
Security Protocol Design and Symbolic Analysis:

Hybrid Protocols, Derived Adversary Models,

and Refined Equational Theories

Thèse de doctorat de l’Université Clermont Auvergne
Spécialité: Informatique

École Doctorale Science Pour l’Ingénieur (SPI)
Laboratoire d’Informatique, de Modélisation et d’Optimisation des Systèmes (LIMOS)
CNRS, UMR 6158, LIMOS, Aubière, France

Thèse soutenue le 11 Juin 2025 par

Dhekra Mahmoud

Composition du jury:

Ioana Boureanu Rapporteuse
Professeure des universités, Université de Surrey
Vincent Cheval Rapporteur
Professeur associé, Université d’Oxford

Karthikeyan Bhargavan Examinateur
Directeur de recherche, INRIA

Cas Cremers Examinateur
Professeur des universités, CISPA

Olivier Pereira Examinateur
Professeur des universités, Université Catholique de Louvain

Jannik Dreier Encadrant de thèse
Maître de conférences, LORIA, Université de Lorraine
Pascal Lafourcade Directeur de thèse
Professeur des universités, LIMOS, Université Clermont Auvergne

2

Résumé

La preuve de sécurité d’un protocole, bien que formellement rigoureuse dans un modèle
donné, dépend entièrement des hypothèses de ce modèle. Si les capacités de l’adversaire
sont sous-spécifiées, si les primitives cryptographiques sont idéalisées, ou si les propriétés
de sécurité ne sont pas formalisées, la preuve peut ne pas tenir en pratique.

La première contribution fait progresser les travaux antérieurs sur l’affinement des
modèles symboliques pour les primitives cryptographiques afin de mieux capturer leurs
comportements. Concrètement, nous proposons des théories équationnelles plus précises
pour le cryptosystème ElGamal, les signatures DSA et les preuves à divulgation nulle
de connaissance ZKP. La modélisation symbolique standard de ces primitives abstrait
leurs propriétés algébriques, ce qui peut conduire à des attaques non détectées dans des
protocoles plus larges. De plus, nous introduisons un modèle formel des Mix-Networks
à exponentiation et re-chiffrement. En combinant ces modèles avec nos théories équa-
tionnelles, nous pouvons automatiquement détecter des attaques liées à une mauvaise
utilisation des Mix-Networks, non-détéctées dans les modèles symboliques précédents.

La deuxième contribution concerne l’analyse du protocole WireGuard. Nous exam-
inons les propriétés de sécurité revendiquées par le protocole face à un adversaire capable
de compromettre toutes combinaisons possibles de clés. Pour systématiser cette anal-
yse, nous introduisons les concepts de modèle défensif minimal et de modèle d’adversaire
offensif minimal. Les modèles défensifs garantissent que la violation d’une propriété de
sécurité nécessite la possession de capacités atomiques spécifiques. Les modèles offen-
sifs minimaux définissent les plus petits ensembles de capacités atomiques suffisantes
pour compromettre la sécurité. Ces dérivations ont permis d’identifier une optimisation
d’implémentation introduisant de nouveaux vecteurs d’attaque.

La troisième contribution présente un protocole hybride combinant WireGuard et sa
version post-quantique PQ-WireGuard, conformément aux recommandations pour une
transition sécurisée vers la cryptographie post-quantique. Bien qu’une analyse symbol-
ique de PQ-WireGuard existât, nous avons détécté une non-conformité entre le modèle et
les spécifications du protocole. Nous proposons des corrections des attaques par partage
de clé inconnue (UKS) trouvées, et garantissons que la sécurité du protocole hybride
s’appuie à la fois sur la sécurité de la version corrigée post-quantique et la sécurité de
WireGuard classique. Nous avons formellement défini la sécurité d’un protocole hy-
bride comme nécessitant à la fois des modèles défensifs minimaux dépendant de clés
post-quantiques et des modèles dépendant de clés classiques. Notre travail souligne
l’importance d’une analyse itérative lors de la conception, l’atteinte des objectifs de
sécurité hybride ayant nécessité des affinages répétés entre modélisation et vérification.

3

Abstract

The security proof of a protocol, though formally rigorous within a given model, is entirely
contingent on the model’s assumptions. If the adversary’s capabilities are underspecified,
the cryptographic primitives are idealized, or the security properties are incompletely
formalized, the proof may not hold in practice.

The first contribution advances prior work on refining symbolic models for crypto-
graphic primitives to better capture their behaviors. Specifically, we propose more precise
equational theories for the ElGamal cryptosystem, DSA signatures, and Zero-Knowledge
Proofs. Standard symbolic modeling of these primitives disregards their algebraic prop-
erties, which may lead to missed attacks in larger protocols. Additionally, we introduce
a formal model of exponentiation and re-encryption Mix-Networks. By combining these
models with our equational theories, we can automatically find attacks based on the
incorrect use of the Mix-Networks missed by previous symbolic models.

The second contribution involves analyzing the WireGuard protocol. We examine the
protocol’s claimed security properties under an adversary capable of compromising any
possible key combinations. To systematize this analysis, we introduce the concepts of
minimal defensive model and minimal offensive adversary model. The defensive models
ensures that violating a security property requires possessing specific atomic capabilities.
Minimal offensive models define the smallest sets of adversarial capabilities that break
security. Theses derivations helped to identify an implementation optimization that
introduces new attack vectors.

The third contribution presents a hybrid protocol combining WireGuard and Post-
Quantum WireGuard, aligning with recommendations for a secure transition to post-
quantum cryptography. Although a symbolic analysis of PQ-WireGuard existed, we
uncover discrepancies between the model and the protocol’s specifications, including pre-
viously missed Unknown Key-Share attacks. We propose fixes and ensure the hybrid
protocol’s security relies on both the corrected post-quantum and classical WireGuard
protocols. We formally defined a hybrid protocol’s security as when there exists both
minimal defensive models dependent on post-quantum keys and defensive models depen-
dent on classical keys. Our work underscores the importance of iterative analysis during
design, as achieving hybrid security required repeated refinement between modeling and
verification.

5

Remerciements – Acknowledgments

I would like to express my deepest gratitude to Pascal and Jannik, without
whom this manuscript would not have come to fruition. I am truly grateful

to you.
I also wish to sincerely thank the members of my jury for agreeing to partic-

ipate in my thesis defense.
Special thanks go to Ioana and Vincent for their kindness in reviewing this

manuscript. Thank you very much.

7

Contents

1 Introduction 11

2 Background 21
2.1 The Applied Π-Calculus . 22
2.2 Mathematical Background . 26
2.3 Cryptographic Primitives . 27

2.3.1 Public key Encryption . 27
2.3.2 Signatures Schemes. 29
2.3.3 Authenticated Encryption with Associated Data. 30
2.3.4 Key Encapsulation Mechanisms 30

2.4 Conclusion . 31

3 Automated Discovery of Subtle Attacks on Protocols using Mix-
Networks 33
3.1 Introduction . 34

3.1.1 Our Contributions . 36
3.1.2 Related Work . 37

3.2 Overview of Known Attacks on Mix-Nets and Countermesures . 40
3.2.1 Decryption Mix-Nets . 40
3.2.2 Re-Encryption Mix-Nets 41
3.2.3 Exponentiation Mix-Nets 43
3.2.4 Countermesures . 44

3.3 Refined Modeling of Cryptographic Primitives 45
3.3.1 Refined Model of ElGamal and DSA Signatures 45
3.3.2 Refined Model of Zero-Knowledge Proofs 47

3.4 Formal Model of Exponentiation and Re-Encryption Mix-Nets . 48
3.4.1 Formal Analysis of Exponentiation Mix-Nets 50
3.4.2 Formal Analysis of Re-Encryption Mix-Nets 51

3.5 Applications . 53
3.5.1 Remark! Protocol . 54
3.5.2 Crypto Santa Protocol . 57

9

Contents 10

3.5.3 Haenni’s Internet Vote Protocol 58
3.5.4 IVXV Internet Vote Protocol 60

3.6 Conclusion . 62

4 Formal Analysis of the WireGuard Protocol 65
4.1 Introduction . 66

4.1.1 Our Contributions . 68
4.1.2 Related Work . 70

4.2 The WireGuard Protocol . 72
4.3 Landscape of Prior Analysis of WireGuard 77

4.3.1 Protocol Models used Previous Analyses 77
4.3.2 Adversary Models . 78
4.3.3 Security Properties Defined in Previous Analyses 79

4.4 Offensive, Defensive Models . 80
4.5 Symbolic Analysis of WireGuard with Sapic+ 96

4.5.1 Adversary Model, Security Formulas 96
4.5.2 Agreement, Secrecy and Perfect Forward Secrecy 99
4.5.3 Anonymity . 102
4.5.4 Performances . 103
4.5.5 Comparison with Previous Analyses 104

4.6 Conclusion and Discussion . 105

5 Hybridization of Wireguard 109
5.1 Introduction . 110

5.1.1 Our Contributions . 111
5.1.2 Related Work . 112

5.2 PQ-WireGuard . 113
5.2.1 Cryptographic Building Blocks 114
5.2.2 The Handshake . 114

5.3 Formal Analysis and Claimed Properties 117
5.3.1 Protocol Model . 117
5.3.2 Claimed Security Properties 118
5.3.3 Results of the Analysis of PQ-WireGuard 123

5.4 Hybrid-WireGuard: Protocol and Analysis 130
5.5 Conclusion and Future Work . 134

6 Conclusion 141

Chapter 1
Introduction

Models help us simplify the
complex, but we must always
remember they are
approximations of reality.

Donna Strickland

The observation that mathematical proofs based on Euclidean trigonometric
identities no longer hold in non-Euclidean geometries should not be surprising,
as is the inability of classical mechanics to characterize quantum-scale phenom-
ena without a quantum-theoretic formalism. These limitations arise because all
analytical frameworks rely on models, each with its own assumptions, approxima-
tions, and boundaries of applicability. This same principle applies to the analysis
of security protocols. A proof of security, while formally rigorous within a given
model, depends entirely on the assumptions of that model. If the adversary’s
capabilities are underspecified, if the cryptographic primitives are idealized, or if
the security properties are incompletely formalized, then the proof may not hold
in practice. The informality in protocol specification amplifies this challenge.
Security protocols are typically described as sequences of message exchanges in-
tended to guarantee properties like authentication, secrecy, and integrity. Yet,
this procedural description often lacks the precision needed for formal analysis.
The gap between the formal model and the informal specification means that
attacks can emerge, not because the formal proof was incorrect, but because the
model failed to capture adversarial behaviors not covered by the model. Thus,
discovering attacks on "proven secure" protocols should not be surprising. It
reflects the natural evolution of adversarial capabilities, the difficulty of fully
specifying security requirements, and also the inherent limitations of modeling
real-world systems. The ongoing refinement of formal methods in security pro-
tocols aims to narrow this gap while acknowledging that no model can ever be
perfectly complete.

11

Chapter 1. Introduction 12

To illustrate the inherent challenges in modeling security protocols and to
avoid remaining overly abstract, we examine a classic case study of a security pro-
tocol from the literature. In 1978, Roger M. Needham and Michael D. Schroeder
proposed the so-called Needham-Schroeder Public-Key Protocol intended to guar-
entee the mutual authentication of the communicated entities over an insecure
network [NS78]. Mutual authentication, according to [NS78], simply means “ver-
ifying the identity of the communicating principals to one another ”. In order to
describe a simplified version of the protocol, let us assume that public keys pkR

are known and commonly associated to the users identities R. The Needham-
Schroeder protocol then works as depicted in Figure 1.1. An initiator I who wants
to communicate with R, generates an arbitrary number nI used only once, i.e. a
nonce, encrypts the nonce together with their identity using the public key of the
intended responder R and sends the message {nI , I}pkR to R. Upon receiving
the message from I, the receiver generates a nonce nR and sends it back together
with the nonce nI encrypted using the public key of the initiator. I receives the
message from R and if it has the correct form, I would have authenticated R.
The handshake is considered complete when I sends back the encryption of nR

to R so that R can authenticate I.

{n , }pk

{n , n }pk

{n }pk

:

:

:

Figure 1.1: The Needham-Schroeder Public-Key Protocol.

When we described the Needham-Schroeder protocol above, we used two ap-
proaches. Figure 1.1 corresponds to the commonly used protocol narration in
the cryptographic protocol litterature and which consist of a simple sequence
of messages exchanged between the protocol’s participants [BN05]. Beyond its
informality, this approach may incorporate numerous implicit assumptions that
can introduce ambiguities during protocol security analysis. For instance, it is
not clear from Figure 1.1 how the values n and n are generated. The sec-
ond description we provided is a purely textual representation of the protocol.
However, human language is inherently ambiguous, making it difficult to formu-
late descriptions that admit only one precise interpretation. The same reasoning
hold for the above definition of authentication. What exactly does authentication
mean? If Alice runs an authentication protocol with another party, and an at-
tacker modifies her message without changing her identity, is she still considered

Chapter 1. Introduction 13

authenticated? It is her running the protocol and her identity appears in the
message, so does the other party consider her authenticated? In [Gol96], Dieter
Gollmann asks the question “What do we mean by entity authentication? ” and
observes that authentication protocol design has been particularly error-prone
due to problems in defining what authentication means. A formal language
with well-defined syntax, grammar, and semantics is necessary to describe cryp-
tographic protocols and their security properties for correct analysis.

However, formal specifications of both the protocol and its security properties
remain insufficient to ensure rigorous analysis. In their work [BAN90], Burrows
et al. introduced a logic for modeling and analyzing authentication protocols,
demonstrating that the Needham-Schroeder public-key protocol ensures mutual
authentication between trustworthy communicating parties. However, several
years later, Gavin Lowe [Low95] uncovered an attack on this protocol, show-
ing that a dishonest participant could impersonate an honest user by running
two sessions in parallel, i.e., two execution instances of the protocol Key Lesson:
When analyzing protocols, the assumed power of an adversary plays a decisive
role in the security guarantees.

A fundamental challenge exists in determining the necessary bounds on pro-
tocol sessions to ensure the absence of attacks, and the appropriate adversarial
model to assume. The standard solution for session bounds is to verify pro-
tocol security under unbounded session assumptions. While executing infinite
sessions is unrealistic in practice, this approach provides strong security guaran-
tees. Crucially, it eliminates the need to define which bound is sufficient for a
given protocol and property. However, security analysis under unbounded ses-
sion assumptions typically results in undecidable problems [DLMS99]. Bounding
the number of sessions in security analysis is also non-trivial because an attacker
can insert any number of messages into chosen sessions, including messages of
unlimited length and instantiating an unlimited number of nonces.

Another aspect not yet emphasized, yet apparent in the protocol descrip-
tion in Figure 1.1, is its cryptographic foundations. The Needham-Schroeder
protocol above is based on public-key cryptography, raising other several fun-
damental questions: Is the encryption scheme deterministic, probabilistic, or
homomorphic? Which mathematical properties does it employ? Does it use
modular exponentiation or pairing operations? Furthermore, would the protocol
maintain equivalent security guarantees when analyzed with different public-key
algorithms? Cryptographic primitives inherently possess distinct algebraic
and security characteristics, making it obvious that protocol instantiation with
different primitives yields non-equivalent security properties. Deepak Kapur et

Chapter 1. Introduction 14

al. demonstrated in [KNW03] that security protocol analysis becomes undecid-
able when considering cryptographic primitives involving exponentiation, under
the assumption of exponentiation’s distributivity over multiplication.

The preceding discussion reveals fundamental challenges in security protocol
design, modeling, and analysis. Manual verification of such protocols conse-
quently is both error-prone and computationally intensive when addressing this
complexity. The literature abounds with mathematical proofs that were sub-
sequently demonstrated to be either flawed or incomplete. While automated
verification tools exist to assist with analysis, significant challenges persist in
three key aspects: accurate protocol modeling, precise specification of security
properties and rigorous definition of adversarial capabilities. Each of these com-
ponents introduces substantial complexity and potential for error. This thesis
fits within this context and displays subtle results found during various analyses
with automated formal verification tools in the so-called symbolic model through
the enrichment of already existing models.

The Symbolic Model. The symbolic model, due to Dolev and Yao [DY83],
assumes perfect cryptography: one-way funtions are unbreakable, and one can
decrypt only in possession of the secret key. While this assumption may seem
overly restrictive for cryptographic protocol analysis, protocols encompass far
more than just their underlying primitives. Even when using cryptographically
secure algorithms, vulnerabilities can emerge at the protocol level itself. The
attack on the Needham-Schroeder protocol, as documented by Lowe, serves as
an illustrative case where an attacker compromise the protocol’s security in the
absence of any cryptographic vulnerabilities. This establishes that protocol-level
flaws may exist independently of cryptographic assumptions.

In the symbolic model, messages are represented as terms which can be either
atomic (to represent fresh values such as keys or random coins) or constructed by
applying function symbols. For instance, the terms pk(sk), aenc(m, pk(sk)) and
adec(c, sk) can represent a public key function, an asymmetric encryption and
an asymmetric decryption, respectively. To model the behavior of cryptographic
primitives, function symbols may be ruled by a set of equations, i.e., an equational
theory. For example, the equation adec(aenc(m, pk(sk)), sk) = m states that
decrypting an encrypted message m using the proper key pairs sk and pk(sk),
results in the same message m. It is noteworthy to mention that the sole equalities
between the terms are those explicitly specified by the equations. If no equation
is added for pk(sk), then it behaves as a perfect one-way function. The latter
equation is the standard equation used to model public key encryption in the
symbolic model.

Chapter 1. Introduction 15

The Dolev-Yao attacker model is typically the assumed adversary in symbolic
models. As mentioned before, the attacker can perform computations only ac-
cording to the equational theory specified in the model. The Dolev-Yao attacker
also has complete control over the network. The attacker’s capabilities consist of
injecting, eavesdropping on, removing, duplicating, replaying, substituting, and
delaying all messages transmitted during protocol execution.

Remark:

The computational model [GM84] is another model for analyzing security
protocols where messages are bitstring and the adversary is a probabilistic
polynomial time Turing machine. Since this manuscript focuses exclusively
on the symbolic model, we do not provide further details here. For compre-
hensive coverage of both symbolic and computational approaches, we refer
readers to [CKW09].

Trace and equivalence properties. There are two main classes of security
properties in the symbolic approach, namely trace properties and equivalence
properties. Trace properties are defined with regard to the executions of the pro-
tocol. A trace property is considered to be satisfied when, in all possible traces
or executions of the protocol, the property holds. Several security properties
can be expressed as trace properties, such as secrecy (as a reachability property,
that is, whether the attacker can reach or not a state where they know some se-
cret terms) and authentication (as correspondence assertions, that is, whenever
a specific state is reached by one protocol participant, another state must be
previously reached by another participant). Most of the existing symbolic tools
supports the specification of trace properties.
Equivalence properties are defined between two scenarios that the attacker should
not be able to tell apart. Privacy properties can be expressed as equivalence
properties, such as anonymity, unlinkability and strong secrecy. Proving that
a property holds with equivalences provides a stronger guarantee than when
it is proven as a trace property. For example, analyzing the secrecy for some
term M when expressed as an equivalence property (M is indistinguishable from
some newly generated randomness) is stronger than analyzing the secrecy of M
expressed as a simple reachability property. There are two major equivalence
properties supported by the existing automated protocol verifiers: trace equiva-
lence and observational equivalence. Trace equivalence is weaker in the sense that
it is implied by observational equivalence [CD09]. In [BDM20, HBD17, BDD23],
the authors state that observational equivalence may be too strong for privacy
properties and show how trace equivalence may be the most suitable property for
the matter. However, in [HM20], the authors exhibit a linkability attack on the
e-Passport protocol using the labeled bisimilarity property (labeled bisimilarity

Chapter 1. Introduction 16

and observational equivalence are equivalent [ABF17]), although the protocol is
proven to be unlinkable in [HBD17] using trace equivalence.

Automated Symbolic Tools. Several tools exist for verifying security proto-
cols in the symbolic model. The applied Π-Calculus, is among the most used
language for modeling security protocols and constitutes the input language of
many tools. For the full details about its syntax and semantics, see Section 2.1 of
Chapter 2. In the automatic cryptographic protocol verifier ProVerif, proto-
cols are described in the applied Π-Calculus. The tool can handle many cryp-
tographic primitives (encryption, signature, hash function, Diffie-Hellman Key
agreement) specified as rewrite rules or equations, but cannot handle associa-
tivity [Bla14] preventing modeling primitives such as XOR. ProVerif can also
handle an unbounded number of sessions and an unbounded message space at the
cost of (potential) non-termination. It is able to prove traces properties and ob-
servational equivalence between processes that differ only by terms. ProVerif

is sound but not complete which means that it can give spurious attacks or fail
to conclude. The tool has been used successfully to analyze many real-world pro-
tocols such as TLS [BCW22, BBK17] and Messaging protocols [KBB17, BJKS24].

In the security protocol verification tool Tamarin, protocols are described
using multiset rewrite rules. The protocols’ states are defined by a number of
facts and rewrite rules describing how the states evolve. The rules induce a tran-
sition system: a rule application removes some facts from the current state and
adds other facts, hence transitioning to a new state. In Tamarin, the transi-
tions are labeled with actions which are facts that annotate rules, and are used to
specify properties. The tool uses first-order time-points to reason about security
properties with regard to the protocol executions expressed as sequence of actions
generated by the multiset rewrite rules. It handles trace properties, expressed
as lemmas, and equivalences between processes with regard to an unbounded
number of sessions. Tamarin supports natively associative and commutative
symbols such as Diffie-Hellman exponentiation. The tool is both sound and com-
plete in the trace mode [BCDS17].

The verification tool DeepSec [CKR24] supports only equivalence-based
properties while bounding the number of sessions. Protocols are also described
in the applied Π-Calculus. The equivalence property analyzed by DeepSec,
is trace equivalence.

Sapic+ [CJKK22] unifies the use of ProVerif, Tamarin and DeepSec. It
was recently used to analyze EDHOC protocol [JKKR23]. Protocols are mod-
eled in the applied Π-Calculus in a single Sapic+ file which enables the gen-

Chapter 1. Introduction 17

eration of three state-of-the-art protocol models for Tamarin, ProVerif and
DeepSec. Sapic+ allows to exploit the strengths of each tool, which justifies
our choice for this framework in Chapters 4 and 5.

Contribution and Organization of the Thesis

This thesis is situated within the research context of modeling the security pro-
tocols and their formal analysis conducted with state-of-the-art automated for-
mal verification tools, and contributes by presenting nuanced findings uncovered
through a series of rigorous analyses. Specifically, this work extends and enhances
preexisting models by introducing methodological refinements and additional lay-
ers of formal verification using automated tools. By building upon established
formal models, we uncovers new dimensions of analysis that were previously un-
examined or insufficiently characterized. More specifically, our contributions are
the following:

In Chapter 3, we propose more precise equational theories for ElGamal

cryptosystem, DSA signatures and Zero Knowledge Proofs (ZKPs) for the Dis-
crete Logarithm (DL) knowledge. The standard symbolic modeling of the latter
primitives abstracts away any algebraic and homomorphic properties, thus po-
tentially missing attacks when carried out with larger protocols. We also propose
a formal model of exponentiation and re-encryption Mix-Networks (Mix-Nets)
in the applied Π-Calculus. We show that using these models together with our
equational theories, we can automatically discover attacks based on the incorrect
use of the Mix-Nets, thus, helping protocol designers avoiding these and similar
attacks in the future. In particular, we find attacks on four cryptographic proto-
cols using ProVerif: we show that an electronic exam protocol, two electronic
voting protocols, and the “Crypto Santa” protocol do not satisfy the desired pri-
vacy properties. We then fix the vulnerable protocols by adding missing ZKPs

and re-analyze the resulting protocols using ProVerif. We show that in this
case of a weak ZKP (malleable) all attacks persist, and that we find again these
attacks automatically.

In Chapter 4, we propose a symbolic analysis of the WireGuard protocol us-
ing the Sapic+ framework. Our models are compatible with both the automatic
cryptographic protocol verifiers ProVerif and Tamarin using the Sapic+

framework. We consider a complete protocol execution which includes cookie
messages used for resistance against denial of service attacks. We model dif-
ferent adversarial capabilities, namely adversaries that can read or set static,
ephemeral or pre-shared keys, read or set Elliptic Curve Diffie-Hellman (ECDH)
pre-computations, and control public key distribution. Eventually, we present
our results in a unified and interpretable way, allowing comparisons with pre-
vious analyses. Finally, thanks to our models, we give necessary and sufficient

Chapter 1. Introduction 18

conditions for each analyzed security property to be compromised. We confirm a
flaw on the anonymity of the communications and point out an implementation
choice which considerably weakens the security of the protocol. We then propose
remediations that we prove secure.

In Chapter 5, we first conduct a thorough formal analysis of the Post-Quantum
WireGuard protocol. Thanks to our analysis, we point out and fix a number of
weaknesses. This leads us to an improved construction PQ-WireGuard⋆. Sec-
ondly, we propose and formally analyze a new protocol, based on both Wire-
Guard and PQ-WireGuard⋆, named Hybrid-WireGuard, compliant with current
best practices for post-quantum transition about hybridization techniques. For
our analysis, we use the Sapic+ framework that enables the generation of three
state-of-the-art protocol models for the verification tools ProVerif, DeepSec

and Tamarin from a single specification, leveraging the strengths of each tool.
We formally prove that Hybrid-WireGuard is secure.

To make the manuscript more accessible, we introduce in Chapter 2, the
formalism required to grab the introduced works.

Publications

All of the research presented in this thesis has previously been published or
submitted to academic conferences. The analysis of the protocols using the Mix-
Nets models of Chapter 3 was presented at the USENIX Security Symposium
2024 [DLM24]. The analysis of the WireGuard protocol described in Chapter 4
was presented at the NDSS Symposium 2024 [LMR24]. The analysis of the PQ-
WireGuard and the design of the hybrid Wireguard is submitted at the USENIX
Security Symposium 2025.

Below are presented the title and the abstract of the remaining works pub-
lished or submitted during this thesis, yet not part of this manuscript.

• Formal Analysis of SDNsec: Attacks and Corrections for Payload, Route
Integrity and Accountability [HMLP25].

– Abstract: Modern networks increasingly rely on Software Defined Net-
working (SDN) to achieve flexibility and efficiency, which makes it
more critical to ensure their security. Particularly, it is crucial to
ensure the integrity of packets routing within the Network. In this
paper, we address key security challenges within SDN architectures
with a particular focus on the data plane. We ex- plore these chal-
lenges through the lens of a security solution called SDNsec. We iden-
tify three fundamental security properties, namely payload integrity,
route integrity and accountability. We define these security properties
in the formal framework of the applied Π-Calculus. Likewise, we

Chapter 1. Introduction 19

suggest two levels of route integrity: strong and weak, depending on
the protocol’s requirements. We use ProVerif, a cryptographic pro-
tocol verifier, to conduct a formal analysis of the security of SDNsec.
Thanks to our models, we discover several flaws on all the afore- men-
tioned properties. In response, we propose corrective measures to
enhance SDNsec’s security. Moreover, to ensure that such attacks are
feasible and that our improvements are effective, we implement and
test SDNsec and our corrected solution using the RYU controller and
Mininet network emulator.

• Transferable, Auditable and Anonymous Ticketing Protocol [LMMOA24]

– Abstract: Digital ticketing systems typically offer ticket purchase, re-
fund, validation, and, optionally, anonymity of users. However, it
would be interesting for users to transfer their tickets, as is currently
done with physical tickets. We propose Applause, a ticketing system
allowing the purchase, refund, validation, and transfer of tickets based
on trusted authority, while guaranteeing the anonymity of users, as
long as the used payment method provides anonymity. To study its se-
curity, we formalise the security of the transferable E-Ticket scheme in
the game-based paradigm. We prove the security of Applause compu-
tationally in the standard model and symbolically using the protocol
verifier ProVerif. Applause relies on standard cryptographic primi-
tives, rendering our construction efficient and scalable, as shown by a
proof-of-concept. In order to obtain Spotlight, an auditable version,
proved to be secure, users will remain anonymous except for a trusted
third party, which will be able to disclose their identity in the event
of a disaster.

• Formal Analysis of C-ITS PKI protocols [MLM24]

– Abstract: Vehicular networking is gaining a lot of popularity and at-
traction from among the industry and academic research communities
in the last decade. The communication between vehicles will lead to
more efficient and secured roads because we will be able to provide in-
formation about traffic and road conditions to vehicle’s drivers. How-
ever, ensuring the security of these networks and devices still remains
a main major concern to guarantee the expected services. Secure Pub-
lic Key Infrastructure (PKI) represents a common solution to achieve
many security and privacy requirements. Unfortunately, current Co-
operative Intelligent Transport Systems (C-ITS) PKI protocols were
not verified in terms of security and privacy. In this paper, we pro-
pose a security analysis of C-ITS PKI protocols in the symbolic model

Chapter 1. Introduction 20

using ProVerif. We formally modeled C-ITS PKI protocols based on
the specifications given in the ETSI standard. We model C-ITS PKI
protocols and formalize their security properties in the applied Pi-
calculus. We used an automatic privacy verifier UKano to analyse
Enrolment protocol. We found attacks on authentication properties,
in Authorization and Validation protocols when considering a dishon-
est Authorization Authority (AA).We analysed proof results and we
fixed identified attacks by introducing new parameters in protocol re-
quest.

• Jannik Dreier, Rosario Giustolisi, Pascal Lafourcade, Gabriele Lenzini,
Dhekra Mahmoud and Mohammadamin Rakeei. Secure and Verifiable
Coercion-Resistant Electronic Exam submitted at the Journal of Cyber-
security on September 2024.

– Abstract: Since they enable efficient assessment of large cohorts of stu-
dents and test-takers, electronic exams (e-exams) have become pop-
ular. However, the transition from pencil-and-paper tests to e-exams
comes with challenges: researchers needed to ensure a comparable
level of security and privacy as that enjoyed before the transition; at
the same time, they have to address threats due to the use of infor-
mation and communication technology. Research has shown that, for
the reason of assessment fairness, e-exams should satisfy a list of pe-
culiar security properties, for instance, about authentication, secrecy,
integrity, anonymity, and correctness, including their universal and in-
dividual verifiability. Recently, e-exams have been scrutinized for their
resistance to collusion and coercion. Subsets of participants have an
interest in teaming up, or forcing one another, to gain an unfair advan-
tage over the honest others. In this work, we study coercion-resistance
for e-exams. We propose a novel strong definition of coercion where
all secrets are leaked to the attacker. Under this threat, we prove
that a recent coercion-resistant exam protocol is subject to attacks.
We improve the protocol by ensuring that all its properties are main-
tained and that it is coercion-resistant under the new threat model.
Our new protocol is also verifiable, which is a must-have property
whenever there is the need to prove that fairness is preserved despite
anyone attempting to subvert it. All our claims are formally verified
using ProVerif. Notably, our formal verification includes proving the
security of a recent exponentiation mixnet framework proposed in the
literature.

Chapter 2

Background

A proof without a
machine-checkable formalization
is just a story.

Shafi Goldwasser

Contents
2.1 The Applied Π-Calculus 22

2.2 Mathematical Background 26

2.3 Cryptographic Primitives 27

2.3.1 Public key Encryption 27

2.3.2 Signatures Schemes. 29

2.3.3 Authenticated Encryption with Associated Data. . . . 30

2.3.4 Key Encapsulation Mechanisms 30

2.4 Conclusion . 31

In this introductory chapter, we will begin by presenting the applied Π-

Calculus language, as throughout this manuscript, all the analyzed crypto-
graphic protocols are described using this language. This applies both to Chap-
ter 3, where we used ProVerif, and to Chapters 4 and 5, where we used Sapic+.
Next, we will introduce the cryptographic primitives used in the protocols we
analyzed. However, we will not delve deeply into the cryptographic details them-
selves and will instead remain at a highly abstract level. The computational
problems mentioned here are merely necessary elements to describe the proto-
cols in a high-level manner. Moreover, since this thesis is fully situated within
the context of formal verification and symbolic modeling of cryptographic pro-
tocols, we describe - for each cryptographic primitive - the common modeling
approaches used to model this primitives in the symbolic model.

21

Chapter 2. Background 22

2.1 The Applied Π-Calculus

The applied Π-Calculus is a language for modeling and analyzing security
protocols introduced in 2001 by Abadi et al. [ABF17]. It is an extension of
Milner’s calculus [Mil89], a mathematical formalism for describing and analyzing
properties of concurrent computation. As the applied Π-Calculus serves as
the formal foundation for all the analzed protocols in this thesis (encoded either
directly in ProVerif or via Sapic+), we begin by recalling its syntax, semantics,
and equivalence relations. The following is mainly based on [Dre13, RS11].

Syntax. A finite signature Σ is a finite set of function symbols each with an
associated arity. Given a signature Σ, an infinite set of names N and an infinite
set of variables V, the set of terms T is defined as names, variables and function
symbols applied to other terms. The set of terms T is defined by the grammar
in Table 2.1 where f ranges over the functions in Σ and l matches the arity of
f . Terms are equipped with an equational theory (a set of equations), which
induces an equivalence relation between terms, denoted =E . As an illustrative
example, the behavior of probabilistic asymmetric encryption and decryption can
be formally modeled using the following equational theory:

dec(enc(m, pk(x), r), x) =E m (2.1)

where pk is a unary function symbol representing the public key corresponding
to the secret key x, m is the plaintext, and r represents a random variable. The
sole equalities between the terms are those explicitly specified by the equational
theory.

Remark:

We recall that a binary relation ≡ on a set S is said to be an equivalence
relation if it has the following properties:

- Reflexivity : ∀x ∈ S, x ≡ x.

- Symmetry : ∀x, y ∈ S, x ≡ y ⇐⇒ y ≡ x.

- Transitivity : ∀x, y and z ∈ S, if x ≡ y and y ≡ z, then x ≡ z.

Systems are described as processes. The grammar for processes is depicted
in Table 2.2, where M and N are terms, n is a name, x is a variable and c is a
channel name. The null process 0 does nothing; P |Q is the parallel composition
of P and Q; the replication !P behaves as an infinite number of copies of P

running in parallel. The process νn · P makes a new private name n then it
runs P . Finally, in(c, x) and out(c,N) stand for an input and an output on the
channel c respectively.

Chapter 2. Background 23

L,M,N ::= terms

a, b, c, n name

x, y, z variable

f(M1, . . . ,Ml) function application

Table 2.1: Grammar of terms in the applied Π-Calculus.

P,Q,R ::=

0 null process

P |Q parallel composition

!P replication

νn · P name restriction

if M = N then P else Q conditional

in(c, x) · P message input

out(c,N) message output

Table 2.2: Grammar of processes in the applied Π-Calculus.

Processes are also extended with active substitutions. We write {M/x} for
the substitution that replaces the variable x with the term M . The grammar
of extended processes is given in Table 2.3. {M/x} is considered as a process
and νx · ({M/x}|P) corresponds to let x = M in P . A frame is defined as an
extended process built from 0 and active substitutions by parallel composition
and restrictions. The domain of a frame is the set of variables for which the frame
defines a substitution, and which are not under restriction. An extended process
A is closed when its free variables are all defined by an active substitution.
A context C[·] is defined as a process with a hole, that can be filled with any
process. An evaluation context is a context whose hole is not under a replication,
a condition, an input or an output. A context C[·] closes A when C[A] is closed.

A,B,C ::=

P plain process

A |B parallel composition

!A replication

νn ·A name restriction

νx ·A variable restriction

{M/x} active substitution

Table 2.3: Grammar of extended processes.

Chapter 2. Background 24

Semantics and Equivalences. The applied Π-Calculus’ operational se-
mantics is defined by: 1) structural equivalence (≡), 2) internal reduction (→),
and 3) labelled reduction (α−→).

Informally, two processes are structurally equivalent when they model the
same behavior despite differing syntactic encodings permitted by the grammar.
Formally, structural equivalence of processes is the smallest equivalence relation
on extended processes that is closed by α-conversion on names and variables, by
application of evaluation contexts as shown is Table 2.4. Internal reduction is
the smallest relation on extended processes closed under structural equivalence
following the rules in Table 2.5. Labeled reduction. models the environment
interacting with the processes. It defines a relation A

α−→ A′ between two extended
processes where α is either reading a term or sending a name or variable (See
Table 2.6).

PAR - 0 A | 0 ≡ A

PAR - A A | (B | C) ≡ (A | B) | C

PAR - C A | B ≡ B | A

REPL !P ≡ P | !P

SUBST {M/x} | A ≡ {M/x} | A{M/x}

NEW - 0 νu · 0 ≡ 0

NEW - C νu · νv ·A ≡ νv · νu ·A

NEW - PAR A | νv ·B ≡ νv · (A | B) if v /∈ fn(A) ∪ fv(A)

ALIAS νx · {M/x} ≡ 0

REWRITE {M/x} ≡ {N/x} if M =E N

Table 2.4: Structural equivalence in the applied Π-Calculus.

Static Equivalence. Two terms M and N are equal in the frame B, written
as (M =E N)B, if and only if there exists a set of restricted names n and a
substitution σ such that B ≡ ν · σ, Mσ =E Nσ and ∩(fn(M) ∪ fn(N)) = ∅.
Closed frames B and B′ are statically equivalent, denoted B ≈s B′, if:

1. dom(B) = dom(B′)

COMM c⟨x⟩ · P | c(x) ·Q→ P |Q

THEN if N =E N then P else Q→ P

ELSE if M =E N then P else Q→ P

for ground terms M,N where M ̸=E N

Table 2.5: Internal reduction in the applied Π-Calculus.

Chapter 2. Background 25

IN in(c, x) · P in(c,M)−−−−−→ P{M/x}

OUT-ATOM out(c, v)· out(c,v)−−−−−→ P

OPEN-ATOM
A

out(c,v)−−−−−→ A′ v ̸= c

νv ·A νv·out(c,v)−−−−−−−→ A′

SCOPE
A

α−→ A′ v does not occur in α

νv ·A α−→ νv ·A′

PAR
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A |B α−→ A′ |B

STRUCT
A ≡ B B

α−→ B′ A′ ≡ B′

A
α−→ A′

Table 2.6: Labelled Reduction in the Applied Π-Calculus.

2. ∀ terms M , N : (M =E N)B iff (M =E N)B′.

Extended processes A, A′ are statically equivalent, if their frames are stati-
cally equivalent.

Labelled Bisimilarity. Labelled bisimilarity (≈l) is the largest symmetric re-
lation R on closed extended processes, such that ARB implies:

1. A ≈s B

2. if A −→ A′ then B −→⋆ B′ and A′RB′ for some B′

3. if A α−→ A′ and fv(α) ⊆ dom(A) and bn(α)∪ fn(B) = ∅; then B −→⋆ α−→−→⋆

B′ and A′RB′ for some B′, where ⋆ denotes zero or more.

We write A ⇓ a when A can send a message on channel a, that is, when A→∗≡
E[a ⟨M⟩ .P] for some evaluation context E[] that does not bind a.

An observational bisimulation is a symmetric relation R between closed ex-
tended processes with the same domain such that A R B implies:

1. if A ⇓ a, then B ⇓ a;

2. if A→∗ A′ and A′ is closed, then B →∗ B′ and A′ R B′ for some B′;

3. E[A] R E[B] for all closing evaluation contexts E[].

Observational equivalence (≈) is the largest such relation.
In [ABF17], the authors proved that observational equivalence is labelled

bisimilarity, namely ≈=≈l.

Chapter 2. Background 26

2.2 Mathematical Background

This section establishes the necessary mathematical framework for the remainder
of the work.

Finite Groups. A group (G, ·) is a pair where G is a non-empty set of elements,
and · : G×G← G is a binary relation verifying:

- Associativity : ∀ x, y and z ∈ G, (x · y) · z = x · (y · z)

- Identity element : ∃1G ∈ G such that ∀x ∈ G, x · 1G = 1G · x = x.

- Inverse element : ∀x ∈ G,∃ a unique element x−1 ∈ G such that x · x−1 =

x−1 · x = 1G.

Let (G, ·) be a group. (G, ·) is said to be finite if the elements of the set G
are finite. Let g ∈ G and k is a natural number, we denote gk to refer to the
application of the relation ·, k times to the element g, i.e., g · . . . · g︸ ︷︷ ︸

k

.

We say that g is a generator of a finite group (G, ·) if G = {gk | k ∈ Z} such
that Z is the set of integers. When such an element exists, the group (G, ·) is
called cyclic. When no confusion arises, we may refer to a group solely by its set,
leaving the binary operation implicit in the notation. ⟨g⟩ = G denotes a cyclic
group G generated by g. The order of a cyclic group G corresponds to its number
of elements.

Negligeable Function. Let f : Z← R be a function. f is said to be neglige-
able if ∀n ≥ 0,∃Nn ∈ Z such that ∀x ≥ Nn, |f(x)| ≤ 1

xn .

Discrete Logarithm Problem. Let G = ⟨g⟩ be a cyclic group. Given the
pair (g, gx) ∈ G2, the Discrete Logarithm (DL) problem requires to return the
value x with non-negligeable probability. There exist groups in which the dis-
crete logarithm problem appears computationally hard. Particularly, for certain
algebraic structures, such as large prime-order subgroups of the multiplicative
groups (Zp,×).

Finite Field. A finite field (F,+, ·) is a tuple where (F,+) is a finite com-
mutative group with an identity element 0, (F \ {0}, ·) is a finite commutative
group with an identity element 1, and the binary relation · is distributive with
regard to the binary relation +. The discrete logarithm problem is hard, i.e., no
polynomial algorithm is known for computing it, over a finite field with prime
number of elements.

Chapter 2. Background 27

2.3 Cryptographic Primitives

The cryptographic literature offers a wide range of primitives, many of which
serve as building blocks in our analyzed protocols. This section introduces the
key primitives used in later chapters and outlines their properties.

