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Abstract

The inf-sup condition, also called the Ladyzhenskaya—Babuska—Brezzi (LBB) condition, ensures
the well-posedness of a saddle point problem, relative to a partial differential equation. Discretization
by the finite element method gives the discrete problem which must satisfy the discrete inf-sup
condition. But, depending on the choice of finite elements, the discrete condition may fail. This
paper attempts to explain why it fails from an engineer’s perspective, and reviews current methods
to work around this failure. The last part recalls the mathematical bases.
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Part 1
Introduction

1 The inf-sup condition, what is that ?

1.1 The constrained problem under concern

Let (V,(-,-)v) be a Hilbert space and (Q,||.||¢) be a Banach space. Let V' = L(V;R) and Q' =
L(Q;R) be the associated dual spaces (spaces of the linear continuous forms). Let f € V/ and g € Q' be
linear continuous forms, and let a(-,-) : V. x V — R and b(-,-) : V x @ — R be bilinear continuous forms.

The problem under concern is: Find (u,p) € V x Q s.t.

{ a(u,v) +b(v,p) = (f,v)vr v, YoeV,

1.1
b(u, q) ={(9,9¢.0, VYqeQ. (1)

E.g., with Q an open regular bounded set in R™ and LZ(Q) ~ L?*(Q)/R (that is the space of L? functions
defined up to a constant), find (@, p) € HA(Q)" x LE(Q) s.t.

(gradi, gradd) 2 — (p, divd) 2 = (f, D) g1 g1, V0 € HH(Q)" 12)
— (divii,q) > =0, Vqe L3(Q). '

Let A € L(V;V'), B € L(V;Q") and B' € L(Q,V’) be the associated linear continuous mapping
(bounded operators) given by

(Au,v)vrv = a(u,v), (Bv,p)q.q = b(v,p) = (B'p,v)vv. (1.3)
Then (LI)) also reads

Au+Blp=feV,
p=feV (1.4)
Bu =g€q,
the equation Bu = g being the constraint. E.g., find (@, p) € H}(Q)" x L3(Q) s.t.
—Aii + gradp = f,
a + gradp = f, (1.5)
divi = 0.

1.2 The control on p to get a well-posed problem, and inf-sup

The simplest numerical finite element simulations show non admissible results for p (the pressure)
in (L2). And p being only present in (L2));, we need to study B!, cf. (L4)). The needed result will be the
closure of Im(B?) in V': In that case the open mapping theorem gives the control on p thanks to:

36 > Oa VP € Qa ||Btp||V’ Z ﬁ'lp”Q/KEY(B")a (16)

b(v,
also written as the “inf-sup condition™ 38 > 0, inf sup b(v, p)]

> B, since ||Bp|ly: =
reQuev |[vl|vIpllQ/Ker(B)

‘(Btpvv>vf,v| _ [b(v,p)|
SUpP,cy Mol = SUPycv [ollv -

E.g. for (L), with B' = grad : L3(Q) — H~1(Q)", we have Im(B") closed in H~1(€)" (this is “the”
difficult theorem to establish, see next §), thus

3B >0, Vp € LA(Q), ||gradp||z-+ > Bllp| 2. (1.7)

diviy
Which can be written as the “inf-sup condition”. 35 > 0, inf su M
PeL(Q) yeHl ()" ||U||H3||P||Lg

And we get the theorem: The problem (L2) is well-posed, that is, the solution (u, p) exists, is unique,
and depends continuously on f and g. See (IZI4).

Remark: Thanks to the closed range theorem [[T.2] the closure of Im(B?) is equivalent to the closure
of Im(B) (under usual hypotheses). This result is needed to get the existence of w.



1.3 The loss of control on p for the discrete problem

Let Vi, C V and Qp C Q be finite dimensional subspaces (conform finite elements to simplify). The
discretization of (II)) (for computation purposes) reads: Find (up,pr) € Vi X Qp s.t.

a(un,vn) 4+ b(vn, pn) = (fyvn)viv, Yop € Vi, (1.8)
b(un, qn) =(9,qn)qQ".@> Yan € Qn. '
E.g., with Vi, € H}(Q)", Qn C L2(Q), and f e L2(Q)",
(gradiiy, graddy, )2 — (pp, divin) e = (f, Th)r2, Vo, € Vi, (1.9)
- (diVﬁhv qh)L2 = 07 th S Qh-
The h-discrete inf-sup condition is
3B >0, Vpu € Qn,  ||Bipnllv: = Bullpnllo /ker(st)- (1.10)

And Sy, should satisfy 5;, > v is satisfied for some v > 0: we get the so-called discrete inf-sup condition:

Fy >0, Vh>0,Ypn € Qn, |IBoullve = YpnllQp /ker(51)- (1.11)

Fortin [I7] gives a general useful method to check if the discrete inf-sup condition is satisfied.
Unfortunately, in many situations the stability condition (LIT)) is not satisfied. E.g. P;-continuous
finite elements for both the velocity and pressure.

The associated matrix problem relative to (L)) reads: Find (U, Pr) € RV x R"@ s.t. :
[An] [Ba]" [ [Un] [F]
= 1.12
(s ") (1) = (la) (112

T
[Br]T being [By] transposed. And if (LII) is not satisfied then the matrix <[Ah] Bl ) is non

invertible for some h.

1.4 Where is the problem?

E.g., with (I.9) and continuous P;-continuous finite elements for @}, and p;, we have
b(ﬁh,ph) = (gradph, ﬁh)LZ = (HthI‘adph, ﬁh)LZ; (113)

with Ty, : L?(Q)" — Vj, the (-,-)z2-orthogonal projection on Vj,; Here gr_édph is constant by element,
and Ily, is the projection on continuous P; functions.

This projection Ily;, as any projection, looses information: Here we would like to consider gradph (to
control pp), but (LI3) tell us that only thgradph is taken into account (is computed): Since gradpy, =
thgr_z;dph + (gradph — thgradph), we have lost gradph — thgradph. And, e.g. with P;-continuous finite
elements for ¥}, and py, if nothing is done then the computation fails to give a good result (and it get
worse as h — 0).

To recover a well-posed problem, the missing term gradph fHthradph can be reintroduced, see (B13)),
and we then get an optimal result (e.g., order h for convergence for Pj-continuous finite elements).

Part 11
Examples and preventions

2 Stokes model

2.1 A first model
Let © be a bounded open set. Let div : Hj(2)" — L§(2) with (-,-) g2 = (grad(.), grad(.)) 2, and let

V = {#e H}(Q)" : divi = 0}. (2.1)



Problem (homogeneous Dirichlet type): for f € H=2(Q)", find @ € HL(Q) s.t.

—Aii = f. (2.2)
Associated weak problem : find @ € V s.t.
(gradi, gradd) 2 = (f,0) 2, V7€ HM(Q). (2.3)

The Lax—Milgram gives the well-posedness in (Hg (), (-, 1)
The optimized associated problem is: Find @ € Hg () realizing the minimum of

P ST ?
J(¥) = 5 leraddl[1. — (f,¥) L2 (2.4)

2.2 Constrained associated problem

The constraint divi = 0 is imposed with a Lagrangian multiplier p: The problem (22)) is transformed
into: Find (@, p) € Hg(Q) x LE(Q) s.t.

(gradi, gradd) 2 — (p, divd) 2 = (f, 7)1z, V&€ HYNQ)", 25)
— (divid, q)> =0, Vg€ L3(Q). '
We have obtained (L) with V = H}(Q)", Q = L(Q), g =0, B =div: H}(Q)" — L%(Q2) and
a(it, ¥) = (gradi, gradd) 2 sur HH(Q)" x H(Q)", (2.6)
b(7,q) = —(divd, q) > sur HZ(Q)" x L2(). '

Since B = div : H}(Q) — L%(Q), KerB = V, a(-,-) is coercive on Ker(B) (it is on Hg(Q)"),
and B! = grad : L2(Q) — H~Y(Q)" is surjective, cf. theorem [0} the theorem 2] applies, and the
problem (Z.5)) is well-posed.

The associated weak problem reads: Find (@, p) € H () x LE(Q) s.t.

~Ad +gradp = f € HH(Q
u+gradp = f € H™(Q), (2.7)
divi = 0.
The associated Lagrangian reads, find the saddle point in H}(Q)" x LZ(Q) of
. 1 S - P
L(7,q) = 3lleraddl|7: — (q,dive) 2 — (f, )12 (2.8)

3 Numerical approximation of the Stokes model

3.1 Approximation

Let Vi, C H3(Q) and Qp, C L3(2) (conform approximation to simplify) be finite dimension subspaces.
The discretization of (2.1) is: Find @y, € (V)™ and pj, € Qy, s.t.

{ (graddy, graddy) 2 — (pn, divin) g2 = (f, )52, Vo, € (Vi)™ (3.1)

(divin, qn)r2 =0, Vagn € Qn.

3.2 Projections (finite element method)

. R L*(Q) — X, -
If X, is a subspace in L?(Q), let Iy, : be the (-,-)p2-orthogonal projection
f _>Hth
on Xp, that is,
Vf S L2(Q)a (Htha zh)L2 = (fa zh)L2a Vl'h S Xh- (32)

E.g., if X;, = P, then llp, f € P is the best approximation P; of f for the (-, )2 inner product. Similar
notation for X}, a subspace in L(Q)".



Let

o o L2 Q) — Vi
grad,, def Iy, ograd : ) - . (3.3)
p — grad,p = Iy, (gradp).
So, gr_z;dhp is characterized by (grﬁdhp, Up)r2 = (grﬁdp, Up) 2 pour tout Uy € Vi,. And BI) reads
{ (gradiy, graddy) 12 + (grad,pn, 9n) 12 = (f>h) 12, Von € Vi, 5.4
(@n, gradgn) 2 =0, Vau € Qp.,

3.3 Matrix representation

With given bases in V}, and Qp, (3 become

(5 %)-(5)=(5) 9

3.4 The problematic pressure

In many cases there is no problem with the computation of u;, (the A matrix i (3.3)) is well conditioned
since a(-, ) is continuous and coercive).

But the results obtained for p;, can be absurd. To see why, suppose that uy, is known, let (g, ¥s) 2 :=
(gradﬁh,grzmdﬁh)g — (f, Un) 12, and try to find pp € Qy, s.t.

(gradph, Uh)H—l,H& = —(g, Uh)LQ, Yoy, € Vi, (3.6)
that is, e.g. with continuous finite elements where (gradph, 17;1>H717H5 = (gradph, Un)r2,

(grady,pn, Th) 2 = —(g,Tn) 2, Viu € Vi. (3.7)

1- Nice case: gradh =1y, o grad : Vi = Qp is surjective (onto) with a constant independent of h,

cf. (I03), that is,
3k >0, Vh >0, Vpp € Qn, lgrady,pullp-+ = k|lpnllrz. (3.8)

And (B8] is called the “discrete inf-sup condition”.

Then the problem ([B4) is well-posed, i.e. the matrix i (1)) is well-conditioned, cf. theorem 211 See
Fortin [17] for V}, and Qj, finite element spaces that can satisfy (B.8]).

(Remark: the problem (37 cannot be solved on its own in general, since it is surjective but not

¢
bijective. But (3.4]) can be solved, the matrix <g BE) > being invertible and well-conditioned if [B.8)) is
satisfied.)
2- Bad case: In (B8), £ > 0 does not exists, e.g.

(divih, pr)r2(0)

dk, > 0, inf  sup -— >kp, but kp—0. 3.9
20 5o, Tonlly Iz = (&)
A B')\. . . . . . e
Then B o )® not invertible (at least not numerically invertible as h — 0: bad conditioning).

Example 3.1 A useful criteria to check the discrete inf-sup condition [B.8)) is given by Fortin [17]. E.g.,
the discrete inf-sup condition is satisfied with the classical:
P,,P; (velocity-pressure) Taylor—Hood finite elements (see e.g. Bercovier—Pironneau [4]).
P;-bubble, Py (velocity-pressure) finite elements, named the mini-elements, see Arnold-Brezzi—Fortin [1].
P,, Py (velocity-pressure) finite elements, see Crouzeix—Raviart [13].
(And for non conformity, the P;-discontinuous velocity, Py-pression, see Crouzeix—Raviart [I13].) ou

Example 3.2 No convergence e.g. for the P;,P; continuous finite elements, or the P;-continuous,F,
elements (checkerboard instability). un



3.5 What has been lost...

B4) reads
(Ily,gradpp, Un) 2 = —(g, ), VUh € Vi. (3.10)

So we want gradph, but we can only compute gradhph = thgr;dph, which in many cases is different
from gradpy,. Since . . . .
gradpy, = Ily,gradp, + (gradph — thgradph), (3.11)
we have lost B B B B
loss = (gradp, — Hy,gradpy,) = (gradp, — grad, pp). (3.12)

This can be an admissible loss, see e.g. example Bl or not, see e.g. example

3.6 ... and a reintroduction of the loss

To recover the loss [B12]), we modify (BI]) to get the new problem: Find @ € V3 et pp € Qp s.t.

(gradiiy, graddy, )2 — (pn, divin) e = (f, 0h)r2, Vi, € Vi,

- o o, - - - (3.13)
— (dividp, qn) L2 — Z h% (gradpp—grad;, pp, gradgn, —grad, qn) r2(xy = 0,  Vgu € Qn.
K=1

where ng is the number of elements constituting the mesh, h is “the size of an element”, and the h?%
coefficient to get optimal results, see Leborgne [23] (we are interested in py, and, for quasi-uniform meshes,
pr, is of the same order than hgradpy). E.g. for P;,P; continuous finite elements for both the velocity

and the pressure, we get order 1 convergence results (classic for P; finite elements).
(BI3) can also be written

(graddy, graddh )z — (pn, divin) gz = (f, )2, Vo, € Vi,

- o o, - - (3.14)
- (le’th, qh)L2 - Z h’K(gradph*Hthradpha gra’dqh)LQ(K) = 05 th € Qh7
K=1

since (gradphfﬂvhgradph, W) = 0 for Wy, € V4, (definition of Iy, ).
Computation: we have to compute a new unknown 2, = Hy,gradpy € V3, (luckily very cheap for Py
finite elements): Find wy, 25 € V3 et pp € Qp s.t.

(gradiin, graddy ) r2 — (pn, divin) e = (f, 0h)r2, Vi, € Vi,
ng

— (diviin, gn)rz — Y | h%(gradpy, gradgy) 2 + h2(Zh, gradgs )z = 0,  Van € Qn, (3.15)

(gradpn, ) 12 (r) — (Bns Zp)r2(x) =0, V2, € Vi, VK.

E.g.with P, finite elements, the (2, Z},) 2 associated matrix can be made diagonal thanks to the “mass

lumping” technique: Thus the last equation (in z},) gives Zj, explicitly as a function of gradhph (order 1
precision).

Remark 3.3 The associated Lagrangian, cf. [Z.8]), is now:

. 1 . - 1 - -
Ly (Tp,pn) = §||gradvh||%2 — (pn, divip)r2 — (f,vn)r2 — 3 Z hi(||gradph—Hthradph||2L2(K). (3.16)
K=1



3.7 Brezzi and Pitkaranta’s method

A previous method proposed by Brezzi and Pitkdranta [9] consists in penalizing the initial problem
with the Laplacian of the pressure (to “control the oscillations” of pp,): Find @y € V4, and pp € Qp, s.t.
(gr;xdﬁh, grﬁdﬁh)Lz — (ph, divﬁh)Lz = (‘]E; ﬁh)L% YU, € Vi,

. &, - - (3.17)
— (diviin, qn)r> — € > hi(gradpn, gradgn) () =0, Van € Qn,
K=1
with some € > 0. We however get a spurious limit condition g—fi = 0 independent of ¢ (by integration by
parts). (This spurious limit condition is lessen with ([B.14)).)

