclidean dot product is imposed on everyone.

Q is a regular open bounded set in R”, and I' := 0{Q is its regular surface. If p € I' then T,I" is the

tangent plane at p to I". Let (51 (p), ...,En_l(p)) be a basis in T,I" e.g. obtained thanks to a coordinate
system describing I" (so it is not an orthonormal basis a priori).

B.7.1 Unit normal vector

Call 7i4(p) the unit outward normal vector at p € I at T,,I" relative to (-,-)4:

Vi=1,.,n-1, Bigfy =0, fgei,=1 (=]i?), (B.14)

and 3hg > 0, Vh € [0, ho[, p — hii(p) € Q (drawing: outward normal).
Hence (51(p), ..., Bn—1(p), fig(p)) is a basis at p in R™, written in short (51, ..., Bn—1,7y). Drawing.
Thus, if @ € R™ is a vector at p, W = Zf;ll w; B; + wnity (classical notations) then

wp, = W« 7, = the normal component of @ at p at I". (B.15)
(wy, depends on (-,-),.) (Duality notations: @ = > 11 w' B + w" iy and w" = 0« 7i,.)
Exercice B.10 (@) is a basis in R" and [9]ja = [9j] = [g9(ds,@;)]. Call By; the component of ﬁ_; in (a@;),

ie. ,8] S Bjjd; for j =1,...,n—1. Compute the components n; of i, in (a@;), i.e. s.t. g = > 1 n;d;.
Particular case (d@;) is (-, )4 orthonormal?

Answer. (B.14) gives [ﬁi}ﬁ..[gha.[ﬁg]‘a =0 for i = 1,...,n—1: We get n—1 linear equations. With one more
equation given by [ﬁg]lqt;a.[g]w.[ﬁg]‘a = 1: We get 7y up to its sign.
If (@:) is (-, -)g-orthonormal then [g]jz = I and >°7_, Biyn; = 0 for i = 1,...,n—1, with 377 L oni=1 un
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118 B.8. Integration by parts (Green—Gauss—Ostrogradsky)

Exercice B.11 Let (@;) be a Euclidean basis in foot, (b;) a Euclidean basis in metre, (-,-)q and (-,-);
the associated Euclidean dot products, so (+,-), = A2(+, ), with X\ ~ 3.28, cf. (B.7). Let 7i,(p) and 7i,(p)
be the corresponding unit outward normal vectors, cf. (B.14). 1- Prove (up to the sign):

iy = Mg, and (@, 7q)q = M@, ), Vi € R? (B.16)
2- Then let 7, = > ;" ng;d; and 7, = Z;n:lnbigi; Prove:
If, Vvi=1,...,n, l_;l = \d; then Vi=1,...,n, ng = ngy;. (B.17)

So the vectors 7i, and 7, are different (A > 1), and their respective components are equal... relative to
different bases! And of course 1 = [[7i,||2 = Y7 (i) = Yoy () = ||7i]|7 = 1.

Answer. 1- 7i,(p) || ©s(p), since the vectors are Euclidean orthogonal to T,I'. And ||7is]|la = A||7s]ls = A =

Al[falla, thus 7y = £Af,. And they are outward vectors, so 7y = +Afia. Thus (W, 7a)s = N (W, 7))y =
N2 (@, 5o = (@, i ).
2- Then b; = Ad@; gives > 1nbb = A0 nbds =30 nh(Ad) = Y0 nbbs, thus nl, = nj. .

b

B.7.2 Unit normal form n’ associated to 77

For mathematicians: May produce misunderstandings, bad interpretations. Don’t forget: n’ is obtained
only after 7 has been defined.

Definition B.12 Let p € T, (-,-), be an inner dot product and 7i4(p) be the outward unit normal at p.
The unit normal form nZ(p) € R™" is the linear form defined by nz ()T = (7y(p), @), for all & € R"
vector at p :

) = (ig, ¥),g. (B.18)

( ="ritten 7. 47 if one chosen Euclidean dot product is imposed).

Quantification: Let (&;) be a basis in R"; Then (B.18) gives [n';]]|g.[1b']|g = [ﬁg]ﬂ.[g]‘g.[zﬁhg simply
written [n°].[w] = [7i]T.[g].[w] if the basis (&;) is imposed. Hence, with the dual basis (¢?) in R™*,
n n n
if 7= Zniéi and n’ = Zniei then n; = Zgijnj, ie. [n°]T = [g).[7] (B.19)
i=1 i=1 j=1

(recall: the matrix [n"] is a row matrix since n” is a linear form).

Particular case (€;) is a (-,-),-Euclidean basis, then n; = n’ and n° = 3_1" ne’. Use the Einstein
convention to avoid this apparent contradiction: Write n; = Z?Zléijnj since gi; = 0;j.

We used the duality notation to justify the ” notation: The “top #” in n* becomes the “bottom 7” in n;
(change of variance). Classical notations: 7 = >_, n;€;, n° = 3, (n°);me; and (n”); = > 9ijny-

B.8 Integration by parts (Green—Gauss—Ostrogradsky)

—

) is a regular bounded open set in R", I' = 9Q, ¢ € C1(Q;R), (&;) is a Euclidean basis, g (p) :=dp(p).€;,
(-,-)q its associated Euclidean dot product, 7i,(p) = 7i(p) = Y. n:(p)€; (classical notatlons) is the (-, )g-
outward normal unit vector at p € I'. Then (Green), for i =1, ...,n,

/ 02 () d6r = / o(p)ni(p)dl, in short / 92 40 — / on; dr. (B.20)
P pel Q 3} T

S19] 8$i T;

Thus, for any v € C*(Q;R), with v instead of ¢ in (B.20), we get the integration by parts formula
(Green’s formula):

Op Ov
vd) = — dQ i dl. B.21
/ 8302 /Q 4 ox; + /F o ( )
Thus, for any 7 € C(Q; R?) (vector field), with @(p) = S v;(p)& we get
Oy ov;
Q) =— Q ing; dl. B.22
/ oz, v; d / (’“)xz LdQ+ /F puin; d ( )

Thus (3 ,), with dy the differential and grady = > Bz €; the gradient, we get the Gauss—Ostrogradsky
formula:

/d@.EdQ:/ngxdap-ﬁdQ:—/ @dideQ—s—/ng-ﬁdF. (B.23)
Q Q Q r
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119 B.9. Stokes theorem

B.9 Stokes theorem
B.9.1 The classic Stokes theorem

¥ C R3 is a regular oriented 2-D surface parametrized with 7: (u,v) € [a,b] X [¢,d] — & = 7(u,v) € R3.
ar

oF
Let 7i(T) := ”%#‘3;’”(% v), unit normal at & = 7(u,v). And ¥ has a boundary I positively parametrized

X v
with ¢ : t € [t1,t2] — ¢(t) = 7(u(t),v(t)) € R3 (positively means: at any Z € Im(q) = TI', the vector
71(Z) x ¢'(Z) points towards the surface).

Theorem B.13 If f € Cl(R??’;R_‘?’) then

—

/f-d[:/cﬁrlf.di (:/cﬁrlf.ﬁdz), (B.24)
r ) )

. to 7 - _,, b d = o7 o7

ie. [,.2, f(@t)q"(t)dt = [,_, [, curlf(7(u,v))« (g x §;)(u,v) dudv.

Proof. See any elementary course, e.g. https://www.isima.fr/ leborgne//Isimathlereannee/cousur.pdf. au

B.9.2 Generalized Stokes theorem

The curl operator is a differential operator which acts on vectors to give vectors. From a covariant point
of view, it would be nice to first define a “curl operator” curl as a (linear) function acting on vectors
(objective point of view), and then eventually represented by ClIrl; And because curl “kill the gradient”,
curl should “kill the differential” i.e. curlod = 0 (in place of curlograd = 0). To do so Cartan [5] developed
the “exterior differential” d.,; which acts on k-forms (skew-symmetric covariant tensors), see [5] and e.g.
Marsden—Hughes [17]:

. The set of C°°(R™; R) functions is called Q° (the set of (J) tensors = functions); Then define d.py := d =

the usual differential operator on Q°, i.e. duy f := df for all f € Q°.

. The set of C>(R™;R"*) 1-forms is called Q' (the set of (}) tensors = differential forms); In particular
if f € Q0 then the exact differential form d..; f = df is in Q*.

. Definition: A 2-form is a bilinear skew-symmetric (g) tensor, and the set of 2-forms is called Q2; So

B € Q2 iff 3 is bilinear and [(i, W) = —B(w, @) for all i, 7 € R (a 1-form is meant to “measure a length”
and a 2-form is meant to “measure a surface”). And the wedge product a A 3 of two 1-forms «, 3 € Q*
is the 2-form o A B € Q2 defined by a A3 =a® 3 — 3® a (and A is an exterior product defined on Q!
to give elements in Q2: from “lengths” you get a “surface”).

. Define the exterior differential d..; : Q' — 02 s.t. du(df) = 0 for all f € Q°, and d(a A B) =
gt A B — & A doge 3 for any o, B € QL.