2.3.1 Public key Encryption

A public key encryption scheme PKE = (KeyGen, Enc, Dec) is a tuple of
algorithms. The key generation algorithm KeyGen takes as input a security
parameter and returns a pair (pk, sk) of a public and secret key. The encryption
algorithm Enc takes as input a message m and a public key pk and outputs a
ciphertext C. If the encryption algorithm is additionally probabilistic, it takes a
random coin r as an additional parameter. The decryption algorithm Dec takes
as input a ciphertext C and a secret key sk, and outputs a message m or an error
⊥. To each algorithm one or more input and output spaces are associated. We
suppose that (K,M,R, C) are the associated keys, messages, coins and cipher-
texts spaces respectively. The correctness of the encryption sckeme requires that
for all keys (pk, sk) ∈ K, all messages m ∈M and all random coins r ∈ R:

Dec(Enc(m,pk; r), sk) = m

Diffie-Hellman Key Exchange [DH76]. The security of the Diffie-Hellman
key exchange relies on the computational hardness of solving the discrete loga-
rithm problem over finite fields with prime number of elements. Let’s consider g
as a primitive element of such a finite field, i.e., a generator of the multiplicative
group of the field. The Diffie-Hellman key exchange enables two parties Alice and
Bob, with respective public keys ga and gb, to securely generate a shared secret
gab over a public network, which can then be used for confidential communica-
tion. This shared secret is derived from their respective public keys, thus binding
them cryptographically. One property of the exponentiation, which stems from
field’s definition, is its distributivity over multiplication. However, as discussed in
the Introduction of this manuscript, security analysis of cryptographic protocols
that incorporates this distributivity property becomes undecidable. We therefore
cannot fully model all properties of the exponentiation and must instead exclude
certain properties or work with approximations.

In ProVerif, the most commonly used equational theory for security pro-
tocols involving Diffie-Hellman keys is exp(exp(g, a), b) = exp(exp(g, b), a) where
g is a fixed generator. This equation describes the minimal relationship required
for the protocol to work. That is, it ensures that Alice and Bob - each possessing
the other’s public key and their own private key - can compute the same shared
secret. It is difficult to determine whether this equation alone is sufficient to

Chapter 2. Background 28

prove the absence of attacks in a protocol model. For instance, in Chapter 3, we
will see that it is insufficient - relying solely on this equation in the model leads us
to miss several attacks where we need more than two exponentiations. However,
in Chapter 4, we will see that all the results obtained by modeling the expo-
nentiation as an associative and commutative symbolic operation in Tamarin

lead to the same conclusions about the protocol’s security when using simply the
ProVerif’s equation. Several existing works in the literature focus on precise
modeling of modular exponentiation. For instance, multiple studies address the
incorporation, into symbolic models, of small order subgroups. Notable examples
include the works of [CJ19a] in Tamarin and [BDP15] in ProVerif.

RSA Cryptosystem [RSA78]. RSA is a foundational public-key cryptosys-
tem, proposed by Ronald Rivest, Adi Shamir, and Leonard Adleman in 1978.
Its encryption scheme derives security from the hardness of integer factoriza-
tion, making it a cornerstone of modern cryptography. The key generation al-
gorithm, the encyption and decryption algorithms are described in Algorithm 1.
RSA encryption is an homomorphic encryption scheme. Specifically, the en-
cryption of the product of two messages Enc(m · m′,pk) equals the product
of their encryptions Enc(m,pk) · Enc(m′,pk). To our knowledge, no existing
work specifically targets the precise symbolic modeling of RSA encryption - it is
typically modeled like any other deterministic public-key encryption scheme, i.e.,
adec(aenc(m, pk(sk)), sk) = m where aenc, adec, and pk are function symbols.

Algorithm 1 RSA cryptosystem where φ denotes Euler’s totient function and
gcd denotes the greatest common divisor.
1. RSA KeyGen

1: select two different large primes p and q
2: N ← p · q
3: choose integer e such that 1 < e < φ(N) and gcd(e, φ(N)) = 1
4: d← e−1 (mod φ(n))
5: sk← (p, q, d)
6: pk← (N, e)
7: return (pk, sk)

2. RSA Enc(m, pk)

1: (N, e)← pk
2: c← me (mod N)
3: return c

2. RSA Dec(c, sk)

1: (φN , d)← sk
2: m← cd (mod N)
3: return m

Chapter 2. Background 29

ElGamal Cryptosystem [ElG84]. The ElGamal public key encryption
scheme was introduced by Taher Elgamal in 1984. Its security is based on the
hardness of the discrete logarithm problem in multiplicative cyclic groups with
large prime order. The key generation algorithm, the encyption and decryption
algorithms are described in Algorithm 2. ElGamal encryption is also homo-
morphic, a property that enables its use in numerous electronic voting protocols.
However, similar to RSA, we are not aware of any existing work that provides a
less abstract symbolic modeling of this encryption scheme. In the next chapter,
we propose a more precise model of ElGamal cryptosystem that leverages the
specifics of the keys modular exponentiation.

Algorithm 2 ElGamal cryptosystem.
1. ElGamal KeyGen

1: sk $← Zp

2: pk← gsk

3: return (pk, sk)

2. ElGamal Enc(m, pk)

1: r $← Zp

2: return (gr,mpkr)

3. ElGamal Dec((c1, c2), sk)

1: m← c2 · c1−sk

2: return m

2.3.2 Signatures Schemes.

Digital signatures serve as the electronic counterpart to handwritten signatures,
providing cryptographic proof that a message originates from a specific individ-
ual or entity. They function similarly to traditional signatures while offering
equivalent security properties. Formally, a digital signature scheme consists of
three algorithms (SGen, Sign, Verify). The key generation algorithm SGen
takes as input a security parameter and returns a pair (pk, sk) of a public and
secret key. The signature algorithm Sign takes as input a message m and a
secret key sk and outputs a signature σ. The verification algorithm Verify takes
as input a signature σ, a public key pk, and a message m, and outputs either 0

or 1. To each algorithm one or more input and output spaces are associated. We
suppose that (K,M) are the associated keys and messages spaces respectively.
The correctness of the signature scheme requires that for all keys (pk, sk) ∈ K,
all messages m ∈M:

Verify(Sign(m, sk),pk,m) = 1

Chapter 2. Background 30

The signature scheme should ensure existantial unforgeablity, that is, only the
person holding the secret key can generate a valid signature for the associated
public key. The standard way to model signatures in the symbolic model is using
the equation verify(sign(m, sk),m, pk(sk)) = true. Jackson et al. [JCCS19] point
out that this equation is stronger than existential unforgeability and using it in
models may cause to overlook certain attacks. They therefore developed more
precise signature models in Tamarin to account for subtle signature scheme
behaviors.

2.3.3 Authenticated Encryption with Associated Data.

An AEAD is a symmetric authenticated encryption algorithm. The encryption
algorithm AEAD.Enc(k,N,H,M) takes as input a key k, a nonce N , a header
H, and a message M , and outputs a ciphertext C. The decryption algorithm
AEAD.Dec(k,N,H,C) takes as input a key k, a nonce N , a header H and a
ciphertext C, and outputs a message M or ⊥. We denote by SE an unau-
thenticated symmetric encryption scheme. SE.Enc(k,N,M) takes as in-
put a key k, a nonce N , and a plaintext M , and outputs a ciphertext C, while
SE.Dec(k,N,C) takes as input a key k, a nonce N , and a ciphertext C, and
outputs a plaintext M .

The commonly used equation for modeling symmetric encryption in the sym-
bolic model is sdec(senc(m, sk), sk) = m. This equation remains highly abstract
and does not capture the specific details of the underlying symmetric scheme.
In [CDJZ23b], the authors introduced the first automated analysis technique for
protocols using AEAD schemes. Their models systematically identifies attacks
that leverage subtleties of the particular AEAD construction used.

2.3.4 Key Encapsulation Mechanisms

A Key Encapsulation Mechanism KEM consists of three algorithms: KEM.gen()

which generates the key pair (s, S), KEM.encaps(S) a probabilistic encapsula-
tion algorithm, which takes as input a KEM public key S, and outputs a secret
key k and a ciphertext ct. We also use the definition of KEM.encaps introduced
in [HNS+21] to make the algorithm deterministic, by adding an interface to pro-
vide random coins R as additional input to the algorithm, i.e., KEM.encaps(S, R).
Finally, KEM.decaps(s, ct) is the deterministic decapsulation algorithm, which
takes as input a KEM private key s, and a ciphertext ct, and outputs a secret
key k. Details about the symbolic snalysis of KEM-based protocols are given in
Section 5.1.2 of Chapter 5.

Chapter 2. Background 31

2.4 Conclusion

In this section, we introduced applied Π-Calculus, the formal language used to
model all our analyzed protocols. We also introduced the cryptographic primi-
tives that serve as building blocks for the analyzed protocols. For each primitive,
we presented the most commonly used equations for their symbolic modeling.
While standard equations remain highly abstract (relying on perfect cryptog-
raphy assumptions), existing research efforts aim to incorporate cryptographic
subtleties into symbolic models - both to prevent missed attacks and reduce
abstraction. The following chapter aligns with this research direction.

Remark:

Throughout this manuscript, we use the terms adversary, attacker, and dis-
honest participant interchangeably to refer to any protocol participant that
deviates from the protocol’s specifications. Conversely, honest or trustwor-
thy denotes a participant that adheres strictly to the protocol specification.
We say a protocol is secure if it satisfies all its defined security properties;
conversely, terms like insecure, broken, or attack indicate that at least one
security property is violated. A security property is verified or satisfied if it
holds under formal analysis, and not verified or falsified if it fails to hold.
Finally, adversary model and threat model are used interchangeably.

Chapter 3
Automated Discovery of Subtle Attacks on Protocols

using Mix-Networks

The beauty of mathematics only
shows itself to more patient
followers.

Maryam Mirzakhani

Contents
3.1 Introduction . 34

3.1.1 Our Contributions . 36

3.1.2 Related Work . 37

3.2 Overview of Known Attacks on Mix-Nets and Coun-
termesures . 40

3.2.1 Decryption Mix-Nets 40

3.2.2 Re-Encryption Mix-Nets 41

3.2.3 Exponentiation Mix-Nets 43

3.2.4 Countermesures . 44

3.3 Refined Modeling of Cryptographic Primitives 45

3.3.1 Refined Model of ElGamal and DSA Signatures . . 45

3.3.2 Refined Model of Zero-Knowledge Proofs 47

3.4 Formal Model of Exponentiation and Re-Encryption
Mix-Nets . 48

3.4.1 Formal Analysis of Exponentiation Mix-Nets 50

3.4.2 Formal Analysis of Re-Encryption Mix-Nets 51

3.5 Applications . 53

3.5.1 Remark! Protocol . 54

3.5.2 Crypto Santa Protocol 57

3.5.3 Haenni’s Internet Vote Protocol 58

3.5.4 IVXV Internet Vote Protocol 60

3.6 Conclusion . 62

33

Chapter 3. Automated Discovery of Subtle Attacks on Protocols using
Mix-Networks 34

Chapter Summary

In this chapter, we propose a more detailed formal model of exponentiation
and re-encryption Mix-Networks (Mix-Nets) in the applied Π-Calculus,
the language used by ProVerif. We show that using this model, we can
automatically discover attacks based on the incorrect use of the Mix-Net,
thus, helping protocol designers avoiding these and similar attacks in the
future. In particular, we find attacks on four cryptographic protocols using
ProVerif: we show that an electronic exam protocol, two electronic vot-
ing protocols, and the “Crypto Santa” protocol do not satisfy the desired
privacy properties. We then fix the vulnerable protocols by adding miss-
ing Zero knowledge proofs (ZKPs) and re-analyze the resulting protocols
using ProVerif. Again, in addition to the common abstract modeling of
the ZKP, we also propose a new model corresponding to weak (malleable)
ZKPs. We show that in this case all attacks persist, and that we find again
these attacks automatically.

3.1 Introduction

Mix-Net is a mechanism, based on public key cryptography, proposed by David
Chaum in 1981, that aims to “hide the correspondence between the items in its
inputs and those in its outputs” [Cha81]. The idea is rather simple: suppose we
have two senders and one receiver, and we want the receiver to not trace a received
message back to its sender. If each sender directly sends an encrypted message
with the public key of the receiver to the receiver themselves, it is obvious that the
receiver would know which message corresponds to which sender. Furthermore, if
the receiver publishes the decrypted messages or the messages’ space is small, and
the employed encryption algorithm is deterministic, anyone can easily associate
a plaintext with a sender. Instead of doing so, and assuming that the encryption
procedure is done using a randomly generated seed, both senders re-encrypt their
encrypted message with the public key of another entity, the Mix-Net. The Mix-
Net decrypts the incoming ciphertexts and outputs the resulting plaintexts in
a random order. Upon receiving the messages from the Mix-Net, the receiver
is unable to draw any conclusions about the relation between a message and a
sender. In [Cha81], Chaum showed how this technique can be used to make
electronic mails, return addresses and digital pseudonyms untraceable, and how
we can use a series of Mix-Nets to avoid relying on a single Mix-Net server.

Chapter 3. Automated Discovery of Subtle Attacks on Protocols using
Mix-Networks 35

These types of Mix-Nets will bear the name of Decryption Mix-Net since the
mixing servers decrypt the items of their inputs.

Since their introduction, many Mix-Net constructions have been proposed,
analyzed and integrated into various cryptographic protocols [AW07, AKTZ17,
KMW12, ANJ+24, Wik04b, WG06, BHM20, GJJS04]. In [PIK93], Park et al.
presented the Re-encryption Mix-Net. These Mix-Nets rely on malleability
properties of the encryption scheme, giving the possibility to re-encrypt a list
of ciphertexts resulting in a new list of ciphertexts, without knowing or changing
the associated plaintexts. In [HS11], Haenni et al. presented a different form
of a Mix-Net, the so-called Exponentiation Mix-Net. These Mix-Nets create,
from a list of ElGamal public keys [ElG85], a new shuffled list of anonymized
public keys, which can no longer be associated to individual parties, but can still
be used to verify signed messages or encrypt data.

Considering their importance in providing anonymity to the communicating
parties, Mix-Nets play a major role in building systems where privacy is a
key security requirement, such as e-voting systems [Adi08, CGG22, CRST15a,
HKLD17, KMST16, HKL23, HS11] or e-exams [GLR14, RGL22]. In the context
of voting, they are used to hide the link between voters and their votes to guaran-
tee the voters’ privacy, as typically the protocol publishes the list of the decrypted
votes at the end to achieve verifiability. In such a protocol, any possibility to
link a voter to his decrypted plaintext vote immediately breaks privacy. Voting
protocols using Mix-Nets have been even employed in real political elections,
for example in Estonia [IVX23], in the Australian state of Victoria [CRST15b]
or in Norway [Gjø12]. In the context of electronic exams, Mix-Nets are used to
hide the relation between the candidates and their exam tests or exam answers
to guarantee candidates’ privacy and the impartiality of the marking procedure,
e.g., the C-Rex [RGL22] and Remark! [GLR14] exam protocols.

In [DGK+14], the Remark! exam protocol, which is based on the expo-
nentiation Mix-Net, was analyzed and proven secure using ProVerif. As
explained in the previous chapter, in the symbolic model the properties of cryp-
tographic primitives are usually modeled using equations, e.g., the equation
dec(enc(m, k), k) = m can be used to model a simple deterministic symmet-
ric encryption scheme, where the functions dec and enc represent decryption and
encryption operations, respectively. These equations can fail to take into ac-
count subtle behaviors of primitives which can lead to miss certain classes of
attacks. For example, the model of Remark! in [DGK+14] abstracts away com-
pletely the implementation of the Mix-Nets. Hence, they missed an attack on
the Mix-Net described in [RGL22] that exploits the details of the exponentia-
tion process. This attack was found manually and works as follows: an attacker
submits a modified version of the public key of a targeted user as their own key

Chapter 3. Automated Discovery of Subtle Attacks on Protocols using
Mix-Networks 36

to the Mix-Net. This enables the attacker to link both keys after the mixing,
breaking the anonymity of the targeted user.

Similar attacks on Mix-Nets had already been described in 1994 [Pfi94],
long before exponentiation mixnets [HS11] where proposed in 2011. Still, it took
a decade for [RGL22] to (apparently independently) discover that such use of
Mix-Nets was insecure.

3.1.1 Our Contributions

We show that it is possible to model Mix-Nets more precisely in the symbolic
model. This allows us to automatically find previously missed (but known) at-
tacks, to discover new attacks, or to verify properties of protocols against a more
powerful attacker that can exploit weaknesses of the Mix-Net. Our contribu-
tions are the following:

• We propose a detailed model of Haenni’s [HS11] exponentiation Mix-Net,
taking into account details of the exponentiations.

• Our refined model includes a new, more precise model of ElGamal en-
cryption and signatures, which includes the exponentiation operations and
is of independent interest as it can be used to model more precisely pro-
tocols that use ElGamal encryption or signatures, but no exponentia-
tion Mix-Nets. To the best of our knowledge, until now symbolic models
of ElGamal encryption completely abstracted away the exponentiations,
hence potentially missing attacks.

• We then show that this new model of the exponentiation Mix-Net together
with the model of ElGamal can be used to automatically analyze protocols
using this Mix-Net. For this, we model and analyze three protocols in
ProVerif: an e-voting protocol [HS11], an e-exam protocol [GLR14], and
the Crypto Santa protocol [Rya15].

– We give a formal model and analysis of the electronic voting protocol
from [HS11]. Our analysis shows that it is vulnerable to a privacy
attack (similar to the one from [RGL22]) due to a weakness in the
Mix-Net, and the lack of Zero-Knowledge Proofs on the voters’ side.

– We are able to automatically find the attack from [RGL22] on the
exam protocol. Interestingly, Amin et al. [RGL22], despite identifying
this attack manually, used a simple formal model in ProVerif which
was incapable of detecting the vulnerability.

– We provide the first formal model and analysis of the Crypto Santa
protocol, which turns out to be not vulnerable due to use of appropri-
ate ZKPs by the participants.

Chapter 3. Automated Discovery of Subtle Attacks on Protocols using
Mix-Networks 37

• To fix the identified attacks we add the lacking ZKPs to the voting and
exam protocols. We check the protocols again, using the standard symbolic
modeling of ZKPs, and show that the corrected protocols are secure.

• The standard symbolic modeling corresponds to ideal ZKPs. We propose a
model for weaker Zero-Knowledge Proofs (which are common [DMWG23],
although they are known to be vulnerable [BPW12]), and can show that
they are insufficient in this case, as all attacks persist. To the best of our
knowledge, these concrete attacks have not been described in the literature.
Even the Crypto Santa protocol becomes vulnerable when using these weak
proofs, yet the protocol does not specify which ZKPs should be used.
Again, the model of weak ZKPs is of independent interest, as it can be
used for any protocol using ZKPs of ElGamal keys, even if there is no
Mix-Net.

• We also propose a refined model for re-encryption Mix-Nets, and analyze
the Estonian e-Vote protocol [IVX23]. As the protocol does not use any
ZKP by the voters, it is vulnerable to attacks on the Mix-Net, which
we can automatically detect (similar attacks were found manually before,
e.g., [Mül22] and which were judged to be “currently outside the scope of
automated tools” in [BBMP24]). We verify the protocol with added weak or
strong ZKPs, and are able to show that only the strong ZKPs are sufficient
to avoid attacks.

Remark:

In this chapter, we only consider ZKPs on the participants’ side to avoid
attacks by dishonest participants. As the Mix-Nets themselves can be
dishonest, they can be carried out with other ZKPs for correct “mixing” (or
shuffle) to guarantee that no inputs are added, omitted or altered which is
used to provide publicly verifiable transcripts that prove that the outputs are
indeed a shuffled list of the inputs. We omit this part as we only consider
honest Mix-Nets in our work. For more details about the latter proofs,
see [TW10, BG12].

3.1.2 Related Work

The first formal model of Mix-Nets was provided in 2003 by Wolff et al. [WSF+03].
They formalized the Mix-Net and its components using the CSP process algebra
and the FDR model-checker. The formal analysis was conducted considering a
passive attacker, and the Mix-Net model was not specific to a particular type
of Mix-Net, but rather general. At this time, this tool was only able to deal
with simple dedicated equational theory describing public key cryptography. In

Chapter 3. Automated Discovery of Subtle Attacks on Protocols using
Mix-Networks 38

2014, Stathakidis et al. [SSH14] proposed a formal model for Ximix, a Java im-
plementation of re-encryption Mix-Net, suitable for automation based on CSP
process algebra and the FDR model checker. They model and analyze the pro-
tocol in the presence of an intruder based on Roscoe and Goldsmith’s perfect
Spy [Ros05]. The main security property analyzed was the robustness of Ximix,
which is a functional property. Moreover, they do not model any mathematical
properties of the Mix-Net. Also in 2014, Küsters et al. [KTV14] provided the
first computational formal security analysis of decryption Mix-Net with random
partial checking. In their paper, they focus on accountability, where misbehavior
should be detectable and the responsible of the misbehavior should be blamed.
Their analysis in the computational model is not automated. There are other
works on the verification of Mix-Nets, e.g., in [HGS21], where the authors pro-
vide a mostly manual proof of the Verificatum Mix-Net, but to the best of our
knowledge there is none targeting directly exponentiation Mix-Nets.

Nonetheless, the most prevalent and standard method of modeling Mix-Nets

for symbolic verification of security protocols, is through anonymous channels, as
demonstrated by the overwhelming majority of works from the literature [BS16,
Swi22, BCG+18, Bel20, CGT17]. This is not surprising, given that Mix-Nets

are designed to establish a completely anonymous channel between incoming and
ongoing messages. In a nutshell, the Mix-Net is modeled abstractly by sending
the incoming messages over a private channel concurrently, thus without fixing
the order, and reading them back from that same channel.

Our work in the symbolic model using ProVerif allows us to automatically
discover flaws or verify protocols using Mix-Nets. Compared to previous works
in the symbolic model, our models evolve from a complete abstraction based on
the functionality of Mix-Nets, to a more precise and less abstract models of
exponentiation and re-encryption Mix-Nets.

Equivalence Properties and Automated Tools. There exist several auto-
mated protocol verification tools handling equivalence properties, but we chose
ProVerif as DeepSec [CKR18] cannot handle our equational theory, and, al-
though Tamarin [BCDS17] supports Diffie-Hellman exponentiation, the built-in
exponentiation operator cannot appear inside a user defined equation. In the case
of exponentiation Mix-Nets we need to define encryption and signature schemes
using the Diffie-Hellman keys, hence we need to re-use the exponentiation oper-
ator in the equations modeling encryption and signature. Previous work mostly
focused on improving the modeling of exponentiation in isolation [CJ19b], but
we need to connect both exponentiation and encryption. Computational tools
such as EasyCrypt [BGZBH11] or CryptoVerif [Bla09] should be able to detect
such attacks, they however provide a significantly lower level of automation.

Chapter 3. Automated Discovery of Subtle Attacks on Protocols using
Mix-Networks 39

Refined Modeling of Cryptographic Primitives. This work follows a line
of works which try to refine the modeling of cryptographic primitives in sym-
bolic models and thereby to reduce the gap to computational models, while
keeping a high level of automation. Similar work has been done for other primi-
tives, for example for digital signatures [JCCS19], Diffie-Hellman exponentiation
in weak groups [CJ19b], hash functions [CCD+23b], authenticated encryption
with additional data (AEAD) [CDJZ23a], and key encapsulation mechanisms
(KEM) [CDM24]. In all these papers, the authors proposed more detailed and
more realistic models of cryptographic primitives in the symbolic framework,
to be able to identify protocol flaws exploiting weaknesses of the cryptographic
primitives. In [JCCS19], the authors refine the existing Tamarin models of sig-
nature schemes so they discover attacks exploiting for example the fact that
in some schemes a signature potentially verifies against multiple different keys.
In [CJ19b], the authors propose a novel extension of the symbolic model of
Diffie-Hellman groups for Tamarin enabling them to capture a large family of
attacks exploiting weak groups that were previously outside the symbolic model.
In [CCD+23b], they propose a methodology to systematically discover attacks
using Tamarin and ProVerif that exploit weaknesses in widely deployed hash
functions, such as length extension attacks. They automatically find known at-
tacks, but also new variants of these attack on several protocols. In [CDJZ23a],
the authors provide an automated analysis method in Tamarin for protocols that
use AEAD. This method allows them to systematically find attacks that exploit
the subtleties of the specific type of AEAD used, as different schemes have dif-
ferent weaknesses.

Link to Computational Models. In symbolic models, all negligible probabil-
ities are abstracted away. For example, if there is only a negligible probability to
generate twice the same random value, or for the adversary to break an encryption
scheme, in a symbolic model this will simply be impossible. It has been shown
that under certain assumptions this can nevertheless give computational guaran-
tees (an approach called “computational soundness”, see e.g. [BBU13, MW04]).
There are also works on symbolic models that allow non-negligible probabilities
in the control flow, i.e., where agents can chose among different actions with
given probabilities (e.g., [CCK22]), however there is currently no tool support
for this. As the goal of our work is to automatically identify attacks, we use
standard symbolic models, where automated tools exist.

Outline. We start by describing decryption, re-encryption and exponentiation
Mix-Nets and detail known attacks from the litterature against those types of
Mix-Nets. In Section 3.3, we present our refined models, in the symbolic ap-
proach, of ElGamal cryptosystem, DSA signatures and zero knowledge proofs.

Chapter 3. Automated Discovery of Subtle Attacks on Protocols using
Mix-Networks 40

In Section 3.4, we present our new formal models for exponentiation and re-
encryption Mix-Nets. We present, as well, the result of our analysis with
ProVerif when verifying anonymity. In Section 3.5, we apply those models
to four different protocols using Mix-Nets to guarantee the privacy of the par-
ticipants. We conclude and discuss future work in Section 5.5.

3.2 Overview of Known Attacks on Mix-Nets and
Countermesures

In this section, we describe known attacks from the literature against the ex-
ponentiation and re-encryption Mix-Nets, and their countermeasures. Even
though we are not particularly targeting decryption Mix-Nets, we will nonethe-
less begin by providing an overview of an attack against this type of Mix-Net

when instantiated with the RSA cryptosystem, since it is the first chronologically
exhibited attack against the Mix-Nets and since it shares some similarities with
the attacks against both exponentiation and re-encryption Mix-Nets.

3.2.1 Decryption Mix-Nets

The following is based on the description of the untraceable electronic mail system
given by David Chaum in [Cha81]. For sake of simplicity, we suppose that there
is only one mixing server MD with (skMD , pkMD

) as secret and public key pair, a
receiver R with (skR, pkR) as secret and public key pair, and three senders S1, S2

and S3. We also suppose that enc(m, r, pki) and dec(c, ski) denote respectively the
encryption of a message m, sealed with the randomness r, with the public key of
an entity i and the decryption of a ciphertext c with the secret key of the entity i.
The protocol works as follows. Each sender Sj encrypts their message mj sealed
with rj , with the public key of the receiver R and obtains cj = enc(mj , rj , pkR).
Then, Sj re-encrypts the resulted ciphertext cj sealed with the randomness r′j ,
with the public key of the Mix-Net MD, obtains c′j = enc(cj , r

′
j , pkMD

) and
sends c′j to MD. MD receives the three ciphertexts, decrypts each one with their
secret key, re-arranges the plaintexts in lexicographic order and sends them to R.
Chaum emphasized that Mix-Nets must check inputs for uniqueness and that no
input should be repeated more than once because otherwise the correspondence
between the inputs and outputs is revealed for that repeated item (as a redundant
input yields in a redundant output). Decryption Mix-Net was defined with
regard to any public key cryptosystem such as RSA.

Attack on the RSA Implementation of Decryption Mix-Net [PP90].

Let us consider the RSA instantiation of the decryption Mix-Net by Chaum.
Consider the RSA setup as defined in Section 2.3.1, but instead of encrypting

Chapter 3. Automated Discovery of Subtle Attacks on Protocols using
Mix-Networks 41

A Ĉ1

S1,m1 ∥ r1 C1

S2,m2 ∥ r2 C2

MD

(m̂1 − fm1)2
−B ∈ Im1

m̂1

m2

Figure 3.1: Attack against the RSA implementation of decryption Mix-Nets,
where Ĉ1 ≡ f eC1 (mod N) and I = {−2b + 1, . . . , f(2b − 1)}.

simply a plaintext m, a sender Si encrypts their message mi concatenated with
a randomly generated coin ri both with fixed bits-size. Let B and b be the bit-
length of mi and ri respectively. We suppose that upon receiving the ciphertexts
from the sender, MD decrypts them with their secret key and retreives mi from ri∥
mi. The attack described in [PP90] makes use of the multiplicative homomorphic
property of RSA and it is depicted in Figure 3.1. The attacker has access to the
list of the Mix-Nets’ input ⟨C1,C2⟩ of the two senders. The attacker A, which
corresponds to sender S3, wants to learn the plaintext corresponding to a specific
ciphertext C1 sent by S1. C1 ≡ (r1 ∥ m1)

e (mod N). A can generate a small
bit-sized number f . A encrypts f with (e,N) the public key of MD, multiplies
the resulting ciphertext with C1 and sends the ciphertext Ĉ1 ≡ (f(r1 ∥ m1))

e

(mod N) to the Mix-Net as their own ciphertext. When the output list of the
encrypted messages is published, A knows that there is two output values mi and
m̂i such that (m̂i − fmi)2

−B belongs to I = {−2b + 1, . . . , f(2b − 1)}. Hence, A
looks for pairs verifying this condition in the output list. This way A identifies
the plaintext m1 of the sender S1.

Technical Detail

We have C1 ≡ (r1 ∥ m1)
e (mod N) ≡ (r1 · 2B + m1)

e (mod N) and Ĉ1 ≡
(r̂1 · 2B + m̂1)

e (mod N) ≡ (fr1 · 2B + fm1)
e (mod N). This implies that

m̂1 − fm1 ≡ 2B(fr1 − r̂1) (mod N). Hence (m̂1 − fm1)2
−B ≡ fr1 − r̂1

(mod N). And since b is the bit-length of r1 and r̂1, we have that fr1− r̂1 ∈
{−2b + 1, . . . , f(2b − 1)} = I.

Remark:

This attack can be seen as a form of a choosen ciphertext attack against
RSA with the Mix-Net acting as a decryption oracle. These types of at-
tacks against RSA were already known to the cryptography community since
1982 with the work of G. I. Davida [Dav82]. The subtle difference with the
attack described in [PP90] is that the random string in a decrypted message
is not known to the attacker (the Mix-Net only outputs the message). In a
similar vein, exploiting the format and the bit-length of the encrypted mes-
sage as a padding string concatenated with a block of data, Daniel Bleichen-

Chapter 3. Automated Discovery of Subtle Attacks on Protocols using
Mix-Networks 42

bacher described, later in 1998, successful chosen ciphertext attacks against
protocols based on the RSA encryption standard PKCS#1 in [Ble98].

3.2.2 Re-Encryption Mix-Nets

The main disadvantage of decryption Mix-Nets is the robustness of the net-
work. First, the length of the ciphertexts that each sender sends is very large.
It grows proportionally to the number of Mix-Nets servers. Secondly, the in-
coming messages have to be decrypted and passed on in the correct order. If
only one Mix-Net server is inactive in the phase of mixing, the message can-
not be transmitted. To overcome those limitations, Park et al. proposed the
re-encryption Mix-Net in [PIK93]. In re-encryption Mix-Nets, both the input
and output lists are ciphertexts encrypted within the same public-key encryption
scheme. These Mix-Nets put to positive use the homomorphic properties of the
used cryptosystem which allows the servers to re-randomize ciphertexts, thereby
re-encrypting the corresponding plaintexts. Thus, there is no a pre-defined or-
der among the mixing servers and the length of the ciphertexts is irrelevent to
the number of the servers. Let us consider the ElGamal setup as defined in
Section 3.3.1. We have a list of n ciphertexts ⟨Ci⟩ = ⟨C1, . . . ,Cn⟩ such that
Ci = (gr

′
i ,mihr

′
i), where mi a plaintext, and m mix servers Mj . The first mix

server M0 takes the original list of ciphertexts ⟨Ci⟩, and for each ciphertext Ci

generates a fresh random coin ri ∈ {0, . . . , q−1} and re-randomizes the ciphertext
with ri to obtain C′

i = (gr
′
igri ,mihr

′
ihri). Then M0 permutes the resulting terms

using a secret random order and sends the new list to the next mix server. The
following mix servers repeat these same steps. The last mix server Mm−1 outputs
a list of ciphertexts which encrypt the permuted input messages, initially chosen
by the senders, encrypted using different and secret random values. Due to their
construction, re-encryption Mix-Net outperforms the decryption Mix-Net in
terms of efficiency [RA12].

Attack on the Re-Encryption Mix-Net [Pfi94].

In 1994, Birgit Pfitzmann [Pfi94] described the attack depicted in Figure 3.2
against re-encryption Mix-Nets in the context of electronic voting. In this case
encrypted ballots are sent to a Mix-Net. Once the ballots are mixed, the author-
ity decrypts all the mixed encrypted ballots, and publishes the plaintext values
in order to ensure verifiability properties. The attack considers a malicious voter
A participating in the protocol. The attacker has access to the list of the Mix-
Nets’ input ⟨Ci⟩ of all participants. The attacker wants to learn the plaintext
corresponding to a specific ciphertext Ck ∈ ⟨Ci⟩ such that Ck = (grk ,mkhrk). A
can generate a ∈ {1, . . . , q−1}, raise both components of Ck to the power a, and
send the ciphertext Ĉk = (grka, (mkhrk)a) to the Mix-Net as its vote. When the

Chapter 3. Automated Discovery of Subtle Attacks on Protocols using
Mix-Networks 43

A Ĉk

V1,m1 C1

V2,m2 C2...
Vn,mn Cn

C′
2

C′
k

C′
2...

Ĉ′
k

M0 M1 Mm

ma
k

m2

m2
...

ma
k

mk

Decryption by the vote authority

Figure 3.2: Attack against re-encryption Mix-Nets, where
Ĉk = (grka, (mkhrk)a).

output list of encrypted messages is sent to the authority, all plaintexts mi are
published, and A knows that there is one output value mi that is equal to ma

j .
Hence, A looks for this collision by raising each plaintexts to the power of a and
looking for a match with the others. This way A can identify the plaintext mi

of the victim.

3.2.3 Exponentiation Mix-Nets

In [HS11], Haenni et al. have presented Exponentiation Mix-Nets, which create,
from a list of ElGamal public keys, a new shuffled list of anonymized public
keys, which can no longer be associated to individual parties.

Let us consider the same ElGamal setup described in Section 3.3.1. We
have a list of n public keys ⟨pki⟩ = ⟨pk1, . . . , pkn⟩ such that pki = gski and m

mix servers Mj . The first mix server M1 takes the original list of public keys
⟨pki⟩, generates a fresh random r1 ∈ {0, . . . , q − 1} and computes ⟨pkr1i ⟩. Then
M1 permutes the resulting terms with a secret shuffled order ⟨pkr1π1(i)

⟩ where π1 is
the permutation of indexes applied by M1. Then M1 sends ⟨pkr1π1(i)

⟩ to the next
mix server along with gr1 . The following mix servers repeat these same steps as
required. The last mix server Mm outputs the list: ⟨gskπ(1)·r, gskπ(2)·r, . . . , gskπ(n)·r⟩

along with gr where: π =
m∏
i=1

πi and r =
m∏
i=1

ri. Each party in possession of their

secret key ski should be the only one able to identify her pseudonym from the
final list published by the last mix server by computing (gr)ski = pkri .

Attack on the Exponentiation Mix-Net [RGL22].

Even though exponentiation Mix-Nets were designed nearly two decades after
the discovery of above attack against the re-encryption and decryption Mix-
Nets, there is an attack against them. Assume an attacker A that has access to
the list of public keys ⟨pki⟩ of all participants. They want to learn the pseudonym
generated by the mix servers for a specific public key pkk. A can generate a ∈
{1, . . . , q−1}, raise pkk to the power a and append term (pkk)a to the list of public
keys as their own public key to be mixed. When the final list of pseudonyms is

Chapter 3. Automated Discovery of Subtle Attacks on Protocols using
Mix-Networks 44

Senders Receivers

A pka1
S1 pk1
S2 pk2...
Sn pkn

pkr2
pkr1 (pkr1)

a

pkrn...
pka1

r

M0 M1 Mm

Figure 3.3: Attack against Exponentiation Mix-Nets.

published, they raise each pseudonym to the power of a and look for a match.
The attack, as illustrated in Figure 3.3 for a list of n public keys, exploits the
commutative property of exponentiation: ((gski)a)r = ((gski)r)a. This attack (a
more specific variant of it) was described by Rakeei et al. [RGL22] in 2022, but
it can be seen as a variant of the attack firstly described by Pfitzmann [Pfi94] in
1994.

3.2.4 Countermesures

To overcome the attacks described above against exponentiation and re-encryption
Mix-Nets, the senders are required to provide Zero-Knowledge Proofs (ZKPs)
of knwoledge [SP07, RGL22, Jak98]. A ZKP allows a party to show to another
party that a mathematical statement is true without revealing anything other
than the truth of the statement itself. A specific class of ZKPs are proofs of
knowledge, in which the prover demonstrates the knowledge of the preimage
x ∈ X of a public value y = ϕ(x) ∈ Y , where ϕ is supposed to be a one way
function. These proofs are in particular used to prove knowledge of the Discrete
Logarithm (DL) x of y = gx belonging to a multiplicative finite group Gq with a
generator g of order q. Moreover, interactive proofs between provers and verifiers
can be turned into non-interactive ones using the Fiat-Shamir heuristic [FS87].
Such ZKPs are, for example, used to avoid attacks against Mix-Nets by re-
quiring the senders to prove that they know the secret key associated to their
claimed public key in case of the exponentiation Mix-Net and the knwoledge
of randomness used when encrypted a message using ElGamal in the case of
re-encryption Mix-Nets.

Intuitively, adding a ZKP of the possession of the secret information along
with the messages fixes the attacks mentioned in Section 3.2. In practice, we
need to add Non-Interactive ZKPs in order to avoid burdening the protocol
with other exchanged messages. The Fiat-Shamir transformation appears to be
the most efficient construction of non-interactive ZKPs [BPW12]. However, two
variants of the Fiat-Shamir transformation appear in the literature. In [BPW12],
Bernhard et al. distinguish a weaker and a stronger variant. Both variants begin
with the prover making a commitment. The stronger variant hashes both the

Chapter 3. Automated Discovery of Subtle Attacks on Protocols using
Mix-Networks 45

commitment and the statement to be proved, while the weak variant hashes
only the commitment. The weak version is subject to an attack which allows
a malicious party to “fake” a proof as follows [BPW12]. To create a proof, an
honest prover, having as public key pk = gsk, picks a random a ∈ {1, . . . , q− 1},
computes A = ga and then, hashes A to create a challenge c = H(A). Finally,
the prover computes f = a+ c · sk. The proof corresponds to the pair (c, f) and
the verification procedure consists in checking whether c is equal to H(gf ·(pk)−c)

or not. For an honestly generated proof the verification procedure succeeds since
we have H(gf ·pk−c) = H(ga+c·sk ·g−sk·c) = H(ga) = c. A malicious prover picks
A′ a random element from Gq, f ′ a random exponent, computes c′ = H(A′)

and the verification of the proof (c′, f ′) succeeds for pk′ = (gf
′ · A′−1)c

′−1

as
H(gf ′ · pk′−c′) = H(gf ′ · ((gf ′ · A′−1)c

′−1

)−c′) = H(A′) = c′. The public key
depends on the faked proof, i.e., the dishonest prover must compute the proof
before choosing pk′.

Because of this attack, the use of the weak variant may invalidate the proof of
knowledge. The authors of [BPW12] stated that the weak Fiat-Shamir transfor-
mation can safely be used when the statement (in this example, the public key)
is fixed first (as in the attack the public key depends on the proof). However,
since exponentiation Mix-Nets or re-encryption Mix-Nets are carried on as
part of other bigger protocols, the list of inputs is not a-priori known. Moreover,
it is interesting to investigate the impact of the weak variant in the context of
Mix-Nets. Note also that the weak Fiat-Shamir transformation is widely used
in practice when it comes to non-interactive proof systems: in [DMWG23] the
authors examined over 75 different open-source implementations of proof systems
that use the Fiat-Shamir heuristic and found 36 systems using the weak variant.

Remark:

We note that, according to [JJ01], and in the case of RSA-based decryption
Mix-Nets, a ZKP may not be feasible; hence, defending against the attack
described in Section 3.2.1 can be challenging. As suggested by Pfitzmann
and Pfitzmann in [PP90], a public bulletin board should be avoided in this
case and the senders should broadcast simultaneously their messages to the
Mix-Nets in order to protect the users from this attack.

3.3 Refined Modeling of Cryptographic Primitives

In this section, we propose a refined modeling, in symbolic models, of certain
cryptographic primitives that are based on modular exponentiation. Our objec-
tive is to reduce the gap to computational models while maintaining a high level
of automation. We are particularly interested in modeling ElGamal encryption
and signatures, and ZKPs of the discrete logarithm’s knowledge.

Chapter 3. Automated Discovery of Subtle Attacks on Protocols using
Mix-Networks 46

3.3.1 Refined Model of ElGamal and DSA Signatures

ElGamal asymmetric encryption is typically modeled the same way as any
other public key encryption schemes: using a model for an abstract standard
probabilistic asymmetric encryption scheme, as in Equation (2.1) (e.g., in [CS11,
DJL14]). When formally analyzing the electronic exam protocol Remark!, Dreier
et al. proposed, in [DGK+14], the following equations for modeling ElGamal

encryption and signatures:

dec(enc(m, pseudopub(pk(k), rce), r), pseudopriv(k, exp(rce))) = m

checksign(sign(m, pseudopriv(k, exp(rce))), pseudopub(pk(k), rce)) = m
(3.1)

However, these equations are linked to their model of exponentiation Mix-Nets

and which hides all exponentiations using the functions used in the equations.
They involve four constructors: pk, which takes as argument a secret key and
computes the corresponding public key, exp, which takes as argument the ex-
ponentiation Mix-Net secret exponent and computes the new basis, a binary
function pseudopub, taking as argument a public key and the Mix-Net expo-
nent and a binary function pseudopriv, taking as argument a private key and a
basis of the finite group. It is clear that the exponentiations are hidden away by
the functions pseudopub and pseudopriv.