Remark 3.4 The associated Lagrangian is now:

ngKg

- 1 - - -
L, pn) = 5 leradtal |z — (pn, divii) 2 — (f,vn)ze = 5¢ > hiclleradpal |2, (3.18)
K=1

to compare with ([B.I6]). .

3.8 Hughes, Franca and Balestra’s method

Hughes, Franca and Balestra [22] proposed a “Galerkin Least-squares” method: The pressure is sta-
bilized “with the solution”. The problem reads, with the associated Lagrangian,

. 1 . L £ & -
L(v,p) = §||gradv||%2(n) — (p,divd) 2(q) — (f,v)L2(0) — 3 Z hic|l — Autgradp—f[72(x)-  (3.19)
K=1

(For Py finite elements, this method is similar to Brezzi and Pitkdranta’s method.)
Here € has to be small enough not to destroy the coercivity in u, see the term (gradu, gradv)z2(o) —
ey h*(Au, Av) L2(k), the control being done thanks to the inverse inequality (quasi-uniform mesh)

||Auh||L2(K) < Ch||graduh||Lz(K), Yup € Vh.
(So0<e< %.)

3.9 Douglas and Wang’s method

To avoid the eventual destruction of the coercivity for u«, Douglas et Wang consider

ng
(gradd, grad?d) 2 — (p, dive) + (¢, divid) + & Z hi (=At + gradp — f, —Av¥ + gradq) 2 (k) = (f,v)r2 .
£(v,q)
c((t,p),(7,q))
(3.20)

This preserves the stability since ¢(-,-) is coercive, but the symmetry is lost. So this method is adapted
to the generalization of the Stokes equations to the Navier—Stokes equations.



4 Laplacian (harmonic problem)

The linear spaces needed are described in §

4.1 A dirichlet problem
Let f € H~'(Q). Problem: Find p € H(Q) s.t.

—Ap = f. (4.1)

That is, - .
(gra’dpv gradq)L2 = <fa q>7 Vq € H& (Q) (42)

The associated minimum problem is: Find the minimum of J(p) = min,e g1 (q) J(q), where

J(a) = 5 llaradall3: — (7.0). (1.3

To get gr_édp during the computation, introduce
@ =gradp € L*(Q), andthen — divii= f. (4.4)
And (I)) becomes: Find (@, p) € L?(Q) x HI(Q) s.t.

{ (_»a U)L2 - (grg'dpa U)LZ =0, Ve LQ(Q)a
— (4, gradq)Lz = —(f, q>H71,Hé, Vq € H&(Q)
And p is now the Lagrangian multiplier for the constraint divii = —f, cf. the integration by parts.
And if (i, p) € L*(Q) x H}(Q) is a solution, then @ = gradp € L?(Q)" in Q, and divi = —f in H~1(Q).
So Ap = f in H~Y(Q) with p € H}(Q): This is @I).
With

{ a(@,7) = (@,0)r2  sur L*(Q)" x L*(Q)", (4.6)

b(,q) = —(¥,gradg) 2 sur L*(Q)" x H(Q),

([@3) has the appearance of (LI)) with V = L?(Q)" and Q = HJ (D).
L*(9)

n

Here b(ﬁ,p) = <Bﬁap>H*1,H1(Q) = (Btp, 17)L2(Q), so B = div :

. {H&(Q) — L*(Q) }

— H7Y(Q)
and B! =
7 — B = div(d)

—grad : .
p — B'p= —gradp

Thus Ker(B) = Ker(div) = {# € L?(Q)" : divi = 0}, and thanks to the Helmholtz decomposi-
tion (@31 L2(Q)" = grad(HE () &+22 Ker(div), the bilinear form af(-,-) is (-,-).2 coercive on Ker(B).

And B! is surjective since B is, cf. (I3.5) and the closed range theorem [IT.21

Thus (@3] is well-posed, see theorem [T2Z.1]

4.2 A Neumann problem
Let f € L?(Q2). Problem: Find p € H*() s.t.

—Ap=f, and 9 =0. (4.7
on|r
That is, . .
(gradpa gra’dQ)Lz = (f7 Q>L25 VQ € Hol (Q) (48)

The associated minimum problem is: Find the minimum of J(p) = minge g1 (q) J(q), where

1. -
J(g) == 5llgradllz: — (f, )z (4.9)

10



The mixed associated problem is: Find (i, p) € H4V(Q) x L2(Q) s.t.

@, 7)1z + (p,dive) 2 =0, Ve HEV(Q),
{( )2 (P )L2 () (4_10)

(divi, q)r2 = (f.q) 12, Vg€ L*().

Indeed, if (@,p) € HY(Q) x L2(Q) is a solution, then divi = f € L%(Q), @ = —gradp € H~1(Q), thus
—Ap = f e L*(Q), with §& =0 (since Im(v,) = H2(T)).
With

i,7) = (@,0)2 sur HYW div
{ a(u, v) = (4,0)r HE(Q2) x HT (), (4.11)

b(#,q) = (divi,q)r> sur H¥(Q) x L*(Q).
(@3] has the appearance of (1)) with V = H4V(Q) and Q = L?(9).
Here B : 7 € HYW(Q) — B¥ = divi € L?(Q) is surjective, cf. (I3.2), and a(-,-) est HV-coercive on
Ker(B) = {# € HYV(Q) : divi = 0}. And Im(B) being closed (since it is surjective), so is Im(B?) (closed
range theorem{IT.2)). Thus (@I0) is well-posed, see theorem [[2.11

11



5 Bilaplacian (biharmonic problem)

The linear spaces needed are described in §

5.1 Problem
We look here at the Dirichlet problem: If f € H=2(Q) = (HZ(2))’, then find p € H3(Q) s.t.

A(Ap) = f, sowith pp=0 and 9p =0. (5.1)
on|r

Weak form: Find p € H3(Q) s.t.
(Apv Aq)L2 = <f7 Q>H*2,H§a VQ € HO2(Q) (52)
The Lax—Milgram theorem indicates that (5.2]) is well-posed.
The associated minimum problem is: Find the minimum of J(p) = minge 1 (q) J(q), where

Tta) = l1AallEs — (f. e sz (53)

5.2 Introduction of Ap

(Not conclusive.) A function in € H2(f2), s.t. Ap and Ag in (5.2), is cumbersome to approximate, cf.
the C'!' Argyris finite elements. Let

¢ =Ap (5.4)
Then problem (&) is rewritten as: Find (¢,p) € L3(Q) x HZ(Q) s.t.
=A
¢ = Ap, (5.5)
Agp = f.

And the weak form is, if f € H=*(Q): Find (¢,p) € H (Q) x H}(Q) s.t.

{ (¢,) 12 + (gradp, gradyy) 2 = 0, Vo € H'(Q),
(grade, gradq) s = —(f,q) -1 my. Vg € Hy(Q).
Indeed, if (¢,p) € HY(Q) x HL(Q) is as solution of (E.6), then ¢ — Ap = 0 (thus Ap € L3()), and
dp — (. And p € HL(Q) with A¢ = f € H~1(Q), thus A%p = f.

on|T
With

(5.6)

- - (5.7)
b(¢,v) = (grade, gradv) > sur H'(Q) x Hy (),
(&3) has the appearance of (5.8) with V = H'(Q) and Q = H}(Q).

Here b(¢,v) = —(Ad,v) g1 1, thus B = —A: HY Q) — H1(Q).

Thus B : ¢ € HY(Q) — Bp = —A¢ € H1(Q) is surjective: Apply Lax—Milgram theorem for
g € H(Q) and (gradg, grady) 2 = (g.9)u-1,m;-

And KerB = {¢ € H(Q) : A¢ = 0} (harmonic functions). So ¢ € KerB iff (grade, gradv) 2 = 0
for all v € HL(Q) (this is not (grade,gradv)> = 0 for all v € HY(Q)). Thus a(-,-) is not (-,-)zi-
coercive on KerB, but only (-,-)r2 coercive, and the usual theorem is not applicable: A loss of precision
(precision||.|| 2 instead of precision ||.||g1 for @) is to be expected.

{ a(p,y) = (¢, ¥) 2 sur H'(Q) x H'(Q),

5.3 Introduction of gr:xdp
5.3.1 Weak form
In (B.2)) let us introduce

i = gradp, thus Ap = divi. (5.8)
Notation:
if 7 = gradg € grad(H (), then @ %25 (5.9)
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(That is, ¥, derives from a potential ¢ € Hj().)
Then (5.2) becomes: Find @, = gradp € grad(HZ () s.t.

(diVﬁp, diVaq)L2 = <f, Q>H*2,H§5 Vq € Hg (Q) (510)

5.3.2 A first constrained formulation

(Not conclusive.) To avoid working with the “small space” grad(HE(2)) 3 @, we consider the whole
space Hg(Q)) o @ and we add the constraint @ — gradp = 0, cf. (58) (and the associated Lagrangian
multiplier \).

And @ € H'(Q2) and @ = gradp for some p € HZ(f2) solution of (5.2), give divi = Ap € L*(Q) with
0= g2 =i, so @ € H™(R). Then let

X = HM(Q) x H} (Q), (5.11)
provided with the inner product

(@, ), (3,))x = (divid, divd) 2 + (gradp, gradg) 12 (), (5.12)

so that X is a Hilbert space. .
Then, if f € H=Y(Q), (5I0) is turned into: Find ((@,p), ) € X x L*(Q)" s.t.

divid, divi) 2 + (X, 7 — gradq) 2 = (f, @) g1 1. V(7 q) € X,
{( )2 + ( gradq)r2 = (f, )y 1,H} (7,q) (5-13)

(@ — gradp, fi)2 =0, Vjie L*(Q)",

that is,
(diviz, divd) 2 + (N, 0)p2 =0, V&€ HIV(Q),
- (X, grzxdq)Lz = (f, q>H*1,H§7 Vq € H&(Q% (5.14)
(i, i) 2 — (gradp, fi)r> =0, Vjie L*(Q)".

Check: If ((@,p),X) € X x L2(Q)" is a solution of (5.I3) or (5.14), then X = grad(diva), divA = f,
@ = gradp, thus divi = Ap and div(grﬁd(Ap)) = f,ie. AZp = f. And @ € H{V(Q) gives i.7i = 0, so
gradp.@ = 0, and with p € H}(Q) we get p € H2(Q).

With

a((i,p), (U,q)) = (divi,divd) 2 sur X x X,
{ ((@,p), (¥, q)) = ( )L (5.15)

\ (
b((,q), i) = (7 — gradq, )2 sur X x L*(Q)",

(5.13) has the appearance of (ILI) with V = X and Q = L?*(Q)".
HIY(Q) x Hy(Q) — L*(Q)"
Hor 5. 1 1107 (@) X Ho () () Y
(v,9) — B(,q) = v — gradq

And Ker(B) = {(7,q) € HJ¥(Q) x H}(Q) : 7 = gradg}. Thus is (7,q) € Ker(B) then Ap € L2(Q)
and a((4, p), (¥,q)) = 3(divZ, divd) 2 + 5 (Ap, Aq)r2. And when p € H?(Q) N H} () we have ||Ap|[r2 >
Cllpllaz = Cllpllgr, cf. @29). Thus a(-,-) is coercive on (Ker(B), (-,-)x).

But B is not surjective: If £ € L?(Q)" we should find (7, q) € HIY(Q) x H}(Q) s.t. £ = ¥ — gradg,
but we only have ([@31]). So A has a priori no |||| 12(2) control, and for the discretization we expect a loss
Dc L*(Q)" = H™(Q) x H Q)

. P . ) where
p— B B (v, q) = (U, 1) gaivr o + (¢ divi) g1 m
D = H{™V(Q) (the domain of definition) is not closed in L?(Q) (its closure is L?(f2)).

of precision. Here B! : {

5.3.3 A second constrained formulation

(Not conclusive.) Let

X, =H;(Q)" x H} (Q), (5.16)

provided with the inner product

((ﬁvp)a (175 q))X+ = (gradﬁv gra“d’D’)L2 + (gra’dpv gr_édq)Lz(Q)v (517)
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so that X is a Hilbert space.
2 2
With a Cartesian basis, we notice that (Ap, Ag)r2 = Zij Jo 9°p 94 401, and, for p,q € HZ(Q),

*p &? Pp 0 92 92
TP 4o = — R oy P _ 0. (5.18)
Q 81’1 8:cj Q 81’1 8:cj 81']' 0 (9:6181'] (9:649:%
Thus, with (5.9) and 7,, 7, € grad(H¢ () cf., we get
(divd,, divi,) > = (Ap, Aq)r> = (grad(gradp), grad(gradq)) > = (gradd,, gradd,) 2. (5.19)

(Nota Bene: Here @), and ¢, derives from a potential.) Thus (5I0) reads: Find @ = @, € grzmd(Hol(Q))
s.t.
(gradil, gradd,) > = (f,q)r2, Vg € HY(Q). (5.20)

So, if f € H=*(Q), then (5I0) is transformed into: Find ((@,p),X) € X4 x L2(Q)" s.t.

{ (gradi, gradd) 2 + (X, ¥ — gradq) 2 = (f, @) g—1.m1,  V(7,q) € X, (5.21)

(@ — gradp, ji)2 = 0, Vi€ L*(Q)",
X being the Lagrangian multiplier of the constraint (E8). That is,

(gradi, gradd) 2 + (X, 7) 2 =0, Ve HHQ)",
— (X gradg)ze = (f, @) -1, 1, Va € Hy(Q), (5.22)
(@, fi) 2 — (gradp, i) 2 = 0, Vjie L*(Q)",

With

{ a((i,p), (U,q)) = (gradd, grad?) 2 sur X4 x Xy, (5.23)

0((T,q), i) = (5, )12 — (gradp, ) > sur Xy x L3(Q)",
(5:21) has the appearance of (LI) with V = X, and Q = L?(Q)".
Bt B {Hé(ﬂ)n x Hy(Q) — L*(Q)" .
(v,q9) — B(¥,q) = 0 — gradg

0l
thus a(-, -) is coercive on (Ker(B), (+,-)x, ). (Compared to (5.13)), here we a ||.|| 1 for @, not only a ||.|| gaiv
control.)

}. And (7,q) € Ker(B) iff gradg = 7 € HL(Q)",

However B is not surjective. And X is not controlled the classical way.

5.3.4 A third constrained formulation

(“A good one”.) Let .
Y = H™(Q) x H'(Q), (5.24)

provided with the inner product
(@, p), (V,9))y = (div, divi)r2 + (p, ¢) (5.25)

so that Y is a Hilbert space. .
If € L?(Q) (or in (HY(Q))), (5I3) is transformed into: Find ((@,p),\) € Y x HHY(Q) s.t.

{ (diva, divd) 2 + (X, 0) 2 + (¢, divX) 2 = (f,q)z2, Y(F,q) €Y, (5.26)

(@, fi)2 + (X, divii) = 0, Vji € H™(Q),
that is,
(divid, divd) 2 + (X, )2 =0, Vi€ HIV(Q),
(divX,q)r2 = (f,q)r2, Vg€ H'(Q), (5.27)
(ﬁv ﬁ)LZ + (pa divﬁ)L2 = 05 vﬁ € Hdiv(Q)'

14



wn
o
>\
|
o]
=
=
2
<
gy
:_/
2
<
>
Il
-
Sl
|
%
[
o,
=
-+
=
o
)]
=
=
—
%
o1
o,
—
=
=
%<
o1
o,
S
|
-
@
>
no
=
|
s
>
o]
o
,_Jg:
S
=
St
=
=
Il

a((t,p), (U, = (divi, divt)f2 sur Y x Y,
{ (@ p), (7,9)) = ( )L (5.28)

b((U’ Q); ﬁ) = (U’ ﬁ)LQ + (q’divﬁ)LZ sur Y x HdiV(Q)a

(526)) has the appearance of (1) with V =Y and Q = HYV(Q).
HIvV(O) « HY(O vy
And B : 0" () % _F ) = . (@) with (B(7, q), ii) = (U, @) 2 + (¢, divii) 2. So B is surjec-
(7,q) = B(7,q),
tive, cf. (@29)).
And b((’[;, Q)a ﬁ) = (175 ﬁ)LQ(Q)i(gradqv ﬁ)LZ (Q)+(q7 ﬁ'ﬁ)L2(F) gives (177 Q) € Ker(B) iff (177 Q) € Hgiv (Q) X
H} () with ¥ = gradg. Thus a(-,-) is coercive on (Ker(B), (-,)y), and the classical theorem [2.1] apply.

