Notes de cours de l'ISIMA, deuxième année, http://www.isima.fr/~leborgne

Courte introduction:

série de Fourier, Transformée de Fourier Discrète (DFT), Transformée de Fourier Rapide (FFT)

Gilles Leborgne

8 février 2022

Table des matières

1	Pour les fonctions	1
1	Série de Fourier1.1Fonctions à valeurs réelles1.2Expression à valeurs complexes	1 1 2
2	Série de Fourier discrète	2
3	Décalage des notations	4
4	Transformée de Fourier discrète (TFD) et son inverse	5
5	${\it Transform\'ee} {\it de Fourier rapide} ({\it TFR}) = {\it Fast Fourier Transform} ({\it FFT})$	5
6	Convolution périodique et calcul par FFT	6
7	Convolution discrète et calcul par FFT	8
8	Remarques : équation de la chaleur	9

Première partie

Pour les fonctions

Série de Fourier

Fonctions à valeurs réelles

On note $L^2([0,T];\mathbb{R})=\{f:[0,T]\to\mathbb{R}:\int_{t=0}^Tf(t)^2\,dt<\infty\}$ l'ensemble des fonctions dites "d'énergie finie". On note $(\cdot,\cdot)_{L^2}$ le produit scalaire usuel dans $L^2([0,T];\mathbb{R})$ donné par $(f,g)_{L^2}=1$ $\int_0^T f(t)g(t) dt$, et on note $||.||_{L^2}$ la norme associée donnée par $||f||_{L^2}^2 = (f,f)_{L^2}$. On note abusivement 1 la fonction constante $t \to 1$, et $\cos k\omega t$ et $\sin k\omega t$ les fonctions $t \to 1$

 $\cos(k\omega t)$ et $t \to \sin(k\omega t)$.

Théorème de Stone-Weierstrass : $(1, \cos \omega t, \sin \omega t, \cos 2\omega t, \sin 2\omega t, ..., \cos n\omega t, \sin n\omega t, ...)_{n \in \mathbb{N}^*}$ est une base dans $L^2([0,T];\mathbb{R})$, appelée base de Fourier. Ainsi, toute fonction $f\in L^2([0,T];\mathbb{R})$ est de la forme :

$$f(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos(k\omega t) + \sum_{k=1}^{\infty} b_k \sin(k\omega t) \quad \text{(série de Fourier de } f), \tag{1.1}$$

les a_k et b_k étant réels. De plus la base de Fourier est orthogonale dans $L^2([0,T];\mathbb{R})$.

Et (1.1) indique que toute fonction L^2 est somme infinie de fonction périodiques (même les fonctions "non périodiques", i.e. t.q. $f(0+) \neq f(T_-)$. Et $\omega_1 := \omega = \frac{2\pi}{T}$ est la pulsation fondamentale, $\nu_1 := \nu = \frac{\omega}{2\pi} = \frac{1}{T}$ est la fréquence fondamentale, et les $\omega_k := k\omega = \frac{2k\pi}{T}$ et $\nu_k := k\nu = \frac{k}{T} = \frac{k}{T}$ sont les pulsations et fréquences harmoniques (pour $k \geq 2$). Plus précisément, $(\frac{1}{\sqrt{T}}, \frac{\sqrt{2}}{\sqrt{T}}\cos\omega t, \frac{\sqrt{2}}{\sqrt{T}}\sin\omega t, ..., \frac{\sqrt{2}}{\sqrt{T}}\cos n\omega t, \frac{\sqrt{2}}{\sqrt{T}}\sin n\omega t, ...)_{n\in\mathbb{N}^*}$ est une base orthonormale (une b.o.n.) dans $L^2([0,T];\mathbb{R})$ (vérification immédiate de l'orthonormalité). Et donc les calculs des composantes a_k et b_k se fait comme les calculs des composantes d'un vecteur dans \mathbb{R}^n :

$$f(t) = \sqrt{T} a_0 \frac{1}{\sqrt{T}} + \sum_{k=1}^{\infty} \frac{\sqrt{T}}{\sqrt{2}} a_k \frac{\sqrt{2}}{\sqrt{T}} \cos(k\omega t) + \sum_{k=1}^{\infty} \frac{\sqrt{T}}{\sqrt{2}} b_k \frac{\sqrt{2}}{\sqrt{T}} \sin(k\omega t) \text{ donne, pour } k > 0,$$

$$\sqrt{T} a_0 = (f, \frac{1}{\sqrt{T}})_{L^2}, \quad \frac{\sqrt{T}}{\sqrt{2}} a_k = (f, \frac{\sqrt{2}}{\sqrt{T}} \cos(k\omega t))_{L^2}, \quad \frac{\sqrt{T}}{\sqrt{2}} b_k = (f, \frac{\sqrt{2}}{\sqrt{T}} \sin(k\omega t))_{L^2}, \quad (1.2)$$

i.e.

$$a_0 = \frac{1}{T} \int_0^T f(t) dt, \quad a_k = \frac{2}{T} \int_0^T f(t) \cos(k\omega t) dt, \quad b_k = \frac{2}{T} \int_0^T f(t) \sin(k\omega t) dt.$$
 (1.3)

1.2 Expression à valeurs complexes

Soit $(\cdot,\cdot)_{L^2}$ le produit scalaire usuel dans $L^2([0,T];\mathbb{C})$ donné par $(f,g)_{L^2}=\int_0^T f(t)\overline{g(t)}\,dt\in\mathbb{C}$, et soit $||.||_{L^2}$ la norme associée où donc $||f||_{L^2}^2=(f,f)_{L^2}=\int_0^T|f(t)|^2\,dt$ (où pour $x,y\in\mathbb{R}$ et $x=x+iy,\ \bar{z}=x-iy$ est le conjugué et $|z|=(x^2+y^2)^{\frac{1}{2}}$ est le module de z=x+iy).