When modeling ElGamal encryption and signatures, we set the objective
of the model to be independent of the protocol and taking into account the fact
that public keys are based on the modular exponentiation of the form exp(·, ·)
and not pk(·). An intuitive approach to model ElGamal encryption, where
public keys are the result of the exponentiation operator, would be as follows:
dec(enc(m, exp(g, sk), r), sk) = m, where g is a fixed generator. However, this
equation only allows encryption under public keys of the form exp(g, sk), whereas
in the ElGamal cryptosystem one can encrypt under different bases. Another
attempt at modeling ElGamal would be to replace the fixed generator g in
the aforementioned equation with a variable to allow encryption with different
bases: dec(enc(m, exp(X, sk), r), sk) = m. This equation is however incorrect
with regard to ElGamal encryption and decryption algorithms. Consider a
dishonest party constructing their public key D = exp(H, d) from an honest
key H = exp(g, h). When the dishonest party receives a message m encrypted
with their public key enc(m, exp(H, d), r), they should not be able to obtain m

as when deciphering one obtains m · ((gh)d)r · ((gr)d)−1 ̸= m. Yet, with the
latter equation we have dec(enc(m, exp(H, d), r), d) = m. To avoid this issue, we
include the generator used in the encryption in the equation, which is consistent
with the real cryptographic primitive (the public key includes the generator as a
parameter). To that end, we use the equations depicted in Table 3.1.

Chapter 3. Automated Discovery of Subtle Attacks on Protocols using
Mix-Networks 47

Primitive Equation

Exponentiation
exp(exp(g, x), y) = exp(exp(g, y), x)

exp(exp(exp(g, x), y), z) = exp(exp(g, x), z), y)

ElGamal Encryption dec(enc(m,X, exp(X, s), r), X, s) = m

ElGamal Signature checksign(sign(m,X, s), X, exp(X, s)) = m

Table 3.1: Equational Theory.

Our equations involve a single binary function exp which denotes the op-
eration of modular exponentiation. The first equation for the exponentiation
is the standard equation used for the protocol involving DH exponentiation in
ProVerif. The second equation is needed, as we will see in Sections 3.4 and 3.5,
to find the attacks against protocols involving exponentiation Mix-Nets. For
example, the attack described in Section 3.2.3 needs three exponentiations. To
encrypt a message m with ElGamal, one needs to generate a random r and to
use the public parameters of the receiver: a basis X and the key exp(X, s) such
that s is the secret key of the receiver. To sign a message m, one needs to specify
the basis X used in the public parameter exp(X, s) and the secret exponent s.
Then, sign(m,X, s) is a digital signature for the message m. To verify the digital
signature, one needs the corresponding public key exp(X, s) and the basis X. If
we do not assume the signature scheme to be hiding, we can add the equation
getmess(sign(m,X, s)) = m to the equational theory depicted in Table 3.1. This
model of ElGamal probabilistic public key encryption is not bound to any proto-
col, and more precise than the usual models, as it inherits the algebraic properties
of the exponentiation operation. Obviously, it can also be used in protocols that
do not include exponentiation Mix-Nets. Our model of the ElGamal encryp-
tion together with the equations for the modular exponentiation have allowed us
to find a subtle attack described later in Section 3.5.3.

3.3.2 Refined Model of Zero-Knowledge Proofs

We enriched our model with a non-interactive zero knowledge proof (NIZKP)
of the discrete logarithm’s knowledge since the sender is required to transmit its
message along with a ZKP proving their knowledge of either the secret key for
the exponentiation Mix-Nets or the randomness used for ElGamal encryption
for the re-encryption Mix-Nets. Upon a valid verification of the proof given by
the sender, the Mix-Net servers accept the entry. Otherwise, they reject the
message.

We use two different models, one modeling a weak ZKP, and the other mod-
eling a strong ZKP. The corresponding equations are depicted in Table 3.2.

Chapter 3. Automated Discovery of Subtle Attacks on Protocols using
Mix-Networks 48

Primitive Equation

Strong ZKP ck(szkp(A, g, x), g, exp(g, x),Hash(g, exp(g, x), A)) = true

Weak ZKP ck(wzkp(A,X, x), X, exp(X,x),Hash(A)) = true

Table 3.2: Equational Theory for Modeling ZKPs.

These equations state that the verification of a proof of knowledge of a secret
key succeeds only if the proof was created genuinely: it needs to be checked using
the same generator, public key and hash that was used to generate it. The first
argument of both functions (szkp and wzkp) refers to the commitment used in
the proof. The hash of the commitment is used by ck to check the adequacy of
the challenge, and in the case of the strong variant the hash includes the public
key. Moreover, in case of the strong ZKP, the proof is only valid when using the
public generator g, as this is part of the statement. In the case of a weak ZKP,
the hash only includes the commitment, and the generator is now a variable as
it is no longer part of the statement.

3.4 Formal Model of Exponentiation and Re-Encryption
Mix-Nets

We model Mix-Net protocols in the applied Π-Calculus described in Sec-
tion 2.1 and perform the automatic protocol verification with ProVerif. Mix-
Nets are supposed to establish anonymous channels to guarantee the privacy of
the participants. We model privacy properties as equivalence properties. More
precisely, honest parties are modeled as processes which can exchange messages
on public or private channels, create keys or fresh random values, and perform
tests and cryptographic operations. The attacker has complete control of the
network, except for the private channels.

A Mix-Network, as explained in the latter sections, involves different parties,
among which are the Mix-Net servers, the senders who send the messages to the
Mix-Net servers, and the receivers of the mixed messages. Formally, without
loss of generality, we define Mix-Nets as follows.

Definition 3.4.1 (Mix-Net). A Mix-Net is a tuple (S,M,R, ñp) where S is
the process executed by the senders, M is the process executed by the Mix-Net

servers, R is a process executed by the receivers, and ñp is a set of private channel
names, where R can be the null, one or many processes.

We note that all senders and all mixing servers execute the same process, but
with different variable values, e.g., keys, randomness and identities. We give a
formal specification of the Mix-Net protocol.

Chapter 3. Automated Discovery of Subtle Attacks on Protocols using
Mix-Networks 49

Definition 3.4.2 (Mix-Net instance). A Mix-Net instance is a closed pro-
cess MP = νñ · (Sσid1σskS1

| . . . | SσidjσskSj
|Mσm1 | . . . |Mσmk

| Rσid’1σskR1
| . . . |

Rσid’jσskRj
)) where ñ is the set of all restricted names, which includes the set of

the protocol’s private channels; SσidiσskSi
are the processes run by the senders

with the substitutions specifying the identity and the secret key of the ith sender
respectively; Mσmj is the process executed by the Mix-Net servers with the sub-
stitution specifying in particular their secret shuffle variable, and Rσid’iσskRi

are
the processes run by the receivers with the substitutions specifying the identity
and the secret key of the ith receiver respectively.

Since both exponentiation and re-encryption Mix-Nets are meant to guar-
antee the anonymity of the senders, we define the anonymous shuffling property
with regard to only the senders. We write MP{id1,id2}[·] for the Mix-Net instance
MP without the processes for the senders id1 and id2.

Definition 3.4.3 (Anonymous Shuffling). A Mix-Net ensures Anonymous Shuf-
fling if for any mixnet processes MP, any senders id1 and id2 and any private
materials p1 and p2 (i.e., their keys or messages):
MP{id1,id2}[Sσid1σp1 | Sσid2σp2] ≈l MP{id1,id2}[Sσid1σp2 | Sσid2σp1]

In the case of exponentiation Mix-Nets, this definition requires that the
process where id1 has sk1 and id2 has sk2 as their secret key, is equivalent to
the process where id2 has sk1 and id1 has sk2. This prevents the attacker from
obtaining information about the identity of the sender based on the outcome
of the Mix-Net. Likewise, in the case of re-encryption Mix-Nets the process
where id1 encrypts the message m1 and id2 encrypts the message m2, should be
equivalent to the process where id2 encrypts m1 and id1 encrypts m2. This pre-
vents the attacker from having any information about which plaintext belongs to
which sender. As stated above, we consider an attacker having complete control
of the network and, depending on the properties, we also allow the attacker to
corrupt parties. Such corrupted parties cooperate with the attacker by revealing
their secret data and/or taking instructions from them. We model them using
the definition given in [DKR06]: if the process P is an honest party, then the
process P c1,c2 is its corrupted version. The latter is a variant of the honest pro-
cess sharing with the attacker channels c1 and c2. P c1,c2 sends all its inputs and
freshly generated names to the attacker via channel c1, and receives (via channel
c2) messages from the attacker that will determine its behavior.

Naturally, it is interesting to consider corrupted or dishonest senders, as they
might be interested in obtaining a link between the outcome of a Mix-Net and
the identity of some other users. We can do this by replacing honest senders
with corrupted ones. For example, if we assume that a sender id3 is dishonest,

Chapter 3. Automated Discovery of Subtle Attacks on Protocols using
Mix-Networks 50

we obtain:

MP{id1,id2,id3}[Sσid1σp1 | Sσid2σp2 | (Sσid3σp3)
c1,c2] ≈l

MP{id1,id2,p3}[Sσid1σp2 | Sσid2σp1 | (Sσid3σp3)
c1,c2]

Remark:

Some researchers may refer to unlinkability or untraceability when analyzing
Mix-Nets. For example, the authors of [RGL22] describe their attack against
exponentiation Mix-Net as a “unlinkability attack ”. We argue that anony-
mous shuffling is not an unlinkability property as defined informally by the
ISO/IEC standard 15408 [ISO09].

3.4.1 Formal Analysis of Exponentiation Mix-Nets

As explained in Section 3.3.1, exponentiation Mix-Nets have been modeled pre-
viously, but only as part of other, bigger protocols, for example in the analysis
of the E-exam protocol Remark! [DGK+14]. This modeling is actually sufficient
to represent the Mix-Net functionality, but it is clearly insufficient to capture
the attack aginst exponentiation Mix-Nets described in Section 3.2.3.

Model. The process for each Mix-Net server M is given in Figure 3.4, the hon-
est sender process is: let S(skS) = out(ch, (exp(g, skS)). The sender
simply outputs their public key. Each Mix-Net server inputs the list of all keys,
checks that they are distinct, applies their random exponent to all keys and out-
puts the list of all keys in random order (modeled using parallel outputs on the
same channel). We note that all keys should be different. Otherwise a trivial
attack consists in copying the public key to track: the corresponding pseudonym
is the one figuring twice in the list output by the Mix-Net.

Equational theory. We use the equations for the exponentiation and ZKPs

depicted in Table 3.1. We note that in the equations g is a fixed generator and not
a variable, as otherwise the pre-treatment of equations by ProVerif does not
terminate. The first equation for exponentiation takes into account the equation
needed for the protocol to work but is insufficient to capture attacks against
exponentiation Mix-Nets. This is the reason why we need to explicitly give an
equation for three exponents, as the attack uses an additional exponentiation.
Adding additional exponentiation (more than three) to the equational theory
caused non-termination of ProVerif in our examples.

In ProVerif, we modeled only one Mix-Net server and add dedicated pri-
vate channels between the two participants swapping their keys and the Mix-Net

Chapter 3. Automated Discovery of Subtle Attacks on Protocols using
Mix-Networks 51

let M(eNj
) =

in(ch, pkS1
).

...
in(ch, pkSk

).
if (pkS1

<> pkS2
)&& . . .&&(pkS1

<> pkSk
) then

...
if (pkSk

<> pkS1
)&& . . .&&(pkSk

<> pkSk−1
) then

(out(ch, exp(pkS1
, eNj

)) ||
...

out(ch, exp(pkS1
, eNj

))).

Figure 3.4: Mix-Net’s Process.

to ensure that both keys take part in the mixing. The keys are still published,
and the attacker can still add a malicious key to the mixing.

Analysis. The result of the analysis of exponentiation Mix-Nets is given in
Table 3.4. ProVerif concludes that Anonymous Shuffling property is not satisfied
and finds the exact same attack depicted in Figure 3.3 when ZKPs are absents
from the model. When using the weak ZKP, ProVerif returns the same attack
trace on the protocol. We note that in our ProVerif code, when integrating the
ZKPs and when the Mix-Net verifies a weak proof, we input the value X from
the network – fixing g would prevent the attacker from using a public of the form
exp(exp(g, x), a), as in the first attack trace. With the strong variant ProVerif

concludes that anonymous shuffling is satisfied (Table 3.4). The ProVerif at-
tack with weak ZKP works in the same way as the one without a ZKP (Fig-
ure 3.3): an attacker builds a new key pk′ = pkα from their victim’s key pk and
bypasses the proof check since ck(wzkp(A, pk, α), pk, exp(pk, α), h(A)) = true.
In reality, this attack does not work for any α, but for example choosing α = c′−1

results in a real attack as follows. Let (c, f) = (H(ga), a + c · sk) be the proof
generated by an honest participant with public key pk = gsk. An attacker
computes c′ = H(Ac−1

), where A = ga is the commitment of the honest par-
ticipant, chooses pk′ = pkc

′−1

as public key and computes f ′ = c−1 · f . The
attacker sends (c′, f ′) as a proof along with their public key pk′ to the Mix-Net.
The verification procedure of the ZKP by the Mix-Net succeeds since we have
H(gf ′ · (pk′c

′
)−1) = H(gc−1·a+sk · g−sk) = c′. As the verification of the proof suc-

ceeds, the attacker can then perform the same attack as described in Figure 3.3
by raising pseudonyms to the power of c′−1 (instead of a).

3.4.2 Formal Analysis of Re-Encryption Mix-Nets

In the following, we conduct a formal analysis of re-encryption Mix-Nets.

Chapter 3. Automated Discovery of Subtle Attacks on Protocols using
Mix-Networks 52

Model. The process for each Mix-Net server M is similar to the one defined
for exponentiation Mix-Nets (as depicted in Figure 3.4), but it uses different
parameters. Each Mix-Net server inputs the list of all generated ciphertexts,
checks if they are distinct, applies a random coin to each ciphertext in order to
re-randomize it and outputs the list of all new ciphertexts in random order.

The sender simply outputs its ciphertext. Thus, the sender process is: let
S(mS, rS, pk) = out(ch, (enc(mS, g, pk, rS)).

Equational theory. Re-encryption Mix-Nets rely on the homomorphic prop-
erties of the encryption scheme since Mix-Net servers need to re-encrypt the list
of the inputted ciphertexts. Therefore, in addition to the encryption equation,
we require an additional equation that models a re-encryption operation. We use
the equational theory depicted in Table 3.3

Primitive Equation

Encryption dec(enc(m,X, exp(X,x), r), X, x) = m

Re-Encryption
reenc(enc(m,X, exp(X,x), r), r′, X, exp(X,x)) =

enc(m,X, exp(X,x), sum(r, r′))

Exponentiation
EXP(enc(m,X, exp(X,x), r), a) =

enc(exp(m, a), X, exp(X,x),mult(r, a))

Table 3.3: Equational Theory for Modeling Re-Encryption Mix-Net.

The first equation corresponds to our refined model of ElGamal described
in Section 3.3.1. Let (c1 = gr, c2 = m · (gx)r) be an ElGamal ciphertext.
Re-encrypting the latter ciphertext consists in generating a new random r′ and
multiplying c1 with gr

′ , and c2 with (gx)r
′ . The resulting ciphertext is of the

form (gr+r′ ,m · (gx)r+r′). To model the re-encryption operation, we introduce
two function symbols sum and reenc. The binary function sum represents a
sum of two exponents (albeit in a limited way, as sum has no further equa-
tions – ideally sum should be associative and commutative, but this is not
possible in ProVerif). The function reenc takes as arguments a ciphertext
enc(m,X, exp(X,x), r), a coin r′, a basis X and a public key exp(X,x). It re-
turns the ciphertext enc(m,X, exp(X,x), sum(r, r′)) with a coin representing the
sum of r and r′. The first and the second equations are needed for the protocol
to work as it uses encryption and re-encryption, but they are insufficient to cap-
ture attacks against re-encryption Mix-Nets. To capture the attack depicted
in Figure 3.2, we need to augment our equational theory with an equation that
allows for the exponentiation of the ciphertext with respect to the induced homo-
morphic properties on the corresponding plaintext. The third equation uses the
binary function EXP (different from exp) to apply a known exponent a over the

Chapter 3. Automated Discovery of Subtle Attacks on Protocols using
Mix-Networks 53

Protocol ZKP Result Time

Exponentiation Mix-Nets

without ✗ 2 s

weak ✗ 1 m 6 s

strong 3 s

Re-encryption Mix-Nets

without ✗ 1 s

weak ✗ 2 s

strong 1 s

Table 3.4: Results of our analysis of Anonymous Shuffling, with and without
the added ZKP.

plaintext. We introduce the function mult to represent a multiplication between
random coins (again, in a limited way). When analyzing re-encryption Mix-Nets

using ZKPs to show knowledge of the randomness used for the encryption, we
also added the equations depicted in Table 3.2.

Analysis. The result of the analysis of re-encryption Mix-Nets is given in
Table 3.4. ProVerif concludes that Anonymous Shuffling is not satisfied and
finds the attack depicted in Figure 3.2 when the protocol is modeled without
ZKPs. In the case of the weak ZKP, ProVerif finds (nearly) the same attack,
except that the attacker needs to fake the ZKP as in the attack on the exponen-
tiation Mix-Net with weak ZKP. In contrast, the property is verified when the
strong ZKP is used instead.

Remark:

We note that the attacks found by ProVerif would not be possible if we
modeled a dishonest user the standard way: we create a secret key (or a
secret message) for the dishonest party and we output it to the attacker on
the public channel. In order to find the attacks described above, the secret
keys (or the messages) of the dishonest user need to be generated dishonestly
which we model as an input from the public channel.

3.5 Applications

In this section, we perform formal analysis of four cryptographic protocols using
Mix-Nets for different privacy purposes. A formal analysis of the electronic
exam protocol has been presented in [DGK+14] where the protocol has been
proved secure and no attacks have been found against privacy properties. Re-
garding the three other protocols, to the best of our knowledge, we present their
first formal analysis. The timings for the results of the formal analysis given

Chapter 3. Automated Discovery of Subtle Attacks on Protocols using
Mix-Networks 54

below were done on macOS with a M1 processor and 16 GB of RAM. All of
our ProVerif files are publicly accessible and can be accessed online through
the Gitlab repository1. We use a public Bulletin Board, denoted BB. A Bul-
letin Board is a public append-only (i.e., nobody can delete) broadcast message
channel. We also assume that the exponentiation and re-encryption Mix-Nets

behave correctly. For simplicity, we have modeled the Mix-Nets performed by
all servers as a single honest Mix-Net server. All the aforementioned protocols
are analyzed with and without the proposed fix described in Section 3.4.1.

3.5.1 Remark! Protocol

We first analyze the Remark! protocol, an electronic exam protocol, designed
by Giustolisi et. al [GLR14] and meant to achieve multiple privacy properties
without relying on trusted parties. The following description of the protocol is
based on [GLR14, DGK+14].

Protocol Description. The Remark! protocol involves four types of parties:
Mix-Net servers, the candidate(s) sitting the exam, the examiner(s) correcting
the answers and marking them, and an exam authority collecting the answers,
dispatching them for the marking phase and delivering the final marks. It is
assumed that each party is given a pair of public/private ElGamal keys with a
common generator g, i.e., the private key x and the public key y = gx. The pro-
tocol runs in four phases: Registration, Examination, Marking and Notification.
The protocol’s sequence diagram is depicted in Figure 3.5.

Registration. The registration phase uses an exponentiation Mix-Net to gen-
erate pseudonyms pkC and pkE for both candidates C and examiners E based on
their public keys pkC and pkE as described in Section 3.2.3. Let rm and r′m de-
note the Mix-Net’s exponents related to candidates and examiners respectively,
and let (hC = grm , hE = gr

′
m) be the new generators.

Examination. The exam authority begins by signing (using its secret key
skA) and encrypting (with the candidates’ pseudonyms pkC) the questions q and
publishes the result on the bulletin board BB. Then, the exam authority collects
the candidates’ answers a (which are signed with the candidates’ pseudonym keys,
and encrypted with the authority’s key pkA), verifies the signatures, resigns them,
encrypts them using the corresponding candidates’ pseudonyms and publishes
them.

Marking. The exam authority encrypts the answers with examiners pseudonyms
pkE and publishes them. Each examiner marks the received tests with a mark
mark, signs them using its pseudonym, encrypts them with the pkA and sends
the marked tests back to the authority.

1https://gitlab.limos.fr/dhmahmoud/usenix24-632/

https://gitlab.limos.fr/dhmahmoud/usenix24-632/

Chapter 3. Automated Discovery of Subtle Attacks on Protocols using
Mix-Networks 55

Examiner Mixnet Authority Candidate

.........

skE , pkC , pkM , pkA skM , pkE , pkC , pkA skA, pkE , pkM , pkC skC , pkE , pkM , pkA

Registration

Examination

Marking

Notification

rm ←
∏

ri

pkC ← pkrmC

hC ← grm

{pkC , hC}skNBB

r′m ←
∏

r′i

pkE ← pk
r′m
E

hE ← gr
′
m

{pkE , hE}skNBB

{{q, pkC}skA}pkCBB
T ← q, a, pkC

{{T}skC ,hC
}pkA

{{T}skA}pkCBB

{{T}pkA}pkEBB

M ← mark, {T}pkA {{M}pkE ,hE
}pkA

BB
{{M}pkE ,hE

}pkC

BB
rm

Figure 3.5: Remark! protocol diagram.

Notification. The authority receives the marks, verifies the signatures of
the examiners and publishes the signed marks encrypted with the candidates’
pseudonyms. Finally, the Mix-Net servers de-anonymize the candidates pseudo-
nyms by revealing the secret exponent rm.

Formal Analysis. Dreier et. al [DGK+14] formalized privacy properties
for electronic exams. Here we focus on Anonymous Marking and Anonymous
Examiner ’s informal definitions. An e-exam protocol ensures Anonymous Mark-
ing if a process where two candidates C1 and C2 answer a1 and a2 respectively,
is indistinguishable from a process where the candidates switch their answers.
This means that an examiner or an attacker cannot link a candidate to a certain
answer which ensures impartiality. Similarly, it ensures Anonymous Examiner
if a process where two examiners E1 and E2 grade exam forms f1 and f2 re-
spectively, is indistinguishable from a process where the examiners switch the
forms. This property prevents the attacker and the candidates from obtaining
information about the identity of the examiner who marked a certain answer to
prevent coercion.

Chapter 3. Automated Discovery of Subtle Attacks on Protocols using
Mix-Networks 56

The mentioned properties were proven satisfied with ProVerif on the model
given in [DGK+14]. This model uses the abstract model for the Mix-Net de-
scribed in the beginning of Section 3.4.1. We took the existing ProVerif files
and replaced the abstract model of the Mix-Net with our refined model, and
checked the same properties. Now, ProVerif finds attacks on Anonymous Ex-
aminer and Anonymous Marking. The results of the analysis are depicted in
Table 3.5.

Anonymous Marking is not satisfied because a candidate Ci signs his answer
ai with his pseudonym pkCi and the pseudonym generated by the exponentia-
tion Mix-Net can be linked back to the candidate using the attack described
in Section 3.2.3. In particular, a dishonest examiner can infer the author of the
copy of the exam he is correcting. This breaks the desired candidates’ privacy
and the expected fairness of the marking procedure. Similarly, Anonymous Ex-
aminer is not satisfied because the examiners sign the marks they attribute using
their pseudonyms, and again the pseudonyms generated by the exponentiation
Mix-Net are linkable. A dishonest party can perform the same attack to track
the examiner’s pseudonym and to learn which examiner has corrected a given
copy. This breaks the desired examiners’ privacy property and might make them
vulnerable to coercion.

The results of the analysis are depicted in Table 3.5.

3.5.2 Crypto Santa Protocol

The second protocol we have analyzed is the Crypto Santa protocol. It is based
on a Christmas tradition called Secret Santa. During this ceremony, the partic-
ipants are randomly assigned a person to whom they give a gift. In particular,
the identity of the gift giver is to remain a secret. The Crypto Santa protocol
is a cryptographic protocol designed by P. Ryan [Rya15] to cryptographically
implement the Secret Santa tradition. The protocol is designed to protect the
anonymity of the gift giver, and is essentially based on an Exponentiation Mix-
Net.

Protocol Description. The participants are n players. Each player is
assumed to have a pair of a public and secret keys (pki, ski) where pki = gski .
The public keys are arranged into a list L̃ = (pk1, . . . , pkn) such that the key pki

belongs to the player Pi. Given a list L let L[j] denote the jth term of the list
L. The players take the list of public keys in turns, and each player i performs
an exponentiation with si and a shuffling step.

The final output is the list Ln = Πn(Ln−1[1]
sn , . . . , Ln−1[n]

sn) along with the
final generator gs = gs1s2...sn . Note that the position of each pseudonym in the
final outputted list Ln is relevant, as it determines a player to whom the gift is
offered. If Ln[j] = pksi , then Pi presents their gift gifti to the player Pj .

Chapter 3. Automated Discovery of Subtle Attacks on Protocols using
Mix-Networks 57

Protocol ZKP Property Result Time

Remark! [GLR14]

without
Anonymous Marking ✗ 3 m 16 s

Anonymous Examiner ✗ 4 m 19 s

weak
Anonymous Marking ✗ 9 m 35 s

Anonymous Examiner ✗ 9 m 23 s

strong
Anonymous Marking 11 s

Anonymous Examiner 7 s

Haenni Voting [HS11]
without

Vote Privacy
✗ 4 m 35 s

weak ✗ 9 m 35 s

strong 14 s

Crypto Santa [Rya15]
weak

Anonymous Shuffling
✗ 4 m 6 s

strong 9 s

IVXV [IVX23]
without

Vote Privacy
✗ 1 s

weak ✗ 25 s

strong 8 s

Table 3.5: Results of our analysis, with and without the added ZKP. Crypto
Santa required a ZKP from the start.

To prevent a player from cheating, the protocol suggests that each player
provides two different Zero-Knowledge Proofs: a proof that he has performed
the shuffle correctly (based on the specifications from [Wik05]), and a proof
of knowledge of their secret key ski using a standard ZK proof of the discrete
log [Rya15]. We do not give further details about the proof of shuffle since in our
model we assume that the shuffle procedure is performed correctly.

Formal Analysis. In [Rya15] there is no formal definition of the security
properties ensured by Crypto Santa protocol. Nevertheless, they emphasized the
fact that the gift giver should be anonymous. Hence, in the final list, the players’
pseudonyms should be anonymized. Thus, the Crypto Santa protocol should
probably guarantee Anonymous Shuffling (Def. 3.4.3). The results of our analysis
are depicted in Table 3.5: Anonymous Shuffling is satisfied in case of strong ZKPs,
but broken in case of weak ZKPs. Note that the original paper [Rya15] does not
specify which ZKP is to be used, and weak ZKPs are widely used [DMWG23].

3.5.3 Haenni’s Internet Vote Protocol

The next protocol we analyze is an internet vote protocol proposed in [HS11].
This paper also introduced the concept of exponentiation Mix-Nets. The se-

Chapter 3. Automated Discovery of Subtle Attacks on Protocols using
Mix-Networks 58

Player P1 Player P2 Player Pn

.........

sk1, pk1 . . . pkn sk2, pk1 . . . pkn skn, pk1 . . . pkn

new s1,Π1 new s2,Π2 new sn,Πn

L1 ← Π1(pk
s1
1 , . . . , pks1n)

L̃1 ← (L1, g
s1)

L̃1

L1

BB

L2 ← Π2(L1 [1]s2 , . . . , L1 [n]s2)

L̃2 ← (L2, (g
s1)s2)

L̃2

L2

BB

L̃1

L1

BB

...
L̃n−1

Ln ← Πn(Ln−1 [1]sn , . . . , Ln−1 [n]sn)

L̃n ← (Ln, g
s1s2...sn)

L̃n

BB

Ln[jn] = (gs1...sn)skn

giftn
Pjn

Ln[j1] = (gs1...sn)sk1

gift1
Pj1

Ln[j2] = (gs1...sn)sk2

gift2
Pj2

Figure 3.6: Crypto Santa Protocol

curity of this voting protocol relies on the anonymity obtained by shuffling the
voters’ public keys. Casting a vote consists in signing the encrypted candidate
choice with the anonymized public key generated by the Mix-Net. To obtain
the election result, votes carrying a valid signature are decrypted and counted.

Protocol Description. This voting protocol involves four types of parties:
the anonymizers, which are the Mix-Net servers, the voters, the talliers, and an
election authority. The protocol runs in four phases: Registration, Preparation,
Vote Casting and Tallying. We assume an anonymous channel C between the
voters and the Bulletin Board. The protocol’s sequence diagram is depicted in
Figure 3.7.

Registration. The election authority begins by setting up a Public Key In-
frastructure for the voters. Each voter idVi is therefore equipped with a key pair
(ski, pki = gski) and a public certificate binding their public key pki to their
identity idVi .

Election Preparation. During this phase the election authority publishes the
set C of possible candidates. The authority has to publish all certificates corre-

Chapter 3. Automated Discovery of Subtle Attacks on Protocols using
Mix-Networks 59

Talliers Anonymizers Voter Authority

.........

Registration

Preparation

Vote Casting

Tallying

skT , pkVi , pkM , pkA skM , pkT , pkVi , pkA skVi , pkT , pkM , pkA skA, pkT , pkVi , pkM

Certificate request

Cert(pkVi)

Cert(pkVi)BB
C

BB

rm ←
∏

ri

pkVi ← pkrmVi

hV ← grm

(pkVi , hV) BB

ei ← {ci}skT

si ← {ei}skVi

Bi ← (ei, si, h
skVi
V)

Bi BB

ci
BB

results
BB

Figure 3.7: Haenni voting protocol sequence diagram.

sponding to eligible voters. Let Y = {y1, . . . , yn} be the list of voters’ public keys.
The anonymizers take as input Y and output the shuffled list Ỹ = {ỹ1, . . . , ỹn}
together with the new generator g̃. The talliers jointly generate a public key
using a threshold encryption scheme. The talliers jointly generate a public key
using a threshold encryption scheme.

Vote Casting. Let ci ∈ C be an eligible candidate. To vote for ci, a voter vi

needs to encrypt ci with the talliers’ public key y, signs the encrypted vote ei

with their private key ski, computes their pseudonym based on the new generator
g̃ created by the anonymizers, and submits the ballot Bi = (ei, si, g̃i

ski) such that
si corresponds to the encrypted and signed vote.

Tallying. Let B = (e, s, ỹ) be a ballot. For a vote to be considered in the tally,
the following conditions have to be satisfied: ỹ is a valid pseudonym, s is a valid
signature for e and B is the only valid entry for ỹ in BB. The talliers decrypt all
valid votes individually, and determine the final election result by applying the
counting function to the resulting plaintexts. They also provide proofs of correct
decryption.

Formal Analysis. The main security property related to vote protocols
is Vote Privacy. We informally recall the definition proposed by Delaune et.
al [DKR09]. In a nutshell, considering two voters V1 and V2 and their votes c1

and c2, respectively, a voting protocol respects vote privacy whenever a process

Chapter 3. Automated Discovery of Subtle Attacks on Protocols using
Mix-Networks 60

where V1 votes c1 and V2 votes c2 is observationally equivalent to a process where
V1 votes c2 and V2 votes c1. This means that an attacker is not able to detect
whether arbitrary honest voters V1 and V2 swapped their votes or not. The result
for Vote Privacy is depicted in Table 3.5. Once again, in the absence or in the
presence of weak ZKPs, there is an attack; in the presence of strong ZKPs, the
property is verified.

The attack found by ProVerif linking the pseudonyms generated by Mix-
Net (which is used by the voters to sign their votes) and the identities of the
voters is quite interesting as it also relies on our refined model of ElGamal en-
cryption and is slightly different from the attack described in Section 3.2.3. More
precisely, let us consider two voters Vi and Vj with secret keys skVi and skVj

with corresponding public keys pkVi = gskVi and pkVj = gskVj respectively. An
attacker who wants to track Vi would choose as public key pkVi

s. The out-
putted list of the pseudonyms generated by the Mix-Net contains pkVi

rm (the
pseudonym of Vi), pkVj

rm (the pseudonym of Vj) and pkVi
srm , the attacker’s

pseudonym. To test whether a pseudonym g̃ belongs to the voter Vi, the attacker
generates a plaintext m and encrypts it using their pseudonym h as the public
key and using g̃ as the basis. If the attacker succeeds in decrypting the cipher-
text using their secret key, then the pseudonym used as the basis for ElGamal
encryption corresponds to Vi’s pseudonym. We can see as follows why this attack
works. Let c be the ciphertext for the plaintext m. Then, c = (c1, c2) such that
c1 = g̃r = (pkVk

rm)r and c2 = m · hr = m · (pkVi
srm)r. Using their secret key s

the attacker tries to decrypt c. If k = i then c2 · c−s
1 = m. ProVerif was only

able to find such an attack because of our refined model of ElGamal encryption.

3.5.4 IVXV Internet Vote Protocol

The Estonian internet vote protocol uses the re-encryption Mix-Net to guar-
antee privacy of voters [IVX23]. It is used to conduct legally binding political
elections in Estonia. We use the equational theory described in Table (3.3). The
description of the protocol is based on the one given by Müller in [Mül22].

Protocol Description. The Voting System consists of the Election Orga-
nizer EO, the Vote Collector V C, the Registration Service RS, the I-Ballot Box
Processor IBBP , the Talliers T and Mix-Nets MS. The protocol runs in four
phases: Registration, Vote Casting, Preparation and Tabulation.

Registration. This scheme requires a Public Key Infrastructure. Each eligible
voter vi is therefore equipped with a key pair (skvi , pkvi) and a public certificate
Certvi binding their public key pkvi to their identity vi. The EO publishes the
set C = ⟨cj⟩ of possible candidates. The talliers T jointly generate a public key
pkT using a threshold encryption scheme.

Chapter 3. Automated Discovery of Subtle Attacks on Protocols using
Mix-Networks 61

Election Organizer Mix-Nets IBBP Vote Collector Voter

.........

Registration

Vote Casting

Prep-Tabulation

Tabulation

skT pkT pkT , pkvi pkvi skvi , vi, pkT

⟨pkvi , Certvi⟩
⟨cj⟩

BB

Bci ← {cj}pkT
Bcsi ← {Bci}skvi

Bi ← (Bcsi, Certvi , vi)

Bi

(vidi, regvidi)

⟨Bcsi⟩
⟨Bci⟩

⟨B̃ci⟩

(ci,Πdeci)
BB

result
BB

Figure 3.8: Estonian voting protocol sequence diagram.

Vote Casting. To vote for a candidate cj , a voter vi encrypts first cj with the
Talliers’ public key pkT and a generated coin rvi. The voter signs the encrypted
ballot Bci with their private key skvi and sends their signed encrypted ballot Bcsi

along with their certificate certvi and their identifier vi to V C. Upon receiving a
valid (Bcsi, certvi , vi), V C responds with a unique generated identifier vidi and
the RS confirmation regvidi .

Preparing for Tabulation. After the online voting phase, the V C has a set of
digitally signed votes and RS has the set of registration queries and responses.
Both of these sets are transferred to the IBBP responsible for auditing the voting
phase and pre-processing the votes for tabulation. IBBP composes a new list
of signed vote envelopes. This list only contains the latest vote for each voter
vi since the protocol allows voters to re-vote. IBBP then extracts only the
encrypted ballots from the list. IBBP can then pass the new list ⟨Bci⟩ to the
re-encryption Mix-Nets MS. The output set of the Mix-Nets ⟨B̃ci⟩ is then
sent to EO for tabulation.

Tabulation. The EO uses the election private key to decrypt each choice ci

and to compute the result. EO also provides a proof of correct decryption Πdeci

for every plaintext.

Formal Analysis. We analyze Vote Privacy as described in the previous
protocol analysis. The input list to the Mix-Nets in IVXV protocol is not public,
but is given to a third party performing audits. The re-encryption Mix-Net was
added to the protocol to preserve the privacy of voters with respect to this third

Chapter 3. Automated Discovery of Subtle Attacks on Protocols using
Mix-Networks 62

party performing audits. Hence, vote privacy in the IVXV protocol relies on the
anonymity provided by the shuffling procedure performed by the re-encryption
Mix-Net.

We verify vote privacy using our new refined model of the Mix-Net. The
result of the analysis is depicted in Table 3.5: ProVerif finds an attack on
Vote Privacy. Assuming a malicious third party, the attacker can retrieve the
encrypted ballot Bci of his victim vi from the ballot list and perform the attack
described in Section 3.2.2. At the end of the election, when the results are pub-
lished, the attacker knows to which candidate cj the voter vi voted. In [Mül22],
Müller found that the IVXV protocol is vulnerable to similar attacks exploit-
ing the malleability of the ElGamal encryption when investigating the protocol
manually. To fix this issue, he added ZKPs proving that the voter knows the
randomness and the plaintext of the encrypted ballot. We also verified the pro-
tocol with an added weak or strong ZKP showing knowledge of the randomness
(only), using the modeling described in Section 3.3.2. In the case of a weak ZKP
the attack persists, whereas with a strong ZKP ProVerif succeeds in proving
the property (Table 3.5).

3.6 Conclusion

In this work we propose a novel and more precise modeling of exponentiation
Mix-Nets which includes the details of the exponentiation. Previous models
used a high-level abstraction of the functionality, which lead them to miss at-
tacks based on a weakness where a user can submit a modified version of a key
of another participant in an attempt to trace them. Using three case studies (in-
cluding a voting and an exam protocol) we show that we can use our improved
modeling to analyze protocols using exponentiation Mix-Nets. In particular, we
are able to (re-)discover known and unknown attacks on these protocols. Fixing
these attacks requires the use of zero-knowledge proofs. We propose two models:
a novel model for weak ZKPs vulnerable to certain attacks, and a model for
strong ZKPs. We can show automatically that in our examples the use of weak
ZKPs is insufficient, as all attacks persist. The use of strong ZKPs however
fixes the attacks, and we can verify the protocols.

Moreover, we propose a novel and more precise modeling of ElGamal en-
cryption where keys are actually the result of exponentiation operations, which is
of independent interest and can be applied to other protocols, even if they do not
use Mix-Nets. We also propose a refined modeling of re-encryption Mix-Nets,
which allows use to rediscover a known attack on the Estonian voting protocol.
Again, we can automatically show that the attack persists when adding weak
ZKPs, but disappears if strong ZKPs are used.

Chapter 3. Automated Discovery of Subtle Attacks on Protocols using
Mix-Networks 63

As future work, we would like to apply our ElGamal and ZKP models to
other protocols using these primitives, such as other voting protocols, private
set intersection protocols or password based authentication protocols. Essen-
tially, all existing ProVerif models of protocols using these primitives could
be extended using our new refined modeling. We hope that in the future such
a modeling will become commonplace. As previously stated, our full equational
theory is not supported by the majority of the existing tools. For instance, al-
though Tamarin’s builtin model for DH exponentiation is the most complete
(exponentiation is modeled as an associative-commutative function symbol), the
tool cannot handle the exponentiation operator inside a user-defined equation.
Further research is required to understand precisely how the tool can be adapted
to support such equations. In contrast, the standard equation used for analyzing
security protocols that use DH exponentiation in ProVerif pertains to model-
ing the minimal requirements for protocols to function (corresponding to the first
equation of Table 3.1). For example, the recent framework Sapic+ [CJKK22]
traduces the Tamarin’s DH builtin into the aforementioned equation when auto-
matically translating it into a ProVerif file. We show that adding an equation
for triple exponentiation to the standard DH theory is rather simple yet greatly
empowers the attacker by providing them with a degree of freedom over the
exponentiation operator, potentially enabling certain attacks.

Moreover, we would like to get rid of some of the remaining limitations of the
current model in ProVerif. For example, in the current equational theories, we
use a fixed generator, which in particular limits the number of exponentiations,
and some attacks need more than three exponentiations [PQ01]. In general,
there are results showing that a fixed number can be sufficient (e.g., [Möd12]),
which are however not directly applicable in this case. We would also like to
propose models capturing other attacks on weak zero-knowledge proofs. Using
our model, we were able to instantiate all attack traces found by the tool with real
attacks. In fact, ProVerif cannot find the real attack directly as our equational
theory does not encompass inverses (and adding them is currently not possible
in ProVerif). However, our equations do not induce false vulnerabilities in the
modeled cryptographic primitives since they represent a real (albeit abstracted)
behavior of the primitive, and the missing values are simple to instantiate.

Finally, we do not consider the scenario of corrupted Mix-Nets. To model
one or more corrupted Mix-Nets, additional details have to be considered within
the model. The assumption of having at least one single honest server among
the ones in Mix-Nets is sufficient to have an honest mixing process, as stated
for example in [GLR14]. However, this assumption is not always true, as shown
in [Wik04a]. The fifth and the second attack required that the first mix-server is
corrupted whereas the third and the fourth ones required that both the first and
the last mix-servers are corrupted.

Chapter 4
Formal Analysis of the WireGuard Protocol

Proofs are not about absolute
truth, they’re about reasoning
under clearly stated
assumptions.