. (Generalization.) For k > 2 define a k-form (also called a differential k-form) to be a skew-
symmetric (2) tensor (order k covariant), the set of k-forms being called Q% (so a € QF satis-
fies a(Un(1yy .oy Ur(ry) = sgn(m)a(is,...,u,) for all 4y,...,14, € R" and all permutations 7). On
OF x QF define the exterior wedge product a A B € QFF by a A B(wy, ..., Wi, W1, oy Whie) =
7 D oreo SE(T)(Wry s ooy W, ) B(Wry sy s ooy Wiy ,,) Where o is the set of permutations. Then define
the exterior differential duy : QF — QFF! sit. dyy(duy) = 0 for all v € Q1 and doy(a A B) =
degt A B+ (—=1)*a A dgy 8 for any o € QF and 3 € QF.

. Then d,,; ="ritten g (this notation creates confusions for non-mathematicians).

The generalized Stokes theorem (see e.g. Abraham-Marsden [1]) is:

Theorem B.14 If ¥ is n dimensional, if T is positively oriented and if o € Q"' then

/demta:/a, written /da:/a. (B.25)
2 r b r

C Rate of deformation tensor and spin tensor

® : [t1,12] X Obj — R™ is a regular motion, cf. (1.4), Useptr ) ({t} x Q¢), and 7 C — R is the Eulerian

velocity field: ¥(t,p) = %—‘f(t, Ryj) when p = ®(t, Ry ), cf. (2.5). Choose a Euclidean dot product (-, ),
the same at all t. (So loss of objectivity in what follows).
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120 C.1. The symmetric and antisymmetric parts of dv

C.1 The symmetric and antisymmetric parts of dv
With the chosen Euclidean dot product (-, ), in R?, consider the transposed cf. § A.12:
{Qt — LR} RY)

df
p — di (p) == dii(p)”

Uy - } s where (dﬁt(p)T.lf)l, wg)g = (1171, dﬁf(p)’lﬁg)g (C].)

for all iy, @, € R? vectors at p. Other notations (definitions): ¥ (p) = dii(t, p)T = o™ (t,p).

Definition C.1 The (Eulerian) rate of deformation tensor D, or stretching tensor, is the (-, -) s-symmetric
part of dv:

dv + do” du(t di(t,p)*
D= HTU, ie., V(t,p)eC, D(t,p) = o ,p)+2 vt ) (C.2)
The (Eulerian) spin tensor is the (-, -)g-antisymmetric part of du:
dv — do” di(t, p) — dv(t,p)*
0= % ie, Y(t.p)eC, Qtp) = ut, p) . ut,p) (C.3)

(So dv =D + Q.)

NB: The same usual notation is used for the set of points ; = &)(t, Obj) C R™ and for the spin tensor

7, —d7 o
QO = u' The context removes ambiguities.

C.2 Quantification with a basis
With a basis (¢;) in R?, (C.1) gives []T.[g].[d,(p)T ] = [do,(p).02)T .[g].[s), thus

[9].[d5"] = [dd]"[g], thus [dT"] = [g]~".[a0]" [g]. (C.4)
In particular, if (€;) is a (-,-)g-orthonormal basis, then [dv”]; = [dﬁ]lq;, and with o = Y, v;€;, D.¢; =
Z?:lpijgi and ng = Z?:lQijgi we get Dij = (227 + Bv]) and Qij = %(31)"' — 81)_7'):

6acj 6:EL
d do)T dv] — |d
[D] = M and [Q] = w (Euclidean framework). (C.5)
Duality notations: D} = %(ax] + gzj) (sym) and Q'; = %(% - gf) (antisym).

D Interpretation of the rate of deformation tensor

We are interested in the evolution of the deformation gradient F'(t) := F;?O (t) along the trajectory of a

particle Ry, which was at p;, at f. Let A= a(to, py,) and B= l_;(to,pfo) be vectors at # at py, € {4, and
consider their push-forwards by the flow ®® (the transported vectors), i.e. at t at p(t) = @;ﬂm (1),

a(t,p(t)) := F(t).A and b(t,p(t)) := F(t).B. (D.1)
see (4.3) and figure 4.1. Then consider the function
. C R
(@,b)g : o . - (D.2)
(t,pe) — (@, 0)g(t, pe) == (a(t, pe), b(t, pt))g-

Proposition D.1 A unique Euclidean dot product (-,-), being imposed at all t, the rate of deformation

tensor D = d”+d” gives half the evolution rate between two vectors deformed by the flow:
(a") b) -
Di ¢ =2(D.a,b),. (D.3)

Proof. Let f(t) = (a(t, p(t)),b(t, p(t)))y = (F(t).A, F(t).B),. Having (-,-), being independent of ¢, and

FY (1) B3 (1, p(1)).F(F), e et
7t = (F'().AF(t).B), + (F().A.F/(1).5),
0 000,00 Bt 0, + (e PN 08 B 0000, 0.9
= ((d(t, p(t)) + di(t, p(t))") ﬁ(tap(t)),g(tap(t)))g,
thus (D.3). ua
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121 E.1. Affine motions and rigid body motions

E Rigid body motions and the spin tensor

Choose a Euclidean dot product (-, -), the same at all times (to simply characterize a rigid body motion).

Simple definition: A rigid body motion is a motion whose Eulerian velocity satisfies dv/ + dv? = 0,
i.e., D =0 (Eulerian approach independent of any initial time ¢ chosen by some observer).

But the usual classical introduction to rigid body motion relies on some initial time % (Lagrangian
approach). So, we start with the Lagrangian approach: Consider a regular motion &), fix a ty € R, the
associated Lagrangian motion ®%, and for a fixed ¢ the associated motion ®¥. The first order Taylor
expansion of ® in the vicinity of a p, € Qy, is, with d®® (p, ) =Written plo(y, )

DL (q1,) = (1) + F* (p) Py + (Pt )- (E.1)

Marsden—Hughes notations: ®(Q) = ®(P) + F(P)]@ + o(l@).

E.1 Affine motions and rigid body motions
E.1.1 Affine motion

Definition E.1 ®% is an affine motion, meaning “affine motion in space”, iff % is an affine motion for
all ¢, i.e. iff, for all py, qi, € O, and all ¢ € [ty, o],

O (a1,) = @1 (Pry) + Fy° (Pio)-Pio T - (E.2)
Marsden-Hughes notations: ®(Q) = &(P) + F(P).PQ.

Proposition E.2 and definition. If ®% is an affine motion then F/°(p,,) is independent of p,: For all
t €]t1,t2] and py,, g, € Dy,

written

Ftt0 (py) = Ftt0 (qt) Ftto~ (E.3)

Thus dF}(py,) = 0, i.e. d>®% (p;,) = 0. And for all t €]ty t5[, B is an affine motion, i.e. for all T €]ty,to]
and all py, q; € Oy,

O (q) = ©(pe) + Fr.pigi- (E4)

And ® is said to be an affine motion.

Proof. ¢, = pi, + Py gives ©F(q,) = O (b + Puds) = ®F (pi) + A2 (py,)-PiGs, and, similarly,
O (pry) = O (a1, + Tbiy) = 4 (dry) + AP (¢1,)-TioPry- Thus (addition) D (gr,) + 2 (pry) = 7 (pry) +
Y (q1,) + (d®) (pr,) — AP (a4,))-Dio @, thus (d®Y (py,) — AP (qy,))-Pio@iy = O, true for all py,, qy,, thus
d® (py,) — d®P (q4,) = 0, true for all ¢, py,, 1, thus (E.3).

Thus d®! (py, )., = limy, o 2ELe )00 W0) _ pypy, - ORdOE ) for )] and all @,
thus d?®¥ (p,,) = 0 for all p;,, thus d?®P° = O

And (@t o ®)(py) = OP(py) (comp051ti0n of flows (5.16)), thus with p, = ®9(p;) we get
% (p,).d®Y (pr,) = A% (pyy), thus dPL(p;) = dPP (py,)-d®Y (py,) ", and (E.2) gives

d®t (p;) = Aol 4o ! written d®’  (independent of p;), (E.5)

thus (E4) . n

Corollary E.3 With ¥ the Eulerian velocity and Vo the Lagrangian velocity: If ® is affine then, v, is
affine for all t, and V" is affine for all t,t, i.e., dvi,(p;) = di; for all p, € Q, (independent of p;), and
AV (py,) ="ritten gl for all p, € Qy, (independent of py,). So, for all p;,q; € Q0 and py,, g, € Qs

{ o Ui(q) = Ui(pe) + dv.peqt,

! - ! (E.6)
o Vi%a,) = Vi®(py) + AV, Dty @) -

Proof. (E.2) gives ®%(t,q,,) = ®%(t,py,) + Ftﬂ( )Pto(ho, and the derivation in time gives (E.6)q,
hence (E.6); thanks to dV° (p,,) =327 d,(p,).F{© and pyqp =F2 (F*)~1.pq;. o

Example E.4 In R2, with a basis (E}, Es) in ]1@% and a basis (€1, &) € R?, then F}° given by [Ftto]‘b: e =

1+t 262 P L+t 262\ .
< 0 ot > derives from the affine motion [® (p,, )® (q1)]je = ( 0 ot ) .[pfoqto}lﬁ. ua
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122 E.1. Affine motions and rigid body motions

E.1.2 Rigid body motion

Marsden notations to lighten the notations: ® := ®® F := F°, P € Q;, p = ®(P) € €, the (-, Vg
transposed FT (p) € L(R};R}) of F(P) € L(R}:;R}) is defined by

R} — R}

W, — FT(p).u')'p

FT(p) ::F(P)T:{ } where (FT(p).@,,Up), = (@,, F(P).Up), (E.7)

for all Up € R}. Which defines the function F7 : Q, — L(R};RY).
Particular case: For an affine motion F is independent of P, hence F7T is independent of p.