Le passage en complexe simplifie les calculs génériques car une exponentielle se "dérive en ellemême" : si $\varphi(t) = e^{\alpha t}$ alors $\varphi'(t) = \alpha \varphi(t)$ pour tout $\alpha \in \mathbb{C} - \{0\}$ (la fonction exponentielle est le "phénix" des mathématiques : elle renaît à chaque dérivation). Et pour $f \in L^2([0,T];\mathbb{C})$, on a

$$f(t) = \sum_{k=-\infty}^{\infty} c_k e^{ik\omega t}$$
 (série de Fourier de f), où, $\forall k \in \mathbb{Z}, c_k \in \mathbb{C}$. (1.4)

Cas particulier f à valeurs réelles et (1.1): pour k > 0,

$$c_0 = a_0, \quad c_k = \frac{a_k - ib_k}{2}, \quad c_{-k} = \overline{c_k} \left(= \frac{a_k + ib_k}{2} \right), \quad a_k = c_k + c_{-k}, \quad b_k = i(c_k - c_{-k}).$$
 (1.5)

En effet, notant $c_k = \alpha_k + i\beta_k$ où $\alpha_k, \beta_k \in \mathbb{R}$, on a, pour $k \neq 0$, $c_k e^{ik\omega t} = (\alpha_k + i\beta_k)(\cos(k\omega t) + i\sin(k\omega t)) = \alpha_k \cos(k\omega t) - \beta_k \sin(k\omega t) + i\alpha_k \sin(k\omega t) + i\beta_k \cos(k\omega t)$. Donc (1.4) donne

$$f(t) = \alpha_0 + i\beta_0 + \sum_{k \in \mathbb{Z}^*} (\alpha_k \cos(k\omega t) - \beta_k \sin(k\omega t)) + i(\sum_{k \in \mathbb{Z}^*} \alpha_k \sin(k\omega t) + \beta_k \cos(k\omega t))$$

$$= \alpha_0 + \sum_{k > 0} (\alpha_k + \alpha_{-k}) \cos(k\omega t) - (\beta_k - \beta_{-k}) \sin(k\omega t))$$

$$+ i(\beta_0 + \sum_{k > 0} (\alpha_k - \alpha_{-k}) \sin(k\omega t) + (\beta_k + \beta_{-k}) \cos(k\omega t)).$$

$$(1.6)$$

Les fonctions $1, \cos(k\omega t), \sin(k\omega t)$ sont indépendantes, donc $a_0 = \alpha_0$, et, pour k > 0, $a_k = \alpha_k + \alpha_{-k}$, $b_k = -(\beta_k - \beta_{-k}), \ \beta_0 = 0$, $\alpha_k = \alpha_{-k}, \ \beta_k = -\beta_{-k}$, donc $a_k = 2\alpha_k = \alpha_{-k}, \ b_k = -2\beta_k = -\beta_{-k}$, d'où (1.5).

Et, pour $k \in \mathbb{Z}$ posant $\varphi_k(t) = \frac{1}{\sqrt{T}} e^{ik\omega t}$, la famille $(\varphi_k)_{k\in\mathbb{Z}}$ est une b.o.n. dans $L^2([0,T];\mathbb{C})$; donc $\sqrt{T} c_k = (f,\varphi_k)_{L^2}$, i.e.

$$c_k = \frac{1}{T} \int_{t=0}^{T} f(t)e^{-ik\omega t} dt.$$
 (1.7)

i.e. c_k est la valeur moyenne de f pour la mesure $e^{-ik\omega t} dt$.

En termes de la "période" T (sous-entendu f est prolongée par périodicité à tout $\mathbb R$) :

$$f(t) = \sum_{k=-\infty}^{\infty} c_k e^{2ik\pi \frac{t}{T}}, \quad \text{et} \quad c_k = \frac{1}{T} (f, e^{2ik\pi \frac{t}{T}})_{L^2} = \frac{1}{T} \int_0^T f(t) e^{-2ik\pi \frac{t}{T}} dt.$$
 (1.8)

2 Série de Fourier discrète

Une fonction $f \in L^2$ est définie presque partout : changer la valeur de f en un point ne change pas l'intégrale (1.5). Et quitte à modifier la valeur ponctuelle f(T), on pose f(0) = f(T) (simplifie

l'écriture). On partitionne l'intervalle [0,T] en N intervalles égaux :

$$[0,T] = \bigcup_{n=1}^{N} [t_{n-1}, t_n] \quad \text{où} \quad h = \frac{T}{N} \quad \text{et} \quad t_n = nh \quad (\text{donc } t_n - t_{n-1} = h). \tag{2.1}$$

Hypothèse: on connaît les $f(t_n) = \text{not\'e} f_n$ pour n = 0, ..., N avec $f_N = f_0$ (= f(0) = f(T)).