Shafi Goldwasser

Contents
4.1 Introduction . 66

4.1.1 Our Contributions . 68

4.1.2 Related Work . 70

4.2 The WireGuard Protocol 72

4.3 Landscape of Prior Analysis of WireGuard 77

4.3.1 Protocol Models used Previous Analyses 77

4.3.2 Adversary Models . 78

4.3.3 Security Properties Defined in Previous Analyses . . . 79

4.4 Offensive, Defensive Models 80

4.5 Symbolic Analysis of WireGuard with Sapic+ 96

4.5.1 Adversary Model, Security Formulas 96

4.5.2 Agreement, Secrecy and Perfect Forward Secrecy . . . 99

4.5.3 Anonymity . 102

4.5.4 Performances . 103

4.5.5 Comparison with Previous Analyses 104

4.6 Conclusion and Discussion 105

Chapter Summary

WireGuard is a Virtual Private Network (VPN) integrated into the Linux 5.6

kernel in March 2020. The protocol inside WireGuard is a dedicated exten-
sion of the IKpsk2 protocol from the Noise Framework. Different analyses of
WireGuard and IKpsk2 protocols have been proposed in the symbolic mod-

65

Chapter 4. Formal Analysis of the WireGuard Protocol 66

els with either ProVerif or Tamarin. These analyses, however, consider
different adversarial models or refer to simplified versions of the protocols.
In this work, we propose a unified formal model of the WireGuard protocol
in the symbolic model. Our models are compatible with both the automatic
cryptographic protocol verifiers ProVerif and Tamarin using the Sapic+

framework. We consider a full protocol execution which includes the hand-
shake phase, the transport phase and the cookie messages used to protect
against denial of service attacks. We model numerous adversarial capabili-
ties, namely adversaries that can read or set static, ephemeral or pre-shared
keys, read or set Elliptic Curve Diffie-Hellman (ECDH) pre-computations,
and control public key distribution. Eventually, we present our results in a
unified and interpretable way, allowing comparisons with previous analyses.
Finally, thanks to our models, we give necessary and sufficient conditions
for each analyzed security property to be compromised. We confirm a flaw
on the anonymity of the communications and point out an implementation
choice which considerably weakens the security of the protocol. We then
propose remediations that we prove secure.

4.1 Introduction

In 2017, Jason Donenfeld introduced WireGuard, an open-source software im-
plementation of Virtual Private Network (VPN) based on the protocol IKpsk2
from the Noise framework [Don17, Per18]. WireGuard is implemented as a kernel
virtual network interface for Linux and was officially integrated into the version
5.6 in 2020 [Lin20]. WireGuard proposes a different approach from other classi-
cal VPNs such as IPsec [FK11] or OpenVPN [Ope01] since it does not let users
configure cryptographic algorithms and as pointed out by Donenfeld in [Don17]:
WireGuard “lacks cipher and protocol agility”. When using WireGuard, the cryp-
tographic algorithms are therefore pre-defined by default.

The protocol, as despicted in Figure 4.1, involves two actors: an Initiator and
a Responder, also referred to as peers. WireGuard does not define the notions
of a client and a server. Peers can indifferently play any of the two roles: a
peer that starts a session is considered as an Initiator and the other peer as the
Responder. The protocol is composed of two phases: a key exchange phase and
a transport phase. The first three exchanged messages constitute the handshake.
A symmetric key is obtained from the first two messages, which it is used to
encrypt all subsequent messages. The key exchange phase involves two messages,
InitHello and RecHello, and combines long-term and ephemeral Diffie-Hellman
values. The transport phase involves one message’s type, TransData. WireGuard
involves a fourth message type CookieRep, for protection against denial of service
attacks. The Handshake is considered complete after the first message from

Chapter 4. Formal Analysis of the WireGuard Protocol 67

InitHello

RecHello

TransData

TransData

InitHello

CookieRep

InitHello

RecHello

Figure 4.1: The WireGuard protocol messages with cookies (on the right) and
without cookies (on the left). The participants of the protocol can play both

roles: the Initiator and the Responder.

the transport phase which must be sent by the Initiator. Hence, the protocol
involves a 1.5-RTT (Round-Trip Time) key exchange. Also as stated in [Don17],
the protocol requires an out of band data share, not considered as part of the
protocol. WireGuard is meant to provide peers’ mutual authentication, session
keys’ forward secrecy and “identity hiding ”1.

Different formal analyses of WireGuard were proposed, in both the symbolic
and the computational model, and with or without computer-aided proof assis-
tants [DP18, LBB19, DM17]. Even though the analyses point out some weak-
nesses, they confirm the robust design of the protocol, as most of the claimed
security properties are met. These analyses, however, consider different adver-
sarial models or different formulation of the security properties or may refer to
simplified versions of the protocol. For instance, the authors of [DM17] con-
ducted a symbolic formal analysis of WireGuard using the Tamarin prover,
thus establishing a formal model of the protocol’s security properties. Their
verification confirmed, for example, that WireGuard satisfies the identity hid-
ing property, demonstrating that the participant identities remain anonymous
from adversaries during session establishment. In their symbolic model, the au-
thors abstract WireGuard’s message authentication codes (MACs) as fixed and
attacker-known strings. This simplification treats the MACs as opaque identi-
fiers rather than cryptographic functions, thus omitting any algebraic properties
or symbolic relations related to these functions. While this abstraction deviates
from WireGuard’s actual use of the keyed Blake2s used for the MACs, it remains a
sound abstraction in the symbolic model. In [LBB19], the cryptographic analysis
of WireGuard using CryptoVerif points out that the use of static public keys
in the MACs in WireGuard negatively affects the identity hiding guarentees. This
conclusion could not have been derived using the symbolic modeling of [DM17],

1Identity hiding is the term used in Wireguard’s whitepaper and website to refer to
anonymity of the peers.

Chapter 4. Formal Analysis of the WireGuard Protocol 68

as their abstraction lacks the necessary expressiveness to capture static public
keys used in the MACs.

Several formal analyses of the IKpsk2 from the Noise Protocol Framework
have been proposed, each considering distinct adversarial capabilities. For in-
stance, Kobeissi et al. [KNB19] analyzed IKpsk2 under the standard Dolev-Yao
attacker model and considering dishonest participants using ProVerif, while
Girol et al. [GHS+20] examined the security of the protocol in different scenarios
of the attacker’s capabilities ranging from standard Dolev-Yao attacker to more
enriched scenarios with key compromises using Tamarin.

4.1.1 Our Contributions

We show that it is possible to model WireGuard more precisely in the symbolic
model. Our aim is to propose a new symbolic model that aggregates and enriches
all existing models, in terms of the exchanged messages, the adversarial capabil-
ities and the security properties modeling. Our contributions are the following:

• We first review previous analyses of both WireGuard and IKpsk2, and
we point out disparities between the verified security properties, protocols’
models and adversary models. The symbolic analyses involve different mod-
els and different automatic protocol verifiers (ProVerif and Tamarin),
and computational analyses are manual or use automatic protocol provers
(CryptoVerif). This allows us to identify the model from [LBB19] as
the most comprehensive model of the WireGuard protocol compared to
the protocol’s specifications [Don20], and the threat model from [GHS+20]
as the model that captures the largest number of adversarial capabilities.
We therefore propose a new symbolic model that enriches these analyses
with more details of the protocol and more adversary capabilities. We use
the framework Sapic+: our model is in the applied Π-Calculus and all
the security properties are verified with both ProVerif and Tamarin.
Our adversary can read or set static, ephemeral or pre-shared keys, read
or set Elliptic Curve Diffie-Hellman (ECDH) pre-computations, and can
control public key distribution.

• Inspired by [BC14, GHS+20], we present a dedicated methodology, that
is of independent theoretical interest, to assess all adversary models, all
key compromise combinations, and synthesize security property results into
compact formulas. Each derived formula precisely specifies the exact condi-
tions - relative to the attacker’s capabilities - required to violate the target
security property. Although many prior works in the literature have ex-
pressed the analyzed security properties in a similar manner, they exhibit
significant heterogeneity in their formal frameworks, informal methodolog-

Chapter 4. Formal Analysis of the WireGuard Protocol 69

ical approaches, and terminological conventions. Our key contribution is
the introduction of a unified methodology and formulation to address this
critical gaps in current fragmented analysis practices. This unification en-
ables both direct comparison of the obtained results across different formal
analyses for the same protocol, and systematic security evaluation between
distinct protocols which facilitates the establishment of the notion of pro-
tocol security hierarchy presented in [BC14].

• Our models allow us to confirm a flaw related to the anonymity of the peers.
This flaw has previously been identified in a computational analysis of the
protocol [LBB19], yet not captured in the symbolic analysis of [DM17] due
to the high level of abstraction of the MAC used in the models. We show
that it is possible to find this attack against anonymity in the symbolic
model considering a more precise protocol model. This flaw allows an
attacker to identify a VPN user even if this user hides behind an access
point, because this flaw is related to the protocol design and does not rely
on network mechanisms. We propose fixes to this flaw which we prove
secure in the symbolic model.

• Following the source code of WireGuard, we choose to add a new ad-
versarial capability in our threat model which is not captured by previ-
ous models. In fact, to speed-up computations, each peer computes the
ECDH product between its private key and the other peers’ public keys
at the interface setup once, and keeps these products in memory while
the interface is up. Peers have a specific field that contains pre-computed
ECDH products. In the Linux Kernel, for example, this field is named
precomputed_static_static and named precomputedStaticStatic in
the user-land Go implementation [Don23]. At the interface initialization,
all peers public keys are read and the ECDH product between the interface
private key and the public key is computed, and the field’s value is set with
the result of the computation. Thanks to our model, we find out that this
implementation optimization allows new attack scenarios if the adversary
can get access to the ECDH pre-computation.

uguvgv

(a) Uncompromised
memory.

uguvgv

(b) Compromised
memory.

Figure 4.2: Potential Vulnerability Against Wireguard.

Chapter 4. Formal Analysis of the WireGuard Protocol 70

To illustrate the importance of the pre-computation assessment, we describe
in Figure 4.2 a potential vulnerability against one WireGuard implementa-
tion. The default storage for static private keys is in the configuration file.
Hence, an attacker that accesses these files compromises static private keys.
To mitigate this risk, static private keys can be generated and stored in a
smart card which can perform ECDH computations. An example of such
card is OpenPGP embedded in YubiKey [Lud23]. The security purpose in
this context is to protect against an attacker that has access to files and
memory of the WireGuard process, but shall not be able to compromise
static keys stored in the smart card. In this implementation, OpenPGP on
YubiKey generates and stores a static private key, requiring ECDH support,
which is available on recent YubiKey models. Then Go implementation of
WireGuard is used, which provides a full user-space implementation. Such
an architecture aims at mitigating memory leakage, as the static key is
protected by the smart card. Once the interface is mounted, an attacker
could however access the ECDH product in process memory, due to the
pre-computation. Precisely, we consider an Initiator of a static private key
u, embedded in a smart card , which uses a WireGuard client and

a network configuration that contains the Responder’s public key gv.
When the smart card is plugged and the WireGuard interface is mounted,
the ECDH product guv is pre-computed in memory . In a safe environ-
ment, depicted in Figure 4.2a, this pre-computation is not compromised,
however, in an unsafe environment, depicted in Figure 4.2b, an attacker

can corrupt the memory and the pre-computed ECDH product
guv, while the private key u in the smart card remains safe. Our
contribution is to consider a symbolic adversary model that enhances the
adversarial capabilities from [GHS+20] with pre-computations access and
modification. Note that the compromise of the ECDH pre-computation is
weaker than the compromise of the private static keys: if an adversary has
access the private key, the adversary knows the ECDH product, however,
the opposite is false. We show that in contradiction with this, an adversary
that has access to the pre-computation is as powerful as an adversary that
has access to static private keys in many attack scenarios against Wire-
Guard.

4.1.2 Related Work

The first - and, prior to our work, the only - symbolic formal analysis of Wire-
Guard was conducted in [DM18] using Tamarin. In this model, all the security
properties intended to be guaranteed by WireGuard were formally verified. Be-
yond relying on the assumption that public keys are unknown to the attacker, the

Chapter 4. Formal Analysis of the WireGuard Protocol 71

model makes many significant abstractions, e.g., it completely idealizes the MACs,
omits cookie-handling mechanisms, and adopts a weak definition of anonymity,
i.e., anonymity is formalized and analyzed as a trace property. In the compu-
tational model, WireGuard was analyzed with CryptoVerif in [LBB19] and
“manually ”in [DP18]. WireGuard uses a dedicated protocol that relies on an
ECDH key exchange from the Noise framework [Per18], named IKpsk2. Protocols
from this framework have also been analyzed in the symbolic model: the anal-
yses have been proposed with ProVerif [KNB19] and with Tamarin [SD18],
which allowed to confirm claimed security properties from the framework. A
complementary analysis is proposed in [GHS+20], also with Tamarin. We give
further details about each model in Section 4.3. In line with the (non computer-
aided) analysis done on WireGuard, an analysis of the Noise protocols in the
computational model is presented in [DRS20].

Security Properties and Threat Scenarios. While researchers in symbolic
protocol verification have largely converged on common definitions and formal-
izations of security properties, no such agreement exists about how the results of
the analysis should be presented nor described. The most commonly employed
approach is to ascertain whether a protocol meets a security property under pre-
determined assumptions regarding the attacker’s capabilities, as demonstrated by
the overwhelming majority of analyses, e.g., [KNB18, BCW22, CCD23a, CMR23]
and [GGCG+21]. A more comprehensive analysis entails conducting a deeper
verification to determine what an attacker can do to compromise the security
property or what is the most potent threat model that the protocol can still
withstand, instead of only checking if the property is verified or not. In [BC14],
the authors presented the concept of a protocol security hierarchy by decom-
posing each security property into a basic one, e.g., secrecy and authentication,
and the set of the adversarial capabilities that the protocol is resilient to with
regard to the basic security property. The authors of [GHS+20], based on the
work of [BC14], introduce the strongest threat model under which each security
property is verified, thereby, ensuring that the analyzed protocols are secure in
the presence of weaker threat models. In [JKKR23], the authors identified both
maximal threat scenarios for the security properties to hold and minimal threat
scenarios that violate the property. In [BJKS24], Bhargavan et al. provided the
so-called maximal formulation of the security properties which ties in with the
idea of [GHS+20]. Since the described methodology of [GHS+20] is bind to the
analyzed protocols from the Noise framework, and the methodologies followed
by [JKKR23] and [BJKS24] are informal, it is not clear whether the notions of
maximality and the minimality described in all subsequent works are the same.
The absence of shared frameworks, methodological alignment, and terminological
consistency across these works hardens the comparison between them. In this

Chapter 4. Formal Analysis of the WireGuard Protocol 72

work, we propose a unified formalization for expressing the security properties
as compact formulas considering adversarial compromises.

Outline. We begin by giving a detailed description of WireGuard in Sec-
tion 4.2. In Section 4.3, we assess previous analyses of both WireGuard and
IKpsk2, and point out disparities between the models. In Section 4.4, we present
our methodology. Then, in Section 4.5, we describe our new model, the ass-
esed security properties, and we present the results of our analyses. Finally, in
Section 4.6, we conclude and outline directions for future work.

4.2 The WireGuard Protocol

In the following, we give a full description of the WireGuard protocol. We begin
by enumerating the cryptographic primitives used within the protocol. Then, we
describe the exchanged messages contents and how they are computed by each
participant of the protocol.

Cryptographic Primitives. WireGuard uses a cyclic group G, of generator g
and a closed set of cryptographic primitives: a hash function Hash, two message
authentication codes HMAC and MAC, three key derivations KDF1,KDF2,KDF3,
two authenticated encryption algorithms AEAD and XAEAD, and a padding
scheme pad. The Initiator and the Responder use the following material: (u, U =

gu) is the Initiator static key pair, (x,X = gx) is the Initiator ephemeral key
pair, (v, V = gv) is the Responder static key pair, (y, Y = gy) is the Responder
ephemeral key pair, ts is a timestamp, psk is an optional pre-shared symmetric
key, and C, I and M are public constants. In WireGuard, these are instantiated
as follows:

• G is the group of points of the elliptic curve Curve25519 [Ber06], [LHT16].
• h← Hash(I) is the computation of a 32-byte fingerprint h from an input I

with the hash function Blake2s [ANWW13].
• M ← HMAC(K, I) is the computation of a 32-byte message authentication

code M from a key K and an input I with the hash function Blake2s as
described in [HMA02].

• M ← MAC(K, I) is the computation of a 16-byte message authentication
code M from an input I and a key K with Blake2s hash function, as
described in [SA15].

• τ1 ← KDF1(K, I), (τ1, τ2)← KDF2(K, I) and (τ1, τ2, τ3)← KDF3(K, I) are
key derivations from [Kra10], where K is a key and I an input.

• (C, T) ← AEAD(K,N,P,A) is the authenticated encryption algorithm
from [LN15], which combines ChaCha20 and Poly1305 algorithms. From
a key K, a 12-byte nonce N , a plaintext P , and authentication data A, it

Chapter 4. Formal Analysis of the WireGuard Protocol 73

computes a ciphertext C of length |P | bytes and a 16-bytes authentication
tag T , hence its total byte-length is |P | + 16. The 12-bytes nonce N is a
concatenation of 0s followed by an 8-byte counter.

• (C, T) ← XAEAD(K,N,P,A) is an authenticated encryption algorithm
which is a variant of the previous one where the nonce N is a random
24-bytes string.

• P∥0 . . . 0← pad(P) is the padding algorithm for an input P .

G, u, U = gu, x,X = gx, ts G, v, V = gv, y, Y = gy

U

V

InitHello : [1∥03∥si∥X∥{U}∥{ts}∥MACi
1∥016]

[2∥03∥sr∥si∥Y ∥{∅}∥MACr
1∥016] : RecHello

TransData : [3∥03∥sr∥0∥{pad(Pi0)}]

[3∥03∥sr∥ik∥{pad(Pik)}] [3∥0∥si∥rk∥{pad(Prk)}]

Figure 4.3: WireGuard (without cookies).

Message content and computation. The messages of the WireGuard pro-
tocol are depicted in Figure 4.3 and Figure 4.4. In the InitHello message 1 and
0 are constant bitstrings, 03 is the concatenation of 3 0s, si is a random session
identifier, X is the Initiator’s ephemeral key, U is the Initiator’s static public key,
ts is a timestamp, and MACi

1 is a first message authentication code. Depending
on CookieRep message, MACi

2 takes two values: either 016 (the concatenation
of 16 0s) or a second message authentication code. To compute the InitHello

message, the Initiator uses two public values C and I, generates a random ses-
sion identifier si, computes successive hash values ht, key values kt and chaining
values ct as follows:

• ck = Hash(C)

• h0 = Hash(ck∥I)

• h1 = Hash(h0∥V)

• c0 = KDF1(ck,X)

• h2 = Hash(h1∥X)

• (c1, k1) = KDF2(c0, g
xv)

• {U} = AEAD(k1, 0, h2, U)

• h3 = Hash(h2∥{U})

Chapter 4. Formal Analysis of the WireGuard Protocol 74

G, u, U = gu, x,X = gx, ts G, v, V = gv, y, Y = gy

U

V

[1∥03∥si∥X∥{U}∥{ts}∥MACi
1∥016]

[4∥03∥si∥ρ∥{τ}]

G, u, U = gu, x,X = gx, ts

[1∥03∥si∥X∥{U}∥{ts}∥maci1∥maci2]

[2∥03∥sr∥si∥Y ∥{∅}∥MACr
1∥016]

[3∥03∥sr∥i0∥{pad(Pi0)}]

[3∥03∥sr∥ik∥{pad(Pik)}] [3∥03∥si∥rk∥{pad(Prk)}]

Figure 4.4: WireGuard (with cookies).

• (c2, k2) = KDF2(c1, g
uv)

• {ts} = AEAD(k2, 0, h3, ts)

• h4 = Hash(h3∥{ts})

Finally, a message authentication code is appended to the message, com-
puted on the bitstring [1∥03∥si∥X∥{U}∥{ts}], with key Hash(M∥V) (i.e., key is
derived from public value M and the Responder public key V), and the InitHello
message. At reception, the Responder performs the necessary computations to
obtain the same hash and key values, decrypts {U}, checks that U is legitimate
and decrypts the encrypted timestamp {ts}.

In the message RecHello, 2 is a constant bitstring, sr, si are session identifiers,
Y is the Responder’s ephemeral key, {∅} is the encryption of the empty string,
and MACr

1 and MACr
2 are similar as for InitHello message. In the TransData

messages 3 is a constant bitstrings, si and sr are session identifiers, {pad(Pik)}
and {pad(Prk)} are the padded and encrypted payloads. Finally, in the message
CookieRep, 4 is a constant bitstrings, si is a session identifier, ρ is a random
nonce and {τ} is the encrypted cookie. To compute RecHello, the Responder
generates a random session identifier sr, computes the next hash values ht, key
values kt and chaining values ct as follows:

• c3 = KDF1(c2, Y)

• h5 = Hash(h4∥Y)

• c4 = KDF1(c3, g
xy)

• c5 = KDF1(c4, g
uy)

Chapter 4. Formal Analysis of the WireGuard Protocol 75

• (c6, hrt, k6) = KDF3(c5, 0)

• if psk = ∅, (c6, hrt, k6) = KDF3(c5, psk) if psk ̸= ∅, h6 = Hash(h5∥hrt)

• {∅} = AEAD(k6, 0, h6,∅)

• h7 = Hash(h6∥{∅})

Similarly as for the InitHello, a message authentication code is appended to
the message, computed on the bitstring [2∥03∥sr∥si∥Y ∥{∅}], with key Hash(M, U)

(i.e., key is derived from public value M and the Initiator public key U). At re-
ception, the Initiator performs the necessary computations to obtain the same
hash and key values, decrypts {∅} and checks that the obtained value is ∅.

After the InitHello and RecHello, both the Initiator and the Responder
share a common session key k6. From this key they derive two keys (Ci, Cr) =

KDF2(k6,∅) and use these keys, respectively, to protect data from the Initiator
to the Responder and from the Responder to the Initiator.

To compute the first TransData message, which is from the Initiator to the
Responder, the Initiator takes the received the session identifier sr, the current
counter value ik, and computes {pad(Pik)} = AEAD(Ci, ik, pad(Pik),∅) where
Pik is the plaintext sent at this step and pad(Pik) is the padded plaintext. The
Responder performs same computation with the Initiator session identifier si,
the current counter value rk, and the plaintext Prk . Note that the first transport
message is always from the Initiator to the Responder. For WireGuard, the
counter maximal value is 260 (i.e., at most 260 transport messages are encrypted
with same session key).

The WireGuard protocol embeds a protection against denial of service, based
on the CookieRep messages. To build such a message, WireGuard uses informa-
tion from transport layer, as messages are transported in UDP datagrams [Pos80].
The InitHello message is transported in the following packet [IPi∥IPr∥Porti∥
Portr∥InitHello] where IPi and Porti are the public IP and port for the Ini-
tiator, and IPr and Portr are the public IP and port for the Responder. The
Responder generates a random value Rm, uses IPi and Porti from the incom-
ing packet and computes the cookie value τ = MAC(Rm, IPi∥Porti). This
cookie is then encrypted: the Responder generates a random nonce ρ and com-
putes {τ} = XAEAD(Hash(V),MACi

1, ρ, τ), where MACi
1 is extracted from the

InitHello message. At reception, the Initiator decrypts τ , generates a new
InitHello message, with the same session identifier si, a new ephemeral key
pair x,X = gx, a new timestamp ts and a new authentication code maci1 as
before, except that now it appends a second authentication code to the message,
computed on the first 7th fields [1∥03∥si∥X∥{U}∥{ts}∥maci1], with key the cookie
value τ . At reception, the Responder verifies this additional authentication code
and continues the protocol as before.

Chapter 4. Formal Analysis of the WireGuard Protocol 76

WireGuard uses IKpsk2 (and not IK, nor KK, nor KKpsk2). The Noise
framework [Per18] defines a set of key exchange protocols, among which are the
protocols IK, KK, IKpsk2, and KKpsk2. These four protocols are referenced in
the WireGuard documentation and source code as the basis for the key exchange
protocol inside WireGuard. At first glance, as pointed in [AMW19], it seems that
WireGuard is closer to KKpsk2 than IKpsk2 because of the initial out of band
public keys exchange. However, in KKpsk2, the Initiator knows to whom it sends
InitHello message and Responder knows from whom it receives it, whereas in
IKpsk2, the Initiator knows to who it sends InitHello message but Responder
does not know from whom it receives it. An application built upon KKpsk2

shall ensure both parties know to whom they communicate before starting key
exchange, whereas an application built upon IKpsk2 can accept the Responder
does not know a priori who sends an InitHello message. Yet, the Responder
shall be able to assess if the received message is acceptable. This is exactly the
path followed by WireGuard: each party has a set of acceptable peers (a list of
acceptable public keys), but discovers who initiates a key exchange and checks
if it is acceptable during key exchange. WireGuard lets peers use an optional
pre-shared key that shall be shared beforehand. When this option is not chosen
(which is described as psk = ∅), WireGuard still implements IKpsk2: a difference
between IK and IKpsk2 is that for IKpsk2 ephemeral keys X and Y are included
in the derivation of the session key, which is not the case for IK. As a consequence,
the protocol from the Noise framework we compare to WireGuard is IKpsk2. We
need however to point out similarities and differences.

Similarities between WireGuard and IKpsk2. The definition of IKpsk2

uses the same set of abstract algorithms as WireGuard (a cyclic group G, of
generator g, a hash function Hash, message authentication codes HMAC and
MAC, key derivations KDF1,KDF2,KDF3, authenticated encryption algorithms
AEAD and a padding scheme pad) except that IKpsk2 does not instantiate them.
It is up to the application based on IKpsk2 to choose cryptographic primitives, as
WireGuard does. The computation of keys for IKpsk2 is similar to WireGuard.
IKpsk2 relies on an initial out of band pre-message from the Responder to the
Initiator in which the Responder sends its static public key and conversely the
Initiator sends its static public key in first message. IKpsk2 does not specify
how these keys are validated: indeed, the Noise specification states it’s up to the
application to determine whether the remote party’s static public key is acceptable.
The WireGuard specification is similar as it states WireGuard rests upon peers
exchanging static public keys with each other.

Differences between WireGuard and IKpsk2. WireGuard involves a 1.5-
RTT key exchange: after messages InitHello and RecHello are correctly sent

Chapter 4. Formal Analysis of the WireGuard Protocol 77

and received, a first TransData shall be sent by the Initiator. After this first
TransData message any peer can send other TransData messages. This feature
is however not mandatory in Noise protocols and hence in IKpsk2: in IKpsk2,
after the handshake, transport messages can be sent both from the Initiator to
the Responder or from the Responder to the Initiator. This feature is captured
differently in previous analyses.

In IKpsk2, the first message is [X∥{U}∥{m0}], whereas the InitHello mes-
sage in WireGuard message is [1∥03∥si∥X∥{U}∥{ts} ∥MACi

1∥MACi
2], where MACi

2

can equal 016. Hence with m0 = ts, the messages are similar, however they differ:
InitHello has the header [1∥03], embeds a session identifier si, and the fields
MACi

1 and MACi
2. Similarly, in IKpsk2 the second message is [Y ∥{m1}], which

is different from the WireGuard RecHello. Hence with m1 = ∅, messages are
similar, but differ due to the header, session identifiers and MACr

1 and MACr
2

fields. Finally, transport messages also differ as WireGuard TransData includes
a header, a session identifier and transmits the counter in clear. Note that the
Noise specification [Per18] allows this clear counter transmission.

4.3 Landscape of Prior Analysis of WireGuard

In this section, we provide a comprehensive overview of the security properties
examined in prior analyses, along with the formal models used to represent the
analyzed protocols. We also detail the adversarial models considered in these
works, which define the capabilities and limitations of potential attackers. By
synthesizing these aspects, we identify the most precise protocol model - the one
that captures the highest level of details - alongside the most prevalent threat
model, which encompasses the widest range of compromise scenarios. These
selections form the basis for our modeling, which seeks to refine and extend
existing models by incorporating more protocol specifics and more exhaustive
adversarial scenarios, thereby strengthening the robustness of security analysis.

4.3.1 Protocol Models used Previous Analyses

We point disparities between previous protocol models of WireGuard. The dif-
ferent models did not account for all elements in all messages, as illustrated in
Figure 4.5. In Figure 4.5a, we describe our model which aims at including all the
protocol’s specifics and details included in previous models. We note that on the
left side of Figure 4.5, all models include an initial key distribution (which can
be potentially compromised), while on the right side, all models assume a safe
out-of-band initial key distribution.

Figure 4.5b which refers to the model of [DP18], models a protocol composed
of three messages: two first messages InitHello, RecHello, and a transport

Chapter 4. Formal Analysis of the WireGuard Protocol 78

message from the Initiator to the Responder that does not correspond exactly
to WireGuard as the encrypted data is ∅. Although this model of the proto-
col was used to perform a computational analysis, we describe it here because
we are only interested in the protocol steps modeled. Figure 4.5c depictes the
protocol model from [LBB19], it includes the pre-messages for static key (U and
V) distribution. The two first messages correspond to InitHello and RecHello

messages, but without the corresponding message authentication codes. The first
transport message that is in one direction, and then the other transport messages
TransData that can be in both directions, with the counter in clear. This model
was also used for a computational analysis of the protocol. In Figure 4.5d, the
model from the symbolic analysis of [DM18] is depicted. It is composed of three
messages: two first messages that do not correspond exactly to WireGuard as the
message authentication codes in both InitHello and RecHello are replaced by
constant bitstrings MAC1 and MAC2, followed by the first transport message
TransData from the Initiator to the Responder.

It appears that the most precise model of the protocol, namely the model
that encompasses more details about the protocol, is one from [LBB19] which is
however still incomplete.

G, u, U = gu, x,X = gx G, v, V = gv, y, Y = gy

U

V

[1∥03∥si∥X∥{U}∥{ts}∥MACi
1∥016]

[2∥03∥sr∥si∥Y ∥{∅}∥MACr
1∥016]

[3∥03∥sr∥i0∥{pad(Pi0)}]

[3∥03∥sr∥ik∥{pad(Pik)}][3∥03∥si∥rk∥{pad(Prk)}]

(a) Our WireGuard Model.

G, u, U = gu,V, x,X = gx G, v, V = gv,U, y, Y = gy

∅∅∅

∅∅∅

[1∥03∥si∥X∥{U}∥{ts}∥MACi
1∥016]

[2∥03∥sr∥si∥Y ∥{∅}∥MACr
1∥016]

[3∥03∥sr∥0∥{∅∅∅}]

∅∅∅ ∅∅∅

(b) WireGuard Model from [DP18].

G, u, U = gu, x,X = gx G, v, V = gv, y, Y = gy

U

V

[1∥03∥si∥X∥{U}∥{ts}∥∅∅∅∥∅∅∅]

[2∥03∥sr∥si∥Y ∥{∅}∥∅∅∅∥∅∅∅]

[3∥03∥sr∥i0∥{pad(Pi0)}]

[3∥03∥sr∥ik∥{pad(Pik)}][3∥03∥si∥rk∥{pad(Prk)}]

(c) WireGuard Model from [LBB19].

G, u, U = gu,V, x,X = gx G, v, V = gv,U, y, Y = gy

∅∅∅

∅∅∅

[1∥03∥si∥X∥{U}∥{ts}∥MAC1∥MAC2]

[2∥03∥sr∥si∥Y ∥{∅}∥MAC1∥MAC2]

[3∥03∥sr∥0∥{pad(Pi)}]

∅∅∅ ∅∅∅

(d) WireGuard Model from [DM18].

Figure 4.5: Comparison with other models, where for each model, blue bold
denotes part of the protocol that is precisely defined in our model but not in
the model, hence for each model, differences with our model are highlighted.

Chapter 4. Formal Analysis of the WireGuard Protocol 79

Reference

[DM18] [DP18] [LBB19] This work

M
et

h
od

Pen-and-Paper ✗ ✓ ✗ ✗

CryptoVerif ✗ ✗ ✓ ✗

Tamarin ✓ ✗ ✗ ✓

ProVerif ✗ ✗ ✗ ✓

A
d
ve

rs
ar

y
M

od
el

Static private key access ✓ ✓ ✓ ✓

Static private key modification ✗ ✗ ✓ ✓

Ephemeral private key access ✓ ✓ ✓ ✓

Ephemeral key modification ✗ ✗ ✗ ✓

Pre-shared key access ✓ ✓ ✓ ✓

Pre-shared key modification ✗ ✗ ✓ ✓

Key distribution compromise ✗ ✗ ✓ ✓

Pre-computation access ✗ ✗ ✗ ✓

Pre-computation modification ✗ ✗ ✓ ✓

✓: present ✗: not considered or absent

Table 4.1: Adversary Models and Proofs Techniques.

4.3.2 Adversary Models

We also point out disparities between adversary models considered in previous
analysis of the protocol. The details about each considered adversary model
in previous analysis of WireGuard are given in Table 4.1. We also compare
adversary models used in the analysis of IKpsk2. In summary, all the works
from [DM18], [KNB19] and [DP18] capture the security against key leakage and
only consider the scenario where keys are generated honestly, wherease the models
from [GHS+20] and [LBB19] capture both key leakage and key modification.

Finally [KNB19] captures static and pre-shared key compromise while all
others [DM18, GHS+20, DP18, LBB19], capture static, ephemeral and pre-shared
keys compromise. The adversary model from [GHS+20], adapted to IKpsk2, is
the most prevalent model as it captures key corruption through leakage and
modification. As stated previously, we enrich this adversary model with new
adversarial capabilities related to leakage of pre-computation.

4.3.3 Security Properties Defined in Previous Analyses

Symbolic analyses of WireGuard are only proposed in [DM18] with the Tamarin

prover. The authors analyzed Correctness, Key Agreement, Key Secrecy, Session
Uniqueness, Identity Hiding and weak Forward Secrecy which were defined as
trace properties. The difference between weak Forward Secrecy (from [DM18])
and Forward Secrecy is that the former is defined for a passive adversary while the

Chapter 4. Formal Analysis of the WireGuard Protocol 80

latter is analyzed for an active adversary. Key Secrecy means that the session
key is not known to the adversary. Session Uniqueness means that different
sessions have different keys. Each security property is tested against a unique
key compromise scenario, for which the test succeeds, however this has the strong
limitation that other key compromise scenarios are not included in the analyses.
Our contribution is to provide the analysis with regard to a large set of key
compromise scenarios.

Symbolic analyses of IKpsk2 are proposed in [KNB19] (with ProVerif)
and [GHS+20] (with Tamarin). [KNB19] defines agreement and secrecy to fit
the properties that are informally described in [Per18], as trace properties. This
leads to a restricted analysis as the resulting definitions are only tested against a
specific key compromise scenario, hence this analysis shares the same limitation
as [DM18] and in [HNS+21]. As opposed to all previous analysis, [GHS+20] pro-
poses a different approach: analyze protocols from the Noise framework against
security properties which are not the ones informally defined in [Per18], but are
precise standard properties: secrecy of payloads, non-injective agreement and
injective agreement on messages as defined in [Low97], and anonymity. Secrecy
and agreement are modeled as trace properties while anonymity is modeled as an
equivalence property. Furthermore, this analysis assesses a large set of key com-
promise scenarios, including a fine-grained assessment of forward secrecy, which
depends on both static keys but also on pre-shared key. We use this analysis as
a reference for our adversarial model in Sapic+ and we enhance it to include the
leakage of the pre-computed ECDH keys.

4.4 Offensive, Defensive Models

In the subsequent section, we adopt the standard conventions of set theory and
first-order logic. Any modifications to the conventional meaning of symbols will
be explicitly stated. New notation will be systematically introduced and defined
as needed.

Remark:

When using sets, we adhere to the standard definition where sets contain
only distinct elements. Thus, any enumeration with duplicate elements (e.g.,
{a, b, b}) is equivalent to its reduced form ({a, b}).

When defining an atomic capability of an adversary, it is implicitly assumed
that the adversary is also endowed with all the power of a Dolev-Yao [DY83]
attacker.

Chapter 4. Formal Analysis of the WireGuard Protocol 81

Definition 4.4.1 (Atomic Capability). Let P be a security protocol, DP be a
finite set of data related to P, and A an adversary. An atomic capability of A
is defined for every d ∈ DP as follows:

• ∅ when the attacker has no atomic capability,

• Rd when d is generated or computed honestly, yet revealed to the adversary
A at some time during the execution of the protocol P,

• R∗
d when d is generated or computed honestly, yet revealed to the adversary
A after the execution of the protocol P,

• Md when d is generated or computed dishonestly, or modified by the adver-
sary A at some time during the execution of the protocol P.

Remark:

Our definition of atomic capabilities is based on a constrained list of labels
as these represent the only capabilities incorporated in our current analysis
framework. However, this set can be easily extended to incorporate addi-
tional labels with distinct semantic interpretations as needed.

In Definition 4.4.1, data can be any ground term related to the protocol P
and not only atomic names such as keys or nonces. The intuition behind terms,
is that an attacker can compromise for example a session key computed from the
application of function symbols on names and constants, without compromising
private names themselves.

Let S = {s1, . . . , sk} be a subset of Γ. We denote by S∧ and S∨ the conjunc-
tion and respectively the disjunction of all elements in S, defined as:

S∧ :=

k∧
i=1

si and S∨ :=

k∨
i=1

si

To enable a systematic security analysis of protocols, we first require a formal
adversary model specification.

Definition 4.4.2 (Adversary Model). Let P be a protocol and Γ be the set of all
atomic capabilities. An adversary model is any subset S of Γ.

For example, the set {Rx, Rz,My} defines an adversary model where the
Dolev-Yao attacker is endowed with the atomic capabilities Rx, Rz and My.

Given a protocol P, an adversary model A, and a security property φ, abusing
notation, we write PA ⊨ φ if the security property φ is satisfied for the protocol P
considering the adversary model A. Since distinct security properties may need

Chapter 4. Formal Analysis of the WireGuard Protocol 82

different adversarial capabilities to be violated, and because not every adversary
model is relevant to all security properties, we introduce the following targeted
adversary model specification:

Definition 4.4.3 (Offensive Adversary Model). Let S be a subset of Γ. S is an
offensive model for the security property φ within the protocol P with regard to

the set of the atomic capabilities Γ, which we note
◦
SP,Γ,φ, if we have that PS ⊭ φ.

In presence of an offensive adversary model, the property φ is not satisfied. If

we have
◦
SP,Γ,φ and S ⊆ S ′ then

◦
S ′P,Γ,φ, namely if a security property is violated

by an adversary model, then it is violated by all stronger adversary models (where
strength is ordered by capability inclusion). To enable rigorous security analysis,
we require a canonical representation of adversary models.

Characterizing security properties only through offensive adversary models is
insufficient for comprehensive analysis as one can find the offensive model A for
a security property φ, and another can find A′ = A∪ {a} such as a is an atomic
capability not in A.

Definition 4.4.4 (Minimal Offensive Adversary Model).
◦
SP,φ is said to be min-

imal, and refered to as
•
SP,Γφ, if it satisfies the following conditions:

• S = ∅, or

• S ̸= ∅ and ∀s ∈ S, the set S \ {s} is not an offensive adversary model for
φ within the protocol P with regard to the set of atomic capabilities Γ.

Remark:

If a property holds regardless of the adversary capabilities, then there exists
no offensive adversary, and in particular no minimal offensive model. Thus,
an empty minimal offensive adversary model corresponds to the Dolev-Yao
attacker.

These models represent the smallest possible sets of adversarial capabilities,
with respect to set inclusion, that are sufficient to violate a given security prop-
erty. A model is deemed minimal if it satisfies two key conditions: it must
contain enough capabilities to break the security property, yet no proper subset
of those capabilities should remain sufficient to do so. This approach provides
a systematic framework for identifying fundamental vulnerabilities, as it isolates
the exact adversarial atomic capabilities required to compromise the security
properties. By focusing on minimal models, we avoid overestimating the adver-
sary’s power while capturing the essential attack conditions, thereby enabling a
modular analysis of security requirements in terms of necessary and sufficient
adversarial capabilities. However, the concept of a minimal adversary model is

Chapter 4. Formal Analysis of the WireGuard Protocol 83

also non-unique in one critical aspect: for a given protocol, a security property,
and a fixed set of atomic adversarial capabilities, multiple distinct minimal ad-
versary models may exist. However, each minimal adversary model possesses
uniqueness in its atomic capabilities. Even if a minimal model does not contain
or is not fully contained within another minimal model, their atomic capabilities
may partially overlap through non-empty intersections. Thus one needs the com-
prehensive identification of all minimal offensive adversary models to achieve an
unambiguous characterization of the security properties in terms of atomic adver-
sarial capabilities. Only through this full enumeration one can precisely express
security properties as combinations of atomic adversarial capabilities relying on
the irreducible nature of each minimal offensive adversary model.

This allows us to define a unique and irreducible formula for each security
property given a protocol model and a set of atomic capabilities.

Definition 4.4.5 (Security Formula). Given a protocol model P, a set of atomic
capabilities Γ and a security property φ, a security formula is the logical disjunc-

tions of all the minimal offensive adversary models
•
SiP,Γ,φ, defined as:

k∨
i=1

•
Si

∧

P,Γ,φ = S∧1 P,Γ,φ ∨ . . . ∨ S∧k P,Γ,φ

where k is the number of all minimal offensive adversary models.

The security formula literally states that the considered the security property
φ (for the protocol model P and considering the set of atomic capabilities Γ) is

violated if and only if the attacker has the atomic capabilities in
•
S1P,Γ,φ or

•
S2P,Γ,φ

or . . . or
•
SkP,Γ,φ. Let us consider an example of a case study in order to put the

later definitions into practice, find the minimal offensive models, and thus the
security fomulas.

Example:

Consider the simplified Needham-Schroeder protocol (NS) as described in
Chapter 1, and which is specified as follows:

A → B : enc((nA, pk(skA)), pk(skB))

B → A : enc((nA, nB), pk(skA))

A → B : enc(nB, pk(skB))

Alice and Bob have respectively (skA, pk(skA)) and (skB, pk(skB)) as
secret and public key pairs. Alice generates a nonce nA and sends it along
with her public key encrypted with Bob’s public key. Upon receiving the
message from Alice, Bob decrypts the message and retrieves nA, then gen-

Chapter 4. Formal Analysis of the WireGuard Protocol 84

erates a nonce nB and sends both nonces encrypted with the public key of
Alice. Alice receives the message from Bob, retrieves nB and encrypts it with
Bob’s public key, and sends the ciphertext to Bob. The Needham-Schroeder
protocol is meant to guanrentee mutual authentication between Alice and
Bob.

