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Abstract: Minimization problems of Mindlin—Reissner type
treated by the finite element method can exhibit a locking phe-
nomenon due to incompatible choice of the discrete spaces involved.
Here such an incompatible choice is considered for which an analy-
sis of an origin of the locking is performed. We modify the discrete
equations in consequence, and these equations are then proved to
be unlocked. Then a convergence proof is given. Numerical simu-
lations of a Mindlin—Reissner type problem are proposed with the
only use of P;-continuous finite elements and give the expected un-
locked result. The numerical added cost amounts mainly to invert
a diagonal matrix in the case of P, finite elements.

1 Introduction

The motivation of this study was to try to use P;-continuous fi-
nite elements: These elements are easy to compute and they are
proposed in any finite element codes. Here we shall use the Mat-
lab PDE Toolbox where we do not have the choice of the finite
elements: The P;-continuous finite elements are the only finite el-
ements proposed. These elements are however well-known to yield
a locked solution for Mindlin—Reissner type problem if no cure is
introduced. In this paper we propose a new modification of the
discrete problem to circumvent this problem.



The approach presented differs from more usual approaches that
try to find adapted finite elements to a given discrete problem: See
for example Arnold [1] for the analysis of the 1-D problem (Tim-
oshenko beam), Brezzi and Fortin [8] [9] and Brezzi, Fortin and
Sternberg [10] for the presentation and ideas of cures, Arnold and
Brezzi [2] for a new idea that extracts from the start coercivity in
both variables, Chenais and Paumier [14] for a choice of unlocked
finite elements, Arnold and Falk [3] for analysis of some elements
and a point on some new methods, Chapelle and Stenberg [13] for
what they call “a slight modification” of the discrete equations,
Capatina-Papaghiuc [12] for the use of non conforming finite ele-
ments.

We also refer to Brezzi and Bathe [7] for an introduction to
the locking phenomenon and its relation to the inf-sup condition,
to Babuska and Suri [5] for the computation of the degree of the
locking.

The starting point of this paper is different: we start from a
choice of (conforming) finite elements that are known to give a
locked solution, and it is a modification of the discrete problem
(addition of a new term) that is considered. This yields an added
numerical cost that however will be negligeable when P finite ele-
ments are used since this will introduce a diagonal matrix inverted
at (almost) no cost.

In Section 2, Mindlin—Reissner type problems are introduced.
Section 3 deals with a generalized problem and we compare the
respective coercivity constants of the continuous and discrete prob-
lem, and then correct the discrete problem. In Section 4 the proof
of the unlocking for the cured equations is performed. In Section 5
computations of errors are proposed. And in the last Section, nu-
merical results are shown.

2 The Mindlin-Reissner equations

2.1 Notation

Let m be an integer > 1 and €2 be a bounded regular domain in
R™ which boundary is denoted T'.

We equip R™ with its canonical scalar product (-,-)gm. Thus
for any differentiable function f : 2 — R we shall represent its
differential df (x) by its gradient gradf(z) defined by df(z)(v) =
(gradf(z),v)gm for all v € R™.

Then we consider the canonical basis or R™, and any vecteur
v € R™ will be given by its components v; in this basis, for i =



1,...,n. In particular, gradf(z) is represented by the transpose of
the line matrix (%(g), o %(g)), for any z € Q.

We denote by L?(Q) the space of measurable functions that
are square integrables on Q, then by HY(Q) = {v € L*(Q) :
gradv € L*()™}, then by Hy(Q2) = {v € HY(Q) : vy = 0}. The
scalar product in L*(Q2) will be denoted (u,v)r> = [, u(z)v(z) dz.
In L2(Q)™, we shall use the scalar product:

(w2des = [ ) wtown o = [ éumm(z) s

.....

shall use the scalar product:

(4, B)r> = /Q Z Aij(7) Bij () do

Z,jil

with the generic matrix notation A = (Ay;)ij-1,..m: This last no-
tation is used for “(gradu, gradv)>” where gradu is represented by

the matrix [2%], 21 .
J

The associated norm in L?(2) will be denoted ||v|[z2 = (v,v)2,
for any v € L2(Q) or v € L3(Q)™ or v € L2(Q)™ . The norm used
in Hg(Q2) or in Hy ()™ is [|v]| gy = llgradv]|2, where v is a scalar
or vector function.

In Hy(Q2), we shall use the Poincaré’s inequality (since € is
bounded):

I8 >0, VYuc HY(Q), [lgradull2, > Bllul|2. (2.1)

For the numerical computation, we shall consider a finite ele-
ment triangulation of 2 and denote by P, the finite elements for
which the associated functions are continuous over ) and poly-
nomial of degree k on each triangle. And for a vector function
v = (V;)i=1,..m such that v; € Py for any i = 1,...,m, we also refer
to v as being F.

And we consider conforming approximations: if the unknown is
looked for in a space V, its computed approximation is looked for
in a finite dimensional subspace V}, C V.

2.2 The Mindlin-Reissner problem

The usual Mindlin—Reissner plate model with Dirichlet boundary
conditions reads: Find (u,p) € (H;(2))? x Hy () such that:

M(u,p) = inf M (v, q), 2.2
(1.7) (@) E(H§ ()2 x Hg () (©9) (22)



where:

1 A
M(v,q) = al(v,v) + 5llu - gradq||7. — (f, )12, (2.3)

. E 87)1 87)2 87)1 81}1 (%2 87)2

alv v) = 12(1—v2) /Q[( Ox v oy ) Ox + Ox * oy ) oy
(1=v) du v,

+ 2 ( dy + ox

2| d dy.

F is the Young modulus, v the Poisson coefficient. In (2.2) and (2.3)
u is the rotation vector, p the transverse displacement, f the tran-
verse load, A = % where k is a shear correction factor and ¢ is
the thickness of the plate. And as the thickness vanishes, \ in-
creases to infinity. The value of E and v are such that af(,-)
is a scalar product on HL(Q)? equivalent to the HE(Q)* usual
(u,v) gy = (gradu, gradv) 2 scalar product.

The interpretation of this Mindlin—Reissner plate model is clas-
sical and can be found for example in Brezzi and Fortin [9] and
references therein.

In this paper we consider in (2.3) any a(-,-) that is a scalar
product on H}(9)? equivalent to the HI(Q)® usual (-, )y scalar
product. And for the numerical computation (to test the locking
or the unlocking) we choose a(-,-) = (-,-) gi. In that case, the Euler
associated problem to (2.2) reads: Find (u,p) € (Hj(2))*x Hy ()
such that for all (v, q) € (Hy(Q2))?x Hg():

(gradu, gradv) > + A(u — gradp, v) > = (g,v) 2, (2.4
My — gradp, —gradq) 2 = (f,q) 2, '
i.e.:
D((w,p), (v,9) = (g, 2)r2 + (f, @) 12,
where:

®((u,p), (v,q)) = (gradu, gradv) 2 + A(u—gradp, v—gradq) .

3 General setting and interpretation of the problem

3.1 The setting

We consider a Hilbert space H and denote (-,-) = (,-)g and ||.|| =
||.||ir the scalar product and associated norms in H. If k is any
integer, we also denote (-,+) = (+,+)y and ||.|| = ||.||# the scalar



product and associated norms in the Cartesian product H* = H x
H...x H (k times). Then we consider two Hilbert spaces V and @
such that V' C H™ and @ C H™, m and n integers, and we suppose
that V' is dense in H™.

We consider a scalar product (u,v)y on V' and denote ||v||y the
associate norm, and we suppose that the natural injection from V'
to H™ is continuous:

ElCV > 0, Yv € V, ||U||H S Cv||U||V. (31)

We consider a differential operator G : Q — H™ such that
(Gp, Gq)Hderged(p, q)q defines a scalar product on ). We denote

ll¢|lo = ||Gq||n the associated norm, and we suppose that the nat-
ural injection from ) to H™ is continuous:
Jeg >0, YgeQ, |lallm < collallo- (3.2)

And we equip V x @ with the norm (||v|[2+]q[|3)?.