Remark 5.1 (Neumann.) With Z = HY(Q) x H}(Q), (526) is transformed into: Find ((@,p),\) €
Z x HIV(Q) s.t.
(diva, divd) 2 + (N, 7)z2 =0, V& e HW(Q),

(divX, q)z2 = (f.q)r2, Vg€ HY(), (5.29)

(ﬁa ﬁ)LZ + (pa diV,l_J:)LZ = 0) vﬁ S ng(Q)
So, in Q, X = gr_éd(divﬁ), divX = f, @ = gradp, thus div(gr_éd(divgr_z;dp)) =f,ie. A2p=f. AndonT,
grad(divi).77 = 0, thus grad(Ap).7i = 0 (Neumann limit condition), with p € HJ (). .

5.3.5 A fourth constrained formulation

Let
Y, = H}(Q) x HY(Q), (5.30)

provided with the inner product

(@ p). (3.9))y, = (gradd, gradd) 2 + (p, q)sr1- (5:31)
And (27) is replaced with

(gradi, grad?) 2 + (X, P2 =0, Yoe HIM(Q),

(diVX, q)L2 = (fa q)LQa Vq € Hl(Q)’ (532)
(Ga :J)L2 + (pa d-iV/_j)L2 =0, V/_j € Hdiv(Q)‘

And (528 is replaced with

{ a((ﬁ,p), (_’a q)) = (gradﬁa grad’l—)‘)L2 sur Y+ X YJra
)

) 5.33
= (177 ﬁ)LZ + (Qa divﬁ)L2 sur Y+ X Hdlv(Q) ( )

15



6 Locking

The locking phenomenon appears when the coercivity of the approximated problem increases much
faster than the coercivity of the continuous problem. Thus the numerical solution is close to zero, which
is absurd in general.

Let Q be bounded open set in R™.

6.1 A typical situation

Let A € R so that A >> 1 (a “large” given real). We look for @ € H}(2)" and p € H}(Q) that
minimize

S 1 - A = P
M(’U, q) = §||gradv||2L2(Q) + EH’U — gradq||L2(Q) — (va)LZ(Q) — (g, Q)LQ(Q)- (61)
Example 6.1 For the Mindlin-Reissner problem, ||grad17||%2(m is replaced by |a(¥, ¥)| where a(-,-) is a
bilinear form that is continuous and coercive on Hg (). .
Let
X =Hi(Q)" x H}(Q) (6.2)

provided with the inner product associated to the norm
~ , - 1
1@, @)llx = (llgradd]|7. + |lgradg]|72) (6.3)

so that X is a Hilbert space.
A solution (@, p) € X realizing the min of M satisfies

{ (gradd, girada)Lj + (@ — gradp, 0) > = (f,7), V&e HNQ)", 6.4)
(i — gradp, gradg) > = (g, q), Vg€ H'(Q).
Let . .
o((4,p), (V,q)) = (gradd, gradv) 2 + A\(d — gradp, ¥ — gradq) r-. (6.5)
Thus (64) reads: Find (i@, p) € X s.t.
®((a,p), (¥,9) = (£, 9)12 + (9, 0)r2,  V(¥,q) € X. (6.6)

Proposition 6.2 The bilinear form ® : X x X — R is coercive and continuous on X : with the Poincaré
inequality (@28) we have

. R . . 1
Jap >0, Y(7,q) € X, @((7,q),(7,q) > asl|(@, 9%, et ap ~ —,
A—00 CQO (6.7)
3C >0, W(@p),(5.q) € X, (@ p),(5q) < Cll(@p)llx]|@.9)llx, et C = ON.

And problem (6.6)) is well posed.

Proof. Bi-linearity. Since ® is symmetric (trivial), that is ®((@, p), (¥, q)) = ®((¥, q), (4, p)), we have to
(

prove that ®((u1,p1) + oz, p2), (7, q)) = ©((d1, p1), (0, q)) + a®((d2,p2), (¥, q)): trivial.
Coercivity. If k > 0 then, with (@.28) :

®((,q), (7,q)) = |lgradd][7. + A||¢ — gradq]|7-
> [(1—r)llgraddl| Lz + canl[T][7-] + All|71[72 + llgradql|Z> — 2[|7|z2]lql|2]-

Let z = ||7]|,> and y = ||gradq|| 2. We have

)\CQFL
2 2 2
+ Mx — >
CcQRT (x—y)* > g Y
with ¢pax = /\ACZ; the largest constant possible (cmax is largest ¢ s.t. cokx? + Mz — y)2 > cy?: easy
check). Thus

O((v U k)||gradv + ray .

»4),\V,4)) =2 g L2 b\ CQFLg q||L?
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Acg K
Acaokr’

k2 + bk — 2 = 0 where b = A%2=l _ 1. The discriminant is b2 + 42, and the positive root is k =
cQ cQ cQ

b1+ ,/1—}—4%). And for A >> 1, we have b ~ ), thus 4b2>én z4ﬁ, thus —1+ 4/1 +4ﬁ ~ Aiﬂ,

SO K = % in the vicinity of A = co.
Continuity: Easy check. .

i.e. k solution of

And the “best” ag (the largest possible) is obtained by choosing x s.t. 1—x =

Remark 6.3 For the associated numerical approximation with finite elements, it A is “large” then diffi-
culties are expected, since C' = O(A). Indeed, the conditioning of the associated matrix is ~ % =0(A),
and this conditioning explodes with A. However, a bad choice of the discrete spaces leads to a much

faster explosion than expected, see proposition un

6.2 The coercivity constant for p

For the analysis of the locking phenomenon (due to a “bad choice” of the discrete spaces), let us look
at the coercivity constant for p (where A appears):

Proposition 6.4 If (¥,q) € X then, with (@28),

A N
B((7.0), (7,0) = o 5——lgradal 3 (6.9
and )
oy . ~cq as A\ — oo. (6.9)

Proof. Modification or the previous proof:
(7, q), (,4)) = calltl|z2 + All|7]|72 + |leradql[Z> — 2[|7]]22|lql| 2] = ay|lgrady][7.,

and the largest a, possible is oy, = caﬁ (has to satisfy “coz? + Az — y)? > a,y?). "

6.3 The discrete problem

Let Vi, € HY(Q)" be a finite dimension subspace. Let ITy, : L?()" — Vj, be the (-,-)z> projection
onto V4, that is,
WIS H&(Q)n, Yy, € Vi, (thﬁ, ’lBh)L2(Q) = (17, ’Lﬁh>L2(Q).
Let Qn, C H(2) be a finite dimension subspace.
Let X;, = Vi, X Qp,. The discrete problem associated to (6.8) is: Find (@p,pr) € Xp s.t.
(@, pn), (T, 1) = (F0) + (g.0n), V(. an) € X (6.10)

Proposition 6.5 If (Ur,q) € X}, then

llgradgs |72 + A

O((Vh, qn); (Un, qn)) > ca

to be compared with (G.8).

Ilustration: If V, is “small relatively to Q,” so that for some gy, the real || gr_z;dqh —IIy, gr_z;dqh” L2(Q)
does not vanish (fast enough with h) then the right hand side of (6.11]) increases with A\, to compare
with (6.9). And the solution (un,pp) € Xn is bounded by the inverse constant that decreases with A,
thus (up, pp) decreases to zero as A increases: We get the “locking” phenomenon.

lgradgn — Ty, gradgnl 22 g, (6.11)

A+ cqo A+ cao

Proof. Let (dp,pr) and (Uh, qn) € Xp. Then
O((@n,pn), (Tn, qn)) = (gradidn, gradd) 2 + Mgradp, — @, gradgy, — )2
= (graddy, gradvy )2 + )\(gradph — Iy, gradpy,, gradg), — thgr_édqh)Lz
+ A(Iy, gradpy, — iin, Iy, gradg, — ) 2.
Thus

®((Vhs qn), (Un, qn)) = el e |1y, gradgnl|7 > + Allgradgy, — Ily, gradaa| |7,
see previous §computation. And Pythagoras give (G.3]). un

Remark 6.6 The term gradqh — Iy, gradqh is also a problem for the Stokes equations, see § B.0l .
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6.4 An optimal correction

Due to the choice of V}, and Qp, we eventually have too much of coercivity, cf. ([6.5]), so we decide to
get rid of it. That is, we modify (6.I]) to get: Find (@,p) € Vi, x @, realizing the minimum of

||gradg, — Iy, gradgn||22)

A
My (,q) = =||grad — gradga||7 — A
n(7,q) = IIgra Ol + 5 (117 — gradanllze = Ax7~ (6.12)

- (faUh)L2 —(9,qn) 1>
Thus ®;, has been transformed into

&, (@, pn), (Tn, qn)) = (gradidy, graddy) 2 + A(i@n — gradpy, 7 — gradgp) 2
)\2

3 (grﬁdph —1IIy, gr_édph, grﬁdqh —1IIy, gr_édqh) L2
+ co

and the problem reads: Find (i, pn) € Vi, X Qp, s.t., for all (Tn,qn) € Vi X Qp,

@1, ((Un, pr)s (Unyqn)) = (ﬁ Un)r> + (9, qn) L2

To solve this problem, we need to compute Ily;, gradph: If the V}, = Pj-continuous finite elements is made,
the computation amounts to inverse a diagonal matrix, thanks to the mass-lumping technique, thus is
costless.

Computation: we have to compute (@p,pr) € Vi X Qp s.t., for all (Th, qn) € Vi X Qn,

—
—

(gradﬂ'h, grad{)’h)Lz + /\(ﬁh — gradph, ﬁh)Lz = (f, 'Uh)L2,

— (@i, — gradpy, gradgs) > — A (gradpy, — Iy, gradpy, gradqn) 12 = (9, qn) 2

A
A+ cq
Introducing ), = thgradph, we have to find (@, pp, W) € Vi X Qp X Vy, s.t., for all (U, qn) € Vi, X Qn,

(gradiin, grad@) 2 + A(in, Br) 2 — Mgradpn, #) 2 = (f, ) 12

(wha gra’dqh)L2 = (gv Qh)Lza (613)

(gradpy, gradgs) g2 + A

N - caA A
—-A d

(n, gradqn) 2 + 2t g Nt o
(gradpn, W) 2 — (ih, )2 = 0.

This method gives optimal convergence results. E.g., for Pj-continuous finite elements of @, and py, we
get an O(h) convergence.

6.5 Classical treatment of the locking
6.5.1 Initial problem
See e.g. Chapelle [10], Brezzi and Fortin [§]. The variable

7 = A(@ — gradp) (6.14)
is introduced. Then problem (64) becomes: Find (@, p,7) € H3(Q)" x H3(Q) x Y s.t.

a((i, p), (,)) + b((7,9),7) = (f. )12 + (9,q) 12 v(v,q) € X,

N ) (6.15)
b((d,p), )—X(é Ne-1,m =0, Vi ey,

with ~ -

Y ={0e (H Q)" divs € H'(Q)},

a(,): X xX > R: a((i,p), (U,q)) = (gradd, grad?) 2, (6.16)

b(,) : X xY = R: b((4, p), ) <5aﬁ>H*1,Hé - <divgap>H*1,Hé'
(And (BI0), gives @ — gradp — +7 =0.) And it is shown that Y is a Banach space for the norm

2 def
o]y = ||5||H 1oy + ||d1V5||H 1(Q)-
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Remark 6.7 Y is the space corresponding to % = 0 (i.e. A “infinitely large”), cf. Kirchhoff-Love shell

model:
{ a((i, p), (7,
b((@,p), 6)

to be compared with (G.13).
For a discretization with finite elements, finite dimensional spaces are often chosen s.t. V}, C L?(2)

Y, € L2(Q)" and Q; C C°(;R); And then (6.15) is meaningful in Vi, X Qp x Y, with b((@h, pp), on)
(5h7 ’Jh — gradph)Lz(Q).

q)

)+ b((5,9),9) = (f,0)12 + (9. 0)z2,  Y(T,) € X, (6.17)

0 Vs e,

n

-

Let B : X — Y’ be the operator associated to b(-,-), that is, (B(%, q), _’>H(%7H71 :=0((V,q),9), ie.,

B(#,q) = 7 — gradq.

—

Then, with Poincaré inequality, it is easy to check that a(-,-) is coercive on Ker(B) = {(¥,q) € X : ¥ =

gradg}.
Then is shown that B is surjective (inf-sup condition), that is,

-

b((7, q),9)

k>0, Ve, —— >
@oex |[(T, 9)llx|10]|y

See e.g. Chapelle [I0], Brezzi et Fortin [§].

6.5.2 discrete problem

The discrete inf-sup condition has to be satisfied: this lead to numerous articles. There are two
difficulties:

1- An adequat choice of finite element spaces to satisfy the inf-sup condition (it the stabilization is not
used), la stabilisation de ¥, ou le choix adequat d’éléments finis compatibles pour satisfaire la condition
inf-sup,

2- An adequat choice of finite element spaces to satisfy the coercivity of a(-,-) on the kernel Ker(B,)
(with By, the discrete operator). But this problem can be easily fixed by modiying (6.1I) into

2

B 1 B 1, - 1, - .
M(7,q) = §||gradv|liz<sz>+§|Iv—gradq||L2<sz>+ ||v'—gradql|r2(0) — (f, V) L2() = (9, @) 2(0), (6.18)

that is, by replacing a(-,-), cf. [6I0]), with
a((@, p), (7, q)) = (gradi, grad?) .2 + (& — gradp, 7 — gradq) 2.

And we consider (6.15) with a(-,-) instead of a(-,-).

Now a(-,-) is coercive sur X (thanks to ([@.28)), thus on Ker(B) = {(7,q) : ¥ = gradg}, and we
get a similar problem to the Stokes problem (choice of adequat finite element spaces, or choice of a
stabilization).
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7 Weak Dirichlet condition

(See Babuska [2] for the initial manuscript.)

7.1 Initial problem

Let f € L2(Q) and d € H2 (). Let uqg € H'() s.t. uqr = d; Such a function uy exists since the trace
operator I'g : H'(2) — L?(T") is surjective onto T, cf. [@8). Let d+ Hg () := ug+ Hg(Q) = {ug+v, v €
H(Q)}, affine space in H'(£2) independent of the choice of u, the reverse image of d by 7o (trivial).

Consider the problem: Find u € d + H}(Q) s.t.

{ —Au+u=f dans,

7.1
ur=d surT. (7.1)

Thanks to the Lax—Milgram theorem, this problem is well-posed.

7.2 Mixed problem

The aim is to impose the Dirichlet condition with a Lagrangian multiplier. So the problem becomes:
Find (u,\) € H'(Q) x H~2(T) s.t.

(’LL, U)HI(Q) + <)\”U>H7%(F),H%(F) = (fa U)LZ(Q)a Vv € Hl(Q)v

_1 (7.2)
W)y oy -ty = D) gy oy gty T EH (D),
If (u, \) exists in H1(Q) x H~2(T'), then we get:

—Autu=f €L*Q),

uw=d € Hz(T), (7:3)
ou

A=-—— eH2(T
5, € H*(I).