Let Γ = {RskA, RskB, RnA, RnB} where Ri refers to the case when i is
generated or computed honestly yet it is revealed to the adversary at some
time during the protocol’s execution. We model the protocol in ProVerif,
and all the adversarial capabilities are modeled as processes and annotated
with the corresponding events. The ProVerif model is depicted in Fig-
ure 4.7. For example, to model RskA, we create a process RevealskA which
takes skA as argument, we define the event RevskA which takes pkA as
argument, and we output skA on the public channel. As depicted in Fig-
ure 4.8, this process is placed in parallel in the main process. Whenever the
key skA is generated, it can be revealed at any time to the attacker.

Let us consider authentication properties and let φAutAB
and φAutBA

be
the authentication of A to B and of B to A respectively. We express the au-
thentication properties as basic correspondence assertions expressing weak
agreement as specified by [Low97]. For instance, we model φAutBA

as fol-
lows: for every execution trace of the protocol, if the event endAparam(x)

is reached, then there should have been an earlier occurrence of the event
beginAparam(x). Put differently, if Alice believes that she has completed
the protocol with Bob (the event endAparam(x) is placed at the end of
the process of Alice and raised with her public key in Figure 4.7), then Bob
has previously been running the protocol with Alice (the event beginA-
param(x) is placed at the begining of the process of Bob and raised with
the public key of Alice in Figure 4.7).

Offensive Models. The property φAutAB
does not hold within NS, thus,

according to Definition 4.4.3, we have
◦
∅NS,Γ,φAutAB

which is also minimal.
This means that the attacker does not need to have any of the atomic ca-
pabilities to attack the security property. The property φAutBA

holds within
the NS protocol, thus we need to find the offensive adversary models accord-
ing to Definition 4.4.3 from all the possible adversary models, and identify
the minimal models breaking this property. According to Definition 4.4.2,
an adversary model is any subset of Γ = {RskA, RskB, RnA, RnB}. Thus,
the number of the adversary models that we need to check is 16 = 24,
since the cardinality of Γ is 4. We structure all adversary models as a lat-
tice ordered by set inclusion, where each node represents a distinct set of
adversarial capabilities. This partial order captures containment relation-
ships between adversary models. Such a representation enables systematic

Chapter 4. Formal Analysis of the WireGuard Protocol 85

analysis of minimal adversarial requirements while preserving hierarchical
relationships across the entire adversary models. The lattice corresponding
to our running example is depicted in Figure4.6. The offensive adversary
models are highlighted in dark blue. This representation directly mirrors
a ProVerif model, where the main process, participant processes (A and
B), and only the reveal processes specified in the lattice node are included.
We write a single authentication query. If the query is false, we validate the
considered adversary model as an offensive one, which corresponds exactly
to Definition 4.4.3. The lattice structure reveals that the sets {RskB} and
{RnA} are the minimal offensive models. The disjunction of all the mini-
mal offensive models gives the following security formula RskB ∨ RnA, and
it admits the following interpretation: authentication of B to A in the sim-
plified Needham-Schroeder protocol is guaranteed if and only if neither of
the following compromise conditions occurs: the reveal of A’s nonce to the
adversary, or the reveal of B’s secret key to the adversary.

No need to test all nodes. We can perform an adaptive search strategy
for identifying minimal offensive adversary models which enables significant
optimization by exploiting the lattice structure. Beginning with a bottom-
up search, we first evaluate only the four sets of cardinality 1 as potential
minimal models. This phase eliminates the need to test their parent nodes
in subsequent steps if they are minimal. In this running example, for any
remaining sets of cardinality 2 or higher, testing just one {RskA, RnB} suf-
fices to determine all minimal models. This optimization works because the
lattice hierarchy guarantees that any superset of an offensive model cannot
itself be minimal, allowing us to prune large portions of the search space
while maintaining complete coverage. The resulting approach reduces com-
putational effort without sacrificing rigor, as the minimality condition nat-
urally propagates through the lattice structure. This description is the core
of Algorithm 3 which we used in our analysis.

Remark:

Unlike ProVerif, Tamarin offers the possibility to encode a single protocol
model while analyzing different adversary scenarios through lemmas. This
is achieved by disabling compromise rules using logical negations ("not"
statements), allowing a comprehensive security reasoning within a unified
framework. However, this approach is only feasible for trace properties and
cannot be applied in equivalence mode.

Building upon our prior work that characterized attacker models capable of
compromising the security property, we now pursue another investigation into the

Chapter 4. Formal Analysis of the WireGuard Protocol 86

{RskB, RskA, RnA, RnB}

{RskB, RnA, RnB} {RskB, RnA, RskA} {RskB, RnB, RskA} {RnB, RnA, RskA}

{RskB, RnA} {RskB, RnB} {RnA, RnB} {RskB, RskA} {RskA, RnA} {RskA, RnB}

{RskB} {RnA} {RnB} {RskA}

∅

: offensive model : minimal offensive model

Figure 4.6: Lattice of offensive adversary models ordered by set inclusion for
the Needham-Schroeder protocol [NS78].

main adversarial capabilities that are necessary conditions for successful attacks.
This analysis aims to isolate and identify those atomic capabilities without which
attacks cannot be mounted. This characteristic serves two important purposes:
first, it formally gives a direct link from potential security breaches to specific
atomic capabilities, and second, this reveals which information is most critical
to secure by showing what would do the most damage if attackers got access
to it. This approach thus not only describes possible compromise routes but
also provides a way to measure which compromise matter most. This necessity-
focused approach provides theoretical lower bounds on attacker capabilities. It
identifies what is most important to secure which may help to focus protection
efforts.

Definition 4.4.6 (Defensive Model). Let S be a subset of Γ. S is an defensive
model for the security property φ within the protocol P with regard to the set of

the atomic capabilities Γ, which we note
▷
SP,Γ,φ, if we have that PS′ ⊨ φ for all

subsets S ′ ⊆ Γ \ S.

A defensive model provides a critical security assurance by establishing that
the violation of the specified security property necessarily requires the possession

of one or more atomic capabilities defined within that model. If we have
▷
SP,Γ,φ

and S ⊆ S ′ then
▷
S ′P,Γ,φ, that is, adding atomic capabilities to the defensive

model yields a defensive model. For instance, if P∅ ⊨ φ and PΓ ⊭ φ, then the
set of all the atomic capabilities Γ is a defensive model. We need to tighten the
bound regarding the atomic capabilities as our main purpose is to isolate minimal
necessary atomic capabilities needed to mount attacks.

Definition 4.4.7 (Minimal Defensive Model).
▷
SP,Γ,φ is said to be minimal, and

refered to as
▶
SP,Γ,φ, if it satisfies the following conditions:

Chapter 4. Formal Analysis of the WireGuard Protocol 87

let RevealskA(skA: skey) =
event RevskA(pk(skA));
out(c, skA).

let RevealskB(skB: skey) =
event RevskB(pk(skB));
out(c, skB).

let RevealNa(Na: bitstring) =
event RevnA(Na);
out(c, Na).

let RevealNb(Nb: bitstring) =
event RevnB(Nb);
out(c, Nb).

let processA(pkB: pkey, skA: skey) =
in(c, pkX: pkey);
new Na: bitstring;
event beginBparam(pkX);
((out(c, aenc((Na, pk(skA)), pkX));
in(c, m: bitstring);
let (=Na, Nb: bitstring) = adec(m, skA) in
out(c, aenc(Nb, pkX));
if pkX = pkB then
event endAparam(pk(skA))) | (RevealNa(Na))).

let processB(pkA: pkey, skB: skey)=
in(c, m: bitstring);
let (Ny: bitstring, pkY: pkey) = adec(m, skB) in
new Nb: bitstring;out(c, Nb);
event beginAparam(pkY);
((out(c, aenc((Ny, Nb), pkY));
in(c, m3: bitstring);
if (Nb = adec(m3, skB)) then
if pkY = pkA then
event endBparam(pk(skB))) | (RevealNb(Nb))).

Figure 4.7: Protocol model of the Needham-Schroeder in ProVerif.

• S = ∅, or

• S ≠ ∅ and ∀s ∈ S, the set S \ {s} is not a defensive model for φ within the
protocol P with regard to the set of atomic capabilities Γ.

Remark:

Chapter 4. Formal Analysis of the WireGuard Protocol 88

process
(

new skA: skey; let pkA = pk(skA) in out(c, skA);
new skB: skey; let pkB = pk(skB) in out(c, pkB);
((!processA(pkB, skA)) | (!processB(pkA, skB)) |
RevealskA(skA) | RevealskB(skB))

)

Figure 4.8: Main process of the Needham-Schroeder in ProVerif.

If a property does not hold regardless of the adversary capabilities, then there
exists no defensive model, and in particular no minimal defensive model.
Thus, an empty minimal offensive adversary model corresponds to the Dolev-
Yao attacker.

We now demonstrate the practical use of this definition through our running
example, focusing on the computation of minimal defensive models.

Example:

Continuing our running example, consider the ProVerif model is given in
Figures 4.7 and 4.8.

Defensive Models. Again, the property ϕAutAB
does not hold within

the Needham-Schroeder protocol [Low97] (NS∅ ⊭ ϕAutAB
), thus, there is no

defensive model. The property ϕAutBA
is satisfied within NS and in order to

find the minimal defensive models, we needs the verification of every subset
within Γ. First, each subset should be evaluated to determine whether it
constitutes a valid defensive model according to our definition. For the
subsets that satisfy the defensive model conditions, we must further verify
whether they are minimal configurations with respect to set inclusion. This
comprehensive analysis ensures the complete identification of all minimal
defensive models present in our model. Our verification adopts a query-based
research approach with a single protocol model containing all the compromise
processes with Γ. The lattice corresponding to defensive models is depicted
in Figure 4.10, each ProVerif query (presented in Figure4.9) corresponds
to a node in the lattice. We find the following defensive models: {S1 =

{RskB, RnA},S2 = {RskB, RnA, RskA},S3 = {RskB, RnA, RnB},Γ} (which

correponds to the true queries in Figure 4.9). It is clear that
▶
S1NS,Γ,ϕAutBA

since we have that S1 ⊆ S2, S1 ⊆ S3 and S1 ⊆ Γ.
The first query in Figure 4.9 corresponds to the authentication property

ϕAutBA
expressed as the usual correspondence assertions and ProVerif

finds that the property is not satisfied when the attacker has all the atomic
capabilities in Γ (NS∅ ⊨ ϕAutBA

and NSΓ ⊭ ϕAutBA
). The first true query

Chapter 4. Formal Analysis of the WireGuard Protocol 89

corresponds to the following: for every execution trace of the protocol, either
the property is satisfied or the reveal of nA is executed or the reveal of skB
is executed. In other terms, if the property is not satisfied than either the
attacker has nA or skB. The set {RnA, RskB} satisfies Definition 4.4.6, that
is {RnA, RskB} is a defensive model in this case. The same reasoning applies
to all the other true queries in Figure 4.9. In this example, |Γ| = 4 so we
needed to verify all the subsets within Γ, that is 24 = 16 queries which
corresponds to the nodes of the lattice depicted in Figure 4.10. Therefore,
to sum up, in order to find the set of the defensive models for a protocol P,
the security property φ, and the set of the atomic compromises, we need one
single input modeling the protocol and the atomic adversarial capabilities,
a set of queries of the form: property verified or the attacker has the atomic
capability a or the attacker has the atomic capability b or . . ., and retrieve
the queries which have been proven to be true. The minimal models are
the smallest ones in the sense of set inclusion. However, one can argue
that since S1 ⊆ S2 and S1 is a defensive model then S2 is also a defensive
model. Put differently, since the query corresponding to S1 is true, then
the one corresponding to S2 should also be true, and we do not need to
double-check it. If we were checking the queries step-by-step, we would not
need to verify this other true query in this case since S1’s query already
covers it. Algorithm 4 is based on this reasoning. The conjunction of all
the minimal defensive adversary models is given by the formula RnA ∨RskB

which literally means that the authentication of B to A holds unless the
secret key of B is revealed or the nonce generated by A is revealed. Note
that this formula is equivalent to the security formula obtained previously
through the disjunction of minimal offensive adversary models.

We discuss two points that naturally arise from the previous examples.

Usefulness of both approaches. While both approaches produce equivalent
final formulas, they differ significantly in methodology. The minimal defensive
models approach lends itself naturally to query-based verification in ProVerif,
enabling results to be obtained from a single model without modifying process
definitions or adversarial capability rules. This is particularly advantageous for
reducing the protocol verifier’s preprocessing overhead during multiple execu-
tions. Notably, the model remains consistent even when employing adaptive pro-
cedures requiring multiple file executions. However, this approach has inherent
limitations as certain security properties (such as equivalence-based properties)
and adversarial capabilities fall outside its scope, requiring alternative non-query-
based methods with existing protocol’s verifiers. Conversely, the offensive adver-
sary models approach can also operate as query-based when the query language

Chapter 4. Formal Analysis of the WireGuard Protocol 90

--
Verification summary:

Query event(endAparam(xA)) ==> event(beginAparam(xA)) is false.

Query event(endAparam(xA)) ==> event(beginAparam(xA)) || event(RevskA(xA)) is false.

Query event(endAparam(xA)) ==> event(beginAparam(xA)) || event(RevskB(xB)) is false.

Query event(endAparam(xA)) ==> event(beginAparam(xA)) || event(RevnA(nA)) is false.

Query event(endAparam(xA)) ==> event(beginAparam(xA)) || event(RevnB(nB)) is false.

Query event(endAparam(xA)) ==> event(beginAparam(xA)) || event(RevnA(nA)) || event(RevnB(nB)) is false.

Query event(endAparam(xA)) ==> event(beginAparam(xA)) || event(RevnA(nA)) || event(RevskA(xA)) is false.

Query event(endAparam(xA)) ==> event(beginAparam(xA)) || event(RevnA(nA)) || event(RevskB(xB)) is true.

Query event(endAparam(xA)) ==> event(beginAparam(xA)) || event(RevnB(nB)) || event(RevskA(xA)) is false.

Query event(endAparam(xA)) ==> event(beginAparam(xA)) || event(RevnB(nB)) || event(RevskB(xB)) is false.

Query event(endAparam(xA)) ==> event(beginAparam(xA)) || event(RevskB(xB)) || event(RevskA(xA)) is false.

Query event(endAparam(xA)) ==> event(beginAparam(xA)) || event(RevnA(nA)) || event(RevnB(nB)) || event(RevskA(xA)) is false.

Query event(endAparam(xA)) ==> event(beginAparam(xA)) || event(RevnA(nA)) || event(RevnB(nB)) || event(RevskB(xB)) is true.

Query event(endAparam(xA)) ==> event(beginAparam(xA)) || event(RevnA(nA)) || event(RevskB(xB)) || event(RevskB(xB)) is true.

Query event(endAparam(xA)) ==> event(beginAparam(xA)) || event(RevnB(nB)) || event(RevskB(xB)) || event(RevskB(xB)) is false.

Query event(endAparam(xA)) ==> event(beginAparam(xA)) || event(RevnA(nA)) || event(RevnB(nB)) || event(RevskB(xB)) || event(RevskB(xB)) is true.

--

Figure 4.9: Outcome of ProVerif’s queries.

offers sufficient expressiveness. For instance, Tamarin permits rule deactivation
for specific adversarial capabilities within lemmas via negation, while ProVerif

lacks this flexibility, requiring direct model modifications instead.

In our subsequent analysis of security protocols, we used a hybrid approach
that combines both verification methodologies. To ensure the validity of our
analysis, we prove that either method can be employed to obtain security formu-
las.

{RskB, RskA, RnA, RnB}

{RskB, RnA, RnB} {RskB, RnA, RskA} {RskB, RnB, RskA} {RnB, RnA, RskA}

{RskB, RnA} {RskB, RnB} {RnA, RnB} {RskB, RskA} {RskA, RnA} {RskA, RnB}

{RskB} {RnA} {RnB} {RskA}

∅

: defensive model : minimal defensive model

Figure 4.10: Lattice of defensive models for the Needham-Schroeder protocol
ordered by set inclusion.

Chapter 4. Formal Analysis of the WireGuard Protocol 91

Lemma 4.4.1 (Non-Empty Intersection). Let P be a protocol model, φ a security

property, and Γ a set of atomic capabilities. For all non-empty sets
▷
XP,Γ,φ and

◦
YP,Γ,φ, we have that X ∩ Y ≠ ∅.

Proof. Suppose that there exist non-empty
▷
XP,Γ,φ and

◦
YP,Γ,φ such that X ∩Y =

∅. We have Y ⊆ Γ \ X , and per Definition 4.4.6, PY ⊨ φ. This constradicts the
fact that the set Y is an offensive model.

Lemma 4.4.2. For all (y1, . . . , yk) ∈
•
Y1P,Γ,φ×. . .×

•
YkP,Γ,φ, where {

•
YiP,Γ,φ}1≤i≤k

is the set of all the different non-empty minimal offensive adversary models;
{yj}1≤j≤k is a defensive model.

Proof. Suppose that there exists (y1, . . . , yk) such that {yi}1≤i≤k is not a defen-
sive model. Thus, there exists S ⊆ (Γ \ {yi}1≤i≤k) such that PS ⊭ φ. Since S
is an offensive adversary model, then there exists a minimal offensive adversary
model Yj such that Yj ⊆ S. Thus, there exists a non-empty yj ∈ S ∩ {yi}1≤i≤k

which is absurd because S ⊆ (Γ \ {yi}1≤i≤k).

Corollary 4.4.1. Given a minimal defensive model
▶
XP,Γ,φ, there exists (y1, . . . , yk)

∈
•
Y1P,Γ,φ × . . .×

•
YkP,Γ,φ such that

▶
XP,Γ,φ = {yi}1≤i≤k, where {

•
YiP,Γ,φ}1≤i≤k is

the set of all the non-empty minimal offensive adversary models.

Proof. Per Lemma 4.4.1, we have that the intersection between a non-empty
defensive model and a non-empty offensive adversary model is non-empty. In
particular, the intersection between the non-empty minimal defensive adversary

model
▶
XP,Γ,φ and each of the non-empty minimal offensive adversary models

•
YiP,Γ,φ is not empty. Hence, there exists (y1, . . . , yk) ∈

•
Y1P,Γ,φ × . . . ×

•
YkP,Γ,φ

such that {yi}1≤i≤k ⊆
▶
XP,Γ,φ. Per Lemma 4.4.2, the set {yi}1≤i≤k is a defensive

model. However,
▶
XP,Γ,φ is a minimal defensive model and cannot include another

defensive model but itself, thus
▶
XP,Γ,φ = {yi}1≤i≤k.

Lemma 4.4.3. For all (x1, . . . , xk) ∈
▶
X1P,Γ,φ×. . .×

▶
XkP,Γ,φ, where {

▶
XiP,Γ,φ}1≤i≤k

is the set of all the non-empty minimal defensive models; {xj}1≤j≤k is an offen-
sive model.

Proof. Suppose that there exists (x1, . . . , xk) ∈
▶
X1P,Γ,φ × . . . ×

▶
XkP,Γ,φ such

that X = {xi}1≤i≤k is not an offensive adversary model. That is, for all j ∈
{1, . . . , k′}, there exists yj ∈

•
YjP,Γ,φ and yj /∈ X , where k′ is the number of

all the different non-empty minimal offensive models. Per Lemma 4.4.2, the
set {yj}1≤j≤k′ is a defensive model, that is, containing a minimal non-empty

defensive model, i.e., there exists l ∈ {1, . . . , k} such that
▶
XlP,Γ,φ ⊆ {yj}1≤j≤k′ .

This is absurd since yj /∈ X for all j ∈ {1, . . . k′}.

Chapter 4. Formal Analysis of the WireGuard Protocol 92

Corollary 4.4.2. Given a minimal offensive model
•
YP,Γ,φ, there exists (x1, . . . , xk)

∈
▶
X1P,Γ,φ× . . .×

▶
XkP,Γ,φ, where {

▶
XiP,Γ,φ}1≤i≤k is the set of all the different non-

empty minimal defensive models, such that
•
YP,Γ,φ = {xi}1≤i≤k.

Proof. Per Lemma 4.4.1, we have that for all non-empty
•
YP,Γ,φ, there exists

(x1, . . . , xk) ∈
▶
X1P,Γ,φ × . . . ×

▶
XkP,Γ,φ such that {xi}1≤i≤k ⊆

•
XP,Γ,φ. Per

Lemma 4.4.3, the set {xi}1≤i≤k is an offensive model. Since
•
YP,Γ,φ is a min-

imal offensive model, then
•
XP,Γ,φ = {xi}1≤i≤k.

Theorem 4.4.1. The conjunction of all non-empty minimal defensive models
yield a security formula:

k∨
j=1

•
Yj

∧

P,Γ,φ =

k′∧
i=1

▶
Xi

∨

P,Γ,φ

where k and k′ are the number of all minimal non-empty offensive adversary
models and all non-empty minimal defensive models respectively.

Proof.

k′∧
i=1

▶
Xi

∨

P,Γ,φ =
∨

(x1,...,xk′)∈X1×...×Xk′

x1 ∧ . . . ∧ xk′

Per Lemma 4.4.3, each subset {x1, . . . , xk′} figuring in the formula, is an

offensive model. Moreover, according to Corollary 4.4.2, given a
•
YP,Γ,φ, there

exists (x1, . . . , xk′) ∈
▶
X1P,Γ,φ× . . .×

▶
Xk′P,Γ,φ such that {x1, . . . , xk′} is a minimal

offensive model. Since we have all the combination of (x1, . . . , xk′) ∈ X1×. . .×Xk′ ,
there must be minimal configurations of (x1, . . . , xk′) expressing minimal offensive
models, which will subsume all the other non-minimal offensive models (since we
have a logical or between the conjunctions of capabilities). Consequently, the
remaining configurations correspond precisely to minimal defensive models. This
establishes the equality with the security formula.

Conversely, the security formula can also be written as the conjunction of
minimal defensive models. We have that:

k∨
i=1

•
Yi

∧

P,Γ,φ =
∧

(y1,...,yk)∈Y1×...×Yk

y1 ∨ . . . ∨ yk

Chapter 4. Formal Analysis of the WireGuard Protocol 93

Per Lemma 4.4.2, each subset {y1, . . . , yk} figuring in the formula, is a de-

fensive model and according to Corollary 4.4.1, given a
▶
XP,Γ,φ, there exists

(y1, . . . , yk) ∈
•
Y1P,Γ,φ × . . . ×

•
YkP,Γ,φ such that {y1, . . . , yk} is a minimal de-

fensive model. Since we have all the combination of (y1, . . . , yk) ∈ Y1× . . .×Yk,
there must be minimal configurations of (y1, . . . , yk) expressing minimal defensive
models and subsuming all other non-minimal defensive models.

Remark:

Deriving security formulas through a query-based approach can be a bit
tricky and subtle. The following example illustrates these subtleties in prac-
tice.

Example:

Let us consider the toy protocol described in Figure 4.11 in the applied
Π-Calculus à la Sapic+. The protocol is executed between two parties,
where the initiator transmits one message to the responder. It executes as
follows: Both parties share a pre-shared key psk. The initiator generates a
nonce n and a session key k, then sends enc{k}pkR and enc{⟨psk, n⟩}k to
the receiver. The receiver decrypts enc{k}pkR with their private key skR

to recover k, then decrypts enc{⟨psk, n⟩}k and verifies that the decrypted
pre-shared key matches the expected psk to authenticate the initiator. If
valid, the nonce n is accepted.

Let Γ = {RskR, Rn, Rk, Rpsk} where Ri stands for the reveal of x to
the attacker. We consider the non-injective agreement property as specified
in [Low97], and which we fomulate as follows: for every execution trace of
the protocol if the event Rreceive(psk, pkR, n, k) is reached, then there
should have been an earlier occurrence of the event Isend(psk, pkR, n, k).
In the absence of any atomic compromise, the authentication property is
verified. However, when searching for the security formula via a query-based
approach, the results given by ProVerif are as depicted in the Figure 4.12a.
All queries are false! The key subtlety arises from the event parameteriza-
tion in the queries. For instance, if we change the parameter in the event
eRevk by replacing k3 with k′, we obtain the results depicted in Figure 4.13.
Therefore, the security formula corresponding to the week agreement prop-
erty for our toy protocol is: Rk ∨ Rpsk ∨ RskR. The key insight is that
query-based security verification requires two critical conditions. First, the
security property must hold when no atomic capabilities are present, other-
wise, the analysis becomes meaningless, and searching for minimal configu-

Chapter 4. Formal Analysis of the WireGuard Protocol 94

rations loses purpose. Second, the set of all the atomic capabilities Γ should
be a defensive model, meaning that the query that encompasses all possible
atomic capabilities within Γ should be verified.

aNote that event names in this figure include an ’e_’ prefix, compared to the events
presented in Figure 4.11 since we translated the sapic file to ProVerif, this translation
implies the addition of this prefix to these events.

let Revealn(n) =
event Revn(n);
out(n)

let Revealk(k) =
event Revk(k);
out(k)

let Revealsk(sk) =
event Revsk(pk(sk));
out(sk)

let Revealpsk(psk) =
event Revpsk(psk);
out(psk)

let Initiator(psk, pkR) =
new ∼k; new ∼n; (
let ck = aenc(∼k, pkR) in
let c = senc(<psk, ∼n>, ∼k) in
event Isend(psk, pkR, ∼n, ∼k); out(<ck, c>)
)| Revealn(∼n) | Revealk(∼k))

let Responder(psk, skR) =
in(<ck, c>);
let k = adec(ck, skR) in
let <=psk, n> = sdec(c, k) in
event Rreceive(psk, pk(skR), n, k).

process:
new ∼psk; new ∼skR; let pkR = pk(∼skR) in out(pkR);

(Initiator(∼psk, pkR) | Responder(∼psk, ∼skR) | Revealsk(∼skR)
| Revealpsk(∼psk))

Figure 4.11: A toy protocol example in Sapic+.

In summary, the analyses conducted in the following sections build upon the
foundations derived in the preceding discussion. We establish formal specifica-
tions for each verified security property by characterizing both necessary and
sufficient conditions for compromise. We primarily use minimal offensive models

Chapter 4. Formal Analysis of the WireGuard Protocol 95

--
Verification summary:

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j
is false.

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j || event(eRevk(k_3))@j
is false.

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j || event(eRevn(n_3))@j
is false.

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j || event(eRevsk(pkR))@j
is false.

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j || event(eRevpsk(psk_4))@j
is false.

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j || event(eRevk(k_3))@j
|| event(eRevn(n_3))@j is false.

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j || event(eRevk(k_3))@j
|| event(eRevsk(pkR))@j is false.

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j || event(eRevk(k_3))@j
|| event(eRevpsk(psk_4))@j is false.

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j || event(eRevn(n_3))@j
|| event(eRevsk(pkR))@j is false.

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j || event(eRevn(n_3))@j
|| event(eRevpsk(psk_4))@j is false.

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j || event(eRevpsk(psk_4))@j
|| event(eRevsk(pkR))@j is false.

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j || event(eRevpsk(psk_4))@j
|| event(eRevsk(pkR))@j || event(eRevn(n_3))@j is false.

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j || event(eRevpsk(psk_4))@j
|| event(eRevsk(pkR))@j || event(eRevk(k_3))@j is false.

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j || event(eRevn(n_3))@j
|| event(eRevpsk(psk_4))@j || event(eRevk(k_3))@j is false.

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j || event(eRevn(n_3))@j
|| event(eRevsk(pkR))@j || event(eRevk(k_3))@j is false.

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j || event(eRevk(k_3))@j
|| event(eRevn(n_3))@j || event(eRevsk(pkR))@j || event(eRevpsk(psk_4))@j is false.

--

Figure 4.12: Outcome of ProVerif’s queries for Example 4.4.

for analyzing equivalence properties and public key distribution compromises,
while relying on minimal defensive models for trace properties and atomic capa-
bilities involving data reveal. The security formulas were systematically derived
using ProVerif as a backend through the execution of Algorithm 4 for finding
minimal defensive models, and Algorithm 3 for finding offensive adversary mod-
els. Both algorithms work as follows: We first generate the full lattice LΓ = (Lij)
ordered by set inclusion, and such that Lij correponds to the set of cardinality i,
and j ranges from 1 (the initial node corresponding to the first set of cardinality
i) to ni (the total number of sets with cardinality i). We begin a bottom-up
search by testing all nodes of cardinality 1. For each evaluated node, we elim-
inate it from the lattice, and if it is found to be minimal, we also remove it
along with all its parent nodes. We then proceed to nodes of cardinality 2, re-
peating the same process for all remaining nodes. The search terminates when
no nodes remain in the lattice. We note that in the query-based search, all
remaining nodes of the same cardinality are tested within the same files. Sub-

Chapter 4. Formal Analysis of the WireGuard Protocol 96

--
Verification summary:

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j
is false.

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j || event(eRevk(k’))@j
is false.

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j || event(eRevn(n_3))@j
is false.

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j || event(eRevsk(pkR))@j
is false.

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j || event(eRevpsk(psk_4))@j
is false.

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j || event(eRevk(k’))@j
|| event(eRevn(n_3))@j is false.

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j || event(eRevk(k’))@j
|| event(eRevsk(pkR))@j is false.

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j || event(eRevk(k’))@j
|| event(eRevpsk(psk_4))@j is false.

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j || event(eRevn(n_3))@j
|| event(eRevsk(pkR))@j is false.

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j || event(eRevn(n_3))@j
|| event(eRevpsk(psk_4))@j is false.

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j || event(eRevpsk(psk_4))@j
|| event(eRevsk(pkR))@j is false.

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j || event(eRevpsk(psk_4))@j
|| event(eRevsk(pkR))@j || event(eRevn(n_3))@j is false.

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j || event(eRevpsk(psk_4))@j
|| event(eRevsk(pkR))@j || event(eRevk(k’))@j is true.

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j || event(eRevn(n_3))@j
|| event(eRevpsk(psk_4))@j || event(eRevk(k’))@j is false.

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j || event(eRevn(n_3))@j
|| event(eRevsk(pkR))@j || event(eRevk(k’))@j is false.

Query event(eRreceive(psk_4,pkR,n_3,k_3))@i ==> event(eIsend(psk_4,pkR,n_3,k_3))@j || event(eRevk(k’))@j
|| event(eRevn(n_3))@j || event(eRevsk(pkR))@j || event(eRevpsk(psk_4))@j is true.

--

Figure 4.13: Outcome of ProVerif’s queries for Example with slight change in
the parameters 4.4.

sequent verification in Tamarin is used to verify the security formula expressed
as a single lemma. Tamarin’s diffie-hellman builtin, which treats modular
exponentiation as an AC (Associative-Commutative) symbol, provides more ac-
curate cryptographic modeling and stronger algebraic reasoning capabilities for
exponential operations.

4.5 Symbolic Analysis of WireGuard with Sapic+

In this section, we propose a detailed formal model of WireGuard in the applied
Π-Calculus, the language used by the framework Sapic+ [CJKK22].

4.5.1 Adversary Model, Security Formulas

We consider 34 security properties; 4 authentication properties: agreement on
RecHello message (from the Responder to the Initiator), agreement on the first

Chapter 4. Formal Analysis of the WireGuard Protocol 97

Algorithm 3 Algorithm for minimal offensive models.
Input: P a protocol, φ a security property such that P∅ ⊨ φ, Γ a set of atomic
capabilities of cardinality n and LΓ = (Lij) the lattice for Γ ordered by set
inclusion.
Output: Set of minimal offensive models S

S ← ∅
for i = 1 to n do

ni ← nb of subsets of cardinality i

for j = 1 to ni do
if PLij ⊭ φ then
S ← S ∪ Lij
remove parents of Lij from LΓ

elif
remove Lij from LΓ

end if
end for

end for

Algorithm 4 Algorithm for minimal defensive models.
Input: P a protocol, φ a security property such that P∅ ⊨ φ, Γ a set of atomic
capabilities of cardinality n and LΓ = (Lii) the lattice for Γ ordered by set
inclusion.
Output: Set of minimal defensive models S

S ← ∅
for i = 1 to n do

ni ← nb of subsets of cardinality i

for j = 1 to ni do
φLij ← φ ∨ L∨

ij

if PΓ ⊨ φLij then
S ← S ∪ Lij
remove parents of Lij from LΓ

else
remove Lij from LΓ

end if
end for

end for

TransData message (from the Initiator to the Responder), agreement of next
TransData messages (from the Initiator to the Responder and from the Respon-
der to the Initiator); 12 secrecy properties: secrecy and Forward Secrecy (FS)
of the session key before derivation (named k6 in protocol description), from
the Initiator’s and the Responder’s view, secrecy and FS of the derived keys

Chapter 4. Formal Analysis of the WireGuard Protocol 98

(named Ci and Cr), from the Initiator’s and the Responder’s view; anonymity,
for WireGuard with or without cookies.

For each security property, for each protocol version (with or without cookies),
our adversary model implies up to 221 = 26+6+7+2 = 2097152 cases of key
compromises, as our adversary can:

• Read the Initiator (resp. the Responder) static private key u (resp. v),
the Initiator (resp. the Responder) ephemeral private key x (resp. y), the
pre-shared key psk, the ECDH pre-computation at some time during the
protocol execution (26 cases).

• Read the Initiator (resp. the Responder) static private key u (resp. v), the
Initiator (resp. the Responder) ephemeral private key x (resp. y), the pre-
shared key psk, the ECDH pre-computation after the protocol execution
(26 cases).

• Modify the Initiator (resp. the Responder) static private key u (resp. v),
the Initiator (resp. the Responder) ephemeral private key x (resp. y), the
pre-shared key psk, the ECDH pre-computation for Initiator or Responder
(27 cases) at some time during the protocol execution.

• Modify the Initiator’s static public key U (resp. the Responder static public
key V) distribution (22 cases).

Remark:

The expressions “the adversary can read d” or “d is revealed to the adversary”
is equivalent to the atomic capability Rd when d is generated or computed
honestly yet revealed to the adversary.

We first analyze WireGuard without cookies. Our main idea is to capture key
modification and the compromise of the public keys distribution through different
models searching for minimal offensive models, and key reveal through queries
based on Algorithms 3 and 4. We use Sapic+ to generate all the ProVerif files
and we use ProVerif to derive the security formulas for each security property.
Through this methodological synthesis, we derive a single Tamarin lemma that
encapsulates our security formula. This lemma is then evaluated using a single
generated Tamarin input file, enabling the verification of the security formula
with a more precise equational theory (the Diffie-Hellman builtin of Tamarin).

We consider a first set of adversarial capabilities: key reveal at any time
during the protocol execution (26 cases), key modifications (27 cases), and key
distribution compromise (22 cases). This set is used to assess all agreement and
secrecy properties.

Then, we consider a second set: key reveal after the protocol execution for
static keys and the pre-shared key (with key reveal at any time during the pro-
tocol for the ephemeral keys and the randomness), and key distribution com-

Chapter 4. Formal Analysis of the WireGuard Protocol 99

promise (22 cases). This allows to capture precisely forward secrecy and also
current WireGuard implementation, where a single configuration file contains
both private static key and pre-shared key.

Finally, we consider anonymity with the atomic capabilities based on the re-
veal of data, which we do not combine with key modification nor key distribution
modification.

Once all assessments are done for WireGuard without cookies, we obtain
a set of compact security formulas for each security property. We then reuse
directly these formulas for the model of WireGuard with cookies. We also reuse
these formulas to assess the two fixes we propose as modifications of WireGuard
to guarantee anonymity. The fixes result in equivalent security levels for both
agreement and secrecy properties, producing identical minimal defensive and
offensive models.

4.5.2 Agreement, Secrecy and Perfect Forward Secrecy

We model agreement as a trace property for the RecHello message, the first
TransData message from the Initiator to the Responder and the next TransData
messages which can be either from the Initiator to the Responder or from the
Responder to the Initiator. We model the following notion: if a message has
been received by a peer, then it must have been sent by the other peer. Using
the notations from Section 4.2, we model key secrecy as a trace property for the
keys k6, C

i, Cr, from Initiator’s and Responder’s points of view.
Reference process

((! Initiator(~ltkI, ’g’^~ltkI, ’g’^~ltkR, ~psk, ...))
| (! Responder(~ltkR, ’g’^~ltkI, ’g’^~ltkR, ~psk, ...))
| RevealPsk(~psk)
| RevealLtki(~ltkI)
| RevealLtkr(~ltkR) | RevealPre(~ltkI, ~ltkR))

let Initiator(~ltkI, pkI, pkR, ~psk, ...) =
... new ~ekI; ... let pekI = ’g’^~ekI in
(...) | (RevealEki(~ekI))

let Responder(~ltkR, pkI, pkR, ~psk, ...) =
... new ~ekR; ... let pekR = ’g’^~ekR in
(...) | (RevealEkr(~ekR)) ...

Figure 4.14: Sapic+ main processes for the WireGuard protocol.

For these properties, we start with a reference model depicted in Figure 4.14,
in which the generated keys in the main process are: the Initiator and the Re-
sponder static private keys, (∼ltkI, ∼ltkR) and the pre-shared key (∼psk). The
keys are passed as arguments to two sub processes, Initiator and Responder.
The process Initiator has the arguments ∼ltkI (its own static private key),
pkI = ’g’^∼ltkI (its own static public key), pkR = ’g’^∼ltkR (the Respon-

Chapter 4. Formal Analysis of the WireGuard Protocol 100

der’s static public key), and ∼psk (pre-shared key). The process Responder has
similar arguments. Five processes model key compromise: RevealPsk for the
pre-shared key, RevealLtki and RevealLtkr for the static keys, and RevealPre

for the pre-computation, RevealEki and RevealEkr for the ephemeral keys. The
Initiator and Responder processes are called in parallel with these compromise
processes and replicated.

For FS properties, the methodology is the same. In addition, to capture tem-
poral key compromise, we use the notion of phase in the generated ProVerif

files: (RevealPsk(∼psk)) is replaced with (phase 1: RevealPsk(∼psk)). We
add the same modification for RevealLtki and RevealLtkr.

Prior to presenting the analysis results, we restate the notation employed in
the security formulas for the atomic capabilities examined in our analysis.

• Rx (resp. Ry) Initiator’s (resp. Responder’s) ephemeral key is revealed,
• Mx (resp. My) Initiator’s (resp. Responder’s) ephemeral key is modified,
• Ru (resp. Rv) Initiator’s (resp. Responder’s) static key is revealed,
• Mu (resp. Mv) Initiator’s (resp. Responder’s) static key is modified,
• R∗

u (resp. R∗
v) Initiator’s (resp. Responder’s) static key is revealed after

protocol execution.
• Rs pre-shared key is revealed,
• Ms pre-shared key is modified,
• R∗

s pre-shared key is revealed after protocol execution.
• Rc pre-computation is revealed,
• Mi (resp. Mr) Initiator’s (resp. Responder’s) pre-computation is modified,
• Du (resp. Dv) Initiator’s (resp. Responder’s) static key is compromised

during initial distribution.
Results of the analysis. The results of our analysis for agreement and se-

crecy properties are depicted in Table 4.2. The security formulas for agreement
on the RecHello message and for transport messages from the Responder to the
Initiator are identical. When the Initiator receives and accepts the RecHello

message, this leads to full authentication of the Responder by the Initiator and
mutual agreement on the same keys, which in turn maintains the Responder’s
authentication toward the Initiator during subsequent communication. The min-
imal offensive adversary model Rs ∧Rv corresponds to an attacker having access
to all static keys of the Responder which compromises the agreement property.
In all the offensive models involving the Initiator’s secret key u, compromising
the agreement on the RecHello message requires additionally compromising the
Initiator’s ephemeral key x, e.g., Rs ∧ Ru ∧ Rx is a minimal offensive adversary
model. This condition provides a protection against key-compromise imperson-
ation attacks.

The security formulas for the agreement on TransData messages from the
Initiator to the Responder, are also identical. In fact, this security formula is

Chapter 4. Formal Analysis of the WireGuard Protocol 101

symmetric to the security formula for the agreement on messages in the opposite
direction (from the Responder to the Initiator), that is, up to key permutation
(substituting the Initiator’s keys with the Responder’s keys) it remains the same
formula. Consequently, the same conclusion applies to agreement on TransData

messages sent by the Initiator. This symmetry in security formulas stems from
the Diffie-Hellman computations performed bilaterally by peers. Such symmetry
in the security guarantees will be a design challenge for the Post-Quantum Wire-
Guard [HNS+21] when Diffie-Hellman is replaced with KEMs, and as we will see
in the following chapter.

The security formulas for the secrecy on the session key from the Initiator’s
point of view and for the agreement on RecHello are identical when considering
atomic capabilities at any time during the protocol execution. The same ob-
servation applies for the security formulas from the Responder’s point of view.
That is, agreement is guaranteed if and only if the derived key remains secret
during the protocol’s execution. The security formulas show that forward secrecy
of session keys is guaranteed: static keys reveals only compromise secrecy when
paired with ephemeral keys.

We further observe that across all security formulas if a minimal offensive
model exists where an attacker can modify all static and ephemeral secret keys,
then an equivalent minimal offensive model exists (for the same key set) where
the secret keys are simply revealed to the attacker or when they are dishonestly
generated. This effectively constrains the attacker’s power, as what they can do
the most is equivalent to when they have access to the keys during the protocol
execution. In our results table, we exhibit this conclusion by reducing the security
formulas to forms containing only the atomic capabilities corresponding to key
reveal and the compromise of the distribution of public keys. For instance, the
security formula for the agreement on the RecHello message, is reduced to the
security formula (Dv ∧Rs) ∨ (Rc ∧Rs ∧Rx) ∨ (Rs ∧Ru ∧Rx).