We then consider finite dimensional subspaces V,, C V and
Qn C @ and denote by IIy, and IIy, the orthogonal projection
operator from H™ to V}, or on @, relative to the (-, )y scalar prod-
uct. Le., forz € H™ and y € H", llyx € V}, and llg,y € Q) are
characterized by:

(Hthi,Uh)H = (xavh)Ha V’Uh € Vh;
(Ho,ysan) e = (Y. qn) s Yan € Q.

And we have Pythagorean equality “||[Ilyz|/% + ||lz—Ilyz||% =
||z|[3” as well as the identity “(z—Ily,z, 2—IlyZ) = (z—Ily,z, T)”
(idem with Ig,y).

Then we consider a bilinear, continuous and coercive form a(-, -)
on V', and denote ||a|| the continuity constant and o« > 0 and 5 > 0

the constants satisfying:
a(v,v) > allv| and a(v,v) > B||v|[;, Vv eV, (3.3)

where [ exists since we have supposed that the natural injection
from V to H™ is continuous. In particular, when a(:,) is symmet-
ric, a(-,-) is a scalar product on V' equivalent to the (-,-)y scalar
product.

3.2 The continuous problem

For some given ¢ € H™ and f € H" we look at the problem: Find
(u,p) € V x @ such that for all (v,q) € V x Q:

®((u,p), (v,q)) = (g,v) + (f,9), (3.4)



where for any A > 0:
@((u,p), ('U7 q)) = a(u, 'U) + /\(u - Gp7 v GQ) (35)

And we will be interested in the case A ‘large’. Problem (3.4) also
reads: Find (u,p) € V x @ such that for all (v,q) € V x Q:

{ a(u,v) + Mu — Gp,v) = (g,v),

Mu — Gp, —Gq) = (f,q). (36)

In case a(-,-) is symmetric, problem (3.4) also reads: Find
(u,p) € V x @ such that:

M(u,p) = inf M(v,q), 3.7
Wp)(M%MQ (v,q) (3.7)
where:
1 A 9
M(Uvq) = §G(U,U)+§||U—Gq|| _(gJU)_(fJQ) (38)

Proposition 3.1 For all (v,q) in V x Q:

®((v,9), (v,9)) = allv[l7,

and:
B((0.0). (0:0)) = 5 lalf (3.9)

where )ﬁ—)‘ﬁ (coercivity constant on @) is optimal and of order 0 in .
And ®(-,-) is continuous on V X Q: it exists cg > 0 such that
for all (u,p) and (v,q) in V x Q:

((u,p), (v,0)) < cay/IulR+[pl B /Il01F+lal[2, (3.10)

where co = O(\) (continuity constant = ||®||) as \ increases to
infinity. Then problem (3.4) is well-posed in V' X Q.

Proof. Tt is straightforward that ®((v,q), (v,q)) > «af|v|[}
(with « given in (3.3)), for any (v,q) € V x Q.
With / given in (3.3) we have, for any (v,q) € V x Q:

®((v,q), (v, q)) = Bllvlli + Allv — Gallz,

le.:

®((v,9), (v,9)) = (B + Mol + 2M[v]l# [|Galla + A|Gqll7-



And the max of the constants ¢ that satisfy “(84+\)z*+2 zy+Ay? >
cy? is ¢ = A[i—)\ﬁ Indeed we want that the second order poly-
nomial “P(X) = (B+A) X2+ 2AX + (A—c¢)” to have its discrim-
inant is <0 (no solution for the equation P(X) = 0), i.e such that
A2 — (B+N)(A\—c) <0, i.e. such that ¢ < % And then (3.9).
Since v and ¢ are independent variables, and V is dense in H,
we can choose v as close as wished to G¢ (in the ||.||g-norm), so

that ¢ = 22 is indeed the best constant. And as A\ — oo, we have

A8

% — B =BA"% % is of order 0 in A\ as A increases to infinity.
Then with as = min(e, %), we get the coercivity of & on

V xQ.

Then we have, for any (u,p), (v,q) € V x Q:

®((u, p); (v,9))
< llallllullvllolly+Act ully o]l

+ ey (l[ullvilalle + [lvllvilplle) + Allpllellalle

from which we get (3.10).
Then by Lax-Milgram Theorem the problem is well-posed:
There exists a unique solution (u,p) € V x @ that satisfies

®((u,p), (u, p)) < [|[flallpllz + Vlgllallul|m and then:
1 07 1
(Hul [+ 1Iplg)? < g(c%HgH?{ + el 1),

where ¢g and ¢y are the continuity constants defined in (3.1)
and (3.2). o

Remark 3.2 The difference of order between the coercivity
constant ag = O(1) and the continuity constant ||®|| = O(A) is
expected to yield difficulties for the discrete associated equations.
Indeed the conditioning of the associated matrix to invert will be
of order % = 0(A) so that numerics will explode with A. This is
expected.

However, what is not expected is that the discrete solution de-
grades much faster than expected from the matrix conditioning
number: The results for problem (2.4) are already inacceptable for
relatively small values of A\ on a reasonnable mesh, for example
A = 100 with an usual mesh. -

3.3 The discrete associated problem

The discrete problem associated to (3.4) reads: Find (up,pp) €
Vi, X Qp, such that for all (vp,, q,) € Vi, X Qp:

D ((un, pr)s (s qn)) = (g,vn) + (f5 qn)- (3.11)



And for this discrete problem we get (to compare to (3.9)):

Proposition 3.3 For any (v, q,) € Vi, X @y we have:

— |G —Ty,Ganl|F- (3.12)

A2
(D((inqh)?(vh;qh)) - )‘+6H h||Q A+ 5

Proof. We have:

(un—Gpn, —Gqn) = (un—Iy,Gpn, —Gan) + (Gpr—1I1y,Gpr, Ggp)
= (up,—Iv,Gpn, —1v,Gaqn) + (Gpr—11y;,Gpn, Ggn—11y,Gan),

so that the functional ®(-,-) (given in (3.5)) also reads in Vj, x Qp:

S ((un, p), (Vn, qn)) = alun, vn) + Mup—Ily,Gpp, v, —11y,Gqn)
+ M Gpp—11y,Gpp, Gar—11y,Gqy).

Then, for any (v, qn) € Vi X @, with the a computation similar
to the one of the previous proof:

A
B{(on 1) (1)) = 55| MiGanl P+ |G TG

Then with HHVGQh||2 HthHQ—Hth v.Gan||* (Pythagorean

relation) an —m + A= A+ﬁ we get (3.12). -

3.4 An interpretation of the locking

We consider the case H = L*(Q), V = H(Q)™ and Q = H}(Q),
together with G = grad.

For the continuous problem (3.4), the coercivity constant is of
order 0 in A, see (3.9), and ||p[|zz = O(||f[|z2) as A increases to
infinity, i.e. ||p||p; is of the same order as ||f|[Lz2.

But, for the discrete counterpart (3.11): Suppose V} is “small”
compared to (), for example small such that there exists some di-
rection py, verifying gradp, # 0 and thgradph = 0. Then such py,
yield a coercivity constant “= 6“/8%—/\“/5 = A in (3.12) which
is of order 1 in A. Then if such p, is solution we could have
pnll: = 5O(If]lz2) and pj vanishes as X increases to infinity
(locking phenomenon).

Such py, directions (or at least directions pj, such that IIy,gradp,
is one order of magnitude smaller than gradpy,) are usual in finite
element computations: Just take the 1-D case 2 =|—1, 1], its par-
tition Q =] — 1,0[UJ]0, 1[, the space H{(Q), its discrete Vj, = P,
approximation which is here of dimension 1 and generated by the



hat P; basis fonction ¢ given by ¢(—1) = ¢(1) = 0 and ¢(0) = 1,
that is ¢(x) = z+1 on |—1,0[ and ¢(z) = —z+1 on |0,1]. We
have grady = ¢' that equals +1 on ]—1,0[ and —1 on ]0, 1] (dis-
continuous), whereas its (continuous) projection Ily,grady satisfied
ITy,grady = 0 (trivial computation).