Interpretation of the Lagrangian multiplier: \ is, up to the sign, the force gradu.ﬁ needed on I' for u to
stay equal to d on T.
With
{ a(u, ’U) = (’U,, U)Hl(ﬂ); (7 4)
b(v,A) = <U’)‘>H%(F),H*%(F)’

(Z2) has the appearance of (L) with V = H*(Q) and Q = H-2(I'). And a(-,-) is bilinear (trivial)
continuous and coercive (it is the V' = H!(Q)-inner product), and b(-,-) is bilinear (trivial) continuous
sine [ 01 = 1430 W) 940 5 contnmons o el ., = ol ol )
HY(Q) — H=(I)

v — Bv =(v)
continuous) and surjective (definition of Hz(I')), thus Im(B?) is closed in V' = HY(Q)', with B! :

H3 (D)

We have Q' = H2(T'), so B : { } is linear continuous (since b(:,-) is bilinear

1 li
H 2(I') — HY(Q)
{ N - B defined by (B'A, v) g1y 1) = (v, A) iy Thus
_1
k>0, Vae H 2(D), [|B'N|g(ay >k ||)\||H,%(F)/Ker3t. (7.5)

. . v A

(That is, 3k >0,  inf sup |b( ) > k)
ety vy Tl @l Mg o

Remark 7.1 The computation of A may give disappointing results since the control for X is done with
the ||.||H,;(F)—norm, cf. (L3) (not even a |[.||z2(ry control). So numerical problems are expected. -

Remark 7.2 This mixed problem leads to “transmission problems” (or hybrid problems) with “mortar

finite elements”, see Bernardi, Maday, Patera. un

The associated Lagrangian is (saddle point problem)

L(u, ) (||gradu||L2(Q) +|ullZ2(q)) + (u—d, )‘)H%(r),H*%(r) (f,v)r2(0)s (7.6)
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7.3 Discrete problem

Let Vi, ¢ H'(Q) and A, ¢ H~3(T") be finite dimension spaces. The discrete problem relative to (Z:2)
is: Find (uh, An) € Vi X Ay st

{ (un,vn) mr(Q) + (U, An) L2y = (f, 0n) L2 (0), Y, € Vi, (7

(wh, pn) L2(Ty = (d, pn) 21, Vi € Ap.

7.4 Finite elements P,—C": unstable

7.4.1 The discrete inf-sup condition
Consider the Lagrange finite elements V}, = P,—C° in Q and Aj, = v(V3,) Pr—C° on I'. The discrete

Vi [ mr @) — (A, L]

v — Yo(vn) = Vh|T
here with Pj,-C? finite elements for both Vj, and Ay), thus (ZH) holds with some kj, instead of k, and Q,
instead of @. But the control on A, is very weak (a H-3 (T") control), and kj, a priori depends on h.

L)
(trace) operator By, = o : { H2[D) } is continuous and surjective (trivial

7.4.2 Barbosa et Hughes

(See Barbosa and Hughes [3], Pitkidranta [27], Stenberg [31]).

A finite element mesh 7}, is defined in €2, and the trace of this mesh on I will be used as a mesh on I'.

Barbosa and Hughes stabilize the Lagrangian multiplier A with its value A = —g—x, cf. (T3). Thus the
problem now reads: Find (up, Ap) € Vi X Ay, s.t., for all (v, pup) € Vi X Ay,

Jup, , Ov
(uh, 'Uh)Hl(Q) + / VA dl — Oéh/()\h—l——h)—h dl' = (f, 'Uh)LZ(Q),
T r (971 871 (7 8)
P .
/uh,uh dr — ah /()\h—i—ﬁ)uh dr :/duh dr,
r r on r
with « a constant to be chosen, corresponding to the saddle point of the modified Lagrangian
Ju
Ln(u, A) = L(w, A) = e h[[ M= ), (7.9)

cf. (T6l). See Stenberg [31].
We then get the “penalized” problem, written here as the matrix problem

A B i i
(5 ) (2)=(3) 729
Theorem 7.3 (Barbosa and Hughes [3], Pitkiranta [27].) The mesh Ty, is supposed to be quasi-uniform,
that is, the following inverse inequality is true:
ovy,
on
And « is supposed small enough (not to destroy the coercivity for u), namely:

3C; >0, Yo, € Vi, B2 || 522y < Ci |lgrads||2(a)- (7.11)

1
—. 12
0<a<c (7.12)

i
Then the stabilized problem (Z.8) is well posed, and for P,-C° finite elements, as soon as the exact
solution u is in H**1(2), and we get the usual a priori estimate

llu = unl| 10y < CRF||ul| gesr ),

C being a constant independent of h.
Proof. See Barbosa—Hughes [3] and Stenberg [31]. on
Remark 7.4 The inequality (ZI1)) also reads

h/r(glr;tdv.ﬁ)2 dl' < C? /Q||gradv||]12§n dQ,

where h on the left hand side is expected: (h [.) has a volume dimension, same dimension as ([,), for a
quasi-uniform mesh. .
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7.4.3 Multiplier elimination: Nitsche method

Stenberg [31] has shown that Barbosa and Hughes [3] method is equivalent to Nitsche [26] method
when A, = Py(T'y) and V), = P1(Q4) (when the mesh on T is the trace of the mesh in Q): Find up, € V},
s.t., for all v, € Vp,,

1
(Uh,vh)Hl(Q) - <%7vh>l“ - <%,Uh —d)r+v Z @(Uh —d,vn)E = (f, Uh)LZ(Q)v
for some v > 0, i.e., find up € V}, s.t., for all v, € V},

0 0 1
(un, vn) () — <%70h>r - <%,Uh>r +v > (un,vn)e
(7.13)

We then get ur = d. This method is simpler to compute since no Lagrangian multiplier intervenes.
Proposition 7.5 If (Z1), if v > C;, if Vi, = P,-C° and u € H**1(Q), then (Z13) gives the usual result:

llu = unll o) < CRF||ul| s (o)-

Proof. See Stenberg [31]. on
Comparison of the method of Nitsche with the method of Barbosa and Hughes : ([8). gives

0 1
Ap = *HAh(%) + a(uh—d).

Thus (Z8); becomes

Ju Ov 1
(Uh,’l}h)Hl(Q) —/HAh(—h)Uhdr—/HAh(—h)uhdF—l——h/uh’UhdF
r r an Jjr

on on
Ouy, Ovy, Ooup, vy,
—oh() B~ Mgy T, )

a’l)h 1
= — IIp, — dI' + — dar
(f,on)r2(0) /Fg An g, A+ ah/pgvh :

With Ay, = Py and V}, = P; we then get HAh(aaL;) = %L;, and then (TI3).
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Part 111
Theory

Most of the results can be found in Brézis [6].

8 The open mapping theorem

8.1 Notations

If F and F are linear spaces, a map T : E — F is linear iff T'(z1 + Ax2) = T'(z1) + AT (22) for all
21,22 € E and all A € R; And then T'(z) is denoted T.z or Tx.

Let (E,||.|]|g) be a normed space. Let Bg(z,p) = {2’ € E;||2’ — z||g < p} the ball of radius p > 0
centered at x € FE.

E - F
If (E,||.||g) and (F,||.||r) are two normed spaces, if T : is a linear map, then T is
x = T(x)
said to be continuous (or bounded) iff
Je>0, VeekFE, ||T.|lr<c|lz||g. and then ||T||:= sup ||T.z||F. (8.1)
z€Bg(0,1)

In the sequel, the space E and F' will be Banach spaces (complete for the norm in use).
Let L(E; F) be the set of linear continuous mapping from E to F. Then

L(E;F) - R

(8.2)

||-||£(E;F) : dengted

T =Tl er) == sup )IIT-xllF T

z€BEg(0,1

define a norm in L(E;F) (easy check), and (L(E;F),||.||) is a Banach space (check: If (T))n~ is a
Cauchy sequence, that is ||T, — Tin|| —n.m—oo 0, then, for any x € E, ||(T), — Tm)(z)||lF —n.m—o0 0,
thus (T, (z))n+ is a Cauchy sequence in F' complete, thus converge to a y, € F; Then define T : z € E —
T(x) = y,: It is easy to check that T is linear and continuous with ||T° — T, || —n—00 0.)

Let E' := L(E;R), called the dual of FE (the set of linear continuous real valued functions, R being
provided with its usual norm). For ¢ € E’ and x € E denote:

So, cf. ),
|z = sup [la|= sup [{{,2)p &l (8.4)
2€Bp(0,1) z€Bg(0,1)
defines a norm in E’ s.t. (E',||.||g/) is a Banach space.
If T € L(E; F) (linear and continuous) then its adjoint is the linear map 7" : F/ — E’ characterized
by:
F' - FE
T denoted (8'5)
¢ =T'(W)""="T'4 where (I'"l,x)p g:={,Ta)p p, Vz€E.
Proposition 8.1 T’ is continuous with
T’ = 1IT1]. (8.6)
Thus T’ € L(F', E').
Proof. |[T"A||r = SUP||I||E§1|<T’-€,$>E/,E| = SHPHIHE§1|<£,T-$>FGF| < Su10||gc||E§1||€||F/||T-~T||F =
|S|up|\|\zHE||§1,HT|| zllellfll7 = 1[T[[[[][r, thus [[T']| < ||T][; And similarly |[T.z(|r < [[T'|[[|¢]|, thus
T < ||T"]. un

E" = (E') = L(F';R) is a Banach space (since R is complete). Let

(8.7)

[ E - B = L(E;R)
| z — J(x), where J(z)({):=/lzx, Yz €E.
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J is linear (trivial), is continuous, with ||J|| = sup,ep,0,1) [/ (%) = sup,ep,0,1)SWPen,, 0.1) |/ (2)(0)]) =
SUP,e B, (0,1) SWPre B, (0,1) [6-2]) = SUPsep,0,1)(|[7][E) = 1, and injective (one-to-one) since J(z) = 0 im-
plies £.z = 0 for all £ € E’ that implies z = 0. Thus .J is a “canonical injection”.

Thus J(F) = Im(F), the range or image of E by J, can be identified to a subspace of E”.

Definition 8.2 A Banach space E is reflexive iff J is bijective (= one-to-one and onto), and then is
identified with E, denoted E” ~ E, and J(x) is denoted z.

(Remark: A Hilbert space is always reflexive, and a reflexive Banach space “almost” behaves like a
Hilbert space for computation purposes (with the use of the bracket (.,.)gs g similar to the use of a
inner product). There are however some substantial differences: e.g. in a reflexive Banach space there
exist closed subspaces without any complement, whereas in a Hilbert space any closed subspace has a
complement (even an orthogonal one); And this causes some theoretical difficulties treated in the sequel.)

8.2 The open mapping theorem

Theorem 8.3 (Open mapping theorem) Let E and F be Banach spaces. If T € L(E; F) (linear and
continuous) is surjective (= onto, i.e. Im(T) = F), then

>0 st T(Bg(0,1) D Bp(0,7). (8.8)

That is, if T is linear continuous and surjective, then any open set in E is transformed by T into an open
set in F. So T(Bg(0,1)) is not “flat” (it contains an open set).
And the converse is true: if (88) then T is surjective.

nen+ T'(Bge(0,n)) = F, and Baire’s Theorem
gives the existence of a closed space T'(Bg(0,n)) containing an open set; 2- The linearity of T' then implies
that T'(Bg(0,1)) contains an open set Br(0,27) for some v > 0. 3- And T being continuous and E being
complete we get T'(Bg(0,1)) D Bp(0,7).

Converse: T(Bg(0,1)) D Br(0,7), and T is linear, so T(E) = F. .

Proof. See Brézis [6]. Steps : 1- T being onto, we have |J

Corollary 8.4 IfT € L(E; F) is bijective, i.e. injective (= one-to-one) and surjective (= onto), then the
linear map T~!: F — F is continuous, that is,

) 1
F >0,y eF T ylls < Zlllr- (8.9)

Thus
Iy>0,Vee E, ||Tx||lr>79zlle. (8.10)

Proof. Then T bijective gives T~ (Br(0,v)) C Bg(0,1). And T~ is linear since T is, thus T~ (Bg(0,1)) C
Bg(0, %) Soy € Br(0,1) gives || T~ yl||g < %||y||p7 i.e. (89). Then y = T.x gives (8I0) (bijectivity). am

Remark 8.5 If T is bijective between Banach spaces, then the problem: Forb € Ffindx € Es.t. T.x =
is well-posed, that is, has a unique solution x = T~1.b s.t. 3¢ > 0 (independent of b), ||z||z < c||b]|F (the
inverse 7'~ ! is continuous). Indeed, the bijectivity of T' gives a unique solution = T~1.b, and ([89) gives
lzllz = |7~ 0]l < S [[bl|F.

Remark 8.6 A linear continuous bijective mapping between two infinite dimensional Banach spaces

-2 0
0 3>. Here ||T|| = 3,

T_l—(% 0) and |[T7Y|=1=1 "
N0 ) T2y -

behaves like in finite dimension, e.g. like 7' : R? — R? given by its matrix (

Remark 8.7 The bijectivity between Banach spaces (complete spaces) is required:
Let ¢ = {(z,)n- € RN : 3 . 22 < oo} (the space of finite energy sequences), let B = F = (2,
and let T : (> — (% be given by T((xy)n-) = (&)n- for any (z,) € €2, that is, with (e,)n+ the

canonical basis in ¢2, T.e, = %en (the associated generalized matrix is the infinite diagonal matrix
diag(1, 3, ..., =,...).) Here T is injective since Ker(T') = {0} (trivial), but not surjective since (&) € ¢2
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has no counterimage in ¢2 (it would be the constant sequence (1)y+ ¢ £2). And its range Im(7') is dense
in ¢2: Indeed, if (yn)n- € €2 then let z, = ny,, so that (z,)n- € RN, and for N € N*, define the
truncated sequence (zY )y« by ) =z, if n < N and x)) = 0 otherwise; then (z)) € ¢2 (trivial) and
Ve >0, IN € N*, ||yn — T} ||} = >0 N1 ¥a < €). Here Im(T) is not closed in ¢ (since dense and
closed would imply Im(7T) = ¢2), and Im(T) is “fat” in ¢2, that is, T'(By2(0,1)) does not contain any
open ball: In this example it can be seen with the canonical basis (e, )y« that verifies T 'e, = nep, so
that 771(B2(0,1)) is not bounded (if one prefers, T=!(37ve,) = nive, ¢ T(B2(0,1)) as soon as n > %
although 1ve, € B2(0,7)). .

Corollary 8.8 If T € L(E; F) (linear and continuous) is injective (=one-to-one), and if Im(T') is closed
in F', then
Iy>0,VeeE, ||Tx|lr>7zlle- (8.11)

Proof. For y € Im(T") denote |[y|[1m(r) := ||y||F for ally € Im(T"). So |[.||tm(r) is @ norm in Im(7") (trivial).
Then Im(T') closed in F' implies (Im(7"), ||.||tm(r)) = (Im(T"), ||.||r) is a Banach space denoted Im(T"). Let
E — Im(T
T : ) (8.12)

x — Tr(z) =T(x).

Then Tg is linear continuous bijective between Banach spaces. Thus (8I0) gives 3y > 0, Vz € E,
|| Tr-2|[tm(r) = V||2||E, i.e. @II). u

8.3 Quotient space F/Ker(T), and open mapping theorem

Let E and F be banach spaces. Let T' € L(E;F) (linear and continuous). Then K = Ker(T) =
T~1({0}) (the kernel of T') is linear subspace that is closed (since T is continuous).