 \mathbf{But} : on souhaite avoir une estimation de la série de Fourier de f, au sens :

si
$$N$$
 est pair, connaître $c_{-\frac{N}{2}}, c_{-\frac{N}{2}+1}, ..., c_{\frac{N}{2}-1},$ donc $f(t) \simeq \sum_{k=-\frac{N}{2}}^{\frac{N}{2}} c_k e^{ik\omega t}.$

(Pour la transformée de Fourier rapide on aura N = une puissance de 2).

Démarche : on a

$$c_k = \frac{1}{T} \sum_{n=1}^{N} \int_{t_{n-1}}^{t_n} f(t)e^{-ki2\pi \frac{t}{T}} dt,$$
 (2.2)

et connaissant les $f_n = f(t_n)$, l'idée est d'estimer les $\int_{t_{n-1}}^{t_n} f(t) e^{-ki2\pi \frac{t}{T}} dt$ à l'aide de la formule des trapèzes :

$$\int_{t_{n-1}}^{t_n} f(t)e^{-ki2\pi\frac{t}{T}} dt \simeq \frac{f(t_{n-1})e^{-2ik\pi\frac{t_{n-1}}{T}} + f(t_n)e^{-2ik\pi\frac{t_n}{T}}}{2} (t_n - t_{n-1})$$
$$= \frac{h}{2}e^{-2ik\pi\frac{(n-1)h}{T}} (f_{n-1} + f_ne^{-2ik\pi\frac{h}{T}}).$$

Donc

$$c_k \simeq \tilde{c}_k = \frac{h}{2T} (f_0 + f_1 e^{-2ik\pi \frac{h}{T}} + e^{-2ik\pi \frac{h}{T}} (f_1 + f_2 e^{-2ik\pi \frac{h}{T}}) + e^{-2ik\pi \frac{2h}{T}} (f_2 + f_3 e^{-2ik\pi \frac{h}{T}}) + \dots).$$

Donc, avec $\frac{h}{T} = \frac{1}{N}$ et $e^{-2ik\pi \frac{Nh}{T}} = e^{-2ik\pi} = 1$:

$$\tilde{c}_k = \frac{1}{N} \left(\frac{f_0}{2} + f_1 e^{-2ik\pi \frac{1}{N}} + f_2 e^{-2ik\pi \frac{2}{N}} + \dots + f_{N-1} e^{-2ik\pi \frac{N-1}{N}} + \frac{f_N}{2} \right). \tag{2.3}$$

Donc, avec pour $k \in [-\frac{N}{2}, \frac{N}{2} - 1]$

avec
$$\omega_N = e^{\frac{2i\pi}{N}}$$
 (première racine N-ième de l'unité), (2.4)

et donc $\overline{\omega_N} = e^{-\frac{2i\pi}{N}}$, et avec $f_0 = f_N$, on a, :

$$\tilde{c}_k = \frac{1}{N} \sum_{n=0}^{N-1} f_n(\overline{\omega_N})^{kn} \quad (= \frac{1}{N} \sum_{n=0}^{N-1} f_n e^{-2ik\pi \frac{n}{N}}). \tag{2.5}$$

et on aura $f(t) \simeq \tilde{f}(t) = \sum_{k=-\frac{N}{2}}^{\frac{N}{2}-1} \tilde{c}_k e^{2ik\pi \frac{t}{T}}$.

Exemple 2.1 Pour N=4 on a $\omega_4=i$ et :

$$\begin{cases} \tilde{c}_{-2} = \frac{1}{4}(f_0 - f_1 + f_2 - f_3), \\ \tilde{c}_{-1} = \frac{1}{4}(f_0 + if_1 - f_2 - if_3), \\ \tilde{c}_0 = \frac{1}{4}(f_0 + f_1 + f_2 + f_3), \\ \tilde{c}_1 = \frac{1}{4}(f_0 - if_1 - f_2 + if_3). \end{cases}$$

Dans la suite, on mettra les indices négatifs à la fin (pour les boucles de programme):

$$\begin{cases} d_0 \stackrel{\text{def}}{=} \tilde{c}_0 = \frac{1}{4}(f_0 + f_1 + f_2 + f_3), \\ d_1 \stackrel{\text{def}}{=} \tilde{c}_1 = \frac{1}{4}(f_0 - if_1 - f_2 + if_3), \\ d_2 \stackrel{\text{def}}{=} \tilde{c}_{-2} = \frac{1}{4}(f_0 - f_1 + f_2 - f_3), \\ d_3 \stackrel{\text{def}}{=} \tilde{c}_{-1} = \frac{1}{4}(f_0 + if_1 - f_2 - if_3), \end{cases}$$

i.e.
$$\begin{pmatrix} \tilde{c}_0 \\ \tilde{c}_1 \\ \tilde{c}_{-2} \\ \tilde{c}_{-1} \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{pmatrix} \cdot \begin{pmatrix} f_0 \\ f_1 \\ f_2 \\ f_3 \end{pmatrix} = \frac{1}{4} \overline{\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & \omega_4 & \omega_4^2 & \omega_4^3 \\ 1 & \omega_4^2 & \omega_4^4 & \omega_4^6 \\ 1 & \omega_4^3 & \omega_4^6 & \omega_4^9 \end{pmatrix}} \cdot \begin{pmatrix} f_0 \\ f_1 \\ f_2 \\ f_3 \end{pmatrix}$$
, où quand $M = [m_{ii}]$ on note $\overline{M} = [\overline{m_{ii}}]$ la matrice conjuguée.