3.5 The discrete corrected problem

As a corollary of Proposition 3.3, we define on V' x Q:

(I)lh((uap)a (Ua Q))

= O((w.p), (0.0)) — = (813

W B(Gp—HVhG ,Gq—1I1y,Gq)

where ®(-,-) has been defined in (3.5).

Proposition 3.4 For any (vs,qn) € Vi X Qp:

> M

2, 14
> Gl (3.14)

Q11 ((vns qn)s (Vns )

and % is the maximum coercivity in the variable q,.

Proof. ®y;, has been built for that, see (3.12). o

In many applications, we don’t know the value of 3: We can only
estimate it. And we cannot take an estimate of 3 larger than 3 if
we don’t want to destroy the coercivity in V or V;,. We then define:

fe=—, c>1. (3.15)

Remark 3.5 An estimation of the Rayleigh quotient gives an
approximation of 5. Then for the numerical computations we shall
choose . ~ s = g

And we will not be able to take 5. = 0, i.e make ¢ — oo: This
would lead to the vanishing of some required coercivity in py.

And we define on V' x @ (and then on V,, x Qp):
@h((u,p), (Uv q))

— 0((u,p), (v, )~ (816)

) (Gp—11y,Gp, Gg—11y,Gq)

And the discrete corrected problem now reads: Find (up,pp) €
Vi, X Qp, such that for all (vp,, q,) € Vi, X Qp:

S ((uns pr)s (Vs qn)) = (g, vn) + (fs an), (3.17)




l.e.:

a(up, vp) + Mup—Gpp, vi) = (g9, vp),
2

A
Mup—Gpn, —Gqn)——— (Gpr—11v,Gpn, Gan) = (f, qn)-

ADe
(3.18)
Proposition 3.6 We have, for any (vs, qn) € Vi, X Qp:

Qh((vha qh)7 (vha Qh)) Z O[||Uh||%/,
and:

B ((Un, qn)s (Vs @n)) = llanl s (3.19)
where v, = ()\fé?%cﬁ)c) is the maximun coercivity constant on @y,
and v, € [£2,25%) is of order 0 in .

2B “AFB
And ®(-,-) is continuous on V x @ and on Vj, x @, with a

continuity constant of order 1 in A\. And problem (3.17) is well-
posed.

Proof. The only really new result to prove is (3.19).

A2 2 A2 A2y A AN (B—Be)
h We have 355 = 555 + (355 — 538) = x5 + sopoa sy ad
then:

Dn (v, an)s (vp, an))

) (BB
= (Dlh((Qh? Qh)7 (Qh’ Qh)) - ()\—Fﬁ)()\—"ﬁc)

_ -1 /\2(/8_50) _ A(B=8¢) A AB
And f—f = B5° < B, then 5556055 = S5 oo € 10 G

and then the result. 5

|Gan—T1y,Ganl |3

We also have:

@1, ((un, pn)s (Vn, qn)) = alun, vy) + Mun—11v,Gpr, v —11v;,Gay)

A
—— (G, 11y Gpy, Ggr,—11v Gqy),
+B}\+ﬁc( pr—ILy,Gpn, Gan—1ly,Gap)
and the practical computation will be done as (with wy, = Iy,Gpy):
Find (up,pn,wn) € VixQpxVj such that for all (v, qn,w)) €
VhXQhXVhZ

([ a(un, vn) + Mun, vn) — M(Gpn,vn) = (g, 04),
2

A A
—AMun, Gan) + /\iﬁc(Gph’ Gan) + m(wh, Gan) = (f,an),

A2 A2
! !
/\+6C(Gph7wh) - m(whvwh) = 0.

C

(3.20)



And in the case V}, = P, finite elements, the last equation can be
solved very cheaply with the mass lumping technique: The mass
matrix resulting from the (w,,w})> term is made diagonal and its
inverse is thus computed at (almost) no cost. And we then solve
the two equation problem in two unknowns (3.18) instead of the
above three equation problem (3.20).

Remark 3.7 If a(-,-) is symmetric, problem (3.17) also reads:
Find (un,pn) € Vi, x Qp, such that:

My (up,pp) = inf My, (vn, qn), (3.21)
(Vh,qn)EVA X Qp,

where

1 A
Mh(Uh,Qh) = 5“(%,%) + §||Uh—GQh||2
22 9
— — |Gy}, G — —
2()\+/BC)” dh Vi, Qh” (fa(.Zh) (g7vh)>
(to compare to (3.8)). o

3.6 Error computation

We consider the solution (u,p) of (3.4) and the solution (up,pp)
of (3.17) (discrete corrected problem). We have the convergence
result:

Proposition 3.8 For any (u;,p;) € Vi, X Qp, it exists d, > 0
such that:

(fu—unl[-+lp—pnllg)?
1
< dy(M[(fu—w] [F+lp=pil[5)* + |Gp—TTyGpllal,

and dj, = dy()\) = O(N).

(3.22)

Proof. We use the finite element technique: We have, for any
(Vn, qn) € Vi X Qp:

2

A
Py, ((u—vn, p—pn), (Vn, qn)) = o (Gp—T1y,Gp, Gqp).

And for any (v, p;) € Vi, x Q) (interpolants), we get:

P, ((wi—vn, pi—pn), (Vn, qn)) = Pr((wi—u, pi—p), (Vn, qn))

+
A+B

(Gp—HVhG s th) .



With Proposition 3.6 we get, with v, = u;—up, ¢ = p;—pp and

A
0</\+[3<1

g, (|[ui—un [t +|Ipi—pnl5)
1 1
< @l (Nu—usl [+ [p—pill5) > (Nwi—un |34 [pi—pal5) 2
+ AM|Gp—Tv,Gpl|u||G (pi—pu)|| 1,
where ag, = min(a, A+ﬁ) And with ||G(pi—pn)|lg = ||Ipi—prllo <
1
(Jlwi—un| 5+ Ipi—pullp)? we get:

1
(|fwi—un|[3+pi—pnl[5)?

_ Il l
< 28 fu—l -+l ) +

by,

N

Then, with |[u—us]|* < 2[Ju—u||* + 2||u;—up||* and ||p—pa]]* <
2/lp—pil|? + 2|Ipi—pu| %, we get (3.22). =

Remark 3.9 We cannot expect a bound independent of A since
the continuity constant ||®|| for the continuous problem is of order
O(A), whereas the coercivity constant is of order O(1).

Then the above error computation shows that the added correc-
tion term does not destroy the error: We have the usual expected
result. -

3.7 The variable s = (A+0)u — A\Gp

We extract [-coercivity out of a(-,-) (procedure used to compute
the coercivity in the variable ¢;). Rewrite (3.6) as: Find (u,p) €
V' x @ such that for all (v,q) € V' x @:

(a(u, v) = Be(u, v)) + (A+5c) (u, v) = A(Gp, v) = (g,0),

A
) [(A+B:)u — AGp, —Gq) + B.(Gp, Gq)] = (f, q)-

Then we introduce the variable s = (A+5.)u — AGp € H™, and
the problem reads: Find (u,p,s) € V x @Q x H™ such that for all
(v,q,8") €V xQ x H™:

(a(u, v) = Be(u, v)) + (s, 0) = (g, v),

BeA A
g, 0P G = (s Ga) = (0), (3.23)
(u,s") — /\_i\ﬁc(Gp, s') — )\iﬁc (s,s") = 0.