Consider the relation in F defined by: = ~ y iff x —y € K. This is an equivalence relation (easy
check). Let E/K ={Z CE:3x € E, Z=x2+ K} = {x + K : € E} be the set of the equivalence
classes (quotient space). An element of F/K is denoted & = x + K. In particular 0 = K.

The (usual) operators + in E/K and . on E/K are defined by, if t =2+ K, y=y+ K and A € R,

it+y=o+y+ K, and \i=\+K, (8.13)

definition independent of the '’ € & and 3’ € y (easy check). Then (E/K,+,.) is a linear space (easy
check) with O the zero in E/K.

E — E/K

. ¢ Is linear and surjective.
z o) =z+K=21

Lemma 8.9 The canonical map 7 : {

Proof. Linearity: m(z+ A\y) = (x+ A\y) + K =2+ K+ \y+ AK = 7(x) + An(y) since K is a linear space
(so K = K + \K).
Surjectivity: If ¢ € E/K then 3z € E s.t. & = v + K = 7(z) (definition of E/K). ua

For & € E/K, define ||.||g/x : E/K — R by

denoted

1]l = llm(@)l s = inf [z +@oll5 || /- (8.14)
Lemma 8.10 ||.||g/x is a norm in E/K, and (E/K, ||.||g/x) is a Banach space.
And 7 is continuous with ||7|| < 1.

Proof. ||#||gx = 0 < infypex ||z 4+ 20| =0 & |[2]|p < 0since 0 € K & 2 =0« n(x) = 0 (since 7 is
linear) & & = K = 0.

M| e = infapere [[Az + 2ol = infrger [[A2 + Azo||p = nfaoer [Al [z + 2ol B[l [J4]] mc-

lZ 49l g/c = infag yoek |l2+y+20+yolle < infag yoek [[2+2ol 2+ [ly+yolle < 12/ gx + 12491 g

Thus ||.||g/k is a norm in E/K.

Let (i,)n- be a Cauchy sequence in E/K, that is, ||7(xn — zm)|lgx = [|Tn — Tmll 5K —Fnm—00 0.
Let a subsequence, still denoted (day,) s.t. ||m(zp41 — @k)|| e < 5 for all k € N*. Thus I(yx)n+ € K s.t.
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[|zp+1 — 2k —yi||lE < 2% for all k € N*, see (RId]). Then let (zx)n+ be defined by 21 = 0 ad yx = 2k4+1 — 2k-
Thus ||xg+1 — zk+1 — (e —y)||E < 2% for all k € N*, thus ||@n+1 — 2nt1 — (Tm — Ym)||E —n,m—00 0, thus
((xn, — zn)n+ 18 & Cauchy sequence in E, thus converges to a limit w € E. Thus n(z, — z,) = w(z,) — 0
converges to w(w) € E/K, and F/K is closed.

l|7(2)|| g = ming,ex |2 + 20|| £, and 0 € K (linear subspace), thus ||7(z)|| g < ||2]|E- on

Let

_ {E/K - F
T: (8.15)

i — T(&):=T(z) when z € i,

definition independent of z € & since T'(x + z¢) = T'(x) for all zy € K (= Ker(T)). In other words, T is
characterized by Tor =T

Lemma 8.11 T is linear, injective and continuous with ||T|| = ||T|.

Proof. With & =z + K and y = y + K we get y + A& = x + Ay + K since K is a linear space, thus
T(x+Ay)=T(x+ \y) =T(x) + AT (y) =T(z) + XT(y), and T is linear.

Ti=0= T(x+axg)=0forallzge K =zt K =€ K = :i::f), thus 7T is injective.

Let i € E/K. We have ||T(d)||r = ||T.(x + 20)||r < ||T]| ||z + 2o|| & for all z € K, thus ||T(#)||r <
||| minggex ||z + zollz = ||T|||&]| . Thus T is continuous, with ||T1| < [|T]|.

Let © € E. We have ||T.z||r = ||T.#||lr < [|T]|||&||gx, thus [|[T.2]||z < [|T]| ||z + @o||r for all
zo € K, with T.x = T'(z + zo) for all 29 € K, thus |[T'(z + zo)|[r < IT|| || + zo|| & for all 2o € K,
Tzl < [|T|| |lz|| 2. Thus [|T]] < ||T]].

Corollary 8.12 Let E and F be banach spaces. If T € L(E; F) (linear and continuous), and if Im(T")
is closed in F', then

Iy >0,Vee B, ||[To|lr >92|lg/keccry (=7 inf [z 4+ x0|[r). (8.16)
zo€Ker(T)

Proof. K := Ker(T) = T~({0}) is closed since T is continuous.

Im(T) is closed in F, therefore (Im(T),||.||r) is a Banach space denoted Im(T). Then Ty : i@ €
E/K — Tgr(i) = T(x) € Im(T) is linear continuous and bijective between Banach spaces. Thus (&10)
gives Iy > 0, Vi € B/K, ||Tr.i||r > |2 g, i-e. EI0).

8.4 The inf-sup condition

[BI6) is rewritten
|||

3y >0, inf ——1F > (8.17)
=€E ||Z|| p/Ker(T)
(Light writing of 3y > 0, inf,ep_{0y % >7.)
Consider B € L(E; F’) (linear and continuous). Then (8I7) gives
B. /
3y >0, inf 22l o (8.18)
zek ||1'||E/Ker(T)
Let b(-,-) : E X F'— R be the bilinear form defined by, for all (z,y) € E x F,
Since ||B.x||pr = sup, ¢ p L2EVELEL (@TR) ives
Z||F Pyer Mllz g
b
Iy > 0, inf (sup (z,9) ) >, (8.20)

2€B yer 7| g /ker() ||Y]| P

named the inf-sup condition satisfied by b(-, -)

26



9 Some spaces and their duals

9.1 Divergence, Gradient, Rotationnal

Let (€;) be a Euclidean basis in R, let (-, -)g» be the assomated inner product, and let ¥.4 := (¥, W)gn
Let Q be an open set in R™. Let (€&;) be a basis in R" and 2 am% = df.€;.
The divergence operator is formally given by
F(E;R") - R
div:g o Kl L O (9.1)
vav e — divi = 2 o5
i=1 =1
(The real value divtf does not depend on the choice of the basis).
The gradient operator is formally given by
F(;R) - R
ad : 0 9.2
gra f —>gradf Z f"’ (92)
The rotationnal operator is formally given by
F(RY) —R?
curl : L - Ovs  Ovgy Oovi  Ovs Oovy  Ovy (9.3)
=S vig o= (2B -T2y (T T (290
Y ;’U G o (6.1'2 6.1'3 ‘1 6.1'3 6.1‘1 2 6.1‘1 6.1'2)
2 2 _ Ov ov
(In R*, curl : 7 € R* — curld = g2 — g2 € R.)
9.2 Some Hilbert spaces
Let 2 be an open set in R", n =1,2,3, and I' = 002 be its boundary.
LQ(Q):{f:Q—HR:/deQ<oo}, (f,g)Lz:/fng.
Q
H'(Q) = {f € L*(Q) : gradf € L*(Q)"}, (f,9)er = (f,9)12 + (gradf, gradg)
HA(Q) = {f € Q) d*f € Q)" ), (£,9)mz = (£,9)ms + (d*f,d°g) 1.
HYY(Q) = {7 e L*Q)" : divi € L*(Q)}, (i1, T) grare = (@, 0) 2 + (divid, divd) 2.
HNQ) = {7 L2(Q)° : carld € L2(Q)°}, (@, 0) grewn = (@, 7) 2 + (curld, curld) pe.
Integrations by parts : If f € H1(Q) and v € HU(Q) then
/ gradf.0dQ = — [ fdividQ + / fo.Adr. (9.4)
Q Q r
If 7 € HY(Q)" and @ € H°"(Q) then
/ curlzai dQ = + / .curld dQ + / 7.(@ A7) dT. (9.5)
Q Q r

9.3 Some sup-spaces

Closures D(Q)

Q) ={fe H\(Q): fir =0} =DQ)

H2(Q) = {f € HXQ) : fir = 0 et gradf.fijp = 0} = D()
HI(Q) = {5 € HY(Q) : (57)p = 0} = D)7,

curl

Hq (

HE™(Q) = {7 € HY(Q) : (F Aii)jp = 0} = D(Q)F

= C°(Q) (space of C* functions with compact support):

= (gradf, gradg)
= (d®f,d*g) >

(fa g)H1
(f,9)uz
(ﬁ, 17)Hgiv = (diV’J, diVﬂ)L2.

(i, 0) grenn = (curli, curl) .

When (2 is bounded, the given semi-inner products are equivalent to the inner products of the embedding

spaces.
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9.4 Trace operator v, and the Hilbert space Hz(I')

The trace mapping is

H'(Q) — LX(D),
7o : (9.6)
[ = (f)= fir-
(Same notation ifor vo : 7 € H'(Q)" — v(¥) = 6jp € L*(I')".) If Q is regular, then
Hg () = Ker(yo). (9.7)
With Im(7T') the range of a mapping T, let
1
Im(’yo) = H>2 (F), and ||d||H%(l—‘) eHl(Q)f ||’LL||H1 (98)

Proposition 9.1 Let d € H=(T') and let ug € H'(Q) be the solution of the Dirichlet problem: Find
u € HY(Q) s.t.

—Au+u=0 in{Q,
(9.9)
ur=d onl,
then
el 4 () = lluall, (9.10)
and ||.||H%(F) is the norm of the inner product
(c, d)H%(F) = (Ue, Ua) 51 (02) - (9.11)

Moreover (Hz (T), (-, ~)H%(F)) is a Hilbert space.

Moreover o : v € (HY(Q), ||| g1 () = vy € (H 2(T) is (linear) continuous.

Ml )

Proof. Let z; € H'() be an counter image of d € Hz(T') (exists by definition of Hz(T"), cf. (L8)). So
Yo(za) = d = zqr. Let u = ug + zq € Hj () + z4. With (@J) we get

—Aug +ug = Azg — zqg dans H1(Q),
1 (9.12)
Ug|r = 0 dans H2 (F)
Thus ug € H}(Q) satisfies
(w0, v0) 1 (0) = —(24:v0) 1 (), Vo € Hy(9), (9.13)

and the Lax-Milgram theorem gives the existence of a solution ug € H}(Q). Then we check that
Uq = Up + zq is independent of the chosen z4: If 2/, satisfies v(2}) = d, if the associate solution is ug, if
u!y = ufy + z/), then ug —ul; € H} () and (ug — uly,vo) i (o) = 0 for any vy € H(9Q), so uqg —u, =0
(Lax-Milgram theorem). Moreover (@I3) tells that ug + 24 = uq Ly HL(Q). Thus we get, for any
Vo € H& (Q),
[ua + vol Fr(qy = |[ualltn ) + lvol i oy + 2(ua, vo) a1 (@) = luallF ) + l[vol 7 0y + 0.
So mfweHl(Q) ||w||H1(Q) inf, e mi (o) llua + v0||H1(Q) ||ud||H1(Q), denoted ||d|| Then we define
wr=

HE (1)’

(c, ), 1 () 3 in (@II), and (-, -)H% is trivially bilinear symmetric positive (is an inner product).

Then we check that (Hz(I), ||||H%) is complete: If (d,)y- € H?(T) is a Cauchy sequel in H%(F)
and if ug, is the solution of (@J), then (ug4, )y~ is a Cauchy sequel in (H(Q),||.||z1), cf. (IEIII)
converges in H() (since H'(Q) is complete) toward some u € H(). Then let d := vo(u) € H?= (F)
Since (ug,,vo)m1 (o) = 0 for any vy € Hj(Q), cf. @J), we get (ua,v0)m1 (o) = 0 for any vy € Hj(Q)
(continuity of an inner product relatively to itself). Thus ug is the solution of (Q.9), and [|d — dn|[ 3 =
||U_Udn,||H1 —n—oo 0. L

And o @ (HY(Q), ||.]|g2) — (H=2 (1), ||.||H%(F) (linear) satisfies, for u € H'(Q2), with d := yo(u) and ug
solution of (@.9), ||70(U>||H%(F) = ||uallgr (@) < [lua+uoll (o) for any ug € Hy(Q), thus with ug = u—1ug
we get ||'yo(u)||H%(F) = ||ul| g1 (), 50 Y0 is bounded (|[yo|| < 1). ua
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9.5 Some other trace operators

H2(Q) — L*(T),

7 - _ denoted O (9.14)
1 F () = (gradpyp 2 2L
7 |r
HYY(Q) — H3(D),
Tn S S — - denoted ,_, _, (9'15)
T = (V) =y (0).0 = (v.n)‘p

(and the divergence operator enables the control of ¥.77 on T'),

1 3
HNQ) - H 3 (D),

T = (@) = 70(@) A 1L (@A)
(and the rotational operator enables the control ¥ A7 on T
9.6 Some Dual spaces
Banach spaces:
(L*(Q)) ~ L*(Q) (usual identification) L2y = Ifllz2(0)-

L3O = {f € 1@ [ f0= 0} = IX@O/R [1fllg = inf I +elle

H™H(Q) = H(Q)', flla-r = sup 222 (9.17)
vEH(Q) ||U||H5

oy )

rert @ M3 oy

il

We have identified (L?(2))" with L?*(Q) thanks to the Riesz representation theorem in (L?(2), (-,-)p2),
that is,

s LQ(Q)I, JIf € L*(Q), Vg € L*(Q), (¢, 922 = (f,9) 2@, and |[fllL2@) = [[€]l2@y- (9:18)

Thus HY(Q) C HY(Q) c L2(Q) ~ LA(Q) c (H'(Q)) ¢ H~1(Q). And L*(Q) is named the “pivot space”
(a central space in distribution theory of Schwartz [29]).

Proposition 9.2 Let A € H~2(T') and let wy € H'(Q) be the solution of the Nenmann problem: Find
w € HY(Q) s.t.
—Aw+w=0 dans,

0 9.19
e _ A surT, ( )
on
then
||)\||H7%(F) = |[wxl|m1(0)- (9.20)

Proof. ([@.I9) reads (w,v)y1(q) = ()\,U)H,%(F) g o) for all v € H'(2), thus ([@I9) has a unique so-
lution wy (Lax-Milgram theorem: The bilinear form given by a(u,v) = (u,v)y1(q) is trivially H*(€2)-

continuous and coercive, and the linear form given by ¢(v) = ()\,U)H,%(F) D) is continuous since
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£ < 1Nl g oy 00003y < TN o 10109 prop. EET). And

|</\’d>H*%(F),H%(F)| .
||)\||H,%(F): sup TE (definition)
deH? (T) HZ(T)
Ay ) b
- sup H IO (cf. @)
= sup [(wx, va) | (cf. (TI9))
dEHZ (T) llual ()

IN

llwallgr (@), (Cauchy-Schwarz in H'(£2)).
Et vo(wy) € H=(T') gives

[ 70(wr) -4 1y 3

™) "
||)\||H7%(F) 2 ol . | (by definition of the sup)
|(wx, wa) i1 ()| 9.22
= W (Cf. m) ( )
YolWx i)
> ally  (since (o)l ) < ol @) <f. @)
Thus (m) l.l

9.7 Dual of H'(Q) and H®(Q) (characterizations)
Theorem 9.3 Dual of H!(Q).

(e (HYQ) = 3(f,a) e L2(Q) x L2(Q)" : ((,) = (f. )12 + (@, gradp) 2 Voo € HY(Q). (9.23)
Dual of H&(Q)
(e H YD) = 3(f,a) e L*(Q) x L2(Q)" tq. (=f—divi. (9.24)

And if  is bounded then we can choose f =0 (with (Hg(Q), (,-)g1))-

Proof. (from Brézis [6].) Characterization of H*(Q)". Define Z := L?*(Q) x L?(Q)" provided with
the inner product ((¢,@),(¥,0))z = (¢,¥)r2 + (@,0)r2 so that Z is a Hilbert space. Define T :

HY Q) —Z -
- So |Wllm = IT¥]lz = ||, grady)]|z, and T : (H5(Q), () my) —

¥ = Ty = (¢, grady)
(Im(T), ||.||z) is an isometry. Let £ € H'(Q)". Define

o _ { Im(T) — R
PO (@, d=grad) — (@rnery, (0, 5)) 2z = (6T (0, 8)) v = (6 s g

Opy 7y is linear (trivial) and continuous since ¢ and T—! are. With Hahn-Banach theorem, extend
Z =R
(1, 0) = (Pz, (¢, 0))
representation theorem gives: 3(¢, @) € Z s.t. (D7, (¥, 0)) = (¢, 1), (¥, V) z = [ ¢¥ dQ+ [, @.TdS for
all (1, %) € Z. Then take (¢, 7=grady) € Im(T) to get ([T.23).
Similar proof for (@:24)). .