An attacker compromising public key distribution would only require the
pre-shared key to break the protocol, i.e., Dv ∨ Rs and Du ∨ Rs are minimal
offensive models. Note that the WireGuard protocol does not handle public key
exchange directly, though protocol designers recommend regular key rotation to
guarantee sessions unlinkability. Consequently, public key exchange/distribution
compromise represents a plausible scenario in this context, with the pre-shared
key serving as the only defensive mechanism - though its use remains optional in
the protocol specification. The pre-shared key constitutes a minimal defensive
model in all security formulas. Thus, it requires robust protection rather than
remaining merely optional.

We note that we included the ECDH precomputation compromise as an atomic
capability Rc in our analysis since current implementations propose it as an opti-
mization when the InitHello messages are received. The security formulas reveal

Chapter 4. Formal Analysis of the WireGuard Protocol 102

that this introduces novel attack vectors through offensive adversary models in-
volving the atomic capability Rc. For instance, (Rc∧Rs∧Rx) and (Ru∧Rs∧Rx)

are both offensive models for the secrecy of the session key from the Initiator’s
point of view and for the agreement on the RecHello message. This means that
an adversary with access to the ECDH pre-computation has as the same power as
an adversary with access to the static private key. As explained in Section 4.3.2,
this contradicts the ECDH property as an adversary with an access to the pre-
computation should not be this powerful. We therefore recommend to remove
this implementation optimization, and to compute the ECDH at the InitHello

reception.

4.5.3 Anonymity

We model anonymity with observational equivalence in the following context:
two Initiators, using their public keys U1 and U2, can establish a WireGuard
session with a common Responder, using their public key V . The property is
satisfied if an adversary, which has access to these public keys and to the ex-
changed messages, cannot tell which Initiator has established a session. We
found that, opposed to initial claims in the original specification [Don17] and
to the symbolic analysis with Tamarin [DM18], and in accordance with com-
putational analysis with CryptoVerif [LBB19], this property is not satisfied:
Figure 4.15 depicts an attack against anonymity, identified using our model with
ProVerif. An Initiator, using their public key U∗ ∈ (U1, U2), establishes a
session with Responder. They exchange a RecHello message whose 7th field
equals MAC(Hash(M, U∗), [2 ∥ · · · ∥ {∅}]), where [2 ∥ · · · ∥ {∅}] are the first 6
fields of RecHello message and M is a public constant. An adversary, which
knows U1 and U2, can then compute MAC(Hash(M, U1), [2 ∥ · · · ∥ {∅}]), and
MAC(Hash(M, U2), [2 ∥ · · · ∥ {∅}]) and assess which public key U1 or U2 has been
used in the message authentication code by comparing them to the transmitted
value MAC(Hash(M, U∗), [2 ∥ · · · ∥ {∅}]). Finally, an adversary can distinguish
between the two Initiators.

Anonymity in previous analyses. The analysis from [DM18] proposes a
proof with Tamarin prover of a property named identity hiding, modeled as a
trace property. As noticed in Section 4.3.1, their model does not include the
real message authentication codes in InitHello and RecHello messages. Us-
ing the symbols from Section 4.5.2, anonymity has the minimal offensive mod-
els Ru ∨ Rv ∨ Rx. Similarly, the analysis from [GHS+20] models and proves
anonymity for IKpsk2 with observational equivalence using the Tamarin prover.
Anonymity for the Initiator has the offensive models Rv ∨Ru, and anonymity for
the Responder has the minimal offensive models Rv ∨ Ru. Finally, the analysis
from [LBB19] describes the same attack as the one we identified, and proposes a

Chapter 4. Formal Analysis of the WireGuard Protocol 103

G,u∗,U∗ = gu∗ , V, x,X = gx, ts, psk G, v, V = gv,U1,U2, y, Y = gy, psk

[1∥03∥si∥X∥{U}∥{ts}∥MACi
1∥016]

[2∥03∥sr∥si∥Y ∥{∅}∥macr1∥016]

MAC(Hash(M, U1), [2∥ · · · ∥{∅}])
?
= MACr

1MAC(Hash(M, U1), [2∥ · · · ∥{∅}])
?
= MACr

1MAC(Hash(M, U1), [2∥ · · · ∥{∅}])
?
= MACr

1

MAC(Hash(M, U2), [2∥ · · · ∥{∅}])
?
= MACr

1MAC(Hash(M, U2), [2∥ · · · ∥{∅}])
?
= MACr

1MAC(Hash(M, U2), [2∥ · · · ∥{∅}])
?
= MACr

1

Figure 4.15: Attack against Anonymity, where blue bold denotes attacker
computation: attacker captures MAC1 field from RecHello message, then

compares with two possible values, computed with public keys U1 and U2.

proof of anonymity with CryptoVerif, for a modified version of the protocol
without message authentication codes in the InitHello and the RecHello mes-
sages. This property has the minimal offensive model Ry. These three results do
not directly apply to WireGuard as all do not consider message authentication
codes in the two first messages, which is exactly the reasons why the adversary
can break anonymity.

Proposed fixes. We propose fixes that ensure anonymity and do not change
the messages. For this, we remark that the message authentication codes in
InitHello and RecHello messages involve as keys only data potentially known
by an adversary: the public value M and the public keys of the Initiator and the
Responder, hence allowing to attack anonymity, as these authentication codes
leak the used public key. To counter this attack, we propose a modification of
the message authentication code computation to ensure the key for message au-
thentication code is only known by the Initiator and the Responder. For this,
we propose to use as either the value Hash(U∥guv) or the value Hash(U∥psk)
(instead of the value Hash(M∥U) currently used) as the key for message authen-
tication code in the RecHello message. We analyzed the modified protocol in
the same context as before, and we prove that anonymity is guaranteed. For
message authentication key Hash(U∥guv), the corresponding security formula for
anonymity is Ru ∨ Rv ∨ Rx ∨ Rc; for message authentication key Hash(U∥psk),
the security formula is Rv ∨Rs ∨Rx. We finally remark that we can confirm re-
sults from [GHS+20] as when removing MAC computations from InitHello and
RecHello messages, the security formula for anonymity becomes Ru∨Rv∨Rx∨Rc.

4.5.4 Performances

We evaluated our models on a dedicated server, equipped with 256 CPU cores
running at 1.5 GHz. Agreement, secrecy and PFS are verified with ProVerif in
around 15 minutes (for each property) and anonymity is verified with ProVerif

in around 9 hours for the fix based on guv, and 2 hours for the fix based on the
psk. We tested our result for trace properties (agreement, secrecy, PFS) with a

Chapter 4. Formal Analysis of the WireGuard Protocol 104

lemma in Tamarin for a full version of the protocol and Tamarin confirmed
that the properties are satisfied in around 5 hours. For anonymity, it is important
to note that Sapic+ does not currently provide support for the translation of
equivalence properties into Tamarin. All of our files are publicly accessible and
can be accessed online through a Gitlab repository 2.

4.5.5 Comparison with Previous Analyses

We compare our results with results on WireGuard [DM18] and on IKpsk2

([KNB19] and [GHS+20]).
Comparison with [DM18]. This analysis only considers key reveals sce-

narios (without modification). Translating its results to our notations, these are:
agreement on RecHello holds unless Rs ∧ (Rv ∨ (Ru ∧ Rx)), agreement on first
TransData message holds unless (Rs ∧ (Ru ∨ (Rv ∧ Ry))), secrecy holds unless
(Rs∧((Ru∧Rx)∨(Rv∧Ry)), FS holds unless (R∗

s∧((R∗
u∧Rx)∨(R∗

v∧Ry)). For se-
crecy, the modeled property is different to ours as it is conditioned on agreement:
if the Initiator and the Responder agree upon a key, then this key shall be secret,
while we model secrecy of keys from both the Initiator and Responder’s point of
views. The minimal offensive models for the agreement properties in [DM18] are
given in Table 4.2: our results broaden their findings through the inclusion of
additional compromise scenarios. For the secrecy properties, the results are not
directly comparable as the modeled properties are different.

Comparison with [KNB19]. This analysis also only considers static key
reveals scenarios for IKpsk2. Translating these results to our notations, these are:
a minimal offensive model for agreement on the second message is Rs ∧ Rv, for
agreement on the transport message from the Initiator to the Responder is Rs ∧
Ru, for agreement on the transport message from the Responder to the Initiator is
Rs∧Rv. These results address, for each property, one minimal offensive adversary
model included in our security formula which encompasses all minimal offensive
adversary models. For secrecy, the modeled property is different to ours as it
concerns the FS of payloads (and not the secrecy of the keys). With our notations,
the obtained minimal offensive adversary models are: for the FS of the payload
of the second message and of the transport message from the Responder to the
Initiator R∗

s ∧ R∗
u, for the FS of the payload of the transport message from the

Initiator to the Responder R∗
s ∧R∗

v.
Comparison with [GHS+20]. As explained in Section 4.3, this analysis

assesses all possible key compromises, and results are already security formulas
(in our framework) for each property. Translating these results to our notations,
the security formulas can be summarized as follows (note that [GHS+20] does not
distinguish which key is compromised during public key distribution, but refers

2https://gitlab.limos.fr/palafour/ndss2024-AE364

https://gitlab.limos.fr/palafour/ndss2024-AE364

Chapter 4. Formal Analysis of the WireGuard Protocol 105

to one global compromise termed Dpki, furthermore, active refers to an active
adversary):

• Agreement on the second message and on a transport message from the
Responder to the Initiator: (active ∧Ry ∧Rv ∧Rs) ∨ (active ∧Rx ∧Ru ∧
Rs) ∨ (My ∧Rv ∧Rs) ∨ (Mv ∧Dpki ∧Ry ∧Rs) ∨ (My ∧Mv ∧Dpki ∧Rs).

• Agreement on the first TransData message from the Initiator to the Re-
sponder: (active∧Rx∧Ru∧Rpsk)∨ (active∧Ry ∧Rv ∧Rpsk)∨ (Dx∧Ru∧
Rpsk) ∨ (Du ∧Rx ∧Rpsk) ∨ (Dx ∧Du ∧Rpsk).

Hence, a minimal offensive model regarding the agreement on the first trans-
port message from the Initiator to the Responder Dv ∧Rs which is not captured
in [GHS+20] which is due to the fact that do not model the scenario of the com-
promise of the Responder’s public key. Our model exclusively considers active
adversaries, while [GHS+20] treats active behavior as an atomic capability. Con-
sequently, certain attack scenarios achievable by passive adversaries can not be
confirmed with our analysis. For secrecy, as in [KNB19], the modeled property
is different to ours as it concerns secrecy and FS of payloads (and not secrecy of
keys). [GHS+20] obtains the following security formulas:

• Secrecy and FS of the payload of the second message and of the transport
messages from the Initiator’s point of view (Ry ∧ R∗

v ∧ R∗
s) ∨ (Rx ∧ R∗

u ∧
R∗

s) ∨ (My ∧Ry ∧Rs) ∨ (Mv ∧Dpki ∧Ry ∧Rs) ∨ (My ∧Mv ∧Dpki ∧Rs).
• Secrecy and FS of the payload of the second message and of the transport

messages from the Responder’s point of view (Rx ∧R∗
u ∧R∗

s) ∨ (Ry ∧R∗
v ∧

R∗
s) ∨ (Dx ∧Ru ∧Rs) ∨ (Du ∧Rx ∧Rs) ∨ (Dx ∧Du ∧Rs).

4.6 Conclusion and Discussion

In this chapter, we presented a unified symbolic analysis of WireGuard, intro-
ducing a precise Sapic+ model that consolidates and refines prior analyses. Our
approach enhances the adversary model with different fine-grained atomic capa-
bilities, including the ability to read or modify static, ephemeral, and pre-shared
keys, manipulate ECDH pre-computations, and control public key distribution.
This enriched model not only enables us to rediscover a known anonymity attack
- previously shown only in a computational analysis - but also reveals a novel vul-
nerability: ECDH pre-computations can lead to concrete attacks when accessed
by the attacker. To address these weaknesses, we propose countermeasures that
strengthen WireGuard’s security.

In addition to these results, we present a formal methodology that standard-
izes the presentation of the analysis results of security properties considering
various adversary capabilities. This approach expresses security properties as
compact formulas based on adversary capabilities. The framework enables both

Chapter 4. Formal Analysis of the WireGuard Protocol 106

straightforward interpretation of results and comparison with other protocol anal-
yses.

However, our proposed protocol model has its limitations as it is stateless.
The WireGuard protocol exhibits stateful behavior through several mechanisms.
First, peers must update their static public keys. Second, when overloaded and
unable to respond to the Initiator, the Responder issues a cookie to be included
in subsequent InitHello messages; persistent load conditions may prompt ad-
ditional cookie transmissions requiring updates. Third, the Initiator includes a
timestamp in each InitHello message, which the Responder stores and verifies
against subsequent messages from the same Initiator - accepting only those with
strictly increasing timestamps to prevent replay attacks. These stateful features
- cookie updates, public key rotations, and timestamp verification - suggest that
modeling WireGuard as a stateful protocol within the symbolic model represents
an interesting direction for future work.

Chapter 4. Formal Analysis of the WireGuard Protocol 107

Results Properties: agreement on RecHello, agreement on TransData (R to I).

[KNB19] (Rs ∧Rv) (for IKpsk2 with ProVerif)

[DM18] (Rs ∧Rv) ∨ (Rs ∧Ru ∧Rx) (for WireGuard with Tamarin)

[GHS+20] (Dv ∧Rs) ∨ (Ms ∧Rv) ∨ (Mv ∧Rs) ∨ (Rs ∧Rv) ∨ (Rs ∧Ru ∧Rx) (for IKpsk2 with Tamarin)

Our work (Dv ∧Ms) ∨ (Dv ∧Rs) ∨ (Ms ∧Mv) ∨ (Ms ∧Rv) ∨ (Mv ∧Rs) ∨ (Rs ∧Rv) ∨ (Mi ∧Ms ∧Mx) ∨ (Mi ∧Ms ∧Rx)

∨(Mi ∧Mx ∧Rs) ∨ (Mi ∧Rs ∧Rx) ∨ (Mr ∧Ms ∧Mx) ∨ (Mr ∧Ms ∧Rx) ∨ (Mr ∧Mx ∧Rs) ∨ (Mr ∧Rs ∧Rx)

∨(Ms ∧Mu ∧Mx) ∨ (Ms ∧Mu ∧Rx) ∨ (Ms ∧Mx ∧Rc) ∨ (Ms ∧Mx ∧Ru) ∨ (Ms ∧Rc ∧Rx) ∨ (Ms ∧Ru ∧Rx)

∨(Mu ∧Mx ∧Rs) ∨ (Mu ∧Rs ∧Rx) ∨ (Mx ∧Rc ∧Rs) ∨ (Mx ∧Rs ∧Ru) ∨ (Rc ∧Rs ∧Rx) ∨ (Rs ∧Ru ∧Rx)

Our work⋆ (Dv ∧Rs) ∨ (Rs ∧Rv) ∨ (Rc ∧Rs ∧Rx) ∨ (Rs ∧Ru ∧Rx)

Results Properties: agreement on TransData (I to R).

[KNB19] (Rs ∧Ru) (for IKpsk2 with ProVerif)

[DM18] (Rs ∧Ru) ∨ (Rs ∧Rv ∧Ry) (for WireGuard with Tamarin)

[GHS+20] (Ms ∧Ru) ∨ (Mu ∧Rs) ∨ (Rs ∧Ru) ∨ (Rs ∧Rv ∧Ry) (for IKpsk2 with Tamarin)

Our work (Du ∧Ms) ∨ (Du ∧Rs) ∨ (Ms ∧Mu) ∨ (Ms ∧Ru) ∨ (Mu ∧Rs) ∨ (Rs ∧Ru) ∨ (Mi ∧Ms ∧My) ∨ (Mi ∧Ms ∧Ry)

∨(Mi ∧My ∧Rs) ∨ (Mi ∧Rs ∧Ry) ∨ (Mr ∧Ms ∧My) ∨ (Mr ∧Ms ∧Ry) ∨ (Mr ∧My ∧Rs) ∨ (Mr ∧Rs ∧Ry)

∨(Ms ∧Mv ∧My) ∨ (Ms ∧Mv ∧Ry) ∨ (Ms ∧My ∧Rc) ∨ (Ms ∧My ∧Rv) ∨ (Ms ∧Rc ∧Ry) ∨ (Ms ∧Rv ∧Ry)

∨(Mv ∧My ∧Rs) ∨ (Mv ∧Rs ∧Ry) ∨ (My ∧Rc ∧Rs) ∨ (My ∧Rs ∧Rv) ∨ (Rc ∧Rs ∧Ry) ∨ (Rs ∧Rv ∧Ry)

Our work⋆ (Du ∧Rs) ∨ (Rs ∧Ru) ∨ (Rc ∧Rs ∧Ry) ∨ (Rs ∧Rv ∧Ry)

Results Properties: Secrecy of k6, Ci, Cr from Initiator’s view, including PFS.

Our work (Dv ∧Ms) ∨ (Dv ∧Rs) ∨ (Ms ∧Mv) ∨ (Ms ∧Rv) ∨ (Mv ∧Rs) ∨ (Rs ∧Rv) ∨ (Mi ∧Ms ∧Mx) ∨ (Mi ∧Ms ∧Rx)

∨(Mi ∧Mx ∧Rs) ∨ (Mi ∧Rs ∧Rx) ∨ (Mr ∧Ms ∧Mx) ∨ (Mr ∧Ms ∧Rx) ∨ (Mr ∧Mx ∧Rs) ∨ (Mr ∧Rs ∧Rx)

∨(Ms ∧Mu ∧Mx) ∨ (Ms ∧Mu ∧Rx) ∨ (Ms ∧Mx ∧Rc) ∨ (Ms ∧Mx ∧Ru) ∨ (Ms ∧Rc ∧Rx) ∨ (Ms ∧Ru ∧Rx)

∨(Mu ∧Mx ∧Rs) ∨ (Mu ∧Rs ∧Rx) ∨ (Mx ∧Rc ∧Rs) ∨ (Mx ∧Rs ∧Ru) ∨ (Rc ∧Rs ∧Rx) ∨ (Rs ∧Ru ∧Rx)

∨(R∗
s ∧R∗

u ∧Rx) ∨ (R∗
s ∧R∗

v ∧Ry) ∨ (R∗
c ∧R∗

s ∧Rx ∧Ry)

DNF3⋆ (Dv ∧Rs) ∨ (Rs ∧Rv) ∨ (Rc ∧Rs ∧Rx) ∨ (Rs ∧Ru ∧Rx) ∨ (R∗
s ∧R∗

u ∧Rx) ∨ (R∗
s ∧R∗

v ∧Ry) ∨ (R∗
c ∧R∗

s ∧Rx ∧Ry)

Results Properties: Secrecy of k6, Ci, Cr from Responder’s view, including PFS.

Our work⋆ (Du ∧Ms) ∨ (Du ∧Rs) ∨ (Ms ∧Mu) ∨ (Ms ∧Ru) ∨ (Mu ∧Rs) ∨ (Rs ∧Ru) ∨ (Mi ∧Ms ∧My) ∨ (Mi ∧Ms ∧Ry)

∨(Mi ∧My ∧Rs) ∨ (Mi ∧Rs ∧Ry) ∨ (Mr ∧Ms ∧My) ∨ (Mr ∧Ms ∧Ry) ∨ (Mr ∧My ∧Rs) ∨ (Mr ∧Rs ∧Ry)

∨(Ms ∧Mv ∧My) ∨ (Ms ∧Mv ∧Ry) ∨ (Ms ∧My ∧Rc) ∨ (Ms ∧My ∧Rv) ∨ (Ms ∧Rc ∧Ry) ∨ (Ms ∧Rv ∧Ry)

∨(Mv ∧My ∧Rs) ∨ (Mv ∧Rs ∧Ry) ∨ (My ∧Rc ∧Rs) ∨ (My ∧Rs ∧Rv) ∨ (Rc ∧Rs ∧Ry) ∨ (Rs ∧Rv ∧Ry)

∨(R∗
s ∧R∗

u ∧Rx) ∨ (R∗
s ∧R∗

v ∧Ry) ∨ (R∗
c ∧R∗

s ∧Rx ∧Ry)

Our work⋆ (Du ∧Rs) ∨ (Rs ∧Ru) ∨ (Rc ∧Rs ∧Ry) ∨ (Rs ∧Rv ∧Ry) ∨ (R∗
s ∧R∗

u ∧Rx) ∨ (R∗
s ∧R∗

v ∧Ry) ∨ (R∗
c ∧R∗

s ∧Rx ∧Ry)

Table 4.2: Computed security formulas for WireGuard, and comparisons with
results from [KNB19], [DM18] and [GHS+20] for agreement properties. Secrecy

properties are not directly comparable and anonymity is not reached for
WireGuard. The simplified security formulas⋆ consider only minimal offensive

models involving atomic capabilities for secret key reveals and public key
distribution compromises.

Chapter 5
Hybridization of Wireguard

Hybrid protocols aren’t a
stopgap - they’re the only
responsible transition path.

Allison Bishop

Contents
5.1 Introduction . 110

5.1.1 Our Contributions . 111

5.1.2 Related Work . 112

5.2 PQ-WireGuard . 113

5.2.1 Cryptographic Building Blocks 114

5.2.2 The Handshake . 114

5.3 Formal Analysis and Claimed Properties 117

5.3.1 Protocol Model . 117

5.3.2 Claimed Security Properties 118

5.3.3 Results of the Analysis of PQ-WireGuard 123

5.4 Hybrid-WireGuard: Protocol and Analysis 130

5.5 Conclusion and Future Work 134

Chapter Summary

PQ-WireGuard is a post-quantum variant of WireGuard, where the Diffie-
Hellman based key exchange is replaced by a post-quantum Key Encapsu-
lation Mechanisms based key exchange. In this chapter, we first conduct a
thorough formal analysis of PQ-WireGuard’s original design, in which we
point out and fix a number of weaknesses. This leads us to an improved con-
struction PQ-WireGuard⋆. Secondly, we design and formally analyze a new
protocol, based on both WireGuard and PQ-WireGuard⋆, named Hybrid-

109

Chapter 5. Hybridization of Wireguard 110

WireGuard, compliant with current best practices for post-quantum tran-
sition using hybridization techniques. For our analysis, we use the Sapic+

framework that enables the generation of three state-of-the-art protocol mod-
els for the verification tools ProVerif, DeepSec and Tamarin from a
single specification, leveraging the strengths of each tool. Additionally, we
provide a formal definition of hybrid security and formally prove that Hybrid-
WireGuard satisfies this tight security notion.

5.1 Introduction

With the recent developments on the construction of quantum computers, many
protocols, including VPN protocols, are transitioning to the usage of post-
quantum cryptography (e.g., [Ste24, CPS19, SM16, FMJ24]) because the Diffie-
Hellman key exchanges are broken by Shor’s quantum factoring algorithm [Sho94],
and need to be replaced. The transition is particularly urgent because of store-
now-decrypt-later attacks, where adversaries store current data encrypted with
classic primitives, and decrypt them later when efficient quantum computers
emerge. In 2016, the National Institute of Standards and Technology (NIST)
launched a post-quantum standardization competition for new primitives in-
tended to replace current quantum-broken primitives. For the Diffie-Hellman
key exchange, post-quantum Key Encapsulation Mechanisms (KEMs) are pro-
posed. At the end of the third round of the competition in 2022 [AAA+22], a
single post-quantum KEM (Kyber [ABD+19]) was selected for standardization,
namely ML-KEM [MLK24]. In March 2025, NIST chose HQC [AMAD+24] as the
fourth-round winner for post-quantum encryption, designating it as a backup to
ML-KEM. NIST plans to release a draft standard for HQC within a year [oSN25].

The security of WireGuard against quantum computing is also studied. In
its original construction [Don17], a pre-shared symmetric key can be used during
the handshake as a means of protection against quantum computers, instead of
using post-quantum primitives which are explicitly deemed impractical for the
protocol [Don24]. In 2021, a post-quantum version of WireGuard, named PQ-
WireGuard, was proposed [HNS+21]. It basically replaces the Diffie-Hellman
shared secrets with secrets generated using post-quantum KEMs. A computa-
tional proof as well as a symbolic proof are provided in [HNS+21] to ensure the
security of the protocol.

Since post-quantum constructions are still new and their cryptanalysis is not
fully mature, some of them could be broken in the near future, hence genericity
(i.e., being able to replace one scheme by another in an effective way) is advised.
Furthermore, during a transitional phase, hybridization is recommended (e.g.,
by the French Cybersecurity Agency (ANSSI) [ANS22]). The goal is to rely on
both classic and post-quantum schemes simultaneously, ensuring that the final

Chapter 5. Hybridization of Wireguard 111

construction remains secure for as long as either the classic or the post-quantum
scheme remains secure.

5.1.1 Our Contributions

We design and formally analyze, in the symbolic model using the Sapic+ frame-
work, a new protocol which hybridizes WireGuard. More specifically, our contri-
butions are the following:

• We point out a mistake in the symbolic proof of PQ-WireGuard [HNS+21]
using Tamarin which has an impact on Unknown-Key-Share (UKS) at-
tacks, and we identify attack scenarios that were missed in the previous
analysis. Furthermore, PQ-WireGuard inherits the lack of anonymity from
WireGuard. In addition, we point out that PQ-WireGuard uses a non-
standard definition of the KEM, which may impact the protocol’s imple-
mentation and analysis. The decision to employ non-standard KEM defini-
tions was driven by the need to ensure complete resistance against Maxi-
mum Exposure (MEX) scenarios where all ephemeral keys and random val-
ues become compromised during the protocol execution, a guarantee that
could not be achieved using standard definitions within their construction
framework according to the authors [HNS+21].

• We propose a new and more comprehensive model of PQ-WireGuard. We
examine multiple attack scenarios using the combination of the adversary’s
capabilities and rigorously verify an extensive set of security properties. For
each property, we derive a precise security formula that characterizes the
exact conditions for its violation, accounting for the attacker’s capabilities,
as defined in Chapter 4 framework.

• We therefore propose a new version of the protocol, based on the common
KEM’s definition, which we refer to as PQ-WireGuard⋆. We prove that
this enhanced version guarantees anonymity and resistance to UKS attacks
while maintaining all other security properties (agreement and secrecy)
even against a stronger adversary than considered in the original proto-
col [HNS+21]. While following the standard KEM definitions, we demon-
strate protocol resistance to MEX attacks under complete compromise of
the protocol’s randomness.

• We propose a new protocol, called Hybrid-WireGuard, constructed by com-
bining our improved construction PQ-WireGuard⋆, and the original Wire-
Guard. We model this new protocol in the applied Π-Calculus and prove
that all the verified security properties are achieved. Moreover, we provide
a formal definition of hybrid security and prove that Hybrid-WireGuard

Chapter 5. Hybridization of Wireguard 112

satisfies this security notion. Our analysis shows that if an attack scenario
against a security property of Hybrid-WireGuard exists, then it is a com-
bination of an attack on PQ-WireGuard⋆ and an attack on the original
WireGuard. Essentially, to compromise Hybrid-WireGuard, an adversary
must successfully attack both the post-quantum and classical components
of the protocol. This dual-security requirement is the fundamental principle
behind hybridization.

5.1.2 Related Work

According to the French Cybersecurity Agency, emerging post-quantum KEMs
and signatures are not mature enough to be confidently used on their own
in security products [ANS22]. Hence, hybridization is currently advised dur-
ing a transitional period [ANS22, Nat23, Fed21], where post-quantum schemes
are simultaneously used with classic ones. Hybridization is not trivial as com-
bining classic and post-quantum primitives must be done without introduc-
ing further security flaws. Also, the final construction’s security should be
ensured as long as at least the security of the classic or the security of the
post-quantum primitive is ensured. The European Telecommunications Stan-
dards Institute (ETSI), for example, discusses techniques for hybrid key ex-
change [Eur20]. Many protocols and implementations already include hybrid
solutions in their constructions. OpenSSH, for instance, recently implemented
in version 9.9 an hybrid key exchange using X25519 and ML-KEM [KSH24]. In
addition, numerous works provide performance analysis on hybrid variants of
the TLS handshake [CPS19, PST20, SKD20, SM16]. In [SSW20], the authors
introduce KEMTLS, a variant of TLS using KEMs instead of signatures for au-
thentication, formally verified in [CHSW22] with Tamarin. In the secure mes-
saging domain, the Signal messaging protocol introduces a hybrid key agreement
protocol [KS23]. Apple’s IMessage also introduces PQ3 [Ste24], a secure hybrid
messaging protocol. A computational proof [Ste24] and a symbolic proof of the
latter protocol using Tamarin [LSB24] are also available. For VPNs, a hybrid
key exchange [TTB+23] is proposed for the IKEv2 protocol [KHNE10], later im-
plemented by StrongSwan6.0 [pqs], using the liboqs post-quantum library [SM16].
Our construction of Hybrid-WireGuard follows this line of research.

Towards a Post-Quantum WireGuard. Beyond [HNS+21], other propos-
als have also explored post-quantum adaptations of WireGuard. In [AMW19], a
tweak is proposed to provide WireGuard with post-quantum security. It consists
in transmitting the hash of the public key instead of the public key itself, hence
protecting it from a quantum computer. The goal is to protect against store-
now-decrypt-later attacks. However, this tweak relies on the strong assumption

Chapter 5. Hybridization of Wireguard 113

that the peers’ public keys are unknown to the attacker (a similar assumption is
done in the original design of WireGuard [Don17]). NordLynx [Nor], a variant
of WireGuard, proposes a post-quantum solution: after the successful hand-
shake, a KEM key exchange is performed using ML-KEM, within the already
mounted WireGuard tunnel. This solution provides post-quantum security for
the final session keys, mitigating attacks from adversaries who can only observe
the exchanged messages (i.e., passive adversaries). Rosenpass [VLZ+24] is an im-
plementation of PQ-WireGuard [HNS+21], which aims to provide peers with a
post-quantum shared secret. This secret can then be used by any protocol hand-
shake to add a layer of post-quantum security to the session keys. Typically, a
VPN tunnel can be mounted by sequentially executing Rosenpass to generate a
post-quantum pre-shared key, and then executing a classic VPN protocol, such
as WireGuard, with the pre-shared key as input. In this work, we use a single 2-
message key exchange to provide hybrid (i.e., classic and post-quantum) security,
by simultaneously using ECDH and KEM key exchanges.

Symbolic Analysis of KEM-based Protocols. Many symbolic models for
KEM-based protocols have been proposed in the literature [BJKS24, CHSW22,
HNS+21, CDM24]. Most works (except for that of [CDM24]) rely on equational
theories, a common approach for modeling cryptographic primitives in the sym-
bolic model, and typically use the same theory as for asymmetric encryption. In
contrast, Cremers et al. [CDM24] employ restrictions to define KEM properties
and develop a Tamarin library for analyzing security protocols using KEMs.
While our approach models KEMs only via asymmetric encryption equations, we
nevertheless identified a re-encapsulation attack, described in Section 5.3.3.

Outline. We begin by giving a full description of the PQ-WireGuard handshake
and compare it to the handshake of WireGuard in Section 5.2. In Section 5.3,
we describe our methodology for the formal verification of our protocols and
present the verified security properties. We exhibit the results of our symbolic
analysis for PQ-WireGuard in Section 5.3.3. Our results on PQ-WireGuard lead
us to an improved version of the protocol, which we refer to as PQ-WireGuard⋆,
described and symbolically analyzed in the same section. Later, we introduce
our new protocol, namely Hybrid-WireGuard, in Section 5.4. We give a formal
definition of hybrid security and present the results of our symbolic analysis of
the Hybrid-WireGuard in the same section. Finally, we present our conclusions
and outline directions for future work in Section 5.5.

Chapter 5. Hybridization of Wireguard 114

5.2 PQ-WireGuard

We describe the PQ-WireGuard [HNS+21] handshake and compare it to the
handshake of WireGuard given in Section 4.2 of Chapter 4. We use alternative
notations to Chapter 4’s to streamline the presentation of our results. We start
by recalling the cryptographic building blocks used by both constructions.

5.2.1 Cryptographic Building Blocks

As established in Chapter 4, WireGuard uses the Diffie-Hellman (ECDH) key ex-
change, based on a cyclic group G of generator g. We use DH.gen() to generate
the ECDH keypair (s, S) where s is generated uniformly at random and S = gs.
We also use an ECDH computation that takes as input the private key of one
ECDH key pair, and the public key of another, i.e., either (s1, S2) or (S1, s2), to
generate the ECDH shared secret. KEM.gen(), KEM.encaps(S), KEM.decaps(s, ct)

denote the keypair generation, the probabilistic encapsulation algorithm, and the
decapsulation algorithm respectively as described in Section 2.3.4 of Chapter 2.
AEAD.Enc(k,N,H,M) and AEAD.Dec(k,N,H,C) denote respectively the sym-
metric authenticated encryption and decryption as introduced in Section 2.3.3
of Chapter 2. Hash denotes a cryptographic hash function, MAC denotes the
message authenticating code, and KDFn is a key derivation function (with key
material k and some input I) indexed with the integer n. We denote the ℓ-th
output by KDFn(k, I)[ℓ].

5.2.2 The Handshake

To ease comparison between both constructions, all algorithms and key deriva-
tions are simplified and presented in Tables 5.2 on page 116, 5.3 on page 117
and 5.14 on page 139, with notations from Table 5.1.

WireGuard handshake. We give a high level description of WireGuard’s
handshake in Table 5.2 on page 116 as a reminder from Chapter 4. The hand-
shake consists of two messages: InitHello sent by the Initiator, followed by
RespHello sent by the Responder. Both the Initiator and the Responder hold
long-term ECDH keys (sci ,S

c
i) and (scr ,S

c
r), respectively. Table 5.14 on page 139

describes the key derivation chain done by both peers to agree on the final session
keys: tki used to encrypt traffic sent by the Initiator, and tkr used to encrypt
traffic sent by the Responder. Both the Initiator and the Responder generate
ephemeral ECDH keys (eci ,E

c
i) and (ecr ,E

c
r) respectively during the handshake.

Then, a total of four ECDH shared secrets are used in the key derivation. These
four secrets correspond to the different combinations of static and ephemeral
ECDH keys of both peers: dhsisr , dhsier , dheisr and dheier .

Chapter 5. Hybridization of Wireguard 115

ECDH keys Static Ephemeral

Initiator (sci , S
c
i) (eci ,E

c
i)

Responder (scr , S
c
r) (ecr ,E

c
r)

Responder
ECDH shared secrets

Static Ephemeral

Initiator
Static dhsisr dhsier

Ephemeral dheisr dheier

KEM keys Static Ephemeral

Initiator (spqi , Spqi) (epqi ,Epq
i)

Responder (spqr , Spqr) -

KEM.encaps outputs Secret key Ciphertext

Spqi shk3 ct3

Epq
i shk2 ct2

Spqr shk1 ct1

KEM.encaps randoms Static Ephemeral

Initiator σi ri

Responder σr rr, re

Table 5.1: Notations for ECDH keys and shared secrets, KEM keys,
encapsulation outputs and andom encapsulation inputs. Key pairs are denoted

as (private key, public key). ∗c denotes a classic key, ∗pq a post-quantum key.
The random inputs are specific to PQ-WireGuard [HNS+21].

PQ-WireGuard handshake. Since the ECDH key exchange is not post quan-
tum secure, it needs to be replaced by post-quantum KEMs. In [HNS+21], the
authors replace the ECDH shared secrets by ones generated using KEMs such
that the same security properties are ensured. In this case, both the Initiator
and the Responder hold static keys (spqi , Spqi) and (spqr ,Spqr), that correspond to a
post-quantum KEM. We describe the handshake and the key derivation, as pro-
posed in [HNS+21], in Tables 5.3 on page 117 and 5.14 on page 139 respectively.
The differences from WireGuard are highlighted in the tables.
ECDH shared secrets that involve at least one ephemeral key are easily replaced
by KEMs. The one corresponding to dhsier is generated by the Responder using
Spqi (shk3 on line 4 for RespHello). The one corresponding to dheisr is generated
by the Initiator using Spqr (shk1 on line 4 for InitHello). The one corresponding
to dheier is generated by the Responder using the the Initiator’s ephemeral key
Epq
i (shk2 on line 3 for RespHello). Meanwhile, shared secret dhsisr , generated

Chapter 5. Hybridization of Wireguard 116

1. InitHello construction

input: sci ,S
c
i ,S

c
r

1: sidi
$← {0, 1}32

2: (eci ,E
c
i)← DH.gen()

3: static← AEAD.Enc(κ3, 0, H3, Sci)
4: time← AEAD.Enc(κ4, 0, H4, now())
5: inner← type || sidi || Ec

i || static || time
6: m1← MAC(Hash(lbl3 || Scr), inner)
7: m2← MAC(cookie, inner || m1)
8: InitHello← inner || m1 || m2

2. RespHello construction

input: scr ,S
c
r ,S

c
i

1: sidr
$← {0, 1}32

2: (ecr ,E
c
r)← DH.gen()

3: empty← AEAD.Enc(κ9, 0, H9, ∅)

4: inner← type || sidr || sidi || Ec
r || empty

5: m1← MAC(Hash(lbl3 || Sci), inner)
6: m2← MAC(cookie, inner || m1)
7: RespHello← inner || m1 || m2

Table 5.2: WireGuard [Don17] handshake messages.

using the static keys of the peers, cannot be replaced by a secret generated using
a KEM key exchange because the latter requires at least one interaction. Ob-
serve that dhsisr binds both identities of the peers to the key derivation. It also
ensures that the first sent message InitHello is already authenticated, helping
to mitigate Denial-of-Service (DoS) attacks. To replace this secret, the authors
of [HNS+21] impose using a pre-shared key psk (optional in WireGuard). They
discuss that one may rely on the assumption that public keys are actually not
public and hence unknown to attackers, similarly to other works using this as-
sumption [Don17, AMW19], making the use of the value psk← Hash(Spqi ⊕ Spqr)

enough for security.
In addition, the shared secret dhsisr does not rely on any ephemeral randomness,
adding a layer of protection against potential random state corruption. For this
reason, the authors redefine the KEM.encaps procedure to make it deterministic.
The random coins are instead provided as input, so that the shared secrets are de-
rived from a trusted source of randomness. To generate the secret corresponding
to dheisr , the Initiator combines an ephemeral random ri with a static one using
KDF1 and provides the output as input to KEM.encaps. The Responder does the
same during RespHello’s construction to generate the secret corresponding to
dhsier . Finally, the secret corresponding to dheier , involves only ephemeral coins.
We give more details about the security properties achieved by PQ-WireGuard

Chapter 5. Hybridization of Wireguard 117

in Section 5.3. Finally, for their computational proof in [HNS+21], the authors
choose the IND-CCA [BDPR98] security assumption for the KEM corresponding
to the static keys, and IND-CPA [BDPR98] security assumption for the KEM

corresponding to the ephemeral keys.

1. InitHello construction

input: σi, s
pq
i ,Spqi , Spqr

1: sidi
$← {0, 1}32

2: ri
$← {0, 1}256

3: (epqi ,Epq
i)← KEM.gen()

4: (ct1, shk1)← KEM.Encaps(Spqr , KDF1(σi, ri))
5: static← AEAD.Enc(κ3, 0, H3, Hash(Spqi))
6: time← AEAD.Enc(κ4, 0, H4, now())
7: inner← type || sidi || Epq

i || ct1 || static || time
8: m1← MAC(Hash(lbl3 || Spqr), inner)
9: m2← MAC(cookie, inner || m1)

10: InitHello← inner || m1 || m2

2. RespHello construction

input: σr, s
pq
r , Spqr ,Spqi

1: sidr
$← {0, 1}32

2: re, rr
$← {0, 1}256 × {0, 1}256

3: (ct2, shk2)← KEM.Encaps(Epq
i , re)

4: (ct3, shk3)← KEM.Encaps(Spqi , KDF1(σr, rr))
5: empty← AEAD.Enc(κ9, 0, H9, ∅)

6: inner← type || sidr || sidi || ct2 || ct3 || empty
7: m1← MAC(Hash(lbl3 || Spqi), inner)
8: m2← MAC(cookie, inner || m1)
9: RespHello← inner || m1 || m2

Table 5.3: PQ-WireGuard [HNS+21] handshake messages.

5.3 Formal Analysis and Claimed Properties

Our analysis follows the methodological framework established in Sections 4.4
and 4.5 of Chapter 4 to analyze PQ-WireGuard. We first define the set of atomic
capabilities to be considered. Then, for each security property, we derive the
corresponding security formula (per Definition 4.4.5) using ProVerif. Unlike
in the previous chapter, we do not use Tamarin here because our equational
theory does not involve Associative and Commutative (AC) function symbols.
For trace properties, we simply rely on ProVerif. For equivalence properties, we
additionally confirm the formulas found using ProVerif with DeepSec.

Chapter 5. Hybridization of Wireguard 118

5.3.1 Protocol Model

We model the protocol as processes, as is standard in the applied Π-Calculus,
adhering as closely as possible to the protocol specifications in [HNS+21]. Spe-
cific events are inserted into each process to enable reasoning about security
properties. The events in question are described in Table 5.4.

ISend(ck1, S
pq
i ,Spqr , σi,E

pq
i , psk, shk1):

the event inserted into the initiator’s process with public key Spqi at the point
where they send the InitHello message to the peer with public key Spqr en-
crypted with the key ck1.

RRec(ck1,S
pq
i , Spqr , σr,E

pq
i , psk, shk1):

the event inserted into the responder’s process with public key Spqr at the point
where they receive and accept an InitHello message from the peer with public
key Spqi encrypted with the key ck1.

RKeys(ck2,S
pq
i ,Spqr , σr,E

pq
i , psk, shk1, shk3, shk2):

the event inserted into the responder’s process with public key Spqr at the point
where they send a RecHello message to the peer with public key Spqi encrypted
with the key ck2.

IKeys(ck2,S
pq
i , Spqr , σi,E

pq
i , psk, shk1, shk3, shk2):

the event inserted into the initiator’s process with public key Spqi at the point
where they receive and accept a RecHello message from the peer with public
key Spqr encrypted with the key ck2.