3 Décalage des notations

Sous forme matricielle, on réécrit (2.5) comme, si N est pair (exercice dans le cas N impair):

$$\begin{pmatrix} \tilde{c}_{0} \\ \vdots \\ \tilde{c}_{\frac{N}{2}-1} \\ \tilde{c}_{-\frac{N}{2}} \\ \vdots \\ \tilde{c}_{-1} \end{pmatrix} = \frac{1}{N} \overline{\Omega}_{N} \begin{pmatrix} f_{0} \\ \vdots \\ f_{N-1} \end{pmatrix}, \tag{3.1}$$

où, avec $\omega_N = e^{\frac{2i\pi}{N}}$, et $\overline{\Omega}_N$ est la matrice conjuguée de :

$$\Omega_{N} = \left[\omega_{N}^{kn}\right]_{\substack{k=0,\dots,N-1\\n=0,\dots,N-1}} = \begin{pmatrix}
1 & 1 & 1 & \dots & 1\\
1 & \omega_{N} & \omega_{N}^{2} & \dots & \omega_{N}^{N-1}\\
1 & \omega_{N}^{2} & \omega_{N}^{4} & \dots & \omega_{N}^{2(N-1)}\\
1 & \omega_{N}^{3} & \omega_{N}^{6} & \dots & \omega_{N}^{3(N-1)}\\
\vdots & & & & \vdots\\
1 & \omega_{N}^{N-1} & \omega_{N}^{2(N-1)} & \dots & \omega_{N}^{(N-1)(N-1)}
\end{pmatrix},$$
(3.2)

matrice symétrique. Puis on pose, si N est pair (décalage des notations) :

$$\begin{pmatrix} d_0 \\ \vdots \\ d_{\frac{N}{2}-1} \\ d_{\frac{N}{2}} \\ \vdots \\ d_{N-1} \end{pmatrix} \stackrel{\text{def}}{=} \begin{pmatrix} \tilde{c}_0 \\ \vdots \\ \tilde{c}_{\frac{N}{2}-1} \\ \tilde{c}_{-\frac{N}{2}} \\ \vdots \\ \tilde{c}_{-1} \end{pmatrix}, \text{ i.e. } \begin{cases} d_k = \tilde{c}_k & \text{si } 0 \le k \le \frac{N}{2} - 1, \\ d_k = \tilde{c}_{k-N} & \text{si } \frac{N}{2} \le k \le N - 1. \end{cases}$$
(3.3)

Donc (3.1) se lit

$$\begin{pmatrix} d_0 \\ \vdots \\ d_{N-1} \end{pmatrix} = \frac{1}{N} \overline{\Omega}_N \begin{pmatrix} f_0 \\ \vdots \\ f_{N-1} \end{pmatrix}, \tag{3.4}$$

forme utilisée pour la FFT (Fast Fourier Transform) = TFR (Transformée de Fourier Rapide).

4 Transformée de Fourier discrète (TFD) et son inverse

Définition 4.1

$$\mathcal{F}_{N}: \left\{ \begin{pmatrix} \mathbb{R}^{N} & \to \mathbb{R}^{N} \\ f_{0} \\ \vdots \\ f_{N-1} \end{pmatrix} & \to \begin{pmatrix} d_{0} \\ \vdots \\ d_{N-1} \end{pmatrix} = \frac{1}{N} \overline{\Omega}_{N}. \begin{pmatrix} f_{0} \\ \vdots \\ f_{N-1} \end{pmatrix}, \right.$$

cf. (3.4), est appelée la transformée de Fourier discrète d'ordre N.

Proposition 4.2 Avec $\omega_N = e^{\frac{2i\pi}{N}}$ racine N-ième de l'unité, on a :

$$\sum_{k=0}^{N-1} \omega_N^k = 0. {(4.1)}$$

De même, pour tout entier relatif $n \neq 0$ modulo N, sachant que ω_N^n est alors une racine de l'unité différente de 1 :

$$\sum_{k=0}^{N-1} \omega_N^{kn} = 0.$$

Preuve. Faire un dessin. Calcul : on note r une racine n-ième de l'unité, i.e. $r \in \mathbb{C}$ tel que $r^N = 1$. Soit encore $r^N - 1 = 0$, soit encore $(r-1)(1+r+r^2+\ldots+r^{N-1}) = 0$. Donc si $r \neq 1$ on obtient $1+r+r^2+\ldots+r^{N-1}=0$: polynôme de degré N-1 qui a donc N-1 racines. Et les ω_N^n pour $n=1,\ldots,N-1$ (modulo N) conviennent (racines n-ième de l'unité différentes de 1).