O (1) to Z, so that we get a linear countinous form & : { } Then the Riesz

Theorem 9.4 Dual de HYV(Q).

FeH™Q) = 3(f,¢) e L*Q)" x L2(Q) s.t. (F,5) = (f,0) 1> + (¢,divd) 2, Vi€ HdiVEQ). |
9.25
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Dual de H{(Q). In particular
FeH™MQ) = 3(f.¢)eL2(Q)" x L*(Q) s.t. F = f — grade. (9.26)
And if  is bounded we can choose f = 0 (with (HS™ (), (-, g ))-

Proof. (Similar to the proof of [@.23).) Define Z = L?*(Q)" x L?(Q) provided with the inner product

H™Y(Q) - Z
(@, p), (U,q))z = (4, V)p2+(p, q) 2 so that (Z, (-, ) z) is a Hilbert space. Define T : @)

7 = T% = (¥,divi)

So ||U]|gav = ||T¥||z = ||(¥,divD)||z, and T : (HW(Q), ||.||gav) — (Im(T),||.||z) is an isometry. Let
F € HY¥(Q)'. The mapping (¥, ¢=dive) € Im(T) — (F,T~\(%, q)) praiv’ praiv = (F, 0) graivs paiv is a linear
form (trivial) that is continuous since F' and T~! are. With Hahn-Banach theorem, extend it to Z to
get a linear continuous form named ® : (¥,q) € Z — (®,(¥,q)). Then the Riesz representation theorem
gives: 3(d,p) € Z s.t. (®,(7,q)) = (4,p), (7,q)z = [ @.0dQ2+ [, pqd for all (7,q) € Z. An choose

(¥, g=div?) € Im(T") to get (@ 25).
Similar proof for (3.26]). o

9.8 Kernel of the trace operators

Q) is supposed to be a regular open set.

Ker(yo) = Hy (), Im(yg) = H? (T') dense in L*(T")

Kero) 1K) = H3@): o) = H30), 0o
Ker(yn) = H™ (@), () = H3 (D).

Ker(7,) = HE™(9), Im(5,) = H*(1)",

9.9 Poincaré—Friedrichs

(See e.g. manuscript “Eléments finis”, or Raviart-Thomas [28], or Ciarlet [12]...
If  is bounded (at least in one direction), then we have Poincaré’s inequality in Hg(£2): There exists
co > 0s.t .
Yo € HY(Q), |[v]|re < callgradvl|ge:, (9.28)

and the norms ||v||g1(q) and ||gradv||Lz(Q) are equivalent in H} () (this space is closed in H!(Q) it is
the closure of D(Q2) in H*(Q)).
And if Q is bounded then there exists cq > 0 s.t:

Vo e HY(Q(H(Q),  Pvllaz@ < callAvllr2()- (9.29)
and the norms |[v]|y2() and ||Av|[12(q) are equivalent in Hj(Q) () H?() (this space is not closed
in H1(Q)).

9.10 L?*(©2)" Decomposition (Helmholtz)

Let © C R™ an open regular bounded set. Let div : H4V(Q) — L2(Q), so Ker(div) = {v € HU(Q) :
divd = 0}. And let

Ker(div)y = Ker(div) N H§™(Q) = {7 € Ker(div) : (#.7)r = 0}, (9.30)
the subspace of incompressible functions with I" impervious.
Theorem 9.5

{ LX(Q)" = grad(Hg () @ +* Ker(div), (9.31)

L2(Q)" = grad(H'(Q)) @*+* Ker(div)o,

ie, for any f € L*(Q)" there exists (¢, @) € grad(H}(Q)) x Ker(div) for @31),, and there exists
(¢, W) € grad(H'(Q)) x Ker(div)o for (3.31)2, s.t.

f=grad¢ + @, with (grade,)r. =0. (9.32)
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Proof. Let f e L2(Q)".

For (@.31))1, consider the solution of the homogenous Dirichlet problem: Find ¢ € H}(Q2) s.t. Ag =
divf (distribution), meaning, find ¢ € HE(Q) s.t. (grade, gradi) > = (f,gradip) 2 for all ¢ € HE(S).
The Lax—Milgram theorem gives a unique solution ¢ € HJ ().

Let @ = f — gradg € L2(Q)". So (i, gradi) > = 0 for all ¢ € HE(Q), by definition of ¢, thus
@ Ly grad(HE () and divid = 0 € H~1(Q2), and 0 € L%(Q), thus @ € H% () and @ € Ker(div); Thus
f =@ + gradg € Ker(div) @12 grad(H{ (), thus (L31);.

For (@31),, consider the solution of the homogenous Neumann problem: Find ¢ € H(Q) s.t.
Jo grade.grady dQ = Jo f-gradip dS) for all ¢ € H' (). The Lax-Milgram theorem gives a unique solution
¢ € HY(Q)/R (i.e. up to a constant), moreover with ¢ € H2(Q) (regularity result thanks to f € L%()),
so that —(A¢, ) g1 ()y . () + [ grade(z).i(z)p(z) dl = —(divf, ) )y, m ) for all ¥ € HY(Q).
In particular ¢ € H(Q) gives A¢ = divf € (H(Q)), and we are left with [1. grade(z).7i(z)y(z) dT for
all € H'(2), thus for all ¢r € H2(T), thus grade.@r = 0.

Let @ = f — gradg € L*(Q)". Thus (&, gr_z;dw)Lz = 0 for all ¢ € H'(Q), by definition of ¢,
thus @ L grad(H(€)). And divit = divf — A¢ = 0, thus divid € L%(Q) and @ € Ker(div). With
oy @.grady dQ = 0 for all ¥ € H'(Q), thus [, @.fiy)dl = 0 for all ¢ € H'(Q), and @.ii = 0 € H~3(T)
(since Hz(T) is dense in L2(T')), thus @ € Ker(div), thus f = gradé+ @ € grad(H'(Q)) &L2> Ker(div)o,
thus (m)g. an

10 A surjectivity of the gradient operator

See e.g. Girault—Raviart [18]. We deal here with infinite dimensional spaces. The surjectivity of gr_éd
is need for a Stokes like problem, see (L.2).

10.1 The theorem

Let © be an open regular set in R™. Let (€;) be a given Cartesian R™, and 7i(z) = Y., n:(z)e; be
the outer normal unit to I' at z.

H=YQ) = (HYQ)) = LH}(Q);R) is the set of continuous linear forms defined on Hg (), cf. @I7).

With [@I8), L2(€)" is identified to L2(€2), and H~1(Q) D L%(Q) = L2(Q) D HZ(Q).

And if g € L?(Q), then 2% ¢ H~1(Q2), and, for all ¢ € H}(Q),

oz
9 0
<5,7:gi O a1 HL = f/Qg(z)aZ (x) dz, (10.1)

see Schwartz [29]. In particular, if p € L2(Q)" then gradp € H~1(Q)" and, for all 7 € HL(Q)",

(gr%dp,ﬁ')Hq’Hé =— / p(z)divi(z) de = —(p, divd) . (10.2)
Q
- L*(Q) — H YD)
Theorem 10.1 The range of the gradient operator grad : - is closed, and its kernel
p — gradp
Ker(grad) is the set of constant functions.
Proof. The proof of this quite difficult theorem is given in the next §. un

And the open mapping theorem, cf. (8I0), then gives the needed result for the Stokes like problem,

cf. (L2):

Corollary 10.2 ~
36 >0, Vp e L*(Q), |lgradp||z—1 > BlIpl|L2()/r; (10.3)

diviy
that is 36 > 0, inf sup |(dive, p) 2| > B (inf-sup condition).

PeL?(Q) yeHL () ||?7||Hg(sz)/xer(div)||P||Lg(9)
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10.2 Steps for the proof
10.2.1 Equivalent norms in H~1(Q)

) being bounded, the Poincaré inequality gives:
Seq € B, Vg € HY(Q), [lqlie < callallm- (10.4)

Let ¢ € L?(2), and let ¢, € H~(Q) be defined on H}(2) by

V’lﬂ S Hé(Q), <€qaw>H*1,Hé = (q,w)Lz(Q). (105)
Thus ¢, is trivially linear, and, with (I0.4),
Vo € Ho(Q), [l ) mal = 1(6,9) 20| < llallc2l[¢ll2 < calldl|zz| ¥l g2 - (10.6)

Thus ¢, is continuous, thus ¢, € H=1(Q), L*(Q) is considered to be a subspace in H ().

Proposition 10.3 If ¢ € L?(Q), then

gl < callallzz,  lleradqllg—+ < llgl| 2. (10.7)
o (rr9) - H Q) , Q) — H ()" .
Thus the injection and the gradient operator . are contin-
q =l q — gradg
uous. In particular, with (I0.6),
if g € L2(Q) then ¢, *"2 ¢, (10.8)

(The space L*(Q2) is the pivot space.)

Proof. (IL7); is given by ([IIL6). Let ¢ € L2(Q), with (2 we get gradg € H~1()". We have, for all
¢ € Hy(Q)", cf. (02,

eradd, &) -1 ] = | — (@, divd)re] < llallzalidivdllzs < llallze llgraddl] garer < llallza 16l ey
Thus (m)g. an
Let :
L*(Q) —=R
[Ae ) (10.9)
v = |[vll+ = |[ollz- +[lgrado||g-r.
Corollary 10.4 In L?(Q) the norms ||.||z> and ||.||+ are equivalent norms:
Jer, e >0, Vo € L2(Q),  allvlls < vz < eallv|]4 (10.10)

Proof. (I0.9) trivially defines a norm in L*(Q), and (I0.7) gives ¢; = ﬁ
Let Z = (L*(),||-]|+). Thanks to é, Z is a Banach space. Then consider the canonical injection

I v e (L2Q), ||l12(0) = I+ (v) = v e (L*(Q),]]]|2): it is the algebraic identity and thus is bijective.
And I, is continuous (thanks to é) Thus 1.~ v € (L2(Q),[|.]|z) = Le(v) = v € (L2(Q), ]| 12(q)) is
71||. .

continuous (open mapping theorem [B3). Then let co = ||1+

10.2.2 Rellich theorem L?(Q) — H~()

Reminder: An operator k € L(E; F) is compact iff £(Bg(0,1)) is compact in F.

Lemma 10.5 Let E and F be Banach spaces. If k € L(E; F) is compact, then it dual k' : F' — E’ is
compact.
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Proof. Let (¢,) € Br/(0,1). We have to prove that the sequence (1”.4,,) € T'(Bg/) C E’ has a converging
subsequence. Let K = T'(Bg(0,1)). K is a compact in F since T' is compact. Then consider the restriction
¢n = o : K — R. So (¢n)n+ is a sequence in C°(K;R), and (¢n)n- C Bpr(0,1) is a bounded set
in F’'. Moreover (¢, )N+ is equicontinuous since £, is linear continuous ||, (y)|| < |1l l|lyllr < ||yllF)-
Thus the set (¢, )y~ is relatively compact in C?(K;R) (Ascoli theorem, see Brézis [6]). Thus we can
extract a convergent subsequence (¢, Jren+ in CY(K;R). Thus, T(Bg) being relatively compact and
thus bounded, we have

sup |(bn, —ln,,, T.x)] — 0.

+EBE k,m— o0

Thus ||T" 4y, — T4y, ||g- — 0. Thus E’ being a Banach space, since E is, (T”.4,, )ren+ converges in E'.

Thus the set (T7.4y, )ken~ is compact, thus T’ is compact. .
Theorem 10.6 (Rellich) The canonical injection T : v € L*(Q) — v € H~1(Q) is compact.

Proof. I1o : v € H}(Q) — v € L*() is compact, Rellich theorem see Brézis [6], thus I}, : v € L*(Q) —
v € H~1(Q) is compact, cf. Lemma 0.5 a

10.2.3 Petree—Tartar compactness theorem

Let E and F be two Banach spaces, and T' € L(E; F) (linear and continuous). The purpose is to
prove that the range of T is eventually closed. But to use theorem B3] and (B8] to prove it, can be
difficult. It can be easier to find a compact operator « : £ — G, where G is a Banach space, s.t.

>0, Ve e B, ||Tallr+ |52l > lz]e. (10.11)

Theorem 10.7 Let E, F and G be three Banach spaces, let T € L(E; F) be injective (one-to-one), and
k € L(E;G) be compact. If (I0I1) holds then (88) holds, and thus Im(T") is closed.
(If T is not injective, consider E/Ker(T).)

Proof. Suppose ([BF)) is false. Thus there exists a sequence (x,)nen< in E s.t. ||z,|]|lp = 1 and
|T.2n|| —n—00 0, cf. (8I0). And & being compact and (x,, )nen+ being bounded, the sequence (k.2 )nen-
has a convergent subsequence (k.xn, )ken+ that converges in the Banach space G. With T continuous,
k compact and the hypothesis (I0.11]), we get

Wan, = Tn; e < ||T w0, = Ton,||p + ||, — Knyllg —> 04+0=0.
4,j—00

Thus (2, )ren- is a Cauchy sequence in the Banach space E, so converges to a limit z € E. Since
[|T.2n, || —k—o0 0 and T is continuous, we get ||T.z|| = 0, thus = 0 since T is injective. But ||z, ||z =1
implies ||z||g = 1. Absurd, thus (&3] is true. un

10.2.4 The range of grad : L2(Q) — H~1(Q)" is closed

We can now prove theorem [0l Let T = grad : L2(2) — H ()", and  the canonical injection
L2(Q) — H~1(Q). Since T is linear continuous, cf. (I07), and & is compact, cf. Rellich theorem EIIHiL
the Petree-Tartar theorem [I0.7] implies that the range of T is closed. un

11 The closed range theorem

The results and full proofs can be found e.g. in Brézis [6].
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11.0.1 The closed range theorem
Let T € L(E; F),so T' € L(F'; E'), cf. (8H). We have
Ker(T'Yy={m e F'st. T".'m =0} = {m € F' s.t. m.T =0} C F’, (11.1)

sincem € Ker(T") ©T'.m=0< (T"m,2)p g =0=(m,T.x)p p =m(T.x) = (moT)(z) forallz € E
< m. T =0, with m.T the notation of m o T when the maps are linear maps.
If M C F is a linear subspace in F then the dual orthogonal of M is

M° = {fEE/: <€,SC>E/7E:0, VSCGM} (C E’) (112)

(the subspace of E’ of linear forms vanishing on M). M? is a linear subspace in E’ (trivial). And M° is

closed in E’: Indeed if (¢,)n+ is a Cauchy sequence in M°, so ||l — €y ||Er —n,m—o0 0, then, for z € E

the sequence (¢,,(x)) is a Cauchy sequence in R, thus convergence toward a real named ¢(x); This defines

a function ¢ : E — R. And #(x1 4+ Aze) = limy, o0 b (1 + Az2) = limy, oo £ (1) + Alimy, 00 (22) =

0(x1) + M(z2), thus £ is linear, and, for x € E, ¢ is continuous at z since [£.2' — x| < |(€ —£,).2" + (€ —

Cp).x+ [ln. 2" — x| < (|6 —Ln]|+ [[enl])||2’ — z|| g with ||6,|| < ||¢n]||+1 for N large enough and n > N.
If N C F' is a linear subspace in I’ then let

Nt :={ycF:(my)pr=0 YmecN} (CF). (11.3)

Then N+t is a linear subspace in F (trivial) that is closed in F (similar proof than for M°). To be
compared with, cf. (T2,

N":{y”GF”: <y”,m>F~7F/ =0, VTI’LEN} (C F”). (114)

Remark 11.1 If F is reflexive, that is F” ~ F' (identification) then N° ~ N+ (identification). Indeed,
with .J the canonical isomorphism given in 81), if y € N+ then let 3’ = J(y) € F, so for all m € N we
have 0 = m.y = y”.m, and thus y” € N° And if 4 € N° then let y € F s.t. J(y) = y” (thanks to the
reflexivity), then for all m € N we have 0 = y”.m = m.y, and thus y € N*. un

Theorem 11.2 (Closed range theorem) Let E and F be Banach spaces and T € L(E; F) (linear and
continuous). Then the following properties are equivalent:

(i) Im(T) is closed in F,

(ii) Im(T") is closed in E’,

(iii) Tm(T") = Ker(T")*,

(iv) Im(T") = Ker(T)°.