Definition E.5 A rigid body motion is an affine motion ® such that angles and lengths are unchanged
by ®: For all t5,t € R, P € Qq, U,W € R} vectors at P, and with p = ®(P),

(FU, FW), = (U, W),, ie (FL.EU,W),= (0 W), ie |FI.F=1]| (E.8)

In other words, with the Cauchy strain tensor C € E(I@g; @Z) defined by C = FT.F, the motion is rigid

iff it is affine and
[C=T1] ie [F'=FT] (E:9)

Proposition E.6 If &% is a rigid body motion, if (ffl) is a (-,-)g-Fuclidean basis in I@%, if di(p) =
F(P).A; for all i when p = ®°(P), then @;(p) ="""e" G, is independent of p, and (@) is a (-, )g-
Euclidean basis with the same orientation than (fL), for all t.

Proof. ®Y is affine, thus, for all t, P, F}°(P) = F;° (independent of P), thus @, ;(p) = Fl A; € R7 is in-
dependent of p, for all t. And (di,dji)g = (Ftw.gi,Ft%.Ej)g = (FPT.th.Ei,A'j)g :”gid(I.A’i,A})g =
(Ei,ﬁj)g = ¢;; for all ¢4, thus (@y) is (-,-)g-orthonormal basis. And det(dig, ..., dnt) =
det(Ff Ay, ..., Flo . A,) = det(F°)det(Ay, ..., A,) = det(F[) since (4;) is a (-,-),- orthonormal basis.
And, ®% being regular, ¢t — det(F[) is continuous, does not vanish, with det(Fttf) =det(I) =1 > 0

Thus det(F°) > 0 for all ¢, thus det(dy, ...,@,) > 0: The bases have the same orientation. ua
9 L t [ cos(0(t)) —sin(6(t))
Example E.7 In R“, a rigid body motion is given by F}° = <sin(9(t)) cos(6(t)) where 6 a regular

function s.t. 6() = 0. ou

Exercice E.8 Let ® be a rigid body motion. Prove

(FTY = (F)", and FT.F'is antisymmetric: (F")T.F + FT.F' =0. (E.10)
Answer. Let F(t) = Fg(1), p(t) = ®B(t), U,w e @%_‘and W) = Fﬁt),VT/. (E.7) gives
(FT(t)a8(1), U)g = (@(t), F().0)g, thus (F7)(t).5(t) + F (8).0 (£),0)y = (' (1), F(t).0) + (@(1), F'(t).0),,
thus ((FT)'(t).@(t), )g = (@(t), F'().0), = (F)T(t).5(t), U)y where (F')T (t) := (F'(t))7, thus (FT) = (F")T.

E.1.3 Alternative definition of a rigid body motion: dv + di’ =0

— =T = =T
The stretching tensor D; = % and the spin tensor ;, = % have been defined in (C.2)-(C.3).
Here no initial time is required: Eulerian approach.

Proposition E.9 Ifdisa rigid body motion then the endomorphism dv; € E(RZ‘; RZ‘) is antisymmetric
at all t:
Dy = dvy + dvl =0, ie diy, = Q. (E.11)

Converse: If, at all t, dv, + dvT = 0 then ® is a rigid body motion.
So the relation « dv; + dif =0 for all t » gives an equivalent definition to the definition E.5.
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123 E.2. Vector and pseudo-vector representations of a spin tensor Q2

Proof. Recall: V%(t,P) = 22°(¢ P) and F®(t, P) = d®®(t, P), thus 252 (¢, P) = dV'(t,P). And
p(t) = @ (t, P) and V(t, P) = §(t,p(t)) give dV (¢, P) = d(t,p(t)). Fto(t P). And FT.F = I gives
F~T = =1 thus F.FT = I. Let F(t) := F%(t) and V() := V[ (t) and dV (t) = dV"(t, P).

(E8) gives (FFTY(t) = 0 = F/(6).F7(t) + F(t).(F7)(t) =" F'(1).F7 (1) + (F'(8).F"(£))" =

av (t).F ()" + @V (£).F ()" 27 as(t, pr) + dii(t, po)”. Thus (E.11),
Converse: dv + di’ = 0 and (D.3) give D(a’b)" = 0, thus ( g) (t,p(t )) = (a,b ﬂ) (tg, P) when p(t) =
d(P), ie. (Flo(P).A, Fl°(P). ) (A, B) thus Flo(P)T.Fl°(P) = I: ® is arigid body motion. o

E.2 Vector and pseudo-vector representations of a spin tensor 2

We are dealing here with concepts that are sometimes misunderstood or poorly known.

E.2.1 Reminder

e The determinant det |z associated with a basis (€;) in R? is the alternating multilinear form defined
by det\€(51752,€3) =1L

e A basis ( ;) has the same orientation than the basis (€;) iff det|e(b1, bg, bg) > 0.

e If (¢&;) is Euclidean, the algebraic volume (or signed volume) limited by three vectors i1, is, U3 is
det (i1, U2, U3); And the (positive) volume is | det (i1, U2, U3)|, see § L.

e Let A and B be two observers (e g. A=English and B=French), let (@;) be a Euclidean basis chosen
by A (e.g. based on the foot), let (b;) be a Euclidean basis chosen by B (e.g. based on the metre). Let
A = ||b1]|a > 0 (change of unit of length coefficient). The relation between the determinants is:

+ if dlgt(gl, by,bs3) >0 (the bases have the same orientation),

det = +£)* det  with Lo (E.12)
|a@ |5 — if dlgt(bl, ba,b3) < 0 (the bases have opposite orientation).

In particular, if A and B use the same unit of length, then A =1 and det|z = &+ det|b
e With an imposed Euclidean dot product (-,-),: An endomorphism L is (-, -)g-antisymmetric iff

Vi, v, (L.i,v)g = —(i,L.¥)y, ie. LT:=L]=-L. (E.13)

E.2.2 Definition of the vector product (cross product)

R™ =R3, (&) is a Euclidean basis, (-,-), is the associated Euclidean dot product (-,-), (so what follows
is not objective). Let @, ¥ € Rﬁ, and let lz 4 5 € C(H@,R) be the linear form defined by

R3 - R
. (E.14)

= the algebraic volume of the parallelepiped limited by , ¥, Z in the Euclidean chosen unit.

Definition E.10 Relative to (€;) and (-, -)4, the vector product, or cross product, @ X, ¢ (written @ Agy ¢/

in french) of two vectors @ and ¥ is the (-,-),-Riesz representation vector @ xq U € R? of the linear
form {4z z 51 So, cf. (F.2):

VZERS, [(@ xq ,2), = det(@, 7, 7) | (E.15)

|e

This defines the bilinear cross product operator

(E.16)

]

L R3 x R3 — R3
Y (T,7) — X (@, D) = T Xeg T

(The bilinearity is trivial thanks to the multilinearity of the determinant, and @ X ¥ depends on both
(+,-)g and the orientation of (€;).)
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124 E.2. Vector and pseudo-vector representations of a spin tensor Q2

written 7w §. Moreover if an orthonormal

Notation: If a chosen (-, ), is imposed to all, then @ X, U =
basis (&) is imposed to all observers then @ x, 7 ="rtten 7 x .

NB: The cross product is not an objective operator! It depends on a chosen Euclidean dot product
and on a chosen Euclidean basis (its orientation).

NB: Isometric framework = imposed Euclidean basis which is positively oriented and its associated

Euclidean dot product (-,-),: Then (@,7), =""" 7+ 7 and x, =""e" x and (E.15) is written
VZERS, (i x )7 =det(d,7, 7). (E.17)
Exercice E.11 Prove: @ X U is a contravariant vector.

Answer. 4 Xq U is a Riesz representation vector, hence it is contravariant. (Or calculation: It satisfies the
contravariance change of basis formula, see (F.17).) .

E.2.3 Quantification
U= Z?=1 €, U= Zf’ 1 v;€; and (E.15) give

Uy U1 1
(ﬁ Xeg ’U, gl)g - d‘qt(ﬁ, ?7, 51) = det U2 V2 0 = det (Zz 52) — U2V3 — U3V2. (E18)
€
us U3 0

— = — —

Similar calculation: (@ X ¥, €2)e = ugvy — u1v3 and (4 Xg U, €3)e = w102 — ugv1, thus

U2V3 — U3V2 3
[ﬁ Xeg 17]|g = u3zv1 — U1v3 s ie. u Xeg U= E (ui+1vi+2 — Ui+2'Ui+1) €; (E].g)
U1V2 — U2V =1

with the generic notation wy := w; and ws = ws (indices modulo 3): In particular €; Xe €41 = €iy2.

Proposition E.12 1- @ X U = —¥ X4 @ (the cross product x is antisymmetric).

2-U || U iff U Xeg U= 0.

3- U X ¥ Is orthogonal to Vect{u, U} the linear space generated by i and v.

4- U Xo U depends on the unit of measurement and on the orientation of the (-,-)g-orthonormal
basis (€;). Precisely: Consider two Euclidean dot products (-,-), and (-, -)p, let A > 0 s.t. (-, -)a = N2(-,)p,
choose a (-, -)q-orthonormal basis (d;) and a (-, -)y-orthonormal basis (b;); Then

U Xaa U=2+\U Xbb 77, (EQO)
with the + sign iff (@;) and (b;) have the same orientation.
Proof. 1- (i Xg U, 2) g = det (i, ¥, 2) = — det|2(0, U, 2) = —(U X U, Z)4, for all Z.