Corollaire 4.3 La matrice $\Omega_N=[\omega_N^{nk}]=[e^{\frac{2ink\pi}{N}}]$ est inversible d'inverse :

$$\Omega_N^{-1} = \frac{1}{N} \overline{\Omega_N} = \frac{1}{N} [e^{\frac{-2ink\pi}{N}}], \tag{4.2}$$

et donc, si on connaît les d_k , on récupère les f_k à l'aide de (transformée de Fourier discrète inverse) :

$$\begin{pmatrix} f_0 \\ \vdots \\ f_{N-1} \end{pmatrix} = \Omega_N \cdot \begin{pmatrix} d_0 \\ \vdots \\ d_{N-1} \end{pmatrix} . \tag{4.3}$$

Preuve. Il suffit de vérifier que $M = [e^{\frac{-2i\pi}{N}kn}].[e^{\frac{2i\pi}{N}k'n'}] = NI_N$, où I_N est la matrice identité de \mathbb{R}^N . On a

$$M_{kn} = \sum_{m=0}^{N-1} e^{\frac{-2i\pi}{N}km} e^{\frac{2i\pi}{N}mn} = \sum_{m=0}^{N-1} e^{\frac{2i\pi}{N}m(n-k)}.$$

Si k=n c'est la somme de 1 effectuée N fois, et si $k\neq n$, c'est la somme des racines de l'unité différentes de 1, cf. proposition précédente 4.2.

5 Transformée de Fourier rapide (TFR) = Fast Fourier Transform (FFT)

(Algorithme de Cooley et Tuckey, 1965.) C'est une méthode très rapide pour calculer les N coefficients d_k de la TFD à partir de N valeurs f_k), quand N est une puissance de 2. Et on récupère ensuite les \tilde{c}_k avec (3.3).

Ecrivons la k-ième ligne de (3.4), pour k = 0, ..., N - 1:

$$d_k = \frac{1}{N} (f_0 + \omega_N^{-k} f_1 + \omega_N^{-2k} f_2 + \omega_N^{-3k} f_3 + \dots + \omega_N^{-(N-2)k} f_{N-2} + \omega_N^{-(N-1)k} f_{N-1}).$$

On pose N=2m (on traite le cas N pair). On a $e^{-2\frac{2i\pi}{N}}=e^{-\frac{2i\pi}{m}}$, i.e. $\omega_N^{-2}=\omega_m^{-1}$. On a donc :

$$d_k = \frac{1}{N} ([f_0 + \omega_N^{-2k} f_2 + \dots + \omega_N^{-(2m-2)k} f_{2m-2}] + \omega_N^{-1} [f_1 + \omega_N^{-2k} f_3 + \dots + \omega_N^{-(2m-2)k} f_{2m-1}])$$

$$= \frac{1}{2} (\frac{1}{m} [f_0 + \omega_m^{-k} f_2 + \dots + \omega_m^{-(m-1)k} f_{2(m-1)}] + \omega_N^{-1} \frac{1}{m} [f_1 + \omega_m^{-k} f_3 + \dots + \omega_m^{-(m-1)k} f_{2(m-1)+1}]).$$

On s'est ainsi ramené à, pour k = 0, ..., 2m - 1:

$$d_k = \frac{1}{2}(P_{m,k} + \omega_N^{-1} I_{m,k}),$$

où, pour k = 0, ..., m - 1:

$$\begin{pmatrix} P_{m,0} \\ P_{m,1} \\ \vdots \\ P_{m,m-1} \end{pmatrix} = \frac{1}{m} \overline{\Omega}_m \cdot \begin{pmatrix} f_0 \\ f_2 \\ \vdots \\ f_{2m-2} \end{pmatrix} \quad \text{et} \quad \begin{pmatrix} I_{m,0} \\ I_{m,1} \\ \vdots \\ I_{m,m-1} \end{pmatrix} = \frac{1}{m} \overline{\Omega}_m \cdot \begin{pmatrix} f_1 \\ f_3 \\ \vdots \\ f_{2m-1} \end{pmatrix}.$$

Ici les $P_{m,k}$ et les $I_{m,k}$ sont des transformées de Fourier discrètes des $g_{m,k} = f_{2k}$ et des $h_{m,k} = f_{2k+1}$, pour k = 0, ..., m-1.

De plus, pour k=0,...,m-1, sachant $\omega_m^{-(k+m)}=\omega_m^{-(k)}$:

$$P_{m,k+m} = P_{m,k} \qquad \text{et} \qquad I_{m,k+m} = I_{m,k}.$$

Puis sachant $\omega_{2m}^{-(k+m)} = -\omega_{2m}^{-k}$ (faire un dessin), pour k=0,...,m-1:

$$d_{k+m} = \frac{1}{2}(P_{m,k} - \omega_N^{-1} I_{m,k}).$$

On a ainsi ramené le problème de taille N=2m à 2 problèmes de taille m.

Si m est également pair, chacun de ces problèmes de taille m est ramené à deux problèmes de tailles $\frac{m}{2}$.