This problem is well-posed since (3.6) is.
Now consider the discrete problem associated to (3.23): Find
(Uny Py s1) € VaxQpxVy, such that for all (vp, qp, 8},) € Vi X QX Vi

(aun, vn) = Be(un, v)) + (sn,vn) = (g, vn),

BeA A

)\+5c(Gph7 GQh) - m(Sh; G‘Ih) = (fa Qh); (3'24)
A 1

(tn, 52) - m(Gph, 52) - m(sha 52) =0,

where the new variable s; in looked for in Vj,. Since V;, C V and
V C H, we have V;, C H and we still deal with conforming finite

elements.
Then (3.24)3 gives:

sp = (A+Be)up, — My, Gpy, € Vi,

and then by elimination of s in (3.24); 9, problem (3.24) reads:
Find (up,pn) € Vi, X Qp, such that for all (vg, qn) € Vi, X Qp:

a(up, vp) + Mup—Gpn, vn)r2 = (9, V)12,

2 ABe
= y.Gpy + Gpn, Gan) e = (f, qn) 1z
A5, ASY Y A5, Ph C]h)L (f Clh)L

And this is the discrete corrected problem (3.17) since

(—/\Uh +

)\QHG AﬁCG = \G oY Gpp—1Ily,G
PV R ph+/\+ﬁc Pn = ph—m( prn—Ilv;,Gpn).
Here we have just rewritten the discrete counterpart (3.24) of the
continuous problem (3.23) without the addition of any term.
Then problem (3.23) could be considered as the one to be dis-
cretized to avoid any locking, instead of problem (3.4) which re-
quires a stabilization term (when P; finite elements are used).

Case of a substitution problem. Take a(-,-)=(-,-)g and f=0,
and then consider problem (3.6) that now reads: Find (u,p) €
H™ x @ such that for all (v,q) € H™ x Q:

{ (u,v) + AMu — Gp,v) = (g,v),

(u — Gp,—Gq) = 0. (3.25)

This is a substitution problem: (3.25); gives (A+1)u = AGp + g
and then (3.25), gives:

(Gp, Gq) = (g9,Gq).



But the discrete counterpart of (3.25) gives (A+1)uy, = AIy,Gpp +
IIy,g and then:

(A +1)(Gpn, Gan) = MUy, Gpn, Gan) = (Tlv,g, Gan)-

This is not anymore a substitution problem in the discrete case
(unless V}, is large enough so that IIy,Gps, = Gpp). And we could
get locking.

Now, if we consider equations (3.23), for which we take §, =
f = 1 (the coercivity constant 5 = 1 is known), we get: Find
(u,p,s) € H™x @Q x H™ such that for all (v,q,s") € H™ x Q x H™:

(s,v) = (g,v),

A A
/\+1(Gp, Gq) — )\+1(37GQ) =0, (3.26)
A ! 1 n o
(U—)\—HGP,S)—/\+1(S,S)—O,

and the discrete counterpart immediatly gives:

(Gpn, Ggn) = (Ty,9, Ggn) (3.27)

for any g, € Q. This is the expected discrete result in that case
of a plain substitution problem.

Thus, to formulate problem (3.6) in terms of problem (3.23)
seems to yield a reasonnable direct discrete problem (3.24) to avoid
the locking phenomenon.

4 Proof of the unlocking

For the continuous problem, following Brezzi and Fortin [9], we
suppose that g = 0 together with a(-,-) symmetric and we are
interested in a lower bound:

c(f) < ®((u,p), (u,p))

where ¢(f) > 0 is a constant independent of A and > 0 as soon as
f#0.

The idea is that (u,p) realizes the minimum of M defined
in (3.7) and that at (u,p) we have M(u,p) is < 0. And to prove
that this minimum is < 0 it is sufficient to prove that it is already
< 0 in some subspace.

This has been done by Brezzi and Fortin [9] in the subspace
{(w,2) eV xQ:w=Gz}.

For the discrete corrected associated equations (3.17):



Proposition 4.1 With ¢ = 0 the discrete corrected prob-
lem (3.17) has a unique solution that satisfies:

co(f) < Pu((un,pn), (un, pr))- (4.1)

where ¢y(f) > 0 is independent of \.

Proof. The proof follows the steps of the continuous case, see
Brezzi and Fortin [9] and is done in the case 8. =  for simplicity
(similar proof when 0 < 3, < §):

1- The solution (up, pp) realizes the minimum of the functional
M, defined in (3.21). We suppose that A > 3 (we are interested in
the limit case A — o0) so that ﬁ < AB«FAB < . And we look for a
minimum of this functional in the subspace {(vp,qn) € Vi, X Qp :
v, = I1y,Gqp}. We then consider the functional defined on @), by:

J(Zh) = Mh(HVhGZh; Zh)

Q(fgiﬁ)”Gzh—HVthth — (f,2n)-
(4.2)

This functional is a-convexe with o = i as soon as A > [ since, for
any qn, zn in Qp:

1
= §G(HVhGZh, HVhGZh) +

" /6 /6A
J"(qn)(zn, 20) > —||HVhGZh||§1 (/\ 5)||Gzh Iy, Gz [,
1 BA
> _
> 2/\+6||G'ZhHH > 4HZhHQ

We are in finite dimensional spaces and then a minimum exists
in @, and is unique: We denote it g;. And ¢ # 0 unless f = 0,
or more precisely ¢, # 0 as soon as there exists one 2z, € @, such
that (f,2,) # 0, which is assumed in any finite element method
(the space @, is ‘dense in the limit’ in Q).

Since ¢, realizes the minimum of .J, we have (Euler associated
equation to J), for all z;, € Qy:

A
a(Tly,Gap, Ty, G2 ) + f—ﬁ(Gq,)L‘—HVth,?, Gz —yv.Gzn) = (f, 2n)-
(4.3)

Then for such a minimum we have, as soon as A > [, replacing



n (4.2) (f,z,) by the left-hand side of (4.3):

My (Ily,Gap, qp)

1 BA

= _§Q(HVthi>L\7 HVthiL\) - 2(/\"_5) ||Gq//7,\_HVhGQI/7,\||%I7
B

< - HHV Gl — —||GQ;?—HVhGQz?H§{ < —ZHG%?H?{,

< 2lgi <o

which is strictly negative as soon as f # 0. Then the Euler equa-
tion (3.17) (with g=0) gives (f, pr) = ®n((un, pr), (up, pr)) and then
My (un, pr) = —5Pn((wn, pn), (un, pr)). And we get, together with
My (un, pr) < My(Ily,Gap, q3):

1

§(I)h((uh,ph) (un, pn)) > ||q o > 0.

2- Now we prove that ¢, stays away from 0 as A increases to
infinity. Consider the limit case A = co. Problem (4.3) then reads:
For all z;, € Qy:

(HVhGQh, ;H G'Zh) + B(GQ}C;O_HVhGQIioa Gzh_HVhGZh) = (f7 Zh)7

where ¢;° exists and ¢;° # 0: We have supposed f # 0 and this
problem also reads as a minimum problem of an elliptic functional
since:

(HVhGQzO»HVhGQh) + 5(GQ;§O HVhGQEO,GC]h HVhGQh)
> BIMyGaie |5 + BlIGE NN E — BITMuGER |5 = BIIGEG |-

Then denoting e, = ¢;° qh, with (4.3) we get, forall z;, € Qp,
together with g = 22 +

A8 A+B
BA
a(Ily,Gegy, 1y, Gzp) + W ——(Gey—11y,Gey, Gz, —11y,G zp)
62
= _/\—l—ﬁ (Gq;;o—HVth;;o, GZh—HVhGZh).
Now with z, = e, we get:

BA

AUIGGa |y + 35 Gey TG

52

Hth ~Iy, G ||| |Geg—TTv,Geg 1,

<62
T A8

o A
(o IGae — Iy Gaiel [ + %IIGeq—thGeqH%)-

2\



so that, since § > AJrﬁ):

BA Iik
2\t 5) 1Geqllir < AN B)

| Gai Ty, G| — 0.
A= 00

And with (A+ﬁ = O(ﬁ) we get that ¢} — ¢¢° in @ when A — oco.
And with ¢° # 0 (we have suppose f # 0) we have (4.1) and the
discrete corrected problem (3.17) is unlocked. -

5 Error computation with s = (A\+38)u — A\Gp

We want to prove that ||u—up|ly and ||p—pp||lg converges to 0
with A independently of A, conversely to the result of Proposi-
tion 3.8.