IConfirm(ck3,S
pq
i , Spqr , σi,E

pq
i , psk, shk1, shk3, shk2):

the event inserted into the initiator’s process with public key Spqi at the point
where they confirm the handshake with the peer with public key Spqi encrypted
with the session key ck3.

RConfirm(ck3, S
pq
i ,Spqr , σr,E

pq
i , psk, shk1, shk3, shk2):

the event inserted into the responder’s process with public key Spqr at the point
where they confirm the handshake with the peer with public key Spqr encrypted
with the session key ck3.

Table 5.4: Specification of the inserted events.

5.3.2 Claimed Security Properties

The authors of PQ-WireGuard argue that their protocol preserves several secu-
rity properties, which they expect to carry over from the established security
guarantees of classical WireGuard. In addition, PQ-WireGuard should be re-
silient to many attack scenarios involving key compromises. In this section, we
systematically examine each of these claimed properties, providing precise formal
definitions alongside their intuitive interpretations to enable comprehensive anal-

Chapter 5. Hybridization of Wireguard 119

ysis and comparison. Table 5.5 compares the list of claimed security properties,
and the properties we evaluated with those from previous symbolic analyses for
WireGuard [DM17] and PQ-WireGuard [HNS+21].

Property [DM17] [HNS+21] Our work

Maximal Exposure (MEX) attacks resistance ✗ ✓t ✓t,e

Unilateral Unknown Key Share (UUKS) attacks resistance ✗ ✓t ✓t

Bilateral Unkown Key Share (BUKS) attacks resistance ✗ ✗ ✓t

Session uniqueness ✓t ✓t ✓t

Anonymity ✓t ✓t ✓e

Message agreement ✓t ✓t ✓t

Key Compromise Impersonation (KCI) attacks resistance ✓t ✓t ✓t

Key secrecy ✓t ✓t ✓t

Strong key secrecy ✗ ✗ ✓e

Mutual key secrecy ✗ ✓t ✓t

Key forward secrecy ✓t ✓t ✓t

✓: analyzed ✗: not analyzed

Table 5.5: Security properties, analyzed as trace (t) or equivalence (e)
properties. [DM17] models Wireguard and [HNS+21] models PQ-WireGuard.

Resistance against Maximal Exposure (MEX) attacks. The authors
of [Kra05, FSXY12] state that a MEX attack occurs when an adversary suc-
cessfully distinguishes the session key from a random value, given access to any
pair of static and ephemeral secret keys except for both the static and ephemeral
secret keys of the initiator or the responder. When analyzing PQ-Wireguard, the
authors of [HNS+21] extended the latter security definition in two ways. First,
they made it applicable to any type of security property, not just session key se-
crecy. Second, they allowed for any possible combination of static and ephemeral
key compromises. However, for each security property they examined, they ex-
cluded specific corruption cases where attacks are unavoidable. By expressing
security properties as formal security formulas (following Definition 4.4.5), we
explicitly capture the precise conditions of secret key compromises under which
each security property holds or fails. This provides a direct way for analyzing re-
sistance against MEX attacks, as these scenarios are directly encoded within the
formulas themselves. Thus, we obtain these results directly from our formulas at
no additional cost.

Chapter 5. Hybridization of Wireguard 120

Resistance against Key Compromise Impersonation (KCI) attacks.
KCI attacks occur when an attacker gains access to the static secret keys material
of a peer, and is able to impersonate their corresponding honest peer during a
run of the protocol. We do not model this property explicitly as in [HNS+21],
instead it is directly deduced from our security formulas since the scenarios where
the attacker gains access to the static key materials of peers is covered by our
attacker’s atomic capabilities.

Resistance against Unknown-Key-Share (UKS) attacks. UKS attacks
enable an attacker to coerce honest peers into exchanging keys with parties other
than the ones they believe they are communicating with, without being aware of
this exchange. In [CT07], Liqun et al. define Unilateral UKS (UUKS) attacks as
scenarios where either the initiator is coerced to accept an incorrect responder
identity or the responder is coerced to accept an incorrect initiator identity.
They define Bilateral UKS (BUKS) attacks as scenarios where both parties are
coerced to establish a shared key while each believes they are communicating
with a different entity. We analyzed those properties for the Initiator and the
Responder (unilateral case) and for both peers (bilateral case), and they are
formalized in Table 5.6.

∀ Spqi ,Spqr , Spqr
′
,Spqi

′
,Epq

i , psk, psk′, ck, shk1, shk3, shk2, σi, σr;

Init.
(
event(RConfirm(ck,Spqi , Spqr , σr,E

pq
i , psk, shk1, shk3, shk2))∧

UUKS. event(IConfirm(ck, Spqi ,Spqr
′
, σi,E

pq
i , psk′, shk1, shk3, shk2))

)
⇒

(
(Spqr = Spqr

′
) ∧ (psk = psk′)

)
.

Resp.
(
event(RConfirm(ck,Spqi

′
, Spqr , σr,E

pq
i , psk′, shk1, shk3, shk2))∧

UUKS. event(IConfirm(ck, Spqi ,Spqr , σi,E
pq
i , psk, shk1, shk3, shk2))

)
⇒

(
(Spqi = Spqi

′
) ∧ (psk = psk′)

)
.

BUKS
(
event(RConfirm(ck,Spqi

′
, Spqr , σr,E

pq
i , psk, shk1, shk3, shk2))∧

event(IConfirm(ck, Spqi ,Spqr
′
, σi,E

pq
i , psk′, shk1, shk3, shk2))

)
⇒

(
(Spqi = Spqi

′
) ∧ (Spqr = Spqr

′
) ∧ (psk = psk′)

)
.

Table 5.6: Resistance to Unknown-Key-Share attack properties.

Session uniqueness. This property states that a session key computed on each
side is unique for each session. We analyze session uniqueness as in [HNS+21] on
the Initiator and the Responder sides, and it is formalized in Table 5.7.

Message agreement. This property corresponds to full agreement, as defined
in [Low97]: if a peer A receives a message, apparently from another peer B,
then B has previously been running the protocol with A, and both peers agreed

Chapter 5. Hybridization of Wireguard 121

∀ Spqi , Spqr ,Epq
i ,Epq

i
′
, psk, ck, shk1, shk3, shk2, shk3′, shk2′, σi, σr;

Init.
(
event(IConfirm(ck,Spqi , Spqr , σi,E

pq
i , psk, shk1, shk3, shk2))∧

Side event(IConfirm(ck,Spqi , Spqr , σi,E
pq
i

′
, psk, shk1

′, shk3, shk2))
)

⇒
(
(Epq

i = Epq
i

′
) ∧ (shk1

′ = shk1)
)
.

Resp.
(
event(RConfirm(ck, Spqi ,Spqr , σr,E

pq
i , psk, shk1, shk3, shk2))∧

Side event(RConfirm(ck, Spqi ,Spqr , σr,E
pq
i

′
, psk, shk1, shk3

′, shk2
′))

)
⇒

(
(Epq

i = Epq
i

′
) ∧ (shk3 = shk3

′) ∧ (shk2 = shk2
′)
)
.

Table 5.7: Session uniqueness properties.

on sent, received and atomic data used in the protocol. We consider agreement
on the InitHello, RecHello, and Confirm messages. We note that agreement
on RecHello message enables the Initiator to authenticate the Responder, and
agreement on the Confirm message (which we also refer to as the first TransData
message) enables the Responder to authenticate the Initiator. When both prop-
erties are verified, then mutual authentication holds. We examined the agreement
on the first message InitHello to assess whether the Responder can authenticate
the Initiator based only on this initial message. The properties are formalized in
Table 5.8.

∀ Spqi , Spqr ,Epq
i , psk, ck, shk1, shk3, shk2, σi, σr;

InitHello event(RRec(ck,Spqi , Spqr , σi,E
pq
i , psk, shk1))⇒

event(ISend(ck, Spqi ,Spqr ,Epq
i , psk, shk1)).

RespHello event(IKeys(ck,Spqi , Spqr , σi,E
pq
i , psk, shk1, shk3, shk2))⇒

event(RKeys(ck,Spqi ,Spqr , σr,E
pq
i , psk, shk1, shk3, shk2)).

Confirm event(RConfirm(ck, Spqi ,Spqr , σr,E
pq
i , psk, shk1, shk3, shk2))⇒

event(IConfirm(ck,Spqi , Spqr , σi,E
pq
i , psk, shk1, shk3, shk2)).

Table 5.8: Agreement properties.

Key secrecy. The session key should remain secret to the attacker. We con-
sider secrecy as a trace property, and we analyze secrecy for the session key
from three perspectives: the Initiator’s point of view, the Responder’s point of
view (since peers may not agree on the same keys), and mutual forward secrecy
(as done in [HNS+21]), which combines key secrecy and agreement on the same
key. Secrecy properties are formulized in Table 5.9. We note that attacker is a
ProVerif predicate used in the queries to reason about the attacker’s knowl-
edge, i.e., attacker(x) means that the attacker knows x.

Chapter 5. Hybridization of Wireguard 122

∀ Spqi ,Spqr ,Epq
i , psk, ck, shk1, shk3, shk2, σi, σr;

Init.’s point event(IConfirm(ck, Spqi ,Spqr , σi,E
pq
i , psk, shk1, shk3, shk2))∧

of view attacker(ck).

Resp.’s point event(RConfirm(ck,Spqi , Spqr , σr,E
pq
i , psk, shk1, shk3, shk2))∧

of view attacker(ck).

Mutual event(RConfirm(ck,Spqi , Spqr , σr,E
pq
i , psk, shk1, shk3, shk2))∧

secrecy event(IConfirm(ck, Spqi ,Spqr , σi,E
pq
i , psk, shk1, shk3, shk2))∧

attacker(ck).

Table 5.9: Secrecy properties.

Key forward secrecy. Key forward secrecy for key exchange protocols is ver-
ified “if the compromise of long-term secrets does not lead to the compromise
of session keys of previously completed sessions” [BG19]. For PQ-WireGuard,
this translates to ensuring that the compromise of the pre-shared key psk, the
secret static keys spqi and spqr , and the long-term randomness σi and σr, does
not lead to the compromise of session keys from previously established sessions.
We analyze forward secrecy from the Initiator’s view, the Responder’s view, and
mutual forward secrecy, following the same approach as for secrecy earlier. In
ProVerif, these properties are “formalized” as in Table 5.9, with the difference
that, in the model, all static keys are revealed to the attacker in a later phase,
i.e., after the protocol execution, using the predicate phase.

Strong key secrecy. In [HNS+21], the authors define session keys secrey as
keys being “indistinguishable from a random string” to the attacker. At the
same time, in their symbolic analysis, they only consider a weaker definition of
secrecy, expressed as a trace property, i.e., the attacker cannot recover the entire
secret. Analyzing whether a term is indistinguishable from a freshly generated
random value requires defining secrecy as an equivalence property, which makes
this property stronger. We examine both definitions: we employ the term strong
key secrecy to refer to the equivalence property as presented in Table 5.5. We
model strong key secrecy as an equivalence property between a protocol execution
in which the session key is computed as specified by the protocol, and the protocol
execution in which the session key is replaced by a freshly generated name. This
property is refered to as “Key Indistinguishability” in [BCW22].

Anonymity. Anonymity, refered to as Identity Hiding in [HNS+21], ensures
that a user is able to participate in the protocol without an attacker being able
to draw conclusions about their identity. While identity hiding was formalized as
a trace property, we maintain that this is insufficient and only represents a weak

Chapter 5. Hybridization of Wireguard 123

property that can be viewed as “secrecy of identities”, given that public keys are
incorporated into the messages. We follow the common practice in symbolic anal-
ysis, that is, expressing privacy properties as equivalence properties [BCW22].
Anonymity is defined as an equivalence property between two systems involving
two distinct identities that the attacker is unable to distinguish. As stated in
previous sections, we analyze anonymity for both equivalences properties (i.e.,
trace and observational equivalence).

5.3.3 Results of the Analysis of PQ-WireGuard

The results of the analysis of PQ-WireGuard are depicted in Tables 5.12 on
page 137 and 5.12 on page 137. For each analyzed security property, we com-
pute its corresponding security formula. To simplify notation and enhance re-
sult readability, we denote the atomic capability for the reveal of the key us-
ing the key symbol itself, thus the set of the considered atomic capabilities is
Γ = {psk, spqi , spqr , ri, rr, re, σi, σr, e

pq
i } with respect to the notation given in Ta-

ble 5.1. This analysis exclusively considers key-reveal atomic capabilities, ex-
cluding key modification capabilities. All our Sapic+ files can be accessed on-
line [LMRT25].

We identify a bug in the PQ-WireGuard symbolic model from [HNS+21] due
to a discrepancy between the protocol description in the paper [HNS+21] and its
Tamarin model [HNS+20]. Specifically, in Algorithm 2. (ligne 12) of [HNS+21],
ct2 is the ciphertext resulting from the encapsulation of the initiator’s ephemeral
key epki. This ciphertext is included in the key derivation chain in Table II
in [HNS+21] (which corresponds to step 6 of Table 5.14 on page 139). We ver-
ified the computational proof in the paper and confirm that it aligns with the
protocol specifications, yet, the symbolic model does not. In line 221 of their
Tamarin code given in [HNS+20], sct2 = aenc{ka}pkI represents the cipher-
text resulting from the encapsulation of the initiator’s static public key pkI,
which is included in the derivation chain in subsequent lines. In contrast, ect
= aenc{k}pekI, the ciphertext from encapsulating the initiator’s ephemeral key
pekI is never included in the key derivation chain. While this might appear to
be a minor modeling error, its impact is significant: it transforms the lemma
UKS_on_responder_resistance that was verified under the flawed model into a
falsified lemma, as it enables an unknown key-share attack. This attack scenario,
which we also identified in our model, will be explained in greater details later.
In fact, the reason the attack disappears when the ciphertext (resulting from
encapsulating the initiator static key) is included in the session key derivation
chain is that the ciphertext (modeled as a standard public key encryption) re-
mains bound to the static key. By incorporating it into the derivation chain, the
session key itself also becomes bound to the initiator’s static key. Thus, an hon-

Chapter 5. Hybridization of Wireguard 124

est responder cannot be tricked into establishing a session key with an initiator
possessing a different key.

Unknown-Key-Share attacks. The security formula expressing minimal de-
fensive models corresponding to UUKS resistance on the Initiator’s side is psk ∨
(σi∧spqi)∨(spqi ∧rr)∨(e

pq
i ∧re) which can be expressed as a disjunction of minimal of-

fensive models as (psk∧spqi ∧e
pq
i)∨(psk∧spqi ∧re)∨(psk∧σi∧rr∧e

pq
i)∨(psk∧σi∧rr∧re).

Every offensive model incorporates both static keys and randomness generated
during the session execution. Consequently, if either all static and pre-shared
keys are compromised or if the randomness source is compromised, the proto-
col maintains UUKS resistance for the Initiator. This is interesting because the
MEX scenario where all static keys and pre-shared keys are compromised, in our
reading of [HNS+21], was excluded even for UKS attacks. An attacker possess-
ing all static and pre-shared keys can impersonate peers, either by initiating or
responding to sessions, but cannot force an honest Initiator to establish a session
key with an honest Responder without their consent, even given full compromise
of static and pre-shared keys. However, the protocol does not resist UKS attacks
on the Initiator’s side under any combination of compromised static keys and
randomness.

The same reasoning applies to the UUKS resistance on the Responder’s side
whose security formula is psk∨ (σi ∧ spqr)∨ (σr ∧ ri)∨ (epqi ∧ re). In [HNS+21], the
authors claimed that the UUKS attack on the Responder is not possible: “We
prove that unilateral UKS on the responder is not possible”, and stated that “Con-
sequently, bilateral UKS is also not possible”. The first claim about the proof is
not true because of the bug in their model we pointed out earlier in this section.
For the second claim, even when UUKS attacks cannot be mounted against the
Responder, this does not mean that BUKS attacks are impossible. We discov-
ered a counterexample: Using the default pre-shared key psk = Hash(Spqi ⊕ Spqr),
we confirmed in Tamarin (using the xor builtin) that UUKS attacks are not
possible against both the initiator or the responder. However, a BUKS attack
does exist, as described below.

The security formula for the BUKS resistance property is epqi ∨ re as depicted
in Table 5.12. BUKS resistance does not hold under the MEX scenario involv-
ing compromised randomness, contrary to the resistance requirement claimed
by the protocol authors. An instantiation of an attack scenario is described in
Figure 5.1 for the default pre-shared key configuration. The attack proceeds as
follows: Alice, acting as an honest Initiator with a static public key Spqi and
sharing a psk = Hash(Spqi ⊕Spqr) with the dishonest Eve with Spqr as public static
key, generates an ehemeral key epqi , encapsulates the public key of Eve to abtain
the shared secret shk1, and sends an InitHello message. Eve receives Alice’s

Chapter 5. Hybridization of Wireguard 125

message, decapsulates the received ciphertext with her secret key to obtain shk3,
re-encapsulates shk1 using Alice’s public key, and initiates a new session with
Alice (consistent with WireGuard/PQ-WireGuard’s dual-role design) by sending
an InitHello message with the same psk, epqi , and the shared secret shk1. When
Alice receives Eve’s new message, she processes it as a Responder by encapsu-
lating Eve’s public key to obtain the shared secret shk1, and her own ephemeral
key epqi from the initial session to obain the shared secret shk2, then transmits
a RespHello response. Eve, possessing either the compromised randomness or
the secret key corresponding the ephemeral key epqi (per the security formula),
completes the attack by decapsulating with her own key and re-encapsulating
with Alice’s public key. This results in Alice erroneously establishing a session
key with herself while believing she has authenticated communications with Eve.

Attacks leveraging re-encapsulation in KEM-based constructions are termed
re-encapsulation attacks [CDM24]. These attacks are not applicable across all
KEMs, as not all KEM schemes permit re-encapsulation. For example, if the
shared secrets (outputs of encapsulation) in PQ-WireGuard were cryptograph-
ically bound to their corresponding encapsulated public static keys, the afore-
mentioned attack would be infeasible. The PQ-WireGuard authors implemented
their protocol using Classic McEliece, which as mentioned in [CDM24] and based
on the work of [GMP21], lacks this binding property, thereby enabling the de-
scribed attack in practice. Since the shared secrets are not bound to static keys
in this case, the derived session key only binds the protocol participants through
the default pre-shared key. Crucially, the computed key material contains no
distinguishing markers between the Initiator and Responder roles. This absence
of role differentiation enables the BUKS attack we identified, which exploits two
concurrent protocol sessions between the same participants with inverted roles.
In WireGuard, these attacks are mitigated since the Diffie-Hellman products
binds the shared secrets to the corresponding static keys.

To address BUKS vulnerabilities in PQ-WireGuard, we modify the key deriva-
tion process to incorporate the concatenation of the Initiator’s and the Respon-
der’s public static keys respectively, i.e., Hash(Spqi || S

pq
r). This fix establishes an

explicit cryptographic binding between the session keys and the protocol partici-
pants, independent of the underlying KEM’s properties. It also explicitly encodes
the initiator-responder distinction in the derived key material to prevent the role
confusion exploited in BUKS attacks.

Session Uniqueness. The results of our analysis confirm the session unique-
ness results of [HNS+21] for both protocol participants. On the Initiator side,
session key uniqueness stems from integrating the Initiator’s ephemeral key to-
gether with the shared secret produced by encapsulating the Responder’s public

Chapter 5. Hybridization of Wireguard 126

(spqi , Spq
i , σi)

(epqi , Epq
i)← KEM.KeyGen()
ri

$←− {0, 1}256

(ct1, shk1)← KEM.Encapsulate(Spq
r ,KDF(σi, ri))

M1 = ⟨{Hash(Spq
i)}k1, {date}k2, Epq

i , ct1⟩

MAC(Spq
r ,M1)

(spqr , Spq
r , σr)

shk1 ← KEM.Decapsulate(ct1, s
pq
r)

ct′1 ← KEM.ReEncapsulate(Spq
i , shk1)

M ′
1 = ⟨{Hash(S

pq
r)}k1, {date}k2, Epq

i , ct′1⟩

MAC(Spq
i ,M ′

1)

(spqi , Spq
i , σi)

rr, re
$←− {0, 1}256×256

(ct2, shk2)← KEM.Encapsulate(Epq
i , re)

(ct3, shk3)← KEM.Encapsulate(Spq
r ,KDF(σi, rr))

M2 = ⟨{0}k3, ct2, ct3⟩

MAC(Spq
r ,M2)

shk3 ← KEM.Decapsulate(ct3, s
pq
r)

ct′3 ← KEM.ReEncapsulate(Spq
i , shk3)

M ′
2 = ⟨{0}k3, ct2, ct′3⟩

MAC(Spq
i ,M ′

2)

• k1 : KDF2((KDF1((ck,E
pq
i)), shk1))

• k2 : KDF2((KDF1((KDF1((ck,E
pq
i)), shk1)), psk))

• k3 : KDF3((KDF1((KDF1((KDF1((KDF1((KDF1((KDF1((ck,E
pq
i)), shk1)), psk)), ct2)), shk2)), shk3)), psk))

• : KDF2(KDF1((KDF1((KDF1((KDF1((KDF1((KDF1((KDF1((ck,E
pq
i)), shk1)), psk)), ct2)), shk2)), shk3)), psk)))

Figure 5.1: BUKS attack on PQ-Wireguard.

Chapter 5. Hybridization of Wireguard 127

static key into the session key derivation process. This ensures that any hon-
est Initiator properly generating their secrets can have confidence in session key
uniqueness regardless of potential value reuse by the Responder. The Respon-
der’s session uniqueness guarantee similarly follows from incorporating multiple
derivation inputs: the shared secret from encapsulating the Initiator’s public
static key, the share secret from encapsulating the Initiator’s ephemeral key, and
the associated ciphertext.

Anonymity. Likewise to WireGuard, our analysis show that neither the Initia-
tor nor the Responder is anonymous when peer static keys are considered public
knowledge. This vulnerability persists in the current context due to the MAC be-
ing computed using the peers’ public keys. In Chapter 4, two fixes are proposed
to ensure anonymity for WireGuard: one based on the pre-shared key psk, and
another one based on an ECDH shared secret dhsisr . To reach anonymity in PQ-
WireGuard, we consider the fix based on the pre-shared key, as the one based on
dhsisr is not applicable in the post-quantum case. The fix consists in computing
the MAC value m1 in InitHello and RespHello, using the pre-shared key as the
MAC key, instead of the static KEM key of the other party. This fix presents a
computational challenge: when receiving an InitHello message, the Responder
cannot immediately determine which pre-shared key from its database should be
used to verify the incoming message. Consequently, the Responder must exhaus-
tively test all available keys, resulting in significant computational overhead. To
avoid this issue, we change the order of the Responder’s operations upon the
receipt of InitHello: the Responder has to perform KEM.Decaps and AEAD.Dec
operations before m1 verification because the decryption of the static field allows
them to identify the Initiator and retrieve the corresponding pre-shared key. Note
that the original order is only inherited from the initial WireGuard’s design. As
explained in [Don17], the MAC check is meant protect the Responder against
DoS attacks: if the verification fails, the Responder is prevented from computing
costly ECDH, and AEAD.Dec computations. We note however that this protec-
tion is based on the strong assumption that the Initiator’s and the Responder’s
static keys (used as MAC keys in WireGuard) are secret. Without this assump-
tion, DoS attacks against the Responder are realistic: knowledge of the static
public keys implies the ability to compute an arbitrary InitHello message with
a correct MAC field, implying ECDH and AEAD.Dec computations.

Meanwhile, on the Initiator’s side, no modification is required for RespHello
message reception: the Initiator has the knowledge of which pre-shared key to
use and checks the message authentication code m1 from the RespHello mes-
sage, using the received sidi field. For completeness, the InitHello message
consumption is detailed in Table 5.11.

Chapter 5. Hybridization of Wireguard 128

Message Agreement. The security formula for the agreement on the message
InitHello is psk. When using the default pre-shared key Hash(Spqi ⊕ Spqr), and
given that public static keys are publicly known, any entity can generate valid
messages that will be accepted, processed, and responded to by the Responder.
This creates a viable vector for denial-of-service attacks against the protocol.
While PQ-WireGuard explicitly excludes this scenario through its assumption
of secret public keys, this represents a potential design vulnerability. In prac-
tice, an attacker could be a protocol participant who has communicated with
multiple peers, and frequent key rotation, WireGuard’s mitigation for public key
exposure, becomes challenging. WireGuard’s 32-byte static keys facilitate such
rotations, and according to WireGuard’s whitepaper “it is useful for transferring
keys through a variety of different mediums” [Don20]. In contrast PQ-WireGuard
employs Classic McEliece public keys whose substantial size complicates this ap-
proach. Conversely, when a non-default psk is used, the Initiator achieves authen-
tication of their first message. In our fix of the protocol, we used a non-default
psk.

However, the KCI attack remains possible on the first message, which is the
same conclusion as for WireGuard. Yet, a KCI attack cannot lead to a complete
protocol execution. The security formula for the agreement on the RespHello

message is psk∧(spqr ∨ri)∧(spqr ∨σi), meaning an attacker with only the Initiator’s
static material cannot perform a KCI attack unless they have either compromised
both the Initiator’s randomness and long-term randomness, or compromised the
Responder’s static secret key. From these security formulas (expressed as con-
junctions of minimal defensive models), we conclude that agreement on the sec-
ond message holds for PQ-WireGuard under any MEX scenarios combining se-
crets and randomness, except those combinations appearing in defensive models,
i.e., any combination that excludes psk or {spqr , ri} or {spqr ∨ σi}.

The security formula for the Confirm message is psk ∧ (spqi ∨ rr) ∧ (spqi ∨ σr)

showing a complete symmetry with the security formula on RespHello. There-
fore, the same security arguments apply by simply inverting the roles. What is
interesting to emphasize is that this symmetry is achieved in WireGuard’s case
which is based on the ECDH products, and it is also achieved when using KEMs.
A direct comparison of the security formulas for WireGuard and PQ-WireGuard
reveals their fundamental equivalence when excluding the term dhsisr from Wire-
Guard’s security formula, as no analogous compromise case was considered for
PQ-WireGuard. Both formulas provide identical security guarantees which pre-
cisely aligns with the security goals established by the PQ-WireGuard authors
in their protocol design.

Chapter 5. Hybridization of Wireguard 129

Key Secrecy and Forward Secrecy. The security formula for the session key
secrecy from the Initiator’s perspective is psk ∧ (spqr ∨ ri) ∧ (spqr ∨ σi). To violate
this property, an attacker must compromise either: (1) both the pre-shared key
psk and the Responder’s static secret key spqr , or (2) psk along with both the
long-term randomness σi and the Initiator’s session randomness ri. This security
formula matches WireGuard’s formula when treating the long-term randomness
as a static value. An equivalent formula exists from the Responder’s perspective:
psk ∧ (spqi ∨ rr) ∧ (spqi ∨ σr). Both formulas provide resistance against MEX at-
tack scenarios involving full randomness compromise, consistent with the analysis
of [HNS+21]. Notably, these security formulas for key secrecy coincide exactly
with those for messages agreement. This means that session key secrecy from the
Initiator’s perspective is guaranteed if and only if the Responder authentication
with reguard to the Initiator is satisfied, and peers have agreed on the session
key. The same holds symmetrically for the Responder’s perspective.

The mutual key secrecy formula is psk∧(spqi ∨ rr)∧(s
pq
i ∨σr)∧(s

pq
r ∨ ri)∧(spqr ∨

σi)∧ (epqi ∨ re). This formula shows that the minimal defensive models for mutual
secrecy encompass those from both peers perspectives, that is, mutual secrecy
holds if either the Initiator-side secrecy or the Responder-side secrecy holds. If
the mutual key secrecy formula consisted solely of the conjunction of the peers
secrecy formulas, i.e., psk∧(spqi ∨rr)∧(s

pq
i ∨σr)∧(s

pq
r ∨ri)∧(spqr ∨σi), post-forward

secrecy would not be achieved. Specifically, this would permit a minimal offensive
model comprising only static and pre-shared keys psk ∧ spqi ∧ spqr . However, the
existence of the minimal defensive model (epqi ∨ re) within the security formula
that incorporates both the ephemeral key and session-generated randomness,
introduces a protection against forward secrecy violations.

Strong Key Secrecy. The security formula for strong mutual key secrecy
is psk ∧ (spqr ∨ ri) ∧ (spqr ∨ σi). This formula provides stronger guarantees than
the previously defined mutual secrecy. Notably, this security condition exactly
matches the formula for the Initiator-side key secrecy, establishing that strong
key secrecy is achieved precisely when the Initiator-side secrecy is satisfied.

Long-Term Randomness and Non-Standard KEMs. PQ-WireGuard in-
corporates long-term randomness alongside ephemeral randomness in the KEM

to protect against MEX attacks involving full disclosure of ephemeral secrets and
protocol randomness. Note that long-term randomness is treated equivalently to
static keys. The security formulas in Tables 5.12 and 5.13, show that for every
security property the pre-shared key is a minimal defensive model, meaning that
no security property can be breached without its compromise. While a secret pre-
shared key prevents MEX attacks under complete randomness compromise, the
default pre-shared key’s secrecy represents a strong assumption. Consequently,

Chapter 5. Hybridization of Wireguard 130

without the additional long-term randomness, the protocol’s resistance to MEX
attacks during full randomness compromise remains uncertain. In addition, the
incorporation of long-term randomness creates practical implementation difficul-
ties. This approach requires direct manipulation of the randomness input for
the key encapsulation mechanism, contrary to safe standard KEM implementa-
tions [lib] where encapsulation under a public key is inherently probabilistic and
does not permit user-controlled randomness.

In addition, the authors construct an IND-CPA KEM called Dagger based on
SABER [BBD+20], a known KEM, to have messages small enough to avoid IP
fragmentation. We stress that relying on such unconventionnal constructions
can have security risks since it restricts the choices of libraries that can be used,
forcing a developer to re-implement the KEM.

Based on our prior recommendation to eliminate default pre-shared keys and
rely exclusively on secret pre-shared keys under the assumption of publicly known
static keys, we now propose removing long-term randomness from the protocol
specification. This modification enables a generic protocol design that operates
independently of the non-standard KEM implementations originally proposed.

Summing Up: PQ-WireGuard⋆

We consider all previously suggested modifications into an updated variant of the
protocol, which we refer to as PQ-WireGuard⋆, described in Tables 5 and 5.14.
Specifically, our modifications are the following:

1. Inclusion of the hashed concatenation of the Initiator’s public static key
and the Responder’s public static key Hash(Spqi || S

pq
r) into the session key

derivation chain,

2. Replacement of the default pre-shared key with a secret pre-shared key,

3. Incorporation of the pre-shared key into the MAC computations, and

4. Elimination of long-term randomness.

The resulting security formulas of the analysis of PQ-WireGuard⋆ are de-
picted in Tables 5.12 and 5.13 alongside prior analyses. The security formulas
confirm that UKS attacks are now infeasible due to the explicit binding of static
public keys in the key derivation process, and the introduction of a clear role
differentiation between the Initiator and the Responder. Anonymity proper-
ties are successfully verified for both participants, though anonymity cannot be
maintained in the MEX attack scenarios involving full compromise of ephemeral
keys and all protocol-generated randomness. We observe that the minimal offen-
sive models for the Responder’s anonymity can also compromise the Initiator’s
anonymity. However, the Initiator’s anonymity can be compromised without af-
fecting the Responder’s anonymity. All other security properties maintain their

Chapter 5. Hybridization of Wireguard 131

original formulations, with the sole modification being the removal of long-term
randomness terms.

Algorithm 5 PQ-WireGuard⋆ handshake messages.
1. InitHello construction

input: spqi , Spqi ,Spqr

1: sidi
$← {0, 1}32

2: (epqi ,Epq
i)← KEM.gen()

3: (ct1, shk1)← KEM.Encaps(Spqr)
4: static← AEAD.Enc(κ3, 0, H3, Hash(Spqi))
5: time← AEAD.Enc(κ4, 0, H4, now())
6: inner← type || sidi || Epq

i || ct1 || static || time
7: m1← MAC(Hash(lbl3 || psk), inner)
8: m2← MAC(cookie, inner || m1)
9: InitHello← inner || m1 || m2

2. RespHello construction

input: spqr , Spqr ,Spqi

1: sidr
$← {0, 1}32

2: (ct2, shk2)← KEM.Encaps(Epq
i)

3: (ct3, shk3)← KEM.Encaps(Spqi)
4: empty← AEAD.Enc(κ9, 0, H9, ∅)

5: inner← type || sidr || sidi || ct2 || ct3 || empty
6: m1← MAC(Hash(lbl3 || psk), inner)
7: m2← MAC(cookie, inner || m1)
8: RespHello← inner || m1 || m2

5.4 Hybrid-WireGuard: Protocol and Analysis

This section presents the design of a new protocol called Hybrid-WireGuard. The
protocol design builds upon WireGuard and PQ-WireGuard, with the objectives
of achieving hybrid security and complying with post-quantum transition recom-
mendations. We establish a formal security goal: the security formulas for all
the defined security properties in the hybrid protocol must combine the security
formulas of WireGuard and PQ-WireGuard⋆. Specifically, any minimal defensive
model present in either constituent protocol must also be a minimal defensive
model in the hybrid protocol. This requirement ensures: (1) preservation of all
defensive models from both base protocols, and (2) the necessity for an attacker
to simultaneously compromise both constituent protocols to attack the hybrid
version. The section first details the protocol design, then we present the analysis
results.

Chapter 5. Hybridization of Wireguard 132

Protocol definition. We introduce the handshake, described in Tables 5.10
and 5.14, that hybridizes WireGuard: Hybrid-WireGuard combines ECDH se-
crets from the WireGuard handshake, with post-quantum KEM secrets from
PQ-WireGuard⋆. To achieve our stated security goals, we propose a construc-
tion inspired from existing works (e.g., [FMJ24, KSH24, TTB+23]). In this
case, the Initiator and the Responder hold static long-term ECDH and KEM key
pairs

(
(sci , S

c
i), (s

pq
i ,Spqi)

)
and

(
(scr ,S

c
r), (s

pq
r ,Spqr)

)
respectively. We also derive

four ECDH secrets as in WireGuard, and three KEM shared secrets as in PQ-
WireGuard⋆.
During key derivation, both the ECDH secrets and the KEM secrets from Wire-
Guard and PQ-WireGuard⋆ respectively, are concatenated and used in Hybrid-
WireGuard (terms C3, C4, C7, C8 and term κ3 in Table 5.14). In addition, we
include the necessary modifications to ensure resistance against UKS attacks:
we use the concatenation of the ECDH product from WireGuard, and the hash
of the KEM public keys from PQ-WireGuard⋆, both used in the corresponding
protocols to reach this resistance (terms C4 and κ4 in Table 5.14).
During the handshake, the static field results from an AEAD encryption of the
Initiator’s ECDH static public key in WireGuard, and the hash of the Initia-
tor’s KEM static public key in PQ-WireGuard⋆ (considering that the public key
would increase InitHello message size above the MTU limit [HNS+21]). In
Hybrid-WireGuard, the static field is an encryption of the hash of the Initiator’s
concatenated ECDH and KEM public keys.
For anonymity, another tweak is needed in the case of Hybrid-WireGuard to
ensure that breaking the property requires the compromise of both ECDH and
KEM static keys. During the PQ-WireGuard⋆ handshake, if an attacker compro-
mises the ephemeral randomness used during the encapsulation against Spqr in
InitHello, then they can intercept ct1 to lookup the correct static KEM key and
reveal the identity of the Responder. Similarly, if an attacker compromises the
ephemeral randomness used during the encapsulation against Spqi in RespHello,
then they can intercept ct3 to lookup the correct static KEM key and reveal the
identity of the Initiator. This vulnerability is inherited by Hybrid-WireGuard
when sending the same ciphertexts ct1 and ct3 respectively in InitHello and
RespHello, making the identity compromise only requires the lookup of the KEM
static keys. To make up for this issue, we encrypt ct1 and ct3 with a symmetric
encryption scheme, using as key the output of KDF1 applied to the ECDH se-
cret dheisr in the case of InitHello, and dhsier in the case of RespHello. Hence,
instead of sending ct1 and ct3 in InitHello and RespHello respectively, the
Initiator sends ct1

enc created on line 7 for InitHello in Table 5.10 and ct3
enc

created on line 6 for RespHello. The goal of this tweak is that even in the case
of ephemeral randomness compromise, the attacker would still need to lookup all
possible ECDH and KEM keys at the same time. Consequently, compromising

Chapter 5. Hybridization of Wireguard 133

only the ECDH static key or only the KEM key, along with ephemeral randomness
compromise, is not enough to break anonymity. Note that ephemeral random-
ness compromise does not have the same effect in the case of PQ-WireGuard,
since the secret is a result of the deterministic encapsulation, using random coins
generated from the combination of ephemeral and long-term secret randomness.

1. InitHello construction

input: sci ,S
c
i ,S

c
r , s

pq
i , Spqi ,Spqr

1: sidi
$← {0, 1}32

2: (eci ,E
c
i)← DH.gen()

3: (epqi ,Epq
i)← KEM.gen()

4: (ct1, shk1)← KEM.Encaps(Spqr)
5: static← AEAD.Enc(κ3, 0, H3, Hash(Sci || S

pq
i))

6: time← AEAD.Enc(κ4, 0, H4, now())
7: ct1

enc ← SE.Enc(KDF1(∅, dheisr), 0, ct1)
8: inner← type || sidi || Ec

i || E
pq
i || ct1enc || static || time

9: m1← MAC(Hash(lbl3 || psk), inner)
10: m2← MAC(cookie, inner || m1)
11: InitHello← inner || m1 || m2

2. RespHello construction

input: scr ,S
c
r ,S

c
i , s

pq
r , Spqr ,Spqi

1: sidr
$← {0, 1}32

2: (ecr ,E
c
r)← DH.gen()

3: (ct2, shk2)← KEM.Encaps(Epq
i)

4: (ct3, shk3)← KEM.Encaps(Spqi)
5: empty← AEAD.Enc(κ9, 0, H9, ∅)

6: ct3
enc ← SE.Enc(KDF1(∅, dhsier), 0, ct3)

7: inner← type || sidr || sidi || Ec
r || ct2 || ct3enc || empty

8: m1← MAC(Hash(lbl3 || psk), inner)
9: m2← MAC(cookie, inner || m1)

10: RespHello← inner || m1 || m2

Table 5.10: Hybrid-WireGuard handshake messages.

Symbolic Analysis Results. For our verification of Hybrid-WireGuard’s se-
curity properties, we directly used the obtained security formulas derived from
prior analyses of both WireGuard and PQ-WireGuard⋆. Consistent with the de-
sign requirement that the hybrid protocol’s security formulas must incorporate
all minimal defensive models from both constituent protocols, we verified a single
Tamarin lemma (for trace-based properties) representing the logical conjunction
of these two security formulas. For the verification of privacy properties (strong
secrecy and anonymity), we used only ProVerif, as DeepSec lacks support
for the exponentiation equations required to model the Diffie-Hellman keys. The

Chapter 5. Hybridization of Wireguard 134

results of our symbolic analysis for the Hybrid-WireGuard are presented side-by-
side with other protocols in Table 5.12 for Unknown-Key-Share attacks resistance,
session uniqueness, anonymity and message agreement, and in Table 5.13 for all
secrecy properties. We put forward that a necessary and sufficient condition to
break a given property in our proposed Hybrid-WireGuard construction is to
break the same property for WireGuard and for PQ-WireGuard⋆, with exactly
the same set of keys involved. The results depicted in Tables 5.12 and 5.13 reveal
that all security formulas (the Initiator’s anonymity excluded) are formed by the
logical conjunction of WireGuard’s security formula and PQ-WireGuard⋆ ’s se-
curity formula. For example, the security formula for the agreement on RecHello

message is psk∧ (scr ∨ eci)∧ (dhsisr ∨ sci ∨ scr)∧ (s
pq
r ∨ ri) which is the conjunction of

psk∧ (scr ∨ eci)∧ (dhsisr ∨ sci ∨ scr) (WireGuard’s security formula for agreement on
RecHello message), and psk ∧ (spqr ∨ ri) (PQ-WireGuard⋆’s security formula for
the same security property). Regarding the Initiator’s anonymity, the obtained
result is “better” than the conjunction of both defensive models. Specifically, we
eliminated attack vectors existing in PQ-WireGuard⋆ to achieve the Initiator-
Responder symmetry. While the removal of the minimal defensive models ri and
spqi from the security formulas may appear unjustified, it becomes justified when
the minimal defensive model is itself a minimal offensive model - representing an
inherent attack vector.

We note that the Hybrid protocol’s design involved continuous iteration be-
tween the protocol design and formal analysis. These results were not obtained
from the first proposed version, confirming the critical role of formal analysis
during protocol design.

5.5 Conclusion and Future Work

Using the automatic verification tools ProVerif, DeepSec, and Tamarin, we
analyzed the security of PQ-WireGuard. The analysis showed that the protocol
can be fixed to reach anonymity and resilience against Unknown Key-Share at-
tacks. We therefore proposed an improved version, PQ-WireGuard⋆, for which
these properties are ensured, without degrading other properties already reached
by PQ-WireGuard (agreement, key secrecy, mutual secrecy, forward secrecy, ses-
sion uniqueness). From WireGuard and PQ-WireGuard⋆, we construct Hybrid-
WireGuard, that offers the best of the two worlds (classic and post-quantum),
and we formally proved the security of our construction. We reach a hybridiza-
tion target, because we show that an attack scenario against a security property
of Hybrid-WireGuard is indeed a combination of an attack on PQ-WireGuard⋆

and an attack on the original WireGuard.
Another direction for the symbolic analysis of PQ-WireGuard and Hybrid-

WireGuard involves identifying the minimal binding properties required for the

Chapter 5. Hybridization of Wireguard 135

KEMs used in our protocol in orded to avoid other re-encapsulation attacks. The
Tamarin library proposed by [CDM24] can be used to automatically derive the
minimal binding properties required from the KEM in order for the protocol to
meet its security goals.