C'est le principe de la méthode FFT quand on choisit $N=2^n$ avec $n\in\mathbb{N}$: on se ramène à 2 problèmes de tailles 2^{n-1} , puis 2^2 problèmes de tailles 2^{n-2} , puis..., puis 2^{n-1} problèmes de taille 2, i.e. à $2^{n-1} = \frac{N}{2}$ problèmes de type (cas "N = 2"):

$$d_0 = \frac{1}{2}(f_0 + f_1), \qquad d_1 = \frac{1}{2}(f_0 - f_1).$$

Remarque 5.1 L'intérêt de cette méthode FFT est son coût : pour N une puissance de 2, il est de l'ordre de $\frac{3}{2}N\log_2 N$, où \log_2 est le logarithme en base 2. (donc pour $N=2^n$ le coût est de l'ordre de $\frac{3}{2}2^n \log_2 2^n = \frac{3}{2}n2^n = \frac{3}{2}nN$.)

Rappel pour x > 0: logarithme népérien : $\ln x = \log_e x$ est l'inverse de e^x ; et logarithme en

base 2 : $\log_2 x$ est l'inverse de 2^x (et donc $\log_2(2^x) = x$ et $\log_2 2 = 1$). Ainsi avec $N = 1024 = 2^{10}$ points de discrétisation, il faut $\simeq \frac{3}{2}N\log_2 N = \frac{3}{2}*10*1024 \simeq 15000$ opérations élémentaires (multiplications ou additions).

6 Convolution périodique et calcul par FFT

(La convolution périodique est différente de la convolution discrète, cf. suite.)

Définition 6.1 Une suite $(a_k)_{k\in\mathbb{Z}}$ est dite périodique de période N ssi $a_{k+N}=a_k$ pour tout $k\in\mathbb{Z}$.

Définition 6.2 On se donne deux suites périodiques (a_k) et (b_k) de même période N. La convolution périodique de ces deux suites est l'opération qui leur associe la suite périodique $(c_k)_{k\in\mathbb{Z}}$ de période N définie par, pour k = 0, ..., N - 1:

$$c_k = \sum_{m=0}^{N-1} a_m b_{k-m} \qquad (= \sum_{m=0}^{N-1} a_{k-m} b_m),$$

et on note:

$$(c_k) = (a_k) * (b_k).$$

On a donc:

$$\left\{ \begin{array}{l} c_0 = a_0b_0 + a_1b_{-1} + \ldots + a_{N-1}b_{-(N-1)}, \\ c_1 = a_0b_1 + a_1b_0 + \ldots + a_{N-1}b_{-(N-2)}, \\ \vdots \\ c_{N-1} = a_0b_{N-1} + a_1b_{N-2} + \ldots + a_{N-1}b_0, \end{array} \right.$$

ou encore:

$$\begin{cases} c_0 = a_0b_0 + a_1b_{N-1} + a_2b_{N-2} + \dots + a_{N-1}b_1 \\ c_1 = a_0b_1 + a_1b_0 + a_2b_{N-1} + \dots + a_{N-1}b_2, \\ \vdots \\ c_{N-1} = a_0b_{N-1} + a_1b_{N-2} + \dots + a_{N-1}b_0. \end{cases}$$

Définition 6.3 On appelle matrice circulante une matrice de type :

$$B = \begin{pmatrix} b_0 & b_{N-1} & b_{N-2} & \cdots & b_1 \\ b_1 & b_0 & b_{N-1} & \cdots & b_2 \\ b_2 & b_1 & b_0 & \cdots & b_3 \\ \vdots & & & \ddots & \\ b_{N-1} & b_{N-2} & b_{N-3} & \cdots & b_0 \end{pmatrix}.$$

La convolution périodique se présente alors sous forme matricielle :

$$\vec{c} = B.\vec{a}$$

où on a posé
$$\vec{c}=\begin{pmatrix}c_0\\c_1\\\vdots\\c_{N-1}\end{pmatrix}$$
 et $\vec{a}=\begin{pmatrix}a_0\\a_1\\\vdots\\a_{N-1}\end{pmatrix}$.

Proposition 6.4 Une matrice circulante B est diagonalisable de matrice de passage Ω_N . I.e.:

$$\Lambda = \Omega_N^{-1}.B.\Omega_N$$

est la matrice diagonale $\Lambda = \operatorname{diag}(\lambda_0, ..., \lambda_{N-1})$ de terme diagonal les valeurs propres

$$\lambda_k = b_0 + b_{N-1}\omega_N^k + b_{N-2}\omega_N^{2k} + \dots + b_1\omega_N^{(N-1)k}$$

(Et les vecteurs propres de B associés sont stockés dans les colonnes de Ω_N puisque $B.\Omega_N=\Omega_N.\Lambda.$)

Preuve. Il s'agit de vérifier que $B.\Omega_N = \Omega_N.\Lambda$.

On a $\Omega_N = [\omega_N^{kn}]_{0 \le k, n \le N-1}$ (matrice symétrique) où $\omega_N = e^{\frac{2i\pi}{N}}$, cf. (3.2). Il est immédiat que le vecteur $\begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$ (première colonne de Ω_N est vecteur propre de valeur propre $\sum_{k=0}^{n-1} b_k$ (somme des termes d'une ligne).