2- If 4 || ¥ then det)g(d, ¥, 2) = 0 = (U X U, 2)e, 50 U X U Ly 2, for all 2. Converse: If 4 xq 7 = 0
then (E.19) gives « || ©.

3- If 7 € Vect{i, v} then det|z(i, 7, Z) = 0, thus (@ xq ¥, 2)g = 0 thus Z L, @ xq 7.

. . . 1
4 (8 %o T, F)g T2 det(, 7, ) F22) L3 dot(a, 7, 2) T2V £03 (w7, 2)p = 75 (700 T, 2o, trute
a |b
for all Z, thus (E.20). ou

E.2.4 Antisymmetric endomorphism represented by a vector
(€;) is a (-, -)g-Euclidean basis.

Proposition E.13 and def. IfQ € E(Il@;@% is (-, -)g-antisymmetric then 3!Jy, € R3 s.t. Vij, 7 € R3,

(27,2)g = ety 7.2), e Q7 = By % 7 (E.21)

And B, is called the representation vector of Q relative to (€;) and (-,-),. And

0 —c b a
[th = c 0 —a — [Qeg]\é' =|b]. (E.22)
-b a 0

In particular Q.&e = 0 (= Jeg Xeg Weg ), B.€. Ueg i an eigenvector of Q) associated with the eigenvalue 0.
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125 E.2. Vector and pseudo-vector representations of a spin tensor Q2

Proof. ) is antisymmetric, thus [Q2]|z is given as in (E.22). Suppose that a e, satisfying (E.21) exists,

0
WGey = w1€1 + wof + wsfs; Hence [Gy Xg €1]je = | w3 |, cf. (E.19), thus w3 = ¢ and wy = b; Idem with
e
€ so that wq = a. Thus &y, is unique. And &, given in (E.22) satisfies (E.21): It exists. ia

Proposition E.14 Let (-,-), and (-,-), be two Euclidean dot products (e.g. in foot and metre), let (a;)
and (b;) be Euclidean associated bases, let A > 0 s.t. (+,-)q = A2(+, )y, let @, := Guq and &y := Gpp. Then
(change of representation vector for ):

e If (b;) and (d@;) have the same orientation, then &, = A,

B (E.23)
e If (b;) and (d;) have opposite orientation, then &y = —\dJ,,

NB: The formulas &, = £A&, are change of vector formulas, not a change of basis formula.

Proof. Apply (E.20). o
0 -1 0
Interpretation of d.: Suppose [z =a |1 0 0]. So Q is the rotation with angle 7 in the
0 0 O
0
horizontal plane composed with the dilation with ratio a, and [Jglle = a | 0 S0 Wey = a3 is
1

orthogonal to the horizontal plane, hence g, %o is a rotation around the z-axis composed with a dilation
which coefficient is a.

0 —c b
Exercice E.15 Let 0 s.t. [Q)z= | ¢ 0 —a | (see (E.22)). Find a direct (relative to (¢;)) or-
-b a O
0 -1 0
thonormal basis (b;) s.t. [ =Va*+b>4+c* {1 0 0
0 0 0

De 1

a —b
Answer. Let by = —2<— so [53]|g = _——L [ b|. Then let by be given by [51]|g = a o
[[@elle? \/a c Va ’
2+b2+ 2 c 2412 0

—ac
b, L bs. Then let by = b Xe b , that is, b = 1 L —be . Thus 51 is a direct orthonormal
1 3 2 3 1 [ 2]I Va24+b2 \/a21b2+c2 e (bi)

basis, and the transition matrix from (&) to (b;) is P = ([51]|g [52]|,; [53}‘(;). With [Q] ; = P~1[Q)z.P (change
of basis formula), where P~! = PT (change of orthonormal basis).

0 —c b —b —ac
With [Q]z.[b1]je = —— 0 —al. = 1 —be | = VT3] ted),
ith [©Q]jz.[b1]; NG (cb 0 0a> ( g ) e <a2 +ch) a c2[b2]z (expected)

0 —c —ac bc? + b(a® + b?)
[bolis = S S _ _ _ [ S T S S _
[Q]le'[b2]|e /b2 +c2 /a2 +b2+c2 —Cb 2 Oa ’ o2 _ich V/02+c2 \/a2+b2+c? ac a‘(a‘ +b )

abc — abc
—Va2 102+ 2[b1] iz (expected), and [Q)z[bs]z = [0] (expected since by | &). Thus [Q).P =
e —[bl]lg [6]|€) And (P_I[thp)w = (PT[Q]|5*P)U = [bllr‘l;—[th[b]hg gives the result. l.l

E.2.5 Curl (rotational)

Definition E.16 Let (€;) be a Euclidean basis in R3 and 7 be a C! vector field, 7 = Zle v'€;. The
curl (or rotational) of ¥ relative to (&) is the C° vector field curl.% given by

3 Ouz _ Ovy
- 8vi+2 81}1‘4_1 - Oz 93
- " . o £
curl. ¥ = Z(a — = 87) €, le [ewld]z=| 52t — 522 |. (E.24)
o1 9T+l Tit2 Qva _ duy
8.’1;1 81‘2
0
o . N 811 Ul
And curl,7 =""ten 7 x, ¢ (notation due to the matrix product 5 | x| v2 |). This defines the curl
9 v
Oxo E

operator curl, : C1(y; ]1@3) — CO(Qt;H@).
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126 E.3. Pseudo-vector, and pseudo-cross product

Proposition E.17 Isometric framework — imposed Euclidean basis (€;) which is positively oriented
and its associated Euclidean dot product (-,-)g: Then dof, =" dg" and curl, =""*" curl. Let

Qt,ps) = M and let &, =""e1 G be its associated vector relative to the Euclidean ba-

sis (€;), cf. (E.21). Then
1

W= 5011}117. (E.25)
0 9w _ vz Oduvi _ Ous
e oz, Ooxs (?Cfl
Proof. [z = 3 0 9va _ Ovs | jg antisymmetric. Thus (E.24) gives (E.25). wn

89:3 69:2
0

E.3 Pseudo-vector, and pseudo-cross product

We enter the world of the representation of vectors with matrices. M,,,, is the space of m * n matrices.

E.3.1 Definition

Definition E.18 A column matrix is also called a pseudo-vector or a column vector. And the pseudo-
o {M31 X M3z — May

cross product X : } is defined by

R O, _ written _O _,
(Z,9) — x(Z,9) = ¥xy

o T\ o [N T2Y3 — T3Y2 T Y1
Xy= 22 | X | y2 | :=| zay1 —21y3 |, when Z= | x and 7=\ 1y2 |. (E.26)

xs3 Y3 T1Y2 — T2Y1 xs3 Y3

E.3.2 Antisymmetric matrix represented by a pseudo-vector

Definition E.19 The pseudo-vecteur 8 € M3, associated to the antisymmetric matrix A = [A4;;] =
0 —c b o a o
¢ 0 —a | € Mszisthematrixw:= | b | € M31: So w satisfies
—b a 0 c
n
O
Ag=8xgl Vi=|w|. (E.27)
Ys

E.3.3 Pseudo-vector representations of an antisymmetric endomorphism

(+,-)g is a chosen Euclidean dot product and Q € E(H@;R_‘?’) is a (-, -)g-antisymmetric endomorphism 1i.e.
s.t. QT = —Q (i.e. (Q7.4, W), = — (i@, QW) for all @, € R3).
Then choose a positively oriented (-, -),-Euclidean basis. Thus [}z is an antisymmetric matrix and

o) . I . 00, .
call w the associated pseudo-vector: V& € R3, [ z.[0] e = WX [1] |z, written

Q).[7] = @x][d]. (E.28)

This formula is widely used in mechanics, and unfortunately sometimes written Q.9 = & x v

Be careful: (E.28) is not a vectorial formula; This is just a formula for matrix calculations which
can give false results if a change of basis is considered; E.g., consider the basis (b1, b, b3) = (—€1, €2, €5):
(b;) is also a (-, -)4-Euclidean basis but with a different orientation.

-1

1- Vector approach: The transition matrix P from (&) to (b;) is P = | 0 . Q being an
0

O = O

0
0
1
endomorphism, we have [Q]Ig = P~1[Q]|z.P (change of basis formula). Thus | (
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127 F.1. The Riesz representation theorem

gives
-1 0 0 0 —c b -1 0 0 0 ¢ —b
[Q]‘g =0 1 0)J.{ ¢ O —a].lO0 1 O0)=[-<c 0 —al. (E.29)
0 0 1 -b a 0 0 0 1 b a 0

Thus the representation vectors &, and & are, cf. (E.22):

o a . a . (Ee = CLC?l —+ bajg —+ Cé_ig,
[Gelle=1 0], [Gelg={-b], ie = - - - thus
Wy = ab1 — bbg — Cbg,

&l

s — @ (E.30)

(Or simply apply (E.23).)
O O
2- Matrix approach and pseudo-vectors: (E.27) gives [Q]z.[0]|z = 86 x[v]|e and [Q]ll;.[ﬁ]lg = 81, X [zﬂlg,
with

a a
oo.)e =10 and 8;) =|-b], so 8;, + foo.)e : can’t be written = & (E.31)

—C

. . O O o . O .
because a unique notation w of both &, and Wy, is absurd. Moreover such a w can’t represent a single vector

because it does not satisfy the vector change of basis formula 8;, # Pil.ge (in fact [Q]lg = P71z P).