5.1 Continuous equations

5.1.1 The problem

We consider problem (3.23) that we rewrite: Find (u,p,s) € V X
@ x H™ such that for all (v,q,s') € V x Q x H™

.

[(a(u, v)=Be(u, v)) + Bex——=(Gp, Gg)]

A
A+fe
) = (9,0) + ([, 9); (5.1)
(s,8')=0.

+(

Y )\—|—/6

A :
(u— p,s') —

G
\ /\+ﬁc

)\+5c

This problem reads as the usual constraint type problem: Find
(u,p,s) €V x Q x H™ such that for all (v,q,s') € V x Q x H™:

{ ?((u,p), (an)) :" B((%Q)a S) = (g,v) + (f7 Q)a (5.2)
b((u,p),s’) —eé(s,s') =0,
where ¢ = ﬁ and:
a((,9). (0,0) = alu,v) = Bu(u,0) + oy (Gp. G,
B((“aP)? S,) = (’LL— )\_|_6po7 S,),

c(s,8') = (s,8) .



Then we consider the functional defined on V' x Q) x H™:
U((u, p, 5), (v,q,5))
= a((u,p), (v,)) +b((v,9), s) — b((u,p), s") +eé(s, s')
and the problem (5.1) reads: Find (u,p, s) € V x Q x H™ such that
for all (v,q,8") €V xQ x H™
U((u,p,s), (v,4,5)) = (g,v) + (f, ). (5.4)
This problem is well-posed since (3.23) is.

(5.3)

5.1.2 The norms
We define on V' x (Q x H™ the following norm:

1
(v, O = oll3+allg+1Is' T + G |[g +ells'l[7)2 - (5.5)

Proposition 5.1 1 is continuous on (V x Q x H™)?: Exists
¢y > 0, for any (u,p,s) and (v,q,s') in V x Q x H™:

[ ((u, p, 5), (v, 4, )] < ey [|I(w, p, )] (v, g, I, (5.6)

where ¢y, = O(1) as A — oo.

Proof. We have:
[ib((u, p, 5), (v, 4, 5))]

BeA

< (a+ 002 U V||l vt+——
< (a+Becy)|ullv|v]|v /\+56Hp||QHQ||Q

+[vllvlIs|[ve+ul vl v

+

/\_i_ﬁc(HQHQHGtSHQ’ +1IplllG"s llg)+ellslmls'l |,

and then (5.6). e
We also define on V}, x @, x V}, the following norm:
11 (ns ans si)llln = (onll¥ + [lanllg + N1shlli + ellshllz)2. (5.7)
(The ||G"s||q term is absent by comparison to (5.5).)

Proposition 5.2 v is continuous on (V x @ x H™) x (V}, x
Qn x V) in the following sense: It exists ¢y, > 0, for any (u,p, s) €
V x Q x H™ and (Uh,qh,s%) € Vh X Qh X Vh.'

|77Z)((U,p, S), (UhJQhJS;L))|
< ey, (|1, , $)[[1PHTGGDIT) [11(Vhy Gy 53] s

where ¢, = O(1) as A — oo.



Proof. We have:

|1/1((U>P75)»(Uh»%»5;1))|

< (a8 lullv fonllv+22 oo lan

< Cy vI||Vn||v W ollgnllg
lonllv s+l ] [sh

+

/\_'_56(||‘Ih||Q||Gt5||Q’+||HVhGp||V||5;L||V’)+5||3||H||3;L||Ha

and then (5.8). o

5.1.3 The inf-sup conditions

And we have the two inf-sup conditions:

(s, v)

AT

Vs e H™, v (.Ga) (5.9)
sup T > |Gl
w0 Nlallo

These inequalities are in fact equalities by definition of the dual
norms |||y and ||.||¢o-

Proposition 5.3 The solution of (3.23) satisfies

N

(el 1ol + sl +1G"s ]G + < c([[fller+Ilglh),

(5.10)
where ¢ is a constant independent of A as soon as for example
A > max(f,, 1).

1 2
WHSHH)

Proof. Choose any (u,p,s) € V x Q x H™.
1- Case ¢>1, i.e. B.<(. We have, as soon as A\ > [,

« 6] alc—1)
a(u, u)=Bellulliy 2 —llulli—==llullz+———lluI[}
alc—1)
> [[ull¥

so that, since A > (3, and then &ﬁ > %, for any given (u,p, s):

alc—1)

Be
Un((u,p, 5), (u,p, 8)) = [[ulli: + S llpllg + lls 1%



Then with (5.9); we have the existence of v € V' such that:

Y((u; p; 5), (v5,0,0)) = —(llal|+Beci ) |ullv||vs|lv + [l 5] [ [vs]]v,

where we can choose v, such that ||vs||yv = ||s||v». Then, with
(lall+Bect)ullv[lvslly < 5(llall+Bect ) [ul5 + vl I7
we get:
al|+8.c%)?
$((,p,9), (0, 0,0)) > ~ LA
Then with (5.9); we have the existence of ¢; € @ such that,

with ﬁ > % (we have supposed A > 5.):

1
[[ulli + S s[5

1
¥ ((u;p, ), (0,45, 0)) = =Bellpllellgslle + 511G sl llgslle,

where we can choose ¢; such that ||¢s||g = ||G"s||gr. Then, with
Bellpllollaslle < B*lIplIg + 1llasll3,
we get:

1
¥((u,p,5), (0,05, 0)) = =B [[pllG + |G s
Then we get, for any k1, ko > 0:

1/1((%% 5)7 (u7p7 S) + Hl(vw 07 0) + H2(07 4s, 0))
_ 2\2
> (CV(CC 1) —H1(||aH_|—2660V) )||u||%/_|_(%_H2602)||29H22 (511)

K1 K2
+ellsl B+ SHlsl B + 221G 8]y

Then choose ;=121 2 and /@:ﬁ to get, with (v,q,s") =

2 c([[al[+Bect,
(u—HflUs; p+/€2q57 S):

((u,p, s), (v,¢, )

S alc—1)
- 2

Then with [[|(v, ¢, )[|| = O(|[|(u, p, 5)||]) (easy to check) we get:
U((u,p,5), (v, q,8) = colll(u, p, )| [[1(v, g ]I, (5.12)

with ¢y > 0 independent of £ (i.e. of ).
2- Case c=1, i.e. f.=0. Then we have:

60 K1 Ko
[ful 5 + ZHPII% +|lsl[F + EHSH%/’ + ZHGtSsz-

[l

B(y—1)
9

(o, u)—Blully ZaWﬂO—§WM%—

a(y—1) B(y—1)
> ——||ulf}— [l |7,
y v




for any v>1. Then we recover coercivity in ||u||g with:
Y((,p, ), (0,0, =) > [[ullf — |[ullal|Gpllm — ells|lmllullm,
1
> 5llull = Il = = MIsll

so that, for any ki, ko, k3 > 0 (with the computation to get (5.11)
where ~ reads in place of ¢):

1/1((%% 5)7 (u7p7 S) + Hl(vsa 07 O) + H2(07 ds, O) + /433(07 07 —U))

a(y—1 al|+Bc)? I6]
> (20D WA e (8 a2 — ol
Y
k3 Bly—1) K1 Ko
+(5 - Mullf+e(L—ers)l|sl |7+ sl +— 1G5
2 y 2 4
Then we choose /ﬁ:%%, /12:% and ngg, so that we also
14
now choose ~ such that @:%“—;, ie. 721—#%:% to get, with