Prenons le vecteur colonne k de Ω_N . On obtient :

$$B.\begin{pmatrix} 1\\ \omega_N^k\\ \omega_N^{2k}\\ \vdots\\ \omega_N^{(N-1)k} \end{pmatrix} = \begin{pmatrix} b_0 + b_{N-1}\omega_N^k + b_{N-2}\omega_N^{2k} + \dots + b_1\omega_N^{(N-1)k}\\ b_1 + b_0\omega_N^k + b_{N-1}\omega_N^{2k} + \dots + b_2\omega_N^{(N-1)k}\\ \vdots\\ b_{N-1} + b_{N-2}\omega_N^k + b_{N-3}\omega_N^{2k} + \dots + b_{N-1}\omega_N^{(N-1)k} \end{pmatrix}$$

$$= \begin{pmatrix} 1\left(b_0 + b_{N-1}\omega_N^k + b_{N-2}\omega_N^{2k} + \dots + b_1\omega_N^{(N-1)k}\right)\\ \omega_N^k \left(b_1\omega_N^{(N-1)k} + b_0 + b_{N-1}\omega_N^k + \dots + b_2\omega_N^{(N-2)k}\right)\\ \vdots\\ \omega_N^{(N-1)k} \left(b_{N-1}\omega_N^k + b_{N-2}\omega_N^{2k} + b_{N-3}\omega_N^{3k} + \dots + b_{N-1}\omega_N^{(N-1)k}\right) \end{pmatrix}$$

et le vecteur colonne k est vecteur propre associé à la valeur propre $\lambda_k = b_0 + b_{N-1}\omega_N^k + b_{N-2}\omega_N^{2k} + \cdots + b_1\omega_N^{(N-1)k}$. On a donc bien $\Omega_N.\Lambda = B.\Omega_N$, égalité qui lue colonne par colonne donne bien $\lambda_k \vec{v}_k = B.\vec{v}_k$ om \vec{v}_k est la k-ième colonne de Ω_N , k = 0, ..., N-1.

Corollaire 6.5 (Calcul de la convolution périodique à l'aide de la FFT.)

On veut calculer $(c_k) = (a_k) * (b_k) = B.\vec{a}$, sachant $B.\vec{a} = \Omega_N.\Lambda.\Omega_N^{-1}.\vec{a} = \frac{1}{N}\Omega_N.\Lambda.\overline{\Omega_N}.\vec{a}$.

On calcule $\overline{\Omega_N}$. \vec{a} en utilisant la FFT.

On multiplie par Λ matrice diagonale.

On multiplie par Ω_N en utilisant la FFT.

On divise par N.

Remarque 6.6 Quand N ci-dessus n'est pas une puissance de 2, on complète les suites $(a_k)_{k=0,...,N-1}$ par des zéros : $a_{N+j} = 0$ pour $j = 0,...,2^n - N$ où n est le plus petit entier t.q. $2^n \ge N$. De même pour (b_k) . Et les valeurs c_k pour k = 0,...,N-1 restent inchangées.

Exemple 6.7 On multiplie les polynômes $a(x) = \sum_{k=0}^{N-1} a_k x^k$ et $b(x) = \sum_{k=0}^{N-1} b_k x^k$. Ces polynômes sont représentés par leurs coordonnées $(a_k)_{k=0,\dots,N-1}$ et $(b_k)_{k=0,\dots,N-1}$ sur la base usuelle $(1,x,x^2,\dots)$ de l'ensemble des polynômes. On peut prolonger ces suites par 0 pour k<0 et $k\geq N$. Le produit c=ab est un polynôme de degre 2N-2 donné par :

$$c(x) = \sum_{k=0}^{2N-2} (\sum_{m=0}^{N-1} a_{k-m} b_m x^k) = \sum_{k=0}^{2N-2} c_k x^k, \quad \text{où} \quad c_k = \sum_{m=0}^{N-1} a_{k-m} b_m,$$

représenté par la suite $(c_k)_{k=0,\ldots,N-2}$, i.e.:

$$c_0 = a_0 b_0$$
, $c_1 = a_1 b_0 + a_0 b_1$, $c_2 = a_2 b_0 + a_1 b_1 + a_0 b_2$, ..., $c_{2N-2} = a_{N-1} b_{N-1}$.

Utilisation de la FFT pour calculer le produit : on complète la suite $(a_k)_{k=0,...,N-1}$ en la suite $(a_k)_{k=0,...,2N-1}$ par des zéros : $a_k=0$ pour tout k=N,...,2N-1. De même pour la suite $(b_k)_{k=0,...,N-1}$ complétée par des zéros en la suite $(b_k)_{k=0,...,2N-1}$. Et on a alors :

$$c_k = \sum_{m=0}^{2N-2} a_{k-m} b_m,$$

...

car pour m > k on a $a_{k-m} = 0$.