Thus the matrix notation & can only be used if no change of basis (even Euclidean) will ever be used...

F Riesz representation theorem

Framework: E := (E, (-,-)4) is a Hilbert space, i.e. a vector space E with an inner dot product (-, )4 s.t.
(E.|].]lg) is complete (with ||.||g :== 1/ (-, )4 the associated norm).

And E* = L(FE;R) is the space of continuous linear forms on E = the space of linear “measuring
tools” on FE.

(A linear function ¢ : E — R is continuous iff 3¢ > 0 s.t. V& € E, |[((Z)| < c||#||g. And then

|||+ := sup) z|,=1 [¢.Z] defines a norm in E*, and (E*,|[|.||g~) is a complete space, easy to prove.)

F.1 The Riesz representation theorem

The Riesz representation theorem establishes the converse of the easy statement:
Proposition F.1 If (E,(-,-),) is a Hilbert space then
Vv € E (vector), v, € E* (linear continuous form) s.t. vy.& = (¥,%),, VI € E, (F.1)

and moreover ||vg|| g+ = ||¥]|4-

Proof. Define v, : E — R by v,(Z) = (0,%), for all £ € E. We have v, linear on E thanks to the
bilinearity of an inner dot product. And the Cauchy—Schwarz inequality gives |vy(Z)| = [(¥,Z)4] <
[19]lq ||Z]|g for all £ € E, thus |Jvg||g« < ||T]lg < oo, thus v, is continuous. And |v,(7)| = |(17 0)g]
[19]]g ||]lq, thus ||vg||g= > ||V]|g, thus ||vg||+ = ||¥]|g. Uniqueness: Another w, satisfying wy.Z = (¥, &)
gives (wy — vg).Z = 0 for all £ € E, thus wy — v, = 0. o

e

Theorem F.2 (Riesz representation theorem, and definition) (E,(-,-),) being a Hilbert space,
any “measuring tool” £ € E* can be represented by a vector E:, e E:

V¢ € E* (linear continuous form), EI!ZQ € E (vector) s.t. £.3 = (Zgj’)g, Ve E, (F.2)

g+ And E_;, is called the (-,-)4-Riesz representation vector of £.

Proof. Easy in finite dimension: (¢;) being a basis in E, if [(]jz = ({1 ... #£,) (row matrix since £ is a
linear form) then (F.2) gives [(]z.[Z]|z = [@]g.[ghc [Z ]|c, thus [F] =g ]7 ‘[6]\* (column matrix), thus Fg.
Then [£.2] = |(fy, )| < 1ylgl 711y, with |£.L5] = [(Zy. £5)gl = [1F5llo]1gll,, thus 1]

B = 1fgllg-
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128 F.2. The (-,-)g-Riesz representation operator

General case (infinite dimension e.g. E = L?(f2)). ¢ € E* being linear and continuous, its kernel
Ker/ = ¢=1({0}) is a closed sub-vector space in E. If £ = 0 then [ = 0 (trivial). Suppose £ # 0, thus
Ker! C F, thus 37 € E s.t. Z ¢ Kerl and call 2 its (-,-)4 orthogonal projection on Kerf (Whlch exists
and is unique because Ker/ is closed): We have, Vi, € Kerl, (Z— 2y, %)y = 0. Thus 7@ := ” z Z‘ZOH is a
unit vector in (Ker)*. And 1 = dimR = dim(codomain of ¢) = dim(Ker/)* gives (Kerf)* = Vect{ii}
(see exercise F.3). With E = Ker{ ® (Ker/)! since both vector spaces are closed (an orthogonal is always
closed in a Hilbert space), any ¥ € F satisfies ¥ = Ty + (¥ — T) = To + Mi € Kerl @ (Kerl)t. We
get (Z,7)y = 0+ A|A]|2 = X and £(Z) = 0 + M(71), thus ((F) = (Z,7),0(71) = (&, L(7)7), (blhnearlty
of (-,-)g)- Thus Z = ((n)7 satisfies (F 2). And if 171 and Zg satisfy (F.2) then 0 = (¢ — ¢).%
(Egl Zgg, ) for all ¥ € E, thus 691 - 692 = 0. Thus Eg is unique. And [|[€|[g- := supyz,=1 [((Z )|

Cauch
Sup| |z ,=1 |( s %) gl =5 enwars ||£ lg- v

Exercice F.3 Prove: If / € E* and ¢ # 0 then dim(Ker/)* =1 (= dim(Im(¢)) = dim R).
TSR

r — E‘KerZL X
since £ is linear and £ # 0. And it is one to one since é|Ker,L( &) = 0 = {(&) gives T € (Kerl): NKerl = {0} thus
# = 0; Thus £k, is (linear) bijective, thus dim(Kerf)* = dim(R) = 1. un

Ker/
Answer. Consider the restriction £gq., 1 : { ( ) s _‘}. It is linear (since £ is), it is onto
z

F.2 The (-, -),~Riesz representation operator

(F.2) defines the (-, -),-Riesz representation operator (linear)

—

. E* - FE .
R, : - where (R4 ({),?), =¢.U, YU € E. (F.3)
Tl s Ry =0, Ry

R, is a change of variance operator: Transforms the covariant £ into the contravariant £, thanks to the
i

tool (-, ). With components see (F.6): ¢ down in ¢;, and ¢ up in (6_;]) .

NB (fundamental): Rg is not objective since it requires a man made tool (an inner dot product e.g.
English or French) to be defined. In fact, an isomorphism F <> E* cannot be objective, see § U.2.

With G the set of inner dot products in E, we have thus defined the Riesz representation mapping

. Gx E* - F
R: - - S o (F.4)
{ (9,6) — R(g,0) :== Ry(L) = £y = {(g).

So R has two inputs: A choice (-,-), by an observer for the first slot, a linear form for the second slot.

Proposition F.4 I:Eg is an isomorphism between Banach spaces.

—

Proof. Linearity: (Ry(£ + Am),Z)y = (£ + Am).& = L2+ Mn.T = (R, (0), T)y + AN(Ry(m), T)y = (Ry(€) +
AR, (m), Z),, for all &, gives Ry(£ + Am) = R,(f) + AR, (m). Bijectivity thanks to (F.1) and (F.2), and

HE_;]HQ = ||¢|| g~ thanks to the Riesz representation theorem. n

F.3 Quantification

dim E = n, £ € E* (a linear form), (€&;) is a basis, (e) is the dual basis, notations:
9ij = g ela 6] = Zﬂ e’ g_;] = Z(@)Zé;a ZRUGM giJ [glj] 17 (F5)
i=1
s0 [glie = [9i] € Mun, [l]je = [£;] € M, [Zghé = [( 9)'] € My, [R ]‘ee [R¥] € M,,, are the matrices

representing g(-,-), £, Zg and R in the bases (&) and (¢!). Then (F.2) gives {; = (.6, = (Zg,é'i)g =
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129 F.4. Change of Riesz representation vector, and Fuclidean case

- . —

>0 9(E5,€) = 3, 9is(g)7 thus [T = [g].[4,], thus

] =[g) 17| de (L)'= gL, Vi. (F.6)
j=1

And £, =F3 R, 0 = >, REGE; = 30, RiL;é; gives () = el = >, Rit;, thus 14y = [R,)].107,
thus

(Rl =[g)'| ie [RI]=[g"], and (f,)' =) R, Vi. (F.7)

j=1

Remark F.5 Isometric framework: A chosen Euclidean dot product (-,-), is imposed. If the duality
notations are used, then (£,)? =Written gi anq g, =written gf hecause the bottom index i in ¢; has been
raised by ﬁg to give £'. So * =", ('¢; and (F.6) gives

& 41 4
(F=("7 and Sl =t | =RrYL (isometric framework). (F.8)
o Ly Ly
We won'’t use this ¢ notation (we deal with objectivity: No isometric framework imposed). .

F.4 Change of Riesz representation vector, and Euclidean case

(,-)g and (-,-) are two inner dot products, £ € E*, Zg = ﬁg(é) and 0}, == ﬁh(ﬁ). Thus, V¥ € E,

— —

(ly, %)y = 0.5 = (I, D). (F.9)

Proposition F.6 For one given basis (€;) in E, we have the change of Riesz representation vector
formula:

— —

[B]-10n] = [g]-16g), de. | 0] = [P]"[g].10] | (F.10)

— - 1

short notation for []|z.[0h]1z = [g]2-[lg)|z, i-e- [0n]jz =[]

9lje- 2] |e- In particular
If () =A2(,)n then 0, =\l (F.11)

So, a linear form ¢ can’t be identified with a Riesz representation vector (which one: Zg? o ?).
Conversely, if {}, = )\26_;, for all linear forms ¢ € E*, then (-,-)g = A%(-, ).
NB: (F.10) is a “change of vector” formula (from é__; to €}, due to the change of inner dot product to
represent £); Not a “change of basis” formula (one vector expressed with two bases).