(U, q, SI) = (U‘f’/ﬁvs’p‘“@%a S_KJSU):

U((u,p, ), (v,4,5))
S e(v=1)
= 2/}/

K1 K9
+ sl + 2GSl

K3 5
lullf + “lull + 11l + e(1—era)lls]

Bi=t5, e(l—ek3)=¢ 8r+75

ay-1)_a

2y 647

K1 ___ [0
Here s 2 —eaqapey and

L

328"
Then with [[[(v, ¢, ')[|| = O([|/(u, p, s)[|]) (easy to check) we get:

K2 __
i

b((u,p, 5), (v,4,8') = colll(u, p, )| ] (v, ¢, ]I,

with ¢y > 0 independent of € (i.e. of \).
Then with Proposition 5.1, we get (5.10). o

5.2 Discrete associated equations — case 1

5.2.1 The discrete problem

The discrete associated problem is the discrete counterpart of (5.4):
Find (un,pn, sn) € Vi x Qn x Vj, such that for all (vp,q,s),) €
Vh X Qh X VhI

U((un, Phs 51)5 (Vny Gy 51)) = (g, 08) + (f, qn)- (5.13)



5.2.2 The first discrete inf-sup condition
We have:

Vs, € Vi, sup (5, Un)

> |ls I, 5.14
p= H'UhHV - || h||Vh ( )

where ||sp||v; means the dual norm relative to the restriction on

Vir [[snllv = sup,, ey, S,

Lemma 5.4 If the interpolation estimate ||IIyv||v < ¢||v||v

holds with ¢ > 0 independent of h, then the norms ||.||y+ and ||.||v;
are equivalents on V). In particular:

Ger >0, Vsn € Vh,  sup SRS oo (5.15)
vREV) ||UhHV

where ¢, is independent of h.

Proof. We have, for any s, € Vj:

sl = sup Em2 _ (o (n v [Tyl
vev lllv wev Myl [lvllv
< ¢ sup ot vy _ cl|snllvy,
oV uallv h

thanks to the interpolation inequality, with ¢ independent of h.
Then with (5.14); and | we deduce (5.15) with ¢; = 2

independent of h. Together with the trivial relation ||.||y; < |||y,
we conclude that the norms ||.|[y and [.|[v; are equivalents on V. &

1 1
lsallyr = cllsallyy

5.2.3 First error computation

Lemma 5.5 Suppose the interpolation estimate ||IIyv|ly <
c||v|lv holds with ¢ > 0 independent of h. Then there exists a
constant cq > 0 such that for any (uy, pp, sp) € VaxQpxV}, there
exists (vn, qn, s},) € VaxQpx V), verifying:

IZJ((U}L,ph,Sh), (UhJQh78;1)) > CO|||(uhaph7Sh)|||h|||(vhJQhJS;1)||h7
(5.16)
where ¢g = O(1) as A — oo (with |||.|||n defined in (5.7)).

Proof. 1- Case c¢>1, i.e. .<fS. We have, as soon as \ > [,:

B a(c—1)

—Munl[i+ [y

Q
a(un, un)=Bellunlliy = —[lually =

alc—1)

> [lunl[i




so that, since A > (. and then ﬁcﬁ > %, for any given

(Uh,ph, Sh)‘

alc—1)

B
Y((wh, Ph, Sn), (Uns Dh, Sn)) > |unll} + §I|ph||é + |53

Then with (5.15) we have the existence of v, € V such that:
w((uhapm Sh)7 (US7 0, O))
> = (llall+Beci) Junllv[[vsllv+exlsallvelvsl v,

where we can choose v, such that ||vs||y = ||sp||v7- Then, using

(lall+Beci ) Tunllvllvsllv < 5¢; (lall+8eet)?|unl [ + v I}
we get:

(lla]|+B.ct)?

w((uhﬁph;sh)?(?)&o?())) Z - 201

c
[lunl ¥ + §1||Sh||2w-
Then we get, for any x; > 0:

Y ((Un, Phs k)5 (Un, Phy SH) + (K175, 0,0))

a(c—l) Hl(HaH"i_ﬁcC%/)Q 2 60 2
> (A BBy gy By, (s
K1C1
Fellonlly + S
Choose /ﬁ:%% and (vp, qn, S},) = (up+K10s, Dh,y Sp) tO get:

O((un, Phs $1), (Vn, G, 51))
S alc—1)
- 2c

R1€1
2

B
[[unl [t + 7 llpallo + =llsnllir + == [lsnlly-

Then with [|[(vn, qn, s3)||ln = O(/[|(tn, pr, su)ll[)n (easy to check)
we get (5.16).

2- Case c=1, i.e. B.=f. Then we have, for any y>1:

B Bly—1
ofuns )=l = ofun, )= 2
a(y—1) B(y—1)
> ——||un[}— |unl]F-
v
And we have:
Y ((un, phs sn), (0,0, —up))
> [|unllf = lunllzl|Gpullr — ellsnllullunlln (5.18)
1
> §||Uh||?q — lpallsy = €*|Isnll -



Then, for any k1, k3 > 0 (using (5.17)):

U ((un, Phs 58)s (U, Phy Sn) + (K105, 0, —K3up))
> (O‘(/Y_l)_Hl(HaH—i_ﬁ’YC%/)Q)H

B
unl [V + (5-=3)l|pallg

y 261 2
K3 5(7—1) 14
+ (G == Ml + (=5l + =5 lsnlly
(v=1)

Then take v and k3 such that %:/@, and %:ﬁ , 1.e. 7:% and

v

__ 28 _ 28 1 . _1 aly—1)2c
K3=7, 50 that (1—/@'35)—(1—9(Hﬁ)) > 7, and with /ﬁ—im

we get, denoting (vp, qn, 53,) = (Un+K1Vs, Ph,y Sp—FKalUp):

Y ((un, P, Sn)s (U, Gns )

S o=
> =5

R1C1
2

I3 €
||uh||2v+Ellphllé+§||sh||%+ Isall}-

Then with [|[(vn, qn, s3)||ln = O(/[|(tn, pr, su)ll[)n (easy to check)
we get (5.16). -

Proposition 5.6 If ||Ily,v||y < c||v||y holds (interpolation es-
timate), we have:

1
(llu—un| 5+ p—pullgHIs—snllV+ells—snll[7) 2

< inf —v; 2+ —q; 2+ _ 2,
= (Ui,q7;7s;)ér‘}h><Qh><Vh(||u UHV ||p QHQ ||S SZHV (519)

[

+ells—si| [5G (p—pi) )2

where ¢ = O(1) as A — 0.

Proof. We have:

IZJ((U_Uh,p—ph, S_Sh)v (vha ah, S;L)) = 07
so that for any (u;, p;, s;) € Vi X Qn X V) we get:
w((uh—uz‘,ph—pz‘, Sh_si)7 (Uh,Qh, S;L))
= w((U—Uz‘,p—pi, S—Si)> (Um qh, 5%))
We use (5.8) and (5.16) to get:
W(Uh—uz‘,Ph—pi, Sh—Si)H’h
1
= O((lu=uep—p1. 55| P+ G -p) ) ).
Then since |||(u—un, p—pn, s—su)|lln < [||(u—2ui, p—pi, s—si)|l|n +
||| (wn—"i, Ph—Dis Sh—5:)|||n, We get (5.19). =



5.3 Discrete associated equations — case 2

5.3.1 The second discrete inf-sup condition
We have:

Vs, € Vi,  sup Lh’ Gan)

> ||G*sllqy (5.20)
qhEQn HQhHQ "

where ||G*sp||q; is the dual norm relative to the restriction on Vj:

Glsp,
||Gt8h||QIh = SUDg,eq, W'

Unfortunatly (5.20) is not possible if ||Gsy||o reads in place
of ||G'snllq,: We fall on the usual problem of the satisfaction of
a discrete inf-sup condition. We just have, in the general case, a
weakened result (degraded inf-sup condition):

Lemma 5.7 When G*(V,) € H™ and with the interpolation
inequalities ||q — Ig,ql|m < ch"||q||q and ||llg,qllq < cl|q|lq where
r > 0 and ¢ > 0 is independent of h, we have: Exists ¢o > 0 such
that for all s;, € Vj,:

S ,G r
sup EmGW) S o — WG s — ToGlsnllw,  (5.21)

arhEQn ||Qh||Q

where ¢y is independent of h.