We then deduce, with (8I6):
Corollary 11.3 IfIm(T) is closed in F' then Im(T") is closed in E’, thus

I >0, VeF, T4z > 10 ke (11.5)

Proof. The full proof of theorem (even for unbounded operators with dense domain of definition)
can be found e.g. in Brézis [6] or Yosida [34] (for locally convex spaces that are metrizable and complete).
We give here the proof in the simplified case of T" a linear continuous mapping between two Banach spaces
(sufficient for our needs). We need some lemmas:

Lemma 11.4 If FE is a Banach space and M is a linear subspace in E, then

M = (M°)*. (11.6)

Proof. If z € M then (¢,z) g g = 0 for all £ € M°, thus z € (M°)*, cf. ([L3)). And (M°)* being closed
we get M C (M°)*.

Conversely: Suppose z¢ € (M°)* and zg ¢ M; Then {x¢} being compact and M being closed and
convex (it is a linear subspace), there exists a hyperplane that strictly separates o and M (geometric
form or the Hahn-Banach theorem), that is there exists £ € E' and a € Rs.t. ({,2)p g < a < ({,20)p'.E
for all x € M. And M being a linear space, taking —x € M, it follows that (¢, z)g p =0 for all z € M,
thus £ € M°. And ({,x)p p = O for all + € M implies (¢,20)p r > 0 with 29 ¢ M, thus £ ¢ M°.

Absurd, thus (M°)+ c M. ’n
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Lemma 11.5 If G and L are two closed subspaces in a Banach space, then
GNL=(G°+L°*, and G°NL°=(G+L)°. (11.7)
Proof. (IT7): If x € GNL, and if m = g+ ¢ € G° + L°, then ma = gax + f.x = 0+ 0, thus
z € (G°+ L)+,
Conversely, we have (G° + L°)t C (G°)* (particular case of: If Y C Z then Z+ C Y1), and

(G°)* = G since G is closed,, thus if x € (G° + L°)* then z € G; And similarly z € L,; Thus x € GN L.
Similar proof for (IT7)2. un

Let E X F be equipped with the (usual) norm ||(z, y)||pxr = max(||z||g,||y||F), so E x F is a Banach
space.

Lemma 11.6 If T is continuous, then its graph
GT)={(z,y) e ExFst. 3z e E, y=Ta} ={(z,T.x) e Ex F} (11.8)

is closed in E x F.

Proof. If ((z,,T.zy)))n~ is a Cauchy sequence in G(T'), then, E being a Banach space, (z, )y« converges

toward a x € FE, thus, T being continuous, T.z,, convergence toward T'.x € F, so (z,T.xz) € G(T). ’a
We have
G(T') ={(m,T".m) € F' x E'}. (11.9)
Lemma 11.7 If T is continuous, then G(T") is closed in F’ x E’, and
(m,0) € G(T") < (—4,m) e G(T)°. (11.10)

Proof. Let ((my,T".my))n+ be a sequence in G(T) s.t. (my, T .mp) —n—soo(m, z) € F/ x E'. Thus
my, —m € F' and T.m,, — 00 k € E', that is (T'.my, ) g g —n—oo(k,2)pr. g € R for all z € E.
And we have to check that k = T".m. For all x € E, we have (T".my,x)g'. g = (my,T-x)p p, thus
<mn, T.:L'>F/1F —n—o00 <l€, 1'>E/,E; i.e. <T’mn, 1'>F’,F —n—o0 <l€, 1'>E/,E7 thus T’mn, — s k € F'. So
G(T") is closed.

(m,ﬁ) S G(T’) Sl=T m<s <€, $>E’,E = <T’.m,:€>E/7E = <m,T.:c>E/7E forallz € £ & <£;1'>E/,E —
(m,Tx)prg=0forallz € E < (({,—m), (z,T.2))p'xr gxr =0forallz € E < ({,—m) € G(T)°. du

Define
L:=FE x {0}. (11.11)

L is closed in E x F since F and {0} are, and
L°={0} x F'. (11.12)

Indeed L° = {(¢,m) € E' x F' : {({,m), (,0))p'xr Exr =0,Vx € E} ={({,m) € E' x ' : ({,x)p g +
0=0,Vz e E} ={0} x F'.

Lemma 11.8
Ker(T) x {0} =G(T)N L (11.13)
ExIm(T)=G(T)+ L (11.14)
{0} x Ker(T') = G(T)° N L° (11.15)
Im(T") x F' = G(T)° + L° (11.16)

Proof. (z,y) € Ker(T) x {0} iff T = 0 and y = 0; And (z,y) € G(T)NL iff y = Tz and y = 0,
thus (IL.I3).

(z1,11) € E xIm(T) iff (z1,y1) = (z1,T.2}) for some 2} € E; And (z2,y2) € G(T) + L iff 325, € E
and 3z} € E s.t. (z2,y2) = (25, T.xh) + (25,0) = (xh + o, T.xh) = (w3, T.(x3 — x4)), thus (ITI4).

(¢,m) € {0} x Ker(T") iff £ = 0 and m € KerT’; And (¢,m) € G(T)° N L° iff (—m,l) € G(T"),
cf. ([II0), and (¢,m) € L°, ie. iff £=—-T"m and £ =0, i.e. iff £ =0 and m € KerT", thus (IT.I3).

(6,m) € Im(T") x F' ifft 3k € F' st. £ =T'.k and m € F'; And (¢,m) € G(T)° + L° iff 3(¢1,m1) €
G(T)° and 3(la,ms) € L° s.t. £ = {1 + {3 and m = my + ma, i.e., with (ILI0) and (ITI2), iff Imy € F’
(and then —¢; = T'.m) and mg € F’ s.t. £ = —T.m1 + 0 and m = my + ma, ie. iff £ € Im(T") and

m & F/, thus (m) l.l
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Corollary 11.9

Ker(T) = Im(T")*, (11.17)
Ker(T") = Im(T)°, (11.18)
(Ker(T))° = Im(T"), (11.19)
Ker(T")* = Im(T) (11.20)

Proof. (ILI0) gives R(T')* x {0} = (G(T)° + L°)* = G(T) N L, cf. (TL7), thus = Ker(T) x {0},
cf. (IT13), thus (ILITTD). Thus (ITIJ).

@I gives {0} x Im(T)° = (G(T) + L)° = G° N L°, cf. (IL1), thus = {0} x Ker(T"), cf. (ILIH),
thus (ILI8). Thus (I1.20). n

Proof of theorem [I1.2: apply corollary 1.9

12 A well-posed mixed problem

12.1 Notations

Let V and @ be two Banach spaces. Let b(,-) : V x @ — R be a bilinear form. b(-,-) is said to be
continuous (or bounded) iff

Je>0, VY(v,q) € By(0,1) x Bg(0,1), [b(v,q)] <ec. (12.1)
Then let
1| := sup [b(v,q)|. (12.2)
v€By (0,1)
a€Bg(0,1)

And let L(V,Q;R) be the space of bilinear and continuous forms with its (usual) norm given by (I22).
If b(-,-) € L(V,Q;R) (bilinear and continuous), then define

V -Q =V
B:{ @ } and Bt:{Q . } (12.3)
v — Bv q — B'g
by
b(v,q) = (Bv,q)q @ = (B'q,v)v,v. (12.4)

Thus B and B! are linear (trivial) and continuous with
18Il = 118" = loll- (12.5)

Indeed |[Bullv: = supcp, 0,1y {BY, 9)@/,ql = suPuep, 0.1y [0(v, @) < supgep, o) llbl[vllvalle =
[[6][ [[v]]v gives ||B]| < [[b]| (continuity), and |b(z,y)| = [(Bv,q)q ¢l < [|Bz|lg lylle < [IBlll=llv]lylle
gives [[b|| < ||B||v:. So B € L(V;Q"). Idem pour B*.

Suppose @ reflexive, cf. definition B2 then the dual B’ € L(Q";V’) of B € L(V;Q’), defined by
(B'v, )y v = (v, Bl)gr g for all v € Q" and £ € V' cf. (R, is identified to B':

L(Q";V"Y> B ~B'c L(Q; V). (12.6)

Suppose V reflexive, cf. definition B2, then the dual (B') € L(V";Q’) of B € L(Q; V"), defined by
(BY'v,q)q.0 = (v, B)yyny: for all v € Q" and £ € V' cf. (8, is identified to B:

LV":Q")> (BY ~Be L(V;Q). (12.7)

12.2 The mixed problem

Let a(-,-) : VxV — R and b(-,-) : V x Q@ — R be bilinear forms. Let f € V/ and g € Q' (linear
forms). A mixed problem is a problem of the type: Find (u,p) € V x @ s.t.

{ a(u,v) +b(v,p) = (f,v)v v, VeV,

12.8
b(u, q) =(9,9)¢ .. Vg€, (12.8)

cf. (CI).
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12.3 The inf-sup conditions
For the existence (and control) of p, we suppose that the range Im(B?) of B' : Q — V" is closed, that

is, cf. (810),
38 >0, Vg € Q, [|B'qllv: > Bllallq/xer(54), (12.9)

ie.,

b(v,q

28>0, Y€ Q, sup 220 > Blglig (o, (12.10)

veV ||U||V/Ker( B)
sup b(v,q)

9€Q VEV [vllv/ker(m) lall g /xer(nt)

For the existence (and control) of u, we suppose the range Im(B) of B : V — Q' is closed, that is, we

suppose, cf. (810),

also written as the inf-sup condition inf

38> 0, Vo €V, [|Bollgr = Bl[v]lv/ker(5): (12.11)
ie.,
b
98>0, eV, sup 20D
q€Q ||Q||Q/Ker(3t)

. . e b
also written as the inf-sup condition inf,ey supyecq oy <B()1ﬁg|)| — > .
er Q/Ker(B

Remark: With (TZ6) or (IZ7), the reflexivity of @ or V gives that (IZII) implies (IZ9) or (IZ9)
implies (I2Z.17)).

> BlIvllv/Ker(B)> (12.12)

12.4 The theorem for mixed problem

Theorem 12.1 . Hypotheses: (i) (V,(-,-)v) is a Hilbert space, (Q, ||.||q) is a reflexive Banach space,
feV', andge Q.
(ii) The bilinear form a(-,-) is continuous on V, cf. (IZ]), and coercive on Ker(B), that is,

Ja >0, Yo € Ker(B), a(v,v) > al|v]|3. (12.13)

(iii) The bilinear form b(-,-) is continuous on V x Q, cf. (IZ1)), and B is surjective (= onto), so we
have (IZT1) and then (IZ9) since Q is reflexive.

Conclusion: Problem {I2Z38) has a unique solution (u,p) € V x Q/KerB! that depends continuously
on f and g, and more precisely, with C, = (1 + @),
1 C,
lully < —[Ifllv- + FIIQIIQ',
(12.14)

Ca llal
Iplla/merse < = (111l + 5 llgller)

Proof. Let uy € V s.t. B.u, = g, exists since B is surjective, and |[ug||v/ker(p) < %||g||Q/7 cf. (I210)).
Let ug € Ker(B) be the solution of the problem: Find ug € Ker(B) s.t.

a(ug,vo) = (f,vo)v,v — a(ug,vo), Vv € Ker(B). (12.15)

The Lax—Milgram theorem tells that (I2.15)) is well-posed: Indeed, (KerB, (-, )y ) is a Hilbert space, a(-, -)
is bilinear continuous coercive, and F : vy € Ker(B) — F(v) := (f, vo)v/, v — alug,vo) is linear (trivial)
and continuous on Ker(B), with ||F||V/ <||fllv: + llall lugllv (easy check). So ug exists, is unique, and
lluollv < ZIIFIlv, that s, [[uollv < Z(IIfllv: + llall [lugllv) < Z(IIfllv: + llall Fllgller)-

Then let u := up + u4. So a(u, v) = (f,v)v/ v, cf. ([ZI0), and uy € Ker(B) and Bu, = g give
b(u,q) = b(uo, q) + b(ug,q) =0+ (g,9)¢’,@, therefore u is as solution of (IZJ).

Moreover u is independent of u,: If si uj also satisfies Buy = g, if uy € Ker(B) is the associated
solution, if v’ = up + uy, then u — v’ = ug — ug + ug — uy, € Ker(B) (since B(uy — uy) = g — g = 0) and
a(u —u',v9) = 0 for all vy € Ker(B), thus u —« = 0 (coercitivy of a(-,-) on Ker(B)), and v = «’. Thus
u = ug + uy € V exists and is unique.

And [[ully < [luolly + [agllv < 2(1fllv + llall 2llgllo) + Slgller, that is (CZTH);.

Then we look for p solution of b(v, p) = a(u,v)—(f,v)v. v forallv € V. Let L(v) := a(u,v)—(f,v)y
So if p exists then L(v) = b(v,p), thus L vanishes on Ker(B), i.e., L € (Ker(B))°. And (Ker(B )) =
Im(B?), so (Ker(B))° = Im(B?) (closed ranged theorem MT.2). Thus there exists p € Q s.t. L = Blp.

And ||Btp||V/ Z ﬂ”p”Q/KerBta Cf. (m) Then (Dm)Q. ...
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12.5 The saddle point problem
Let L:V x Q — R be defined by

L(v,q) = %a(v,ﬁ) +b(v,q) = (f,v)r2 — (9,9) L2 (12.16)

If a(-,-) is symmetric then L is the Lagrangean bilinear form associated to the mixed problem ([I2.]).
And the associated optimization problem is: Find (u,p) € V x @ (saddle point) s.t.

L(u,p) = inf (sup L(v, q)). (12.17)
veV 4eqQ

If (u,p) is a solution of (IZIT), then, a(-,-) being symmetric,

Yo eV, g—ﬁ(u,p).v = lim E(u+hv,pfz — L(u,,) = a(u,v) + b(u,q) — {f,v),
v h=0 - (12.18)

L(u,p)

oL . L(u,pthg
Vg € Q, 8—q(u,p)-q=,1lg% ( }z

So (u,p) is solution of (IZ8).