Proof. (F.9) gives [#]T.[g]z[ly]j = [#]T.[h]jz-[0h] ¢ for all &, hence [g)z. [0z = [Blz-[h] e L. (F.10).
In particular A2(-,-), = (+,-), give \2(€y, Z)p = (by, %), =T (£, F)p, for all 7, hence A2, = £},.
Converse: For all £ € E*, 2T, = I, gives N2(Z,, )y = (I, ©)n "= (F,, ), for all 7 and for all 7,

because ég is an isomorphism cf. prop. (F.4), thus A2(-,-), = (-, ), 5

Example F.7 If (-,-), and (-,-), are the Euclidean dot products made with the foot and the metre
then (F.11) gives
0, =N, with X\*>10 : (F.12)

Zg and @), are quite different! So a Riesz representation vector is (very) subjective, and certainly not
“canonical” (a word that you may find in books where... nothing is defined... nor justified...).

Thus, aviation: If you do want to use a Riesz representation vector to represent a £ € R™* it is vital
to know which Euclidean dot product is in use, cf. the Mars Climate Orbiter probe crash (remark A.17).
Recall: The foot is the international unit of altitude for aviation. u
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130 F.5. Riesz representation vectors and gradients

F.5 Riesz representation vectors and gradients
f € CHR™;R), p € R™. The differential of f at p is the linear form df(p) € R™* defined by

df (p)7 := lim Fo+10) = Fb) o e g (F.13)

h—0 h ’

(definition independent of any inner dot product or basis).
If you choose an inner dot product (-,-), then you can define the gradient grad, f(p): It is the (-, ),-
Riesz representation vector of df (p):

gradgf(p) = ]%g(df(p))7 ie. |df(p).w= (gradgf(p),w)g , Y e R™. (F.14)

E.g. (F.12) gives

grad,, f(p) = A’grad, f(p) with A% >10 (English vs French) : (F.15)
The gradient is very dependent on the observer (a gradient is subjective, the differential is objective).

Remark F.8 Without inner dot products but with a basis, we also have an observer dependence. E.g.,
in the 1-D case with f : 2 € R — f(z) € R, question: What does f’(x) mean? Answer:

11- For one observer, it means f’(x) = limy_q W where in the departure space the observer
has chosen a basis vector @ of length 1 for him (e.g. 1 foot) which he calls @ = 1; So, with explicit notations,

his derivative f(z) is in fact f,(z) = df (2).@ = limy,_,o LEHD=T@),

o Lth=f(@)

12- For another observer, it means f'(z) = limj,_, . where in the departure space the

observer has chosen a basis vector b of length 1 for him (e.g. 1 metre), and he write b= 1; So, with

explicit notations, his derivative f’(z) is in fact f(x) := df (x).b = limp_0 w.

13- If b = Ad, then

_ fla+hb) — f(x) . flz4hrd) — f(z)
}zlg%) h a ilg% h h—0 hA k—0

Thus, e.g. with foot and metre,
fo(x) = Afl(z), with A~3.28, so fi(z)# f.(z). (F.16)

ite sid
In other words, f/(z) = %
Exercice F.9 We have f{(x) =16 \f/(z) and grad, f(z) =15 A\2grad, f(z). Why?

-
—

Answer. Because (F.16) does not use the Riesz representation theorem. Details: (@) and (b) are two bases
in R, associated inner dot products (-,-)s and (-,-)s, and b = A@; thus (-,-)a = A2(-,")p. And fi(z) = \fi(x)
gives (gradful(z), B)o =71 df (2).F = fi(z) = Mi() = Adf(2).d =19 Ngradfa (), @)a = (gradfs(z), A}y =

depends on the length unit of the adjacent side: foot? metre? o

N2 (grad fa(z),@)s, so gradfy(z) = A2grad fa(z) as expected. .
Exercice F.10 With ||.||, :_'/\||.||h we have \|Eh||g = A||€h]|n- Does it contradict the Riesz representation
theorem which gives [|¢|| = |[¢4]|?
Answer. No, because ||¢|| := sup; % depends on the norm |[|.||z» chosen; Here ||.||z» is either ||.||g or ||.||x.
And if ||4||4 = supf% (you have chosen the ||.||zn := [|.||g), then ||{|[n = sup;.pn Il\ff“'i\l\j;l, = SUP;cpi %‘ﬁg‘lg =
ASUp ;g “lggﬁi = A||¢||g- Don’t forget: ||¢|| = sup(...) depends on the choice of a norm: ||.|[4? ||.||n? u
F.6 A Riesz representation vector is contravariant
Zg is a vector in FE so it is contravariant. To be convinced:
Exercice F.11 Check:

[thmﬂ = P_l.[lzyhdd (contravariance formula). (F.17)

Answer. Consider two bases (@;) and (b;) in E and the transition matrix P from (a@;) to (b;). Thus [@; =
P~'.[#); and g = PT.[g]|a.P, and £.Z = (,, %), for all & gives

—

@15 09)a-6)a = €8 = [@509)5-10) 5 = (@ 5P ).(P g P).16) s = @ lola-(PIE] ), (F.18)

thus [Zg]‘@ =P [f_;]‘g since [g] is invertible (an inner dot product is positive definite). un
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151 F.7. What is a vector versus a (-,-)g-vector?

Remark F.12 e Dont forget: A representation vector Zg is not intrinsic to the linear form ¢ because it
depends on a (+,-), (depends on a observer: foot? metre?).

e It is impossible to identify a linear form with a vector (which one?).

° Zg is mot compatible with the use of push-forwards, cf. § 7.2.

° 6_;, is not compatible with the use of Lie derivatives, cf. (9.64). n

F.7 What is a vector versus a (-,-),~vector?

. Originally, a vector is a bipoint vector ¥ = AB in R? used to represent a ‘“material object”. E.g. the
height of a child is represented on a wall by a vertical bipoint vector Z starting from A the ground up
to B a pencil line. The vector & is objective: The same vector for all observers; Then to get the height
of the child an observer uses “its own unit” (foot, metre...) to give a value (subjective).

. Then (mid 19th century), the concept of vector space was introduced: It is a quadruplet (E,+, K, .)
where + is an inner law, (E,+) is a group, K is a field, . is a external law on E (called a scalar
multiplication) compatible with + (see any math book).

. Then a scalar inner dot product (-,-), in a vector space E was introduced.

. We can then get non “material” vectors (“subjectively built vectors”). E.g., usual vector space R3
of bi-point vectors, its dual R3* := L(R3;R), ¢ € R3>* (a measuring device), foot built Euclidean
dot product (-,-)g, metre built Euclidean dot product (-,-),. We get the artificial (man made) Riesz
representation vectors ¢, = Ry(¢) and ¢, = Ry,(¢), cf (F.12), and £y # {},.

. Remark: with differential geometry, a vector ¢ is redefined: It is a “tangent vector”, which means that
there exists a C! curve ¢ : s € [a,b] — ¢(s) € E such that ¥ is defined at a p = ¢(s) € Im(c) by
U(p) := &’(s). Advantage: This definition of a tangent vector is applicable to “tangent vectors to a

surface” (and to a manifold), see e.g. § 9.1.1,2-. Then it is shown that ¢ is equivalent to % = the
directional derivative in the direction ¥ (natural canonical isomorphism E ~ E** see § U.3).

For other equivalent definitions of vectors, see e.g. Abraham—-Marsden [1].

F.8 The “(-,),~dual vectorial basis” of a basis (and warnings)
F.8.1 A basis and its many associated “dual vectorial basis”

E vector space, dim E = n, inner dot product (-, )4 (e.g. Euclidean foot-built).

Definition F.13 The (-, -)s-dual vectorial basis (€;4) (or (-, -)4-vectorial dual basis, or (-, -)s-dual basis)
of a basis (€;) in F is the (contravariant) basis in E defined by

VJ = 1, ceey 1, (gigygj)g = 52‘]‘, i.e. 6;‘9 'qéj = 5” (Flg)

NB: A vectorial dual basis is not unique: It depends on the chosen inner dot product, see e.g. (F.21).
NB: €, is contravariant: €, € £. So with Einstein’s convention the index ¢ in €, is a down index.

Exercice F.14 Prove that the vectors €;, satisfy the contravariant change of basis formula

[€iglinew = P~ ".[Eigljaa  (the &4 are “contravariant vectors”). (F.20)

Answer. e First answer: €, is a vector in F, thus it is contravariant.
e Second answer = direct computation: Consider two bases (@;) and (b;) and the transition matrix P from
I

(@) to (b;). (F.19) and the change of basis formulas give [éj]ﬁ.[g]|a.[€i9 a = (€ig,€5)g = [é’j]lql;.[g]lg.[é}g]lg =
(P=1[g)ia)" (P [9)a-P)-[€ig) ;5 = [€][a-19)ja-P.[Eig] 5, for all 4, j, thus [Eig]ja = P[€g)j5, for all i, ie. (F.20).
e Third answer: Apply (F.17) since €4 is the Riesz-representation vector of e*, see (F.22). un

Exercice F.15 One basis (€;) in E, two inner dot products (-,), and (-, -)p (e.g., foot and metre built).
Call (€;,) and (&) the (-,-), and (-, -)p-dual vectorial bases of the basis (€;). Prove:

() =N = &= N4, Vi. (F.21)

E.g., A2 > 10 with foot and metre built Euclidean bases: €j; is much bigger than &, : A vectorial dual
basis is not intrinsic to (€;) (not objective).