7 Convolution discrète et calcul par FFT

Définition 7.1 On se donne deux suites $(a_k)_{k\in\mathbb{Z}}$ et $(b_k)_{k\in\mathbb{Z}}$ indicées sur \mathbb{Z} tout entier. La suite convolée (discrète) $(c_k)_{k\in\mathbb{Z}} = (a_k)_{k\in\mathbb{Z}} * (b_k)_{k\in\mathbb{Z}}$ est la suite définie par :

$$c_k = \sum_{m=-\infty}^{\infty} a_{k-m} b_m = \dots + a_{k+2} b_{-2} + a_{k+1} b_{-1} + a_k b_0 + a_{k-1} b_1 + a_{k-2} b_2 + \dots$$

$$\stackrel{\text{not \'e}}{=} (a_k)_{k \in \mathbb{Z}} * (b_k)_{k \in \mathbb{Z}}.$$

On remarque immédiatement qu'également (symétrie) :

$$(c_k)_{k\in\mathbb{Z}} = (b_k)_{k\in\mathbb{Z}} * (a_k)_{k\in\mathbb{Z}} = (\sum_{m=-\infty}^{\infty} a_m b_{k-m})_{k\in\mathbb{Z}}$$

Et on trouve le cas particulier où les suites (a_k) et (b_k) sont nulles pour k < 0: on obtient immédiatement que (c_k) est nulle pour k < 0 (car pour k < 0 et $m \ge 0$ on a $a_{k-m} = 0$, et pour m < 0 on a $b_m = 0$).

D'où également :

Définition 7.2 On se donne deux suites $(a_k)_{k\in\mathbb{N}}$ et $(b_k)_{k\in\mathbb{N}}$ indicées sur \mathbb{N} . La suite convolée $(c_k)_{k\in\mathbb{N}} = (a_k)_{k\in\mathbb{N}} * (b_k)_{k\in\mathbb{N}}$ est la suite définie par :

$$c_k = \sum_{m=0}^{k} a_{k-m} b_m = a_k b_0 + a_{k-1} b_1 + \dots + a_0 b_k,$$

chaque c_k étant une somme de k+1 termes.

Cas particulier : si (a_k) et (b_k) sont des suites finies de longueur $\leq N$, i.e. (quitte à renuméroter) si on considère les suites finies $(a_k)_{k=0,...,N-1}$ et $(b_k)_{k=0,...,N-1}$, (c_k) est également une suite finie, suite de longueur $\leq 2N$:

$$(a_k)_{k=0,\dots,N-1}, (b_k)_{k=0,\dots,N-1} \in \mathbb{R}^N \qquad \Rightarrow \qquad (c_k)_{k=0,\dots,2(N-1)} \in \mathbb{R}^{2N-1}.$$

En effet : si k < 0 alors $c_k = 0$, cf. cas précédent ; si $k \ge 2N-1$ alors soit $m \ge N$ et $b_m = 0$, soit m < N et on a $2N-1-m \ge N$ et $a_{k-N} = 0$ et donc $c_k = 0$; et $c_{2N-2} = a_{N-1}b_{N-1}$.

8 Remarques : équation de la chaleur

Remarque 8.1 L'intérêt essentiel d'utiliser les exponentielles est qu'elles sont fonctions propres de l'opérateur de dérivation $D: f \to f'$, i.e. qu'elles vérifient $Df = \alpha f$ (et se sont les seules fonctions ayant cette propriété) : ici $(e^{\alpha t})' = \alpha(e^{\alpha t})$, pour $\alpha \in \mathbb{C}$.

Ainsi, pour résoudre l'équation différentielle $u' - \alpha u = d$ où d est une fonction donnée et α un complexe, on commence par chercher une solution de l'équation homogène :

$$u'(t) - \alpha u(t) = 0,$$

i.e. solution de $u'(t) = \alpha u(t)$, et cette solution homogène est proportionnelle à $u_h(t) = e^{\alpha t}$: c'est la propriété fondamentale de l'exponentielle.

Remarque 8.2 Les fonctions sinus et cosinus sont fonctions propres de l'opérateur de dérivation seconde $D^2: u \to u''$. Et si on s'intéresse au problème aux limites : trouver $u: [0,L] \to \mathbb{R}$ telle que :

$$u''(x) = -r u(x),$$
 $u(0) = 0,$ $u(L) = 0,$

i.e. au problème des fonctions propres de l'opérateur de dérivation seconde avec conditions aux limites homogènes, alors les solutions (non nulles) sont de la forme $u=a\cos\omega x+b\sin\omega x$ quand $\omega=\sqrt{r}>0$ (impose r>0), les conditions aux limites imposants a=0 puis $b\sin(\omega L)=0$; et avec $b\neq 0$ (sinon u=0 est l'unique solution) on obtient des solutions non nulles ssi $\omega=k\frac{2\pi}{L}$ pour $k\in\mathbb{N}^*$. Les solutions non nulles sont données par les fonctions harmoniques $\sin(2k\pi\frac{x}{L})$.

Remarque 8.3 Les deux remarques précédentes mettent en évidence l'intérêt des séries de Fourier pour la résolution de l'équation de la chaleur, équation aux dérivées partielles $\frac{\partial u}{\partial t}(t,x) - \frac{\partial^2 u}{\partial x^2}(t,x) = f(t,x)$ avec condition initiale en temps et conditions aux limites en espace, f étant une "source de chaleur".

Références

- [1] Gasquet C., Witomski P.: Analyse de Fourier et applications. Dunod, 2000.
- [2] Schwartz L.: Méthodes mathématiques pour les sciences physiques. Hermann, 1965 (nouveau tirage 1993).
- [3] Strang G.: Introduction to Applied Mathematics. Wellesley-Cambridge Press, 1986.