= b(u,q) — (9, 9)-

13 The surjectivites of the divergence operator

Let 2 be an open bounded set in R”.
Vx@Q —R

(¥, q) %b(v,q):/ﬂdivﬁ(z)q(x)dﬂ

Let b(-,-) be defined by b : where V and ) are appropriate

Banach spaces, see below (b(-,-) is bilinear).

Let B : V — @’ be the associated operator defined by (Bv, ¢)¢/,¢ = b(v, ¢), and B will be denoted div
(notation of distribution of L. Schwartz).

Then the operator B' : Q — V' is defined by (B'q,v)v/ v = (Bv, )¢ .0 = b(v, q).

The integration by parts, if legitimate, gives

b(¥,q) = (BT, q)qr.@ = (B'q, B)vr,v = —/qu(w)-ﬁ(w) dQ+/Fq(w) v(x).7i(x) dr'. (13.1)

13.1 The divergence operator div: H4(Q) — L?(Q) is surjective
Here b(7, ¢) = (divd, ) 2.

HY(Q) — L*(Q)

Theorem 13.1 The linear mapping div : } is continuous and surjective. And the

v — divd,
open mapping theorem gives, cf. (818),
6 >0, Vv € HdiV(Q), ||diV(U)||L2(Q) > ﬁ||’17||Hdiv/Ker(div), (13.2)
or _
16 >0, Vv € Hdw(Q), dp € L2(Q), (div(ﬁ),p)lg(g) > ﬁ||’17||Hdiv/Ker(div)||p||L2(Q), (13.3)
divd 2
also written as the inf-sup inequality 38 > 0, inf sup |(divd, p) |

veH(Q) per2(0) [|0]|mam /ker(aiv)| [Pz~

Proof. Since ||divd]|p: < ||T]]gaiv, div is continuous. Let f € L?(Q). Let p € H(2) be the solution
of Ap = f (Lax-Milgram theorem). So div(gradp) = f € L2(f), thus gradp € H(Q); Then let
7 = gradp € H4V(Q). Thus div' = f, and div is surjective.

And (IZTI) gives (I32), thus (I33). .
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13.2 The divergence operator div: H{V(Q) — L3(Q) is surjective
Here b(7, ¢) = (divd, ) 2.

HG™(Q) — Lj()

Theorem 13.2 The linear mapping div : . o
v — divd,

} is continuous and surjective. And the
open mapping theorem gives, cf. (816),

36> 0, Vo e H§V(Q),  [|div(D)|zz(0) = BTl g jker(aiv): (13.4)

divd,
also written as the inf-sup inequality 38 > 0, inf u = |(dive, p)rs| >
PELF(DQ) e Hv () ||U||HgiV/Ker(div)||p||Lg

Proof. Since ||divd][rz < ||7]gaiv (), div is continuous. Let f € L§(). Let p € H'(Q)/R be the
solution of (gradp, gradq) .2 = (f,q)r2 for all ¢ € HY(Q)/R, cf. the Lax-Milgram Theorem in H()/R
(the hypothesis f € L3(f), that is_‘(f, 192L2 =0 (= (glr;tdp7 gr_édlg)Lz), is mandatory an(i is called the
compatibility condition). And (gradp, gradq)r2 = (f,q)r2 for all ¢ € H*(Q)/R gives (gradp.ii);r = 0.
Thus with 7 = gradp, we have 7 € H{V () and div(gradp) = f € L%(), so div is surjective from HIV ()

to L2(2). So we get (I3.4), cf. (I2I1). o

13.3 The divergence operator div: L?(Q)" — H~(Q) is surjective

Here b(¥, q) = (div¥, ¢) g g3 = —(U,dq) 12(0),12() = — Jo dg(x).0(x) dS2 (distributions of L. Schwartz)
for all ¢ € HJ(9).

. @ - HTO) ] . o
Theorem 13.3 The linear mapping div : . L is continuous and surjective. And the
v — divv,
open mapping theorem gives, cf. (816),
36 >0, vo e L*(Q), |[div(d)|[z-+ > Bl|7| L2 0)/Ker(aiv) (13.5)
. . : . . [b(7,q)|
also written as the inf-sup inequality 38 > 0, inf sup

PEH(Q) veL2(Q) ||17||L2(Q)/Ker(div)||p||Hg N

.o ivil i,grad . .
Proof. ||divi][z-1 = supye i (a) ‘(|C|1¢W$|> = SUPye 1 () %‘ﬁ)” < ||i]|p2 (Cauchy—Schwarzin L?(2)),
9 0

therefore div is continuous. Let £ € H~'(Q). Thus there exists f € L*(Q) and @ € L?(Q)" s.t.
( = f+divi, cf. @24). Let @ € HW(Q) s.t. divid = f, cf. thm. I3} So ¢ = div(w@ + @) with
i+ € L*(Q)", and div is continuous. So we get ([3.0), cf. (TZI1). .

13.4 The divergence operator div: H}(Q)" — L2(Q) is surjective
Here b(¥,q) = (divd, q) 2.

Theorem 13.4 The linear mapping

div {H&(fn" = L§(©)

. o is continuous and surjective. (13.6)
v — divd,

And the open mapping theorem gives, cf. (816),

n

38> 0, Vi€ Hy(Q)", |div(9)|[zz = Bl a2 )" /Ker(div)» (13.7)

div?,
also written as the inf-sup inequality 38 > 0, inf sup — |(divD, g) 2] > p.
PELF(Q) geHL ()™ ||U||H3/Ker(div)||p||Lg)L2
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Proof. div = grad/ . HY(Q) — L3(Q) is the dual operator of the gradient operator grad : L2(Q) —
H~1(Q)". Since the range of the grad is closed, cf. theorem [I0.]] the range of the div operator is closed,
cf. the closed range theorem [T.2l (Remark: For any 7 € H{ ()" we have [, dividQ = [, #.iidl = 0, so
Tm(div) C L2(Q).)

With div : H}(Q)" — L?(Q) we have Ker(div) = {7 € H}(Q)" : divi = 0}, and

Ker(div) 6 := {7 € HH(Q)" : (3,@) gy =0, Vi € HH(Q)", divid = 0} (13.8)

—1 1
Let Al;{H () = Hy()
f su=A"1f

}, that is, u € HJ (2) solves the Dirichlet problem Au = f.

Corollary 13.5
Ker(div)™# = {# = A (gradq), g € L2(Q)} (= A~ (grad(L2()))), (13.9)

that is ¥ € Ker(div) " iff AT derives from a potential q € L().
And H}(9)" = Ker(div) @ Ker(div) ™" give a decomposition of H(Q)".

Proof. Let A := {7 € H}{(Q)" : 7= A~ (gradq), ¢ € L2(Q)}. So 7 € Aiff 7 € H}(Q)" and Jq € L2(),

n

n

e AC Ker(div)LHé Let @ € A. Thus 3¢ € L*(Q) s.t. (7,0) gy = (g, divd) 2 for all & € Hg(Q)".
Thus (5, @) = 0 for all @ € Ker(div), thus 7 € Ker(div) .

. Ker(div)LH& C A: Let v € Ker(div)LHé. We look for ¢ € L3(Q) s.t. Av = gradg: thus we look for
g € L3(Q) s.t. AT = gradg, that is (q,divZ) 2 = — (AT, 2) g1 gy for all Z€ HI(Q).

The operator B = div : z € H(Q)/Ker(div) — divZ € L3(f) is linear continuous bijective, with
[divZ]| L2y < |IBI| 21| 21 (@) /Ker(div)-

Its inverse B~ : ¢ € L3() — B~y € H}(Q)/Ker(div) is linear continuous bijective, with
1B~ 0l 13 (@) /xeraiv) < IBTHIHY] Lz

Let a(-,-) : (¢,%) € LE(Q) x LE(Q) — a(q,¥) = (q,%)r2: a(-,-) is trivially bilinear continuous coercive
in (L2(Q), (-, ) 2).

Let £ : 9 € L3(Q) — L(y) = — (AT, Bilz/J)Hfle& = (gradd, grady)) 2 € R: £ is trivially linear, and is
continuous since [£(4))| < [[AT|| g1 ||B7'||z2 < |[AT]| g || BT[] 2.

Thus the Lax-Milgram theorem gives the existence of g. And the first point shows that if A7 = grzmdq
then 7 L 1 Ker(div). un

AT = gradg, i.e. (7, W) gy = (gradd, gradw) 2 = (¢, divi) 2 for all & € H} ()
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A Singular value decomposition (SVD)

We want to estimate the § inf-sup constant, cf. (IZI2)). Consider a m % n rectangular matrix B. We
look for its singular value o;, that is, we look for a m * n “diagonal” matrix o, i.e. e.g. in the case m < n,

op O 0O 0 ... 0
0 o 0 0 :
¥ = diag,, ,(01,...0p) = | U ’
0
0 op 0 0
and for two matrices U m*m and V n *xn s.t.
» =UT.BY,

with UT the U transposed matrix.

Proposition A.1 Let B be a m xn real matrix. If \; is an eigenvalue of the n * n matrix BT .B, then
\i is positive and is an eigenvalue of the m * m matrix B.BT.

If \; is an eigenvalue of the m * m matrix B.BT, then \; is positive and is an eigenvalue of the n * n
matrix BT .B.

Let 0; = /\;. Let (¥i)1,....n be an orthonormal basis of eigenvectors of BT.B associated to the
eigenvalues \;, and let V' be the (orthonormal) matrix whose j-th column is U;. Let (@;)1,.., be an
orthonormal basis of eigenvectors of B.BT associated to the eigenvalues \;, and let U be the (orthonormal)
matrix whose j-th column is @;. And let ¥ = diag,, ,,(01,...,05) where p = min(m,n). Then the singular

value decomposition of B is
»=U"BYV, ie B=UXTVT. (A1)

Thus, if rank(B) =r and o1 > ... > 0, > 0 (and o; = 0 pour ¢ > r), then

B=Y o;ii;.i . (A.2)
1=1

U . , . B , ;
Moreover, (ZF > € R™*" j=1,..,p, is an eigenvector of <BOT 0 > associated to the eigenvalue o;.
J

Proof. BT .B is symmetric real, thus diagonalisable. Moreover BT.B is non negative since 7 .(BT.B).Z =
(B.7)T.(B.%) = ||B.Z||*> > 0. Let Ay,..., \, be its eigenvalues, and A\; > ... > \,(> 0), even if you have
to renumber them. Let ¢; be associated eigenvectors constituting an orthonormal basis in R™, and let V'
be the orthonormal matrix which columns are made of the @;’s. Suppose (B) < p = min(m,n), so that
rank(BT.B) < p and Ap+1 = ... = Ay, = 0. Then

diag,, ,, (A1, -, Ap, 0,...,0) = VI.BT . BV nxn matrix.
Same steps for B.BT with eigenvalues w1 > .. > pm > 0 and the associated orthonormal matrix U:
diag,, , (f41; s fip, 0, ...,0) = UT.B.BT.U  m * m matrix.

With B.BT .@; = u;@; we get BT.B.B” .4i; = u; BT .;, thus BT .4; is an eigenvector for BT.B associated
to the eigenvalue y;. And BT .B.5; = \;¥; tells that u; is one the the ;.

Remark: If ¥ = diag,, ,,(01,...,0p) = UT.B.V then ©.X7 = diag,,, ,,, (01, ...,02) = (UT.B.V).(UT.B.V)T =
UT.(B.BT).U, and the \; = 02 are indeed the eigenvalues of B.BT associated to the eigenvectors of U.
Idem for BT.B. And the matrices U and V are the matrices made of the column vectors ; and ;.

Existence of the decomposition: Let \;, i = 1,...,n, be the eigenvalues of BT.B. Suppose A\; > ... >

Ar>0,and Mgy = ... =\, =0. Let 0 = /.
Then let B
fj="—2ecR™ 1<j<r (A.3)
0j
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The i; are (orthonormal) eigenvectors of B.BT: Indeed (B.BT).i; = B'(BU'VB)'UJ = A]f’vﬂ = \;jU;. And
J J
UZ-T-UJ‘ _ 9T .(BT.BY) _ )\‘ﬁiT.ﬁj

— j =+ = 0ij, and the @; are the normalized vectors B.v;. We then complete
0 i0j

(@j)j=1,..r to get an orthonormal basis in R™ (e.g. with Gram—Schmidt method). Let U be the m * m
matrix made of the columns vector ;.
Let ¥ = UT.B.V. So [%;] = [i].B.%;] = [ojil .4;] = [0j6;5] if 7 <, and vanishes if j > r (since

B.7; = 0). Thus (AJ). And then (A2)).

And B’L_;] = O'jﬁj fOI‘j S r, cf. m), thus BTBﬁJ = O'jBT.ﬁj = )\jﬁj for ] S r, SO BT.ﬁj = O'j’[fj
for j <. And if j > r then BT.ii; = 0 since @; € (Im(B))* = Ker(BT). Thus ( 0 B) ) <u3> =

BT 0 7
Us
O'j ( _,]).
Uj

And if B is a symmetric positive real matrix, then BT.B = B? = B.B”, so BT.B = B.BT; With
B > 0 thus its eigenvalues are non negative, o; = ++/\;, thus the o; are the singular values. .

Remark A.2 If m > n and j > m + 1 then the @; are useless, and U is computed as a m * n matrix
(and UT as a n * m matrix). And ¥ is then a n * n matrix. This method is called the “Thin SVD”.  Ja

Corollary A.3 Rang(B) = r, Ker(B) = Vect{¥,41,...0,} and Im(B) = Vect{iy,...d, }.
Proof. Apply (A2). =

Corollary A.4 Let k <r—1 and By = Zle oiii;.U} . Then

i B-Z|| = =||B-B
s =0kt =l kll;
where ||Z|| = supz_; Hﬁéﬂnﬁm is the usual norm.

This gives a numerical measure of the rank of B: If oy is of the precision order of the computer,
then the numerical rank o B is k.

Proof. We get U”.B,.V = diag,, (01, ...,0%,0, ...) (easy check).
Thus UT.(B — B).V = diag,, ,(0,...,0,0%41, ..., 07,0, ...), thus ||B — Bg|| = 0j41, and in particular

i B—-7|| < .
Z:Rgll]lgnZ:k || || = Tkt

Let Z be a m *n matrix with rank k. Thus dimKerZ = n — k. Let E = KerZ (| Vect{?1, ...Uk+1}. So
dim(F) > 1 (intersection of a dimension n—k space with a dimension k+1 space in R™).

S " o o k g k .
Lot # € 5.t ||l = 1; Then | [(B~2).Z2n = | Bn = || S 0@ D2 = T4 o2 22
the @; being orthonormal vectors. Thus ||[(B—2).Z||2m > oki1 Sorty (07.2)% = op||@]|? = og1. So
min  ||B = Z|| > og41. ==
Z:RangZ=k

B Application: The discrete inf-sup condition

Example of divii = 0, corresponding to B a rectangular m * n matrix (computation of b(@, gx) = 0).
Here BT stands for [By], cf. (12), and we compute the singular values of BT, i.e. the eigenvalues of

T
(g BO ) We get:

Proposition B.1 Let o, > 0 be the smallest positive eigenvalue of B. We have (value of the inf-sup
constant)
b(vp,
inf sup M = 0p.
an€Qn vy, ev;, [lvnllvlianlle

Proof. B =)/, 0,u;.4] gives B.Z =31, 0y(t] .Z)U;, s0 §" .B.T =31, 03] %) (§" ;).
Let ¥=3"_ 270 and § = 3 _, y*ig. Thus y7.B.Z=Y,_, oy’

Thus for ||z|| = 1, and 7 being fixed with ||7]| = 1, the sup is given by 2* = (2173;2)%, and gives
y'.B.Z% = m S o2y? = (3, 02y?)z. Thus the inf for 7 is given with ¥ = ,, and gives
:leBf = Op. un
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