Answer. (Flg) gives (gib, é}‘)b = (57;]' = (éia, éj)a = )\2(57;&, é'j)l” thus (ab — )\2é‘m, Ej)b = 51‘3‘, fOI‘ all l,] -.-
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132 F.8. The “(-,-)g-dual vectorial basis” of a basis (and warnings)

Remark F.16 If (&) is a (-, -)-orthonormal basis we trivially get é&;, = €; for all ¢, i.e., (€4) = (€;).This
particular case is not compatible with joint work by an English (foot) and a French (metre) observers. au

Definition F.17 (Equivalent definition.) Let (¢‘) in E* be the (covariant) dual basis of the basis (&;)
(the linear forms defined by e’.€; = §;; for all j, cf. (A.6)). The (-,-),-dual vectorial basis of the basis
(€;) is the basis (€;,) in F made of the (-, -),-Riesz representative vectors of the e':

€y = Ry(e?), ie. defined by (&,,7), = €'.7, Vi€ E. (F.22)
where Rg is the (-, -)4-Riesz operator (change of variance operator cf. (F.3)).

F.8.2 Components of €, in the basis (¢&;)
Basis (¢;), inner dot product (-,)g, [g] = [gi;] == [(€},&})], [g] 71 ="ritten [gid].
Proposition F.18 The transition matrix from (€;) to (€q) is P = [g]~ ! i.e. the components of €;, are
Pi; = g% for any j € [1,n]y,
n n
€ig = Zg”é;-, Le. €g4= Zszé'i where P'; =g", le. [€j]e= [g]fgl.[gj]|g. (F.23)
= i=1

(Einstein’s convention is not satisfied because R, is a change of variance operator.)

Use classic notations if you prefer: €;, = Y, P;;€; where [P;;] = [g:;] 7"
And the matrix of g(-,-) in the basis (€;4) is the inverse of the matrix of g(-,-) in the basis (€;):
9(Cig,€jg)) = [glies, = lalie. ™ = (lg(E, &))" (F.24)

Proof. (F.19) gives

Vi, j, [€]{=19]1e-[Eiglie = 05 = (€] @z, thus  [g]ja.[Eg)1z = [Eilja Vi, (F.25)
thus (F.23). (Or apply (F.7) = generic Riesz representation result.)
Then, [g]jz being symmetric, g(€ig,&j9) = [Eigliz-lg)ie-[€g)ie = [Eilz-[9lie™ -[9)je-l9lie™ " [E)]1e =
[a]\g’[g]leﬂil[é‘j]\é = ([g}le )1]; thus (F24) o
*2 1 0 1 1 0 1> [ ]
Example F.19 R?, [g]z = 0 2 , thus [¢ ]‘5 =l 12 . Thus €14 = € and €34 = ;€. ua
;

Remark F.20 M = [g]z = [M;;] is a matrix, and its inverse is the matrix M~ = [M;;]™! = |[N;;]: A
matrix is just a collection of scalars, it is not tensorial (has nothing to do with the Einstein convention),
and its inverse is also a collection of scalars, and you don’t change this fact by calling M~ = [M¥ ]
And because P'; equals ([g];!)ij = _written g'J, some people rename €, as €7... toget €7 = Y1 ¢¥é;...
to have the illusion to satisfy Einstein’s convention, which is false: They confuse covariance and contravari-

ance... and add confusion to the confusion... an

F.8.3 Multiple admissible notations for the components of ¢},

Let P € L(E; E) be the change of basis endomorphism from (€;) to (€),i.e. P.€; = €}, for all j. And
let P = [P]|z = the transition matrix from (€;) to (€j4). We have multiple admissible notations

€jg =P.€j = prez = Z i€ = > (Py)'ei =Y P;é;, (F.26)
j=1

j=1 j=1

i.e. the i-th component of the vector €j, has the names P;; = (P;); = (P;)’ = P*; or P}, i.e. P = [Pz =

[Pi;] = [(P)):] = [(P;)"] = [P?}] (four different notations for the same matrix), i.e.
Py (Pih P (P)*
Vi, lGgle=Plele=| : [=|  [=]| ¢ |=| (F.27)
Pnj (Pj)n Py (75)"

= the j-th column of P. You can choose any notation, depending on your current need or mood...
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133 F.8. The “(-,-)g-dual vectorial basis” of a basis (and warnings)

F.8.4 (Huge) differences between “the (covariant) dual basis” and “a dual vectorial basis”
1. A basis (€;) has an infinite number of vectorial dual bases (€;4), as many as the number of inner dot
products (-, ), (observer dependents), see (F.23).

. While a basis (€;) has a unique intrinsic (covariant) dual basis (7.;) = (e), cf. (A.6): Two observers
who consider the same basis (€;) have the same (covariant) dual basis.

. If you fly, it is vital to use the dual basis (7.;) = (¢%): It is possibly fatal if you confuse foot and metre
at takeoff and at landing (if you survived takeoff...).

. Einstein’s convention can help... only if it is properly applied.

F.8.5 About the notation ¢ = shorthand notation for (g*)”

Definition F.21 g¢(-,-) = (-,-), being an inner dot product in F, the Riesz associated inner dot product
¢*(-,-) = (-,"),+ in E* is the bilinear form in £(E*, E*;R) defined by, for all £,m € E*,

(£,m) e := (Lg,1714), when €, = R,(f) and iy = Ry(m). (F.28)

(g*(-,) is indeed an inner dot product in E*: easy check.)
So the (7) tensor g is created from the (5) tensor g using twice the (-, -),-Riesz representation theorem.

Quantification: Basis (¢;) in E, covariant dual basis (e') in E* (duality notations). (F.28) gives:

i i . (F.28 5 . F.23 _ . i —
()7 = g, e) "2 gig ), thus [0 2V = [0 de (@) =)t (F29)
shorthand notation: |[(g*)¥] written [g9] . (F.30)
Classical notations: [g]jc = [(9%)i;] = [0 (er, 7ej)] = [9(Eig1 @) = l915]* = ([g)je) "

Exercice F.22 How do we compute g#(¢,m) with matrix computations?

Answer. ¢ = > " (' and m = Z?Zlmjej give g*({,m) = szzl&mjgﬁ(ei,ej) = szzlﬂi(gﬁ)ijmj =
e [gﬁ]‘g.[m]‘g = [{]je-19] fe}[m]@ (a linear form is represented by a row matrix,). .

Exercice F.23 Purpose: Prove I ~ g% and (¢%)” = g and (g%)* = g.
1- Start with the (g) tensor g, use the (-, -),-Riesz representation theorem just once: Prove that you
get the (}) tensor g% € L(E*, E;R) ~ L(E; E) which is the identity endomorphism:

g ~ 1. (F.31)
2- Show that if you start with the (;) tensor ¢* and you apply the (-,-),-Riesz representation theorem
once then you get the () tensor gf.

Answer. 1- ¢° € £L(E*, E;R) is defined by ¢° (¢, @) = (£y, @), for all ({,7) € E* x E, where {, is the (-,-),-Riesz
representation vector of £. Thus ¢(¢, @) = £.40 = £.1.17, for all (£, @) € E* x E, hence g € L(E*, E;R) is naturally
canonically associated with the identity I € L(E; E).

2- g* (£, ) = L8 = (0y, W)y = (¢, wy) ¢ where Wy = (Rg) ™" ..

G Cauchy—Green deformation tensor C' = FT . F

= [loT1x 0 5B
. (t, POlzj) — $(t, Roy)
is fixed, ®(t,py,) = ®(t, (t, Roy;) when py = B(ty, py,), PP (p,o) = ®%(t,p;,). When t is fixed, & := O :

} is a motion of O, Q; = &)(,Po@v) is the configuration of Ol at ¢, t

n n
{Qto = } 3 B o) R}, —K;
an ptO = pfO : . . (I) -, —(I)
Po == W — @ = Fpy) W := lim (p“ﬁhv? (Pr)
—

(deformation gradient at py, between #; and t).
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134 G.0. Summary

G.0 Summary

Counstruction of C' (summary of Cauchy’s approach): ¢ and t, are fixed and

1- At ¢y, consider two vectors Wi and W, at a point P € Q.

2- At t, they have been distorted by the motion to become the vectors FW; and F.Ws at p = O(P).

3- Then choose a Euclidean dot product (-,-), ="t . .. the same at all ¢.

4- Then, by definition of the transposed, (F.Wy)e(F.Ws) = (FT.F.Wy)«Ws,: You have got the
Cauchy strain tensor C := FT.F; We have (E.Wy) « (F.Ws) = (C.W1) « Wa.

5- Then (F.Wy) « (F.Wa) — Wy« Wy = ((C—1I).W1) « W, gives a measure of the deformation relative
to Wl and V_Vg, value used to build a first order constitutive law for Cauchy’s stress.

G.1 Transposed F': Inner dot products required
G.1.1 Definition of the function FT

. . Q. — L(R?;R?
to and t are fixed, ty < t, ®lo =Written ¢ gl = [lo = g =written g { fo (Ry, t)}. At t,

P — F(P)

a past observer chose an inner dot product (-,-)¢ in I@Z), and at ¢ a present observer chooses an inner
dot product (-,-)q in RP. With P € , and p = ®(P) € {1, the transposed of the linear map F(P) €
£(I§%,I§?) relative to (-,-)q and (-, -)4 is the linear map F(P)f, € E(I@?,I@Z’) defined by, for all Up € Hig

vector at P and ), € R? vector at p:
(F(P)&gWp,Up)c = (F(P).Up, wy)g, (G.1)

when to, t, P are implicit. Full notation: (F*(P)%_.@,,Up)g = (F{°(P).Up,w,),. This defines

g

Q — L(RYRY)

itten 7
(F)Gy "= Fy ~ (G.2)
J 7 p —|F&,(p) :== F(P){,| where P=&"(p),
SO
(Fy(p)Bp, Up)g = (F(P).Up, W)y, written in short | (F”.15)+, U =+, (F.U) (G.3)

Exercice G.1 1. With the ambiguous notation FTZW = ZFW = FW.Z = W.FT.Z, which dots are
inner dot products?
2. With ambiguous notations, what does F.W;.F.Wy = W1.FT.F.W5 mean?