(This Lemma has already been settled in [15], and we recall the
proof for sake of completeness.)

Proof. We have, with the notation ¢, = Ilg,q when ¢ € Q:

G! Gt Gt _
(Csaller = sup G _ (o (Glsman) + (Glsng = an)
Y70 lldle  eeq lalTe
= sup( (Gsn, 1) + (G'sh — Mg, G"sn, q — Qh))
@ ldlle llallo ’

Gt
< Sup(( Shy qn) ||anllQ
e llanlle  ldlle
<c ([|G'sullg, + " ||G'sp — oG sl r),

qg—4dq
+H@%—H%@%mﬂ7mgﬁx

<sh7th>
llanllq
|G"sn]lq, and with ¢; = 1, we get (5.21). -

thanks to the interpolation inequalities. And with supg,



5.3.2 Stabilized discrete problem

In that case we want control on ||G*sy||g:. Then we have a problem
because of the extra h"-term in (5.21) that degrades the inf-sup
condition. Then consider the equations (3.16) modified (stabilized)
by introducing the A"-term of (5.21): Find (un, pr, sn) € Vi xQrxV},
such that for all (v, qn, s),) € Vi X Qpn X Vi

U ((Uns Phs S1), (Vs Grs 51)) = (9,v8) + (f, qn), (5.22)

where:

Un((tn, s 51)s (Vs s 53))

- w((uh7ph>5h)7(vhaqms;z)) (523)
+ 0R” (G's,—T g, G sp, G's),—Tg,G's} ) -

h = hpax 18 the maximum of the diameter of the finite elements
and where ¢ is a stabilization constant given in the next Lemma.
Problem (5.22) will read for the numerical computations

(

A
((graduy,, gradw,) —Be(uy, v,)) + ﬁcm (gradpy, gradgy)

+ gradgn) = (g9,v5,) + (f, an),

§h7Qh_m
C

A 1
(Eh—AJrﬁcgfadph;ﬁk) - m(ﬁh,ﬁw
— 6h*" (divs, —Ig,divs,, divs)) g = 0,

\

(5.24)
where Vj, = S, and @)}, are the P; continuous finite elements.

5.3.3 Second error computation

Define the norm:

Iensans i)l = Qo+l IR HIG S
tellshllirth7 |G s~ Tlg, Gl sil 7).

Lemma 5.8 Suppose that the solution (u,p, s) of (5.2) satisfies
G's € H" and that the interpolation inequalities of Lemma 5.4 and
Lemma 5.7 hold. In the case ., < [ choose § > 8%, and in the
case . = (3 either suppose ||G'ul|g < ||u||y and choose § > 5., Or
suppose the following inverse inequality:

E|Ci>0, VthVh, hrHGt'UhHHSCiHUhHH



and choose 6 > min(52—, ———=—5 ). Then there exists a con-
2fca? 8c? mln(l’%,i)

stant cg > 0 such that for any (uy, pp, sp) € VX Qp XV}, there exists
(Uh7Qh; 5;1) € Vi, xQnxV, verifying:

Y((wn, Phs $1), (U, Gy 51)) 2 colll(wns Pry s0) |2l |1(Vn, @y 53) 1 |n2s

(5.26)
where ¢y = O(1) as A — oc.
Proof. Choose any (up, pp, Sp) € Vi, X Qp X V.
1- Case ¢>1, i.e. 8.<(. We have, as soon as A\ > [,
« 64 alc—1)
a(un, un)=Bellunlly = —[lunl[v—[lunl [+ [Jn I3
alc—1)
> [|unlf5-

so that, since A\ > (. and then ﬁcﬁ > %, for any given
(uhaphvsh):

alc—1)

B
Un((Uhs Dh, Sh)s (Un, Dy Sh)) > ||unll} + Echthg + |lsnl 3

+ 5h2r ’ ’GtSh—HQthSh ’ ’%{
Then with (5.15) we have the existence of vy € V such that:

Un((un, Pr, s1), (vs,0,0))

> —(llall+Beci) unllvllvsl v + exllsnllvelvs v,

where we can choose v, such that ||vs||v = ||sn||v7. Then, with

(lall+Beci ) Tunllvllvsllv < 5e; (lall+B8eet)?|unl [ + v I}
we get:

(lall+B.ct)*

77zjh((uhaphvSh)’(US’O’O)) 2 o 201

C1
[lunl[7 + = llsnl 7

(5.27)
Then with (5.21) we have the existence of ¢; € @ such that,

. A .
since 375 < 1:

wh((uhapha Sh)7 (Oa qs, 0))
> —Bellpnllolasllo+cal|Gsullorlas| g
—h"|G s, =T, G s |4 0

where we can choose ¢; such that ||¢s||g = ||G*sn||g. Then, with
2
Bellpullollasllo < E=1pall? + 2|lgs| I, and

— ¢




W ||Gt s —Tlg,Glsnl 1 |gsllg < L
we get:
Un((un, Phs 1), (0, g5, 0))

60 t .12 h27‘ t t 2
> - ||ph||Q ||G sl — C—2||G sn—Ig, G snl[-

Glsn—Tlo,Glsill% + 2las|[3

Then we get, for any k1, kg > 0:

Un((un, Dhy k)5 (U, Phy S1) + (K1Us, K2Gs, 0))

a(c—l) Hl(HaH"i_ﬁcC%/)Q 2 Be 52602 2
> _ e
> (&= el + (==l
R1C1 HQCQ
+ 2 |[snllf + —HshHw —1G snlley

+ (5_C_)h2ry’GtSh_HQthShHH'
2

(5.28)

1 alc—1)2c 1 Bec ke e
Choose k1= 5W K2=75 55, 3, and 0 such that 5_%_8% to

get with (Uha qh, Sh,) (uhvpha Sh) + (Kflvsa Rods, O)

wh((uh,Ph, Sh)> (Uh» dh, Sh))

alc—1) 5] K1C1
z — ||Uh||2v+—C||Ph||zg+€||8h||§f 5 ——lsnl[%

/<a c )
2 2||Gtsh||Q’+ Sh|G s, G sl

Then with |||(vn, gn, S| = O (wn, Pry sn)]||) (easy to check)
we get (5.26).
2- Case c=1, i.e. f.=0. We have:
g

alun, un)—Bllunl|f = alup, up)—=

> a(y—1)
v

[lun i — [lunl i

B(y—1)
v

[lunlfy— [lunl i,

Bly—1)
v

for any v>1. Then we recover coercivity in ||up||g with:

U ((Un, Phs 1), (0,0, —up))
> |Junl|fr = Nunlla||Goallr — ellsnl Lol lunl [ (5.29)
- 5h2THGtSh—HQthSh"HHGtuhHH
Then two cases:
21- If ||G'u||g < ||ul|lv for any u € V and then any u, € Vj, we
use:
51| G 51— T, G sl Ll unl [y = 6h2" (|G sn—TIg, G sullirh|lunllv
< &R |G sy —T1g, G sl 3 + hllunl 3,



and then:

Un((un, Ph, Sk), (0,0, —up))

1
> S unl[z=1pallg—=e’[lsnll=0"h™ 1G" 51 —T1g, G sul il [unl [}
Then with (5.17) and (5.28), for any 1, ko, k3 > 0:

%((uh,ph’ Sh); (uh,ph, Sh) + (/ﬁvs, K2(s, —/‘dsuh))

a(y=1) _m(llall+B8ct)? 5
> — —ksh
> (T o o)l 2
By “252 Ky B(y—1) 2
(Gl + (==
K1C1 HQCQ
+e(1=rge)[snllir + =~ llsnllv + =[G snlley

+ (5—%—H3h)h2r||Gtsh—HQthsh||H.
2

B8 1 _ 1 a(y—1)2¢
Take /£3—m1n(87, 28) Ko= gﬁ, Ki1= 4W, 5 such that
5:% , v such that % % ie. 7=3 h23 (with %2 < 3 with

the above value of k3), and h small enough so that:

Un((Uh, Ph, k)5 (Uhs Dhy Sh) + (K105, K2gs, —KsUp))

a(y—1) s £
> Sl + 4ol + 5 1
K1iC KaC )
121||5h||v' 22IIGtShlleL Sh|G s, G sl

22- And if the inverse inequality is used, we have:
SR (|G sn—T1g,G" s m||G un |
1
< 020 |G s, Gsnll3 + oo lunl 3,
K4 2

for any x4 > 0. Then choose x4 such that 2 § 2, 1.8, Ky=
that with (5.18):

wh((uprhash)a (0707 —'Ll/h))
> ||unl 7 = |Junl|al|Goullr — ellsnllml|unllm
— OW7||G" s, =11, G s | Jun |

402 , SO

1
> S lunllir = 2lpallg — 2 [snll = 268" D |G sn=Tg, G s |7



Then with (5.17) and (5.28), for any 1, ko, k3 > 0:

%((Uh,ph’ Sh)a (Uh,ph, Sh) + (/ﬁvs, Ko(gs, —Hsu))

a(y=1)  ki(l|a][+Bc)? 2 By 252
> _ o
> ( " 2, Nlunlly + (5 2r3)|pnllg
Ky B(y—1) H1C1
+(5 - " )||uh||?q+6(1—2/€36)||8h||§1 ——|Isnl [t
HQCQ

PG sy + (5—@—2/130?52)112’"]]Gtsh—HQthshHH.
&)

Then we choose k1= v(ﬁf\\(lﬁi) 7, o= % and k3=min(Z, 1) (with
the hypothesis £ < 1), so that we also now choose ~ such that

M:%, ie. 7:6—[3%3 > 1 (with 2 < f8 by the above choice of k3)

1
2
1

y
to get, choosing § such that = min(4’z2, 8/@ = 5), with (vs, gn, s},) =

(Un+K1Vs, DhtKags, Sh—K3Up):
wh((uhaph, Sh)> (Um dh, 5;1))
S e(v=1)

= Ty
/<~'202

I‘f101

I6] €
||uh||2v+4—thllé+§||8h||% ——lsalli

o
— NG snlloy + 711G sn—Tlg, GtShll?{-

e m) (as soon as € < 1).

Then with [[|(vn, gn, si)||| = O([|(un, pn, sn)l|]) (easy to check)
we get (5.26). e

And here we have d = min(

;" @‘m

Proposition 5.9 Suppose that the hypotheses of Lemma 5.8
are satisfied. Then:
|| (u—n, p—pn, s—5n) 12

< inf T hQTGt_HGtZ
_C(Ui,Qi,S;»)éI‘}'hXQhXVhH(u Uiy P—Pi» S 57,Hh2+ || S Q4 S||H

where ¢ = O(1) as A — oc.

Proof. We have: 9y, ((u—up, p—pn, 5—51), (Vn, @, 5},)
= b (G's—T,G's, G's,—T1g,G"sp), and then the result with the
usual technique. o

Remark 5.10 The value ¢; of the inverse inequality can be
computed by an eigenvalue type computation (through a Raileigh
quotient) as well as the value of f:

2 h2 max ||Uh||%/ 6 _ . Cl('Uh,'Uh)

cs =
C e ol mevi, [[onlly

However, Proposition 5.19 shows that the computation of ¢; is use-
less if we use [, with ¢ > 1. L



6 Numerical results

The results are computed with Matlab PDE Toolbox, thus with
the only use of Pj-continuous finite elements (the only available
elements up to now in the Toolbox).

The meshes used for the computations are shown in Figure 1,
but since the results are quite independents of these meshes, the
results shown are the one computed with the first mesh (obtained
with the Matlab PDE Toolbox).

The problem under concern is (2.4). In the abstract setting, we
then have V = H}(Q)?, Q = HL(Q), H = L2(Q), G = grad. And
the problems that will be solved are:

1- The initial discretized problem (3.11),

2- The corrected discretized problem (3.17),

3- The discretized problem (3.24) (with the variable sy,),

4- The discretized stabilized problem (5.24) (with the vari-
able sp).

The numerics are performed on the square © =]0,1[* to get the
analytical solution:

p=2*(1—-2)%%*1—y)* and u= gradp.

We check that indeed p and u are in H}(Q2). And the source terms
are then given by:
g=—-Au, f=0.

And the choice for \ is:
A = 100000

Finally 3 is com;)uted as realizing the minimum of the Rayleigh
llgradus ||, ,
Tl

shall use 8. = 10 ~ g

The locked result is obtained using (3.11) (the initial discrete
equations), and the unlocked result is obtained using either the
first correction (3.17) or (3.24) (no significant differences), or the
stabilization (5.24).

We show a generic result, see Figure 2, and then we plot the
computed errors relative to the different computations, all results
showing the O(h) expected convergence:

quotient * Its numerical value is close to 20. And we

1. The first correction (3.17) and its counterpart (3.24) yield
very similar errors which will be represented just once.



2. The stabilization (5.24) yields some differences with the two
previous corrected equations in the numerical values of the
error and will be represented on its own, the computation
being done with g, = 10 ~ 8 to avoid the computation of the
inverse inequality constant.

Remark 6.1 The initial discrete locked equations (3.11) yields
too large errors to be shown on the same plot as the errors of the
unlocked equations. Thus they are not shown but their behaviour
is classical. -

The conclusion is: For Mindlin—Reissner thick plate type equa-
tions, the use of P-continuous finite elements in each variable seems
to be adequate once the modifications proposed are performed.
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Figure 1: Meshes used: The results shown in the following figures
have been obtained using the left mesh and its refinements which
are given by Matlab PDE Toolbox. The results obtained with the
right mesh and its refiniments are similars and not represented.
Each triangle is half a square, each square having the same size,
and the mesh size h has been taken to be the size of a side of a
square. This size h is used in Figure 3 to compute the errors.



Initial equations, A =100000 X 1073
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max(||ul[) =0.060302

Unlocked equations, A =100000

0.9
0.8
0.7
0.6
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, max(||ul|) =2.9647

Figure 2: The values of p;, are given by the gray scale and the color
bar on the right of the Figures whereas the values of u, = u are
given by the arrows, the maximum length max(||u||) being given
under each Figure. The first Figure corresponds to equations (3.11)
and shows values of p;, (and u;,) too small which is typical of locked
equations. And the second Figure corresponds to equations (3.17)
and shows unlocked p;, and wu, fields, the visual results being similar
for equations (3.24) or the stabilized equations (5.24). The finite
elements used are the P,-continuous finite elements in each variable.
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Figure 3: Error computations, corresponding to the case A =

100000 are represented. The horizontal axis is the h axis. The
||gradp—gradps|| 2
|lgradp|| 2
sponding to the scalar field p, whereas the right Figure corresponds
|lgradu—graduy, || ;2
lgradull 2

field u. And on both of these figures, the 'x’ lines correspond to the
unlocked equations (3.17), whereas the o’ lines correspond to the
unlocked and stabilized equations (5.24). The errors show the O(h)
behaviour.

left Figure correponds to the relative error

corre-

to the relative error corresponding to the vector