-

Answer. 1. No choice: (W,Z) € R}, x R} and meaning (F”.2) o, W = Zo (FW) = (F.W) ¢, = W o, (F".2).

2. No choice: Wy, Wa € ]@% and meaning (F.W;) % (F.Ws) =W, o (FT . F.Wh). u
Remark G.2 On a surface Q (a manifold), (G.1) is defined for all (Up,@,) € TpQy, x T,.

G.1.2 Quantification with bases (matrix representation)

Classical notations: (d;) is a basis in I@’tg, and (b;) is a basis in R?. Marsden—Hughes notations: (E;) is

a basis in I@% and (&) is a basis in R?. Let (lighten notations)

Gij = (@i,d;)a, gij = (bi,b;)g, F.@j = iFiﬁi, FTp; = zn:(FT)ijaj, (G.4)
i=1 =1
so [G] = [Glia = [Gyy), 9] := l9)5 = lgis] [F] o= [F) 5= [Fy), [FT) = [FT) 50 = [(FF)y)-

—

(G.1) gives [U)T.[G].[FT.w] = [F.U)".[g).[] for all U, w, thus

[GL.IFT] = [F]".[g], te. |[F']=I[G]""[F]".[g]} (G.5)
D Ga(F )y =D Frigry, ie (FT)iy = 27: ([C1Y)inFerges (G-6)
k=1 k=1 k=1

Duality notations: Gy = G(Er, E;), gi; = ¢(€,&;), F.E; =" Fig FT& =" (FT) E; and
)5 Gij J =147 j =1 j
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135 G.1. Transposed FT: Inner dot products required

Z G[K(FT)Kj = ZFkngj7 ie. (FT)Ij = Z GIKFIE(gkj where [GIJ] = [G[J]_l.
K=1 k=1 K,k=1

—

Remark G.3 If (@;) and (b;) are (-,-)¢ and (-,-)g-orthonormal bases, then [G] = I = [g¢], thus [C] =
[F]T.[F]. But recall: If you work with coordinate systems then the coordinate system bases are not
orthonormal in general, i.e. [G]™! # I and/or [g]~! # I in general. oa

Exercice G.4 Detail the obtaining of (G.6).

Answer. (F".b;,d@)c = (b, F.ii)g gives (X, (FT )kyiin, @i)e = (biy ey Frabi)g, thus S5y (F )iy (@, @) =
ZZ:1Fki(bj7 bk)g,thus Zzzl(FT)ijki = Zzlem‘g]’k, thus (Gﬁ) -.-

G.1.3 Remark: Usual classical mechanics isometric framework

We can choose a unique Euclidean basis (@;) in ﬁg at all time, so (b;) = (@;) € R?, and (-,-)g = (-, g
is the associated Euclidean dot product; Thus [G];z = I = [g]|a, and F{,, =written pT" and thus [FT); =
([F)ja)*, written

[FT] = [F]T : usual classical mechanics isometric framework. (G.7)

G.1.4 Remark: F*

For mathematicians (no “magic tricks”):

Definition G.5 The adjoint of the linear map F € E(I@g;l@?) (acting on vectors) is the linear map
F* e L(Rr, @g*) (acting on functions) canonically defined by,

Vm e R}, F*(m):=moF, written F*.m=m.F (€ R} (G.8)
because F* is linear. Le. F* is characterized by, for all (m, W) € I@?* X ]ﬁg),
(F*.m).W = m.F.W (€ R). (G.9)
NB: There is no inner dot product, no basis here: This is an objective definition.

Quantification = matrix representation. With Marsden notations: (E?) and (e’) are the (covariant)
dual bases of (FE;) and (€;), and F’; and (F*);’ are the components of F' and F* relative to the chosen
bases: So

FE;=Y Fi&, ie [Fl=[Flg.=[F) . "2 [F)] and
. (G.10)
Frel =Y (F)PE", ie [F]:=[F"p= [(F*) )izt written 1 gy ),
Jj=1,...,n
I=1
And (G.9) gives (F*.¢/).E; = ¢l . F.E;, thus
Vi,j, (F*)9 = Fi;, ie. [F*]=[F]T. (G.11)

Classic notations: F.Eij = Zl Fijgia [F] = [ ijs F*.ij = 7IL:1(F*)ij7Taiv [F*] = [(F*)ij], and
(F*.ﬂ'bj).di = Waj.F.di gives (F*)z_] = Fji~ (G12)
NB: There is no inner dot product.
Interpretation of F™* in classical mechanics: We introduce Euclidean dot products, (-, )¢ in Hi,’%
and (-,-)y in R?. Then we use the (-,-)g-Riesz representation vector Rg(F*.m) € I@Z’ of F*.m €
I@g*, and the (-,-),-Riesz representation vector ]:Tig(m) € R’ of m € R*. Thus (G.9) and (F.3) give
(Reg(F*.m),W)g = (Ry(m), FW), = (FT.Ry(m),W)q, thus Rg(F*.m) = FT.R,(m), written
Rg.F* =FT.R,, ie F*=Rg 'FT.R,. (G.13)

NB: The definition of F* is intrinsic to F' (objective), while the definition of F” is not intrinsic to F'
(not objective) because its definition requires inner dot products (observers choices).
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136 G.2. Cauchy—Green deformation tensor C

G.2 Cauchy—Green deformation tensor C
G.2.1 Definition of C

tp and t are fixed, ® := &, F := Fl°, P € Q, and p = ®(P) € Q, i = 1,2. Consider the W;(P) € @%
vectors at P and their push forwards at p:

@i(p) = F(P).W;(P) € R}, written @ = F.W;. (G.14)

Choose inner dot products (-, )¢ in Hig and (-,-), in R?. Thus

(@1, 18a)g = (F-Wh, FWa), = (FT.E.Wy, Wa)g. (G.15)
C

More precisely: (i1, Wap)g = (F(P).Wip, F(P).Wap)y = (F&,(p).F(P).Wip, Wap)c-

Definition G.6 The (right) Cauchy—Green deformation tensor between # and ¢t at P € ), relative to
(+-)as (-)g is the endomorphism Cy (P) ="M Cgy(P) € L(RY;Ry) defined by

Cag(P) :=Fg,(p) o F(P), written ] C=FToF=FTF \ (G.16)

the last notation because FT is linear.

So
CFToFFT.F:{@i%_) @;_L, - R . . (G.17)
W — F(W) = FL(F(W)) = C(W),
and (G.15) tells that, for all Wy, W, € @g,
Wy oy Wy = (C.W1) o, W = (F.W7) o) (F.W?). (G.18)
Moreover C'is a (-, -)g-symmetric endomorphism in I@”, i.e., for all Wl, Wy € @g,
(CW, Wa)g = (Wi,CWa)g, ie. (CW1)e, Wo=Wis, (C.W2), (G.19)
since (FT.F.W17W2)G = (F.W17F.W2)g = (W1,FT.F.W2)G and (-, )¢ is symmetric.
G.2.2 Quantification
With (@) and (b;) bases in R} and Rp, [C] =(G19) [FT].[F], with [FT] = [G]~".[F]".[g], thus
[C] =[G IFI".[glIF]| (= [FTLIF)), (G-20)

short notation for [Ca,liz = (G2 ([F] E,E)T'[g}lg‘ [F1,z 5

Exercice G.7 Use classical notation, then duality notations, to express (G.20) with components.
Answer. Classical notations: F.d; = Z?leijgi, C.a; = 327, Ciyjdi, [Fliz5 = [Fiy), and [Cljz = [Cij] give

>0 Chj (@, @k )e = (@i, Y2, Crjin)a = (@i, C.d@;)a = (F.ai, Fud;)g = (3, Fribr, X Foibe)g = 32500 Fri(b, be)g o,
thus

ZGikaj = ZFkigleZj = Z ([F]T)zk greFej, thus Cy; = Z ([G]il)ikamngFZj- (G.21)
k=1 k=1 k=1 k,6,m=1

Marsden duality notations: F.E; = Y1 F'&, C.E; = Y1, CEy, [F] 5 . = [Fy], [C] 5 = [C"] and

ZG}KC’KJ = Z FkI gnge‘]7 and CIJ = Z GIMFICM gMFeJ when [GIJ] = [G[J]_l. (G.22)
K—1 ke=1 k6, M=1

Matrix equalities: [G].[C] = [F]”.[g].[F] and [C] = [G]*.[F]".[g].[F]. ou

Exercice G.8 (-,-)¢ is a Euclidean dot product in foot, (-,-), is a Euclidean dot product in metre, so
(y)g = #2(, )¢ with p = 0.3048; And (a;) is a (-, -)g-orthonormal basis, and (b;) == (@;). Prove:

[C] = w?[F]".[F]. (G.23)

Answer. [C); =92 [G] - [F] 2.19)ja-[F)ja.a gives [C)z = L[F){ 5.4*I.[F]|z