Rosenpass [VLZ+24] is an implementation of PQ-WireGuard [HNS+21], which
aims to provide peers with a post-quantum shared secret. This post-quantum
shared secret can be used as a pre-shared key when using the WireGuard proto-
col, that is, providing hybridization. While symbolic analyses with ProVerif

exist for Rosenpass, their results (which simply indicate that security properties
are verified without examining compromise scenarios) preclude detailed compar-
ison with our protocol. Specifically, the available analysis does not enable direct
comparison between our hybridization results and theirs. Analyzing Rosenpass
within our framework would facilitate such protocol comparisons.

Our work also shows the limitations of using post-quantum primitives in Wire-
Guard, specifically related to the sizes of the exchanged messages. As WireGuard
does not handle fragmentation, the packets’ sizes must not exceed the IPv6 MTU
limit (1280 bytes). Note that this problem is inherent to the post-quantum tran-
sition of any protocol that does not handle fragmentation. Hence we have two
choices. First is to allow additional messages in the handshake. Clearly, this
would render WireGuard non-competitive compared to other VPNs: one main
advantage of WireGuard is precisely this two-message handshake. Second, as
in [HNS+21], is to keep this two-message handshake design. In this case, we be-
come limited for KEM algorithms, which is why Classic McEliece is the only KEM

suitable for the static keys (even if we only aim L1 security). For ephemeral
keys, [HNS+21] tweaks an existing KEM construction for L3 security, while we
argue that this is not a desired practice, so we restrict our design to trusted con-
structions and implementations. This limits us to use Kyber, with L1 security.
We think that future research should analyze if L3 or L5 levels are reachable for
two-messages handshakes.

Chapter 5. Hybridization of Wireguard 136

WireGuard [Don17], anonymity not ensured
input: InitHello, scr , Scr

1: parse InitHello as inner || m1 || m2
2: check m1 == MAC(Hash(lbl3 || Scr), inner)
3: parse inner as type || sidi || Ec

i || static || time
4: compute dheisr // used to compute κ3
5: Sci ← AEAD.Dec(κ3, 0, static)
6: lookup Initiator public keys and psk using Sci
7: AEAD.Dec(κ4, 0, time)

PQ-WireGuard [HNS+21], anonymity not ensured
input: InitHello, spqr , Spqr

1: parse InitHello as inner || m1 || m2
2: check m1 == MAC(Hash(lbl3 || Spqr), inner)
3: parse inner as type || sidi || Epq

i || ct1 || static || time
4: shk1 ← KEM.Decaps(spqr , ct1)
5: h← AEAD.Dec(κ3, 0, static) // h = Hash(Spqi)
6: lookup Initiator public keys and psk using h
7: AEAD.Dec(κ4, 0, time)

PQ-WireGuard⋆, anonymity ensured
input: InitHello, spqr , Spqr

1: parse InitHello as inner || m1 || m2
2: parse inner as type || sidi || Epq

i || ct1 || static || time
3: shk1 ← KEM.Decaps(spqr , ct1)
4: h← AEAD.Dec(κ3, 0, static) // h = Hash(Spqi)
5: lookup Initiator public keys and psk using h
6: check m1 == MAC(Hash(lbl3 || psk), inner)
7: AEAD.Dec(κ4, 0, time)

Hybrid-WireGuard, anonymity ensured
input: InitHello, scr , Scr , s

pq
r , Spqr

1: parse InitHello as inner || m1 || m2
2: parse inner as type || sidi || Ec

i || E
pq
i || ct1enc || static

|| time
3: compute dheisr // used to compute κ3
4: ct1← SE.Dec(KDF1(∅, dheisr), 0, ct1

enc)
5: shk1 ← KEM.Decaps(spqr , ct1)
6: h← AEAD.Dec(κ3, 0, static) // h = Hash(Sci || S

pq
i)

7: lookup Initiator public keys and psk using h
8: check m1 == MAC(Hash(lbl3 || psk), inner)
9: AEAD.Dec(κ4, 0, time)

Table 5.11: Responder’s InitHello consumption by Responder.

Chapter 5. Hybridization of Wireguard 137

Property WireGuard PQ-WireGuard PQ-
WireGuard⋆

Hybrid-
WireGuard

UKS attacks resistance (ProVerif, Tamarin)

UUKS Initiator ✓ psk ∨ (σi ∧ spqi) ∨ (spqi ∧
rr) ∨ (epqi ∧ re)

✓ ✓

UUKS Respon-
der

✓ psk ∨ (σi ∧ spqr) ∨ (σr ∧ ri) ∨
(epqi ∧ re)

✓ ✓

Bilateral ✓ epqi ∨ re ✓ ✓

Session uniqueness (ProVerif, Tamarin)

Init./Resp. ✓ ✓ ✓ ✓

Anonymity (DeepSec, ProVerif)

Initiator psk ∨ scr ∨ eci ✗ psk ∨ spqi ∨
spqr ∨ rr ∨ ri

(psk ∨ spqr ∨ rr)
∧

(psk ∨ scr ∨ eci)

Responder psk ∨ sci ∨ ecr ✗ psk ∨ spqr ∨ ri (psk ∨ spqr ∨ ri)
∧

(psk ∨ sci ∨ ecr)

Message agreement (ProVerif, Tamarin)

InitHello dhsisr ∨ sci ∨ scr psk psk (dhsisr ∨ sci ∨ scr)
∧
psk

RespHello psk ∧ (scr ∨
eci) ∧ (dhsisr ∨

sci ∨ scr)

psk ∧ (spqr ∨ ri) ∧ (spqr ∨ σi) psk ∧ (spqr ∨ ri) psk ∧ (scr ∨ eci) ∧
(dhsisr ∨ sci ∨ scr)

∧
(spqr ∨ ri)

Confirm psk ∧ (sci ∨
ecr) ∧ (dhsisr ∨

sci ∨ scr)

psk ∧ (spqi ∨ rr) ∧ (spqi ∨ σr) psk ∧ (spqi ∨ rr) psk ∧ (sci ∨ ecr) ∧
(dhsisr ∨ sci ∨ scr)

∧
(spqi ∨ rr)

Table 5.12: Security formulas for UKS attack resistance, session uniqueness,
anonymity and message agreement. ✓denotes a property is ensured even when
the attacker has all the considered atomic capabilities, ✗denotes a property not

ensured in the presence of a Dolev-Yao attacker. Key notations are from
Table 5.1, with dedicated colors: blue for WireGuard, orange for

PQ-WireGuard⋆ and both colors for Hybrid-WireGuard. Note that for
WireGuard, we use and complete the results from Chapter 4 as it allows to

consider a fix we proposed for anonymity.

Chapter 5. Hybridization of Wireguard 138

Property WireGuard PQ-WireGuard PQ-
WireGuard⋆

Hybrid-
WireGuard

Key secrecy (ProVerif, Tamarin)

Initiator’s point
of view

psk ∧ (scr ∨ eci) ∧
(dhsisr ∨ sci ∨ scr)

psk ∧ (spqr ∨ ri) ∧
(spqr ∨ σi)

psk ∧ (spqr ∨ ri) psk ∧ (scr ∨ eci) ∧
(dhsisr ∨ sci ∨ scr)

∧
(spqr ∨ ri)

Responder’s
point of view

psk ∧ (sci ∨ ecr) ∧
(dhsisr ∨ sci ∨ scr)

psk ∧ (spqi ∨ rr) ∧
(spqi ∨ σr)

psk ∧ (spqi ∨ rr) psk ∧ (sci ∨ ecr) ∧
(dhsisr ∨ sci ∨ scr)

∧
(spqi ∨ rr)

Mutual key se-
crecy

psk ∧ (sci ∨ ecr) ∧
(scr ∨eci)∧(eci ∨ecr)∧
(dhsisr ∨ sci ∨ scr)

psk ∧ (spqi ∨ rr) ∧
(spqi ∨ σr) ∧ (spqr ∨
ri) ∧ (spqr ∨ σi) ∧

(epqi ∨ re)

psk ∧ (spqi ∨ rr) ∧
(spqr ∨ ri)∧(epqi ∨ re)

psk ∧ (sci ∨ ecr) ∧ (scr ∨
eci) ∧ (eci ∨ ecr) ∧

(dhsisr ∨ sci ∨ scr)
∧

(spqi ∨ rr) ∧ (spqr ∨
ri) ∧ (epqi ∨ re)

Key strong secrecy (ProVerif, DeepSec)

Strong key se-
crecy

psk ∧ (scr ∨ eci) ∧
(dhsisr ∨ sci ∨ scr)

psk ∧ (spqr ∨ ri) ∧
(spqr ∨ σi)

psk ∧ (spqr ∨ ri) psk ∧ (scr ∨ eci) ∧
(dhsisr ∨ sci ∨ scr)

∧
(spqr ∨ ri)

Key forward secrecy (ProVerif, Tamarin)

Key forward se-
crecy

psk ∧ (sci ∨ ecr) ∧
(scr ∨eci)∧(eci ∨ecr)∧
(dhsisr ∨ sci ∨ scr)

psk ∧ (spqi ∨ rr) ∧
(spqi ∨ σr) ∧ (spqr ∨
ri) ∧ (spqr ∨ σi) ∧

(epqi ∨ re)

psk ∧ (spqi ∨ rr) ∧
(spqr ∨ ri)∧(epqi ∨ re)

psk ∧ (sci ∨ ecr) ∧ (scr ∨
eci) ∧ (eci ∨ ecr) ∧

(dhsisr ∨ sci ∨ scr)
∧

(spqi ∨ rr) ∧ (spqr ∨
ri) ∧ (epqi ∨ re)

Table 5.13: Security formulas for key secrecy, strong key secrecy, mutual key
secrecy, and key forward secrecy. Key notations are from Table 5.1, with

dedicated colors: blue for WireGuard [Don17], orange for PQ-WireGuard⋆ and
both colors for Hybrid-WireGuard.

Chapter 5. Hybridization of Wireguard 139

k Ck κk Hk

1 Hash(lbl1) - Hash(C1 || lbl2)

W
G

[D
on

17
]

2 KDF1(C1, Ec
i) - Hash(H1 || Scr)

3 KDF2(C2, dheisr)[1] KDF2(C2, dheisr)[2] Hash(H2 || Ec
i)

4 KDF2(C3, dhsisr)[1] KDF2(C3, dhsisr)[2] Hash(H3 || InitHello.static)

5 - - Hash(H4 || InitHello.time)

6 KDF1(C4, Ec
r) - Hash(H5 || Ec

r)

7 KDF1(C6, dheier) - -

8 KDF1(C7, dhsier) - -

P
Q

-W
G

[H
N

S+
21

] 2 KDF1(C1, Epq
i) - Hash(H1 || Spqr)

3 KDF2(C2, shk1)[1] KDF2(C2, shk1)[2] Hash(H2 || Epq
i)

4 KDF2(C3, psk)[1] KDF2(C3, psk)[2] Hash(H3 || InitHello.static)

5 - - Hash(H4 || InitHello.time)

6 KDF1(C4, ct2) - Hash(H5 || ct2)

7 KDF1(C6, shk2) - -

8 KDF1(C7, shk3) - -

P
Q

-W
G

⋆
(S

ec
ti

on
5.

3.
3)

2 KDF1(C1, Epq
i) - Hash(H1 || Hash(Spqr))

3 KDF2(C2, shk1)[1] KDF2(C2, shk1)[2] Hash(H2 || Epq
i)

4
KDF2(C3, Hash(Spqi || S

pq
r) || KDF2(C3, Hash(Spqi || S

pq
r) ||

Hash(H3 || InitHello.static)
psk)[1] psk)[2]

5 - - Hash(H4 || InitHello.time)

6 KDF1(C4, ct2) - Hash(H5 || ct2)

7 KDF1(C6, shk2) - -

8 KDF1(C7, shk3) - -

H
yb

ri
d
-W

G
(S

ec
ti

on
5.

4) 2 KDF1(C1, Ec
i || E

pq
i) - Hash(H1 || Hash(Scr || S

pq
r))

3 KDF2(C2, dheisr || shk1)[1] KDF2(C2, dheisr || shk1)[2] Hash(H2 || Ec
i || E

pq
i)

4
KDF2(C3, dhsisr || KDF2(C3, dhsisr || Hash(H3 || InitHello.static)

Hash(Spqi || S
pq
r) || psk)[1] Hash(Spqi || S

pq
r) || psk)[2]

5 - - Hash(H4 || InitHello.time)

6 KDF1(C4, Ec
r || ct2) - Hash(H5 || Ec

r || ct2)

7 KDF1(C6, dheier || shk2) - -

8 KDF1(C7, dhsier || shk3) - -

9 KDF3(C8, psk)[1] KDF3(C8, psk)[3] Hash(H6 || KDF3(C8, psk)[2])

Table 5.14: Key derivations. Steps 1 and 9 are common to all constructions.
Session keys are computed as (tki, tkr) = KDF2(C9,∅). Colored instructions

are specific to WireGuard [Don17] (blue), to PQ-WireGuard [HNS+21] (green)
and to PQ-WireGuard⋆ (orange). Other notations are from Table 5.1. Ck and

Hk are chaining and hash values, κk are symmetric keys.

Chapter 6
Conclusion

If you take a model’s output as
gospel, you’re missing the point.
Models are hypotheses, not
truth machines.

Jessica Tierney

In this thesis, we have addressed several critical aspects of modeling and
verifying cryptographic protocols using automated tools. Automation of analysis
has been a solution to the complexity of models and the errors that may arise from
manual proofs. Unfortunately, the problem is not fully resolved, and modeling
remains a highly challenging and complex task, even with automated tools.

Summary

Throughout our work, we have not only modeled and analyzed security protocols,
but for each analyzed protocol where a symbolic model existed, we have provided
detailed explanations for divergent results (when results differed). These findings
may serve both as instructional examples and as documentation of modeling
errors to avoid. In all proposed models, we have targeted specific aspects of
cryptographic protocol verification using automated tools: the formal modeling
of the protocol itself, the equational theory, the adversary model, the security
properties, and the used automated verification tool. Our contributions are as
follows:

A More Precise Modeling for Mix-Nets. This work introduces a more
precise model for exponentiation and re-encryption Mix-Nets that, unlike prior
abstract models, captures the exponentiation details. Through four case stud-
ies, we demonstrate the model’s effectiveness in uncovering known and new at-
tacks using ProVerif, mitigated only by strong zero-knowledge proofs (ZKPs).
We propose two ZKP models (weak and strong), proving automatically that

141

Chapter 6. Conclusion 142

weak ZKPs fail to prevent those attacks. Additionally, we presented a refined
ElGamal encryption model (independent of Mix-Nets), modeling keys explic-
itly as the results of exponentiation. This modeling revealed a subtle instantia-
tion of an an attack againt exponentiation Mix-Net exploiting basis modification
within the ElGamal encryption.

A Formal Analysis of WireGuard. In this work, we analyzed the Wire-
Guard protocol in the symbolic model using Sapic+, refining prior work with an
enhanced adversary model. By incorporating numeros atomic capabilities (e.g.,
the compromise of the static/ephemeral/pre-shared keys, the compromise of the
ECDH pre-computation, and the compromise of public key distribution), we re-
discovered a known anonymity attack, uncovered a new vulnerability regarding
the ECDH pre-computation used in WireGuard’s implementation to optimize the
computations, and proposed countermeasures to mitigate these weaknesses.

Hybridization of WireGuard. In this work, we analyzed the PQ-WireGuard
protocol using ProVerif, DeepSec, and Tamarin. We found that it does not
guarantee anonymity and exhibit Unkown Key-Share (UKS) attacks claimed to
be infeasible.. This led us to a fixed version of the PQ-WireGuard, namely
PQ-WireGuard⋆, which preserves all original security properties (agreement, key
secrecy, mutual secrecy, forward secrecy, session uniqueness) while fixing the iden-
tified flaws. Building on WireGuard and PQ-WireGuard⋆, we designed Hybrid-
WireGuard, combining classical and post-quantum security. Formal verification
proved that any attack on Hybrid-WireGuard requires simultaneous breaches of
both underlying protocols’ securities, achieving our hybridization goal.

Limitation and Direction for Future Work

Our proposed future work includes applying our ElGamal and ZKPs mod-
els to additional protocols that use these cryptographic primitives. All existing
ProVerif models using these primitives could potentially incorporate our re-
fined equations. Current verification tools face limitations in finding the exact
same algebraic attacks we described. While Tamarin provides the most compre-
hensive built-in model for Diffie-Hellman exponentiation (representing exponenti-
ation as an associative-commutative function symbol), it does not allow exponen-
tiation operators within user-defined equations. Although we used ProVerif

for our models, several constraints persist in them. The current equational theo-
ries use a fixed generator, which restricts the number of possible exponentiations
- a limitation particularly problematic as certain attacks require more than three
exponentiation. Finally, our current analysis does not account for scenarios in-
volving corrupted Mix-Nets. Proper modeling of one or more compromised

Chapter 6. Conclusion 143

Mix-Nets would require incorporating additional exponentiations in the equa-
tional theory.

An additional research direction involves determining the minimal binding
properties required for the KEMs in the PQ-WireGuard and Hybrid-WireGuard
protocols to prevent re-encapsulation attacks. The Tamarin library proposed
in [CDM24] can automate the analysis of these necessary KEM properties. We
did not compare the results of our analysis with Rosenpass [VLZ+24], which
is an implementation of PQ-WireGuard generating a post-quantum shared se-
cret usable as a WireGuard pre-shared key. Specifically, existing analyses do
not permit direct evaluation of hybridization. Our framework’s application to
Rosenpass would allow rigorous protocol comparison and exact determination of
its hybridization guarantees.

Our current protocol models for WireGuard and PQ-WireGuard present sev-
eral limitations. Both WireGuard and PQ-WireGuard are stateful protocols: the
Initiator generates a timestamp and includes it in the InitHello message, and the
Responder only accepts the InitHello messages with strictly increasing times-
tamps, and stores and update them accordingly to prevent replay attacks. A
symbolic modeling and analysis for both protocols as stateful ones would be nec-
essary for comprehensive protocol analysis. Additionally, our models currently
exclude timestamp compromise scenarios. Incorporating both timestamp com-
promise and stateful protocol modeling would enable detection of state disruption
attacks [VLZ+24].

We identified an attack against WireGuard’s unlinkability. This attack re-
quires modeling the protocol with states to be detected automatically. Addi-
tionally, we aim to investigate the field of unlinkability by proposing alternative
formal definitions, as current definitions based on observational equivalence can-
not be tested directly with automated tools. An investigation in this direction
seems also promising.

We would also like to apply our methodology for searching for minimal offen-
sive and defensive models to other protocols and compare them. For example,
TLS appears to be a good candidate, and our approach could even build upon
existing TLS models. It would also be interesting to optimize our search algo-
rithms, which would streamline analysis and advance research in this direction.

Bibliography

[AAA+22] Gorjan Alagic, Gorjan Alagic, Daniel Apon, David Cooper, Quynh
Dang, Thinh Dang, John Kelsey, Jacob Lichtinger, Yi-Kai Liu,
Carl Miller, et al. Status report on the third round of the nist post-
quantum cryptography standardization process. US Department of
Commerce, National Institute of Standards and Technology, 2022.

[ABD+19] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lep-
oint, Vadim Lyubashevsky, John M Schanck, Peter Schwabe, Gre-
gor Seiler, and Damien Stehlé. Crystals-kyber algorithm specifica-
tions and supporting documentation. NIST PQC Round, 2(4):1–43,
2019.

[ABF17] Martín Abadi, Bruno Blanchet, and Cédric Fournet. The Applied
Pi Calculus: Mobile Values, New Names, and Secure Communica-
tion. Journal of the ACM (JACM), 65(1):1 – 103, October 2017.

[Adi08] Ben Adida. Helios: web-based open-audit voting. In Proceedings of
the 17th Conference on Security Symposium, SS’08, page 335–348,
USA, 2008. USENIX Association.

[AKTZ17] Nikolaos Alexopoulos, Aggelos Kiayias, Riivo Talviste, and Thomas
Zacharias. MCMix: Anonymous messaging via secure multiparty
computation. In 26th USENIX Security Symposium (USENIX
Security 17), pages 1217–1234, Vancouver, BC, August 2017.
USENIX Association.

[AMAD+24] Carlos Aguilar-Melchor, Nicolas Aragon, Jean-Christophe
Deneuville, Philippe Gaborit, Jérôme Lacan, and Gilles Zémor.
Efficient error-correcting codes for the HQC post-quantum cryp-
tosystem. Designs, Codes and Cryptography, 92(12):4511–4530,
October 2024.

[AMW19] Jacob Appelbaum, Chloe Martindale, and Peter Wu. Tiny Wire-
Guard tweak. In Johannes Buchmann, Abderrahmane Nitaj, and

145

Bibliography 146

Tajje eddine Rachidi, editors, AFRICACRYPT 19: 11th Interna-
tional Conference on Cryptology in Africa, volume 11627 of Lecture
Notes in Computer Science, pages 3–20, Rabat, Morocco, July 9–
11, 2019. Springer, Cham, Switzerland.

[ANJ+24] Prashant Agrawal, Abhinav Nakarmi, Mahabir Prasad Jhanwar,
Subodh Sharma, and Subhashis Banerjee. Traceable mixnets.
Proceedings on Privacy Enhancing Technologies, 2024(2):235–275,
April 2024.

[ANS22] ANSSI. ANSSI views on the Post-Quantum Cryptography tran-
sition, 2022. https://cyber.gouv.fr/en/publications/anssi-

views-post-quantum-cryptography-transition.

[ANWW13] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn,
and Christian Winnerlein. BLAKE2: Simpler, smaller, fast as
MD5. In Michael J. Jacobson, Jr., Michael E. Locasto, Payman
Mohassel, and Reihaneh Safavi-Naini, editors, ACNS 13: 11th In-
ternational Conference on Applied Cryptography and Network Se-
curity, volume 7954 of Lecture Notes in Computer Science, pages
119–135, Banff, AB, Canada, June 25–28, 2013. Springer Berlin
Heidelberg, Germany.

[AW07] Ben Adida and Douglas Wikström. Offline/online mixing. Cryp-
tology ePrint Archive, Paper 2007/143, 2007.

[BAN90] Michael Burrows, Martin Abadi, and Roger Needham. A logic of
authentication. ACM Trans. Comput. Syst., 8(1):18–36, February
1990.

[BBD+20] Andrea Basso, Jose Maria Bermudo, Jan-Pieter D’Anvers, Ang-
shuman Karmakar, Sujoy Sinha Roy, Michiel Van Beirendonck,
and Frederik Vercauteren. Saber: Mod-lwr based kem. Round-3
submission to the NIST PQC project„ 2020. https://www.esat.

kuleuven.be/cosic/pqcrypto/saber/resources.html.

[BBK17] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi.
Verified models and reference implementations for the TLS 1.3
standard candidate. In IEEE Symposium on Security and Pri-
vacy (S&P’17), pages 483–503, San Jose, CA, May 2017. IEEE.
Distinguished paper award.

[BBMP24] Sevdenur Baloglu, Sergiu Bursuc, Sjouke Mauw, and Jun Pang.
Formal verification and solutions for estonian e-voting. In Proceed-
ings of the 19th ACM Asia Conference on Computer and Commu-

https://cyber.gouv.fr/en/publications/anssi-views-post-quantum-cryptography-transition
https://cyber.gouv.fr/en/publications/anssi-views-post-quantum-cryptography-transition
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/resources.html
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/resources.html

Bibliography 147

nications Security, ASIA CCS ’24, page 728–741, New York, NY,
USA, 2024. Association for Computing Machinery.

[BBU13] Michael Backes, Fabian Bendun, and Dominique Unruh. Compu-
tational soundness of symbolic zero-knowledge proofs: Weaker as-
sumptions and mechanized verification. In David Basin and John C.
Mitchell, editors, Principles of Security and Trust, pages 206–225,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[BC14] David Basin and Cas Cremers. Know your enemy: Compromising
adversaries in protocol analysis. ACM Trans. Inf. Syst. Secur.,
17(2), November 2014.

[BCDS17] David Basin, Cas Cremers, Jannik Dreier, and Ralf Sasse. Symbol-
ically analyzing security protocols using Tamarin. ACM SIGLOG
News, 4(4):19–30, November 2017.

[BCG+18] David Bernhard, Véronique Cortier, Pierrick Gaudry, Mathieu Tu-
ruani, and Bogdan Warinschi. Verifiability analysis of CHVote.
Cryptology ePrint Archive, Paper 2018/1052, 2018.

[BCW22] Karthikeyan Bhargavan, Vincent Cheval, and Christopher Wood.
A Symbolic Analysis of Privacy for TLS 1.3 with Encrypted Client
Hello. In CCS ’22: 2022 ACM SIGSAC Conference on Computer
and Communications Security, pages 365–379, Los Angeles CA,
United States, November 2022. ACM.

[BDD23] David Baelde, Alexandre Debant, and Stéphanie Delaune. Prov-
ing Unlinkability Using ProVerif Through Desynchronised Bi-
Processes. In 2023 IEEE 36th Computer Security Foundations
Symposium (CSF), pages 75–90, 2023.

[BDM20] David Baelde, Stéphanie Delaune, and Solène Moreau. A Method
for Proving Unlinkability of Stateful Protocols. In 33rd IEEE
Computer Security Foundations Symposium, 33rd IEEE Computer
Security Foundations Symposium, CSF 2020, Boston, MA, USA,
June 22-26, 2020, Boston, United States, June 2020.

[BDP15] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, and Alfredo
Pironti. Verified contributive channel bindings for compound au-
thentication. In ISOC Network and Distributed System Security
Symposium – NDSS 2015, San Diego, CA, USA, February 8–11,
2015. The Internet Society.

Bibliography 148

[BDPR98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rog-
away. Relations among notions of security for public-key encryp-
tion schemes. In Hugo Krawczyk, editor, Advances in Cryptology
– CRYPTO’98, volume 1462 of Lecture Notes in Computer Sci-
ence, pages 26–45, Santa Barbara, CA, USA, August 23–27, 1998.
Springer Berlin Heidelberg, Germany.

[Bel20] Formal analysis of the belenios vs protocol. https://members.

loria.fr/AFilipiak/formal-analysis-of-the-belenios-vs-

protocol/formal-analysis-of-the-belenios-vs-protocol-

vote-confidentiality/formal-analysis-of-the-belenios-

vs-protocol-vote-confidentiality-compromised-voting-

server-authentication-credentials-and-voting-device/,
2020.

[Ber06] Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed
records. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal
Malkin, editors, PKC 2006: 9th International Conference on The-
ory and Practice of Public Key Cryptography, volume 3958 of Lec-
ture Notes in Computer Science, pages 207–228, New York, NY,
USA, April 24–26, 2006. Springer Berlin Heidelberg, Germany.

[BG12] Stephanie Bayer and Jens Groth. Efficient zero-knowledge argu-
ment for correctness of a shuffle. In David Pointcheval and Thomas
Johansson, editors, Advances in Cryptology – EUROCRYPT 2012,
pages 263–280, Berlin, Heidelberg, 2012. Springer Berlin Heidel-
berg.

[BG19] Colin Boyd and Kai Gellert. A modern view on forward security.
Cryptology ePrint Archive, Paper 2019/1362, 2019.

[BGZBH11] Gilles Barthe, Benjamin Grégoire, Santiago Zanella-Béguelin, and
Sylvain Heraud. Computer-Aided Security Proofs for the Working
Cryptographer. In Advances in Cryptology - {CRYPTO} 2011 -
31st Annual Cryptology Conference, Santa Barbara, United States,
2011.

[BHM20] Xavier Boyen, Thomas Haines, and Johannes Mueller. A verifi-
able and practical lattice-based decryption mix net with external
auditing. Cryptology ePrint Archive, Paper 2020/115, 2020.

[BJKS24] Karthikeyan Bhargavan, Charlie Jacomme, Franziskus Kiefer, and
Rolfe Schmidt. Formal verification of the PQXDH post-quantum
key agreement protocol for end-to-end secure messaging. In Davide

https://members.loria.fr/AFilipiak/formal-analysis-of-the-belenios-vs-protocol/formal-analysis-of-the-belenios-vs-protocol-vote-confidentiality/formal-analysis-of-the-belenios-vs-protocol-vote-confidentiality-compromised-voting-server-authentication-credentials-and-voting-device/
https://members.loria.fr/AFilipiak/formal-analysis-of-the-belenios-vs-protocol/formal-analysis-of-the-belenios-vs-protocol-vote-confidentiality/formal-analysis-of-the-belenios-vs-protocol-vote-confidentiality-compromised-voting-server-authentication-credentials-and-voting-device/
https://members.loria.fr/AFilipiak/formal-analysis-of-the-belenios-vs-protocol/formal-analysis-of-the-belenios-vs-protocol-vote-confidentiality/formal-analysis-of-the-belenios-vs-protocol-vote-confidentiality-compromised-voting-server-authentication-credentials-and-voting-device/
https://members.loria.fr/AFilipiak/formal-analysis-of-the-belenios-vs-protocol/formal-analysis-of-the-belenios-vs-protocol-vote-confidentiality/formal-analysis-of-the-belenios-vs-protocol-vote-confidentiality-compromised-voting-server-authentication-credentials-and-voting-device/
https://members.loria.fr/AFilipiak/formal-analysis-of-the-belenios-vs-protocol/formal-analysis-of-the-belenios-vs-protocol-vote-confidentiality/formal-analysis-of-the-belenios-vs-protocol-vote-confidentiality-compromised-voting-server-authentication-credentials-and-voting-device/
https://members.loria.fr/AFilipiak/formal-analysis-of-the-belenios-vs-protocol/formal-analysis-of-the-belenios-vs-protocol-vote-confidentiality/formal-analysis-of-the-belenios-vs-protocol-vote-confidentiality-compromised-voting-server-authentication-credentials-and-voting-device/

Bibliography 149

Balzarotti and Wenyuan Xu, editors, USENIX Security 2024: 33rd
USENIX Security Symposium, Philadelphia, PA, USA, August 14–
16, 2024. USENIX Association.

[Bla09] Bruno Blanchet. A computationally sound mechanized prover
for security protocols. Dependable and Secure Computing, IEEE
Transactions on, 5:193 – 207, 01 2009.

[Bla14] Bruno Blanchet. Automatic Verification of Security Protocols in
the Symbolic Model: The Verifier ProVerif. In Alessandro Aldini,
Javier Lopez, and Fabio Martinelli, editors, Foundations of Se-
curity Analysis and Design VII, volume 8604 of Lecture Notes in
Computer Science, pages 54–87. Springer, 2014.

[Ble98] Daniel Bleichenbacher. Chosen ciphertext attacks against proto-
cols based on the RSA encryption standard PKCS #1. In Hugo
Krawczyk, editor, Advances in Cryptology – CRYPTO’98, volume
1462 of Lecture Notes in Computer Science, pages 1–12, Santa Bar-
bara, CA, USA, August 23–27, 1998. Springer Berlin Heidelberg,
Germany.

[BN05] Sébastien Briais and Uwe Nestmann. A formal semantics for proto-
col narrations. In Rocco De Nicola and Davide Sangiorgi, editors,
Trustworthy Global Computing, pages 163–181, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg.

[BPW12] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not
to prove yourself: Pitfalls of the fiat-shamir heuristic and applica-
tions to helios. pages 626–643, 12 2012.

[BS16] Bruno Blanchet and Ben Smyth. Automated reasoning for equiva-
lences in the applied pi calculus with barriers. In 2016 IEEE 29th
Computer Security Foundations Symposium (CSF), pages 310–324,
2016.

[CCD23a] Vincent Cheval, Véronique Cortier, and Alexandre Debant. Elec-
tion Verifiability with ProVerif. In CSF 2023 - 36th IEEE Computer
Security Foundations Symposium, Dubrovnik, Croatia, July 2023.

[CCD+23b] Vincent Cheval, Cas Cremers, Alexander Dax, Lucca Hirschi, Char-
lie Jacomme, and Steve Kremer. Hash gone bad: Automated dis-
covery of protocol attacks that exploit hash function weaknesses.
In Joseph A. Calandrino and Carmela Troncoso, editors, 32nd
USENIX Security Symposium, USENIX Security 2023, Anaheim,

Bibliography 150

CA, USA, August 9-11, 2023, pages 5899–5916. USENIX Associa-
tion, 2023.

[CCK22] Vincent Cheval, Raphaëlle Crubillé, and Steve Kremer. Symbolic
protocol verification with dice: process equivalences in the presence
of probabilities. In 2022 IEEE 35th Computer Security Foundations
Symposium (CSF), pages 319–334, 2022.

[CD09] Véronique Cortier and Stéphanie Delaune. A method for proving
observational equivalence. In 2009 22nd IEEE Computer Security
Foundations Symposium, pages 266–276, 2009.

[CDJZ23a] Cas Cremers, Alexander Dax, Charlie Jacomme, and Mang Zhao.
Automated Analysis of Protocols that use Authenticated Encryp-
tion: Analysing the Impact of the Subtle Differences between
AEADs on Protocol Security. In USENIX Security 2023, Anaheim,
United States, August 2023. USENIX.

[CDJZ23b] Cas Cremers, Alexander Dax, Charlie Jacomme, and Mang Zhao.
Automated analysis of protocols that use authenticated encryp-
tion: How subtle AEAD differences can impact protocol security. In
Joseph A. Calandrino and Carmela Troncoso, editors, USENIX Se-
curity 2023: 32nd USENIX Security Symposium, pages 5935–5952,
Anaheim, CA, USA, August 9–11, 2023. USENIX Association.

[CDM24] Cas Cremers, Alexander Dax, and Niklas Medinger. Keeping up
with the kems: Stronger security notions for kems and automated
analysis of kem-based protocols. In Proceedings of the 2024 on ACM
SIGSAC Conference on Computer and Communications Security,
CCS ’24, page 1046–1060, New York, NY, USA, 2024. Association
for Computing Machinery.

[CGG22] Véronique Cortier, Pierrick Gaudry, and Stéphane Glondu. Fea-
tures and usage of Belenios in 2022. In The International Con-
ference for Electronic Voting (E-Vote-ID 2022), Bregenz / Hybrid,
Austria, October 2022.

[CGT17] Véronique Cortier, David Galindo, and Mathieu Turuani. A formal
analysis of the Neuchâtel e-voting protocol. Research report, Inria
Nancy - Grand Est, October 2017.

[Cha81] David L. Chaum. Untraceable electronic mail, return addresses,
and digital pseudonyms. Commun. ACM, 24(2):84–90, feb 1981.

Bibliography 151

[CHSW22] Sofía Celi, Jonathan Hoyland, Douglas Stebila, and Thom Wiggers.
A tale of two models: Formal verification of KEMTLS via Tamarin.
In Vijayalakshmi Atluri, Roberto Di Pietro, Christian Damsgaard
Jensen, and Weizhi Meng, editors, ESORICS 2022: 27th European
Symposium on Research in Computer Security, Part III, volume
13556 of Lecture Notes in Computer Science, pages 63–83, Copen-
hagen, Denmark, September 26–30, 2022. Springer, Cham, Switzer-
land.

[CJ19a] Cas Cremers and Dennis Jackson. Prime, Order Please! Revisit-
ing Small Subgroup and Invalid Curve Attacks on Protocols using
Diffie-Hellman . In 2019 IEEE 32nd Computer Security Founda-
tions Symposium (CSF), pages 78–7815, Los Alamitos, CA, USA,
June 2019. IEEE Computer Society.

[CJ19b] Cas Cremers and Dennis Jackson. Prime, order please! revisit-
ing small subgroup and invalid curve attacks on protocols using
diffie-hellman. In 2019 IEEE 32nd Computer Security Foundations
Symposium (CSF), pages 78–7815, 2019.

[CJKK22] Vincent Cheval, Charlie Jacomme, Steve Kremer, and Robert Kün-
nemann. SAPIC+: protocol verifiers of the world, unite! In Kevin
R. B. Butler and Kurt Thomas, editors, USENIX Security 2022:
31st USENIX Security Symposium, pages 3935–3952, Boston, MA,
USA, August 10–12, 2022. USENIX Association.

[CKR18] Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. The
DEEPSEC prover. In Hana Chockler and Georg Weissenbacher,
editors, Computer Aided Verification - 30th International Confer-
ence, CAV 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II,
volume 10982 of Lecture Notes in Computer Science, pages 28–36.
Springer, 2018.

[CKR24] Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. Deepsec:
Deciding equivalence properties for security protocols – improved
theory and practice. TheoretiCS, Volume 3, March 2024.

[CKW09] Véronique Cortier, Steve Kremer, and Bogdan Warinschi. A Survey
of Symbolic Methods in Computational Analysis of Cryptographic
Systems. Research Report RR-6912, INRIA, 2009.

[CMR23] Vincent Cheval, José Moreira, and Mark Ryan. Automatic verifica-
tion of transparency protocols. In 8th IEEE European Symposium

Bibliography 152

on Security and Privacy, EuroS&P 2023, Delft, Netherlands, July
3-7, 2023. IEEE, 2023.

[CPS19] Eric Crockett, Christian Paquin, and Douglas Stebila. Prototyping
post-quantum and hybrid key exchange and authentication in TLS
and SSH. Cryptology ePrint Archive, Report 2019/858, 2019.

[CRST15a] Chris Culnane, Peter Y. A. Ryan, Steve Schneider, and Vanessa
Teague. vvote: A verifiable voting system. ACM Trans. Inf. Syst.
Secur., 18(1), June 2015.

[CRST15b] Chris Culnane, Peter Y. A. Ryan, Steve Schneider, and Vanessa
Teague. Vvote: A verifiable voting system. ACM Trans. Inf. Syst.
Secur., 18(1), jun 2015.

[CS11] Véronique Cortier and Ben Smyth. Attacking and fixing helios: An
analysis of ballot secrecy. Journal of Computer Security, 21:297–
311, 06 2011.

[CT07] Liqun Chen and Qiang Tang. Bilateral unknown key-share at-
tacks in key agreement protocols. IACR Cryptology ePrint Archive,
2007:209, 01 2007.

[Dav82] G. Davida. Chosen signature cryptanalysis of the RSA (MIT) pub-
lic key cryptosystem. TR-CS-82-2, Dept. of Electrical Engineering
and Computer Science, Univ. of Wisconsin, Milwaukee, Wisconsin,
1982.

[DGK+14] Jannik Dreier, Rosario Giustolisi, Ali Kassem, Pascal Lafourcade,
Gabriele Lenzini, and Peter Y. A. Ryan. Formal analysis of elec-
tronic exams. In 2014 11th International Conference on Security
and Cryptography (SECRYPT), pages 1–12, 2014.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptog-
raphy. IEEE Transactions on Information Theory, 22(6):644–654,
1976.

[DJL14] Jannik Dreier, Hugo Jonker, and Pascal Lafourcade. Secure Auc-
tions Without Cryptography (extended version). Technical report,
ETH Zurich, April 2014.

[DKR06] S. Delaune, S. Kremer, and M. Ryan. Coercion-resistance and
receipt-freeness in electronic voting. In 19th IEEE Computer Se-
curity Foundations Workshop (CSFW’06), pages 12 pp.–42, 2006.

Bibliography 153

[DKR09] Stéphanie Delaune, Steve Kremer, and Mark Ryan. Verifying
privacy-type properties of electronic voting protocols. J. Comput.
Secur., 17(4):435–487, dec 2009.

[DLM24] Jannik Dreier, Pascal Lafourcade, and Dhekra Mahmoud. Shaken,
not stirred - automated discovery of subtle attacks on protocols
using Mix-Nets. In 33rd USENIX Security Symposium (USENIX
Security 24), pages 3135–3150, Philadelphia, PA, August 2024.
USENIX Association.

[DLMS99] Nancy A. Durgin, Patrick Lincoln, John C. Mitchell, and Andre
Scedrov. Undecidability of bounded security protocols. 1999.

[DM17] Jason A Donenfeld and Kevin Milner. Formal verification of the
WireGuard protocol. Technical Report, Tech. Rep., 2017.

[DM18] Jason A. Donenfeld and Kevin Milner. Formal verification of
the wireguard protocol. https://www.wireguard.com/papers/

wireguard-formal-verification.pdf, 2018.

[DMWG23] Quang Dao, Jim Miller, Opal Wright, and Paul Grubbs. Weak fiat-
shamir attacks on modern proof systems. In 44th IEEE Symposium
on Security and Privacy, SP 2023, San Francisco, CA, USA, May
21-25, 2023, pages 199–216. IEEE, 2023.

[Don17] Jason A. Donenfeld. WireGuard: Next generation kernel network
tunnel. In ISOC Network and Distributed System Security Sympo-
sium – NDSS 2017, San Diego, CA, USA, February 26 – March 1,
2017. The Internet Society.

[Don20] Jason A. Donenfeld. Technical whitepaper of wireguard. https:

//www.wireguard.com/papers/wireguard.pdf, 2020.

[Don23] Jason A. Donenfeld. Go implementation of wireguard. https:

//git.zx2c4.com/wireguard-go/about/, 2023.

[Don24] Jason A Donenfeld. WireGuard known limitations. https://www.
wireguard.com/known-limitations/, 2024.

[DP18] Benjamin Dowling and Kenneth G. Paterson. A cryptographic
analysis of the WireGuard protocol. In Bart Preneel and Fred-
erik Vercauteren, editors, ACNS 18: 16th International Conference
on Applied Cryptography and Network Security, volume 10892 of
Lecture Notes in Computer Science, pages 3–21, Leuven, Belgium,
July 2–4, 2018. Springer, Cham, Switzerland.

https://www.wireguard.com/papers/wireguard-formal-verification.pdf
https://www.wireguard.com/papers/wireguard-formal-verification.pdf
https://www.wireguard.com/papers/wireguard.pdf
https://www.wireguard.com/papers/wireguard.pdf
https://git.zx2c4.com/wireguard-go/about/
https://git.zx2c4.com/wireguard-go/about/
https://www.wireguard.com/known-limitations/
https://www.wireguard.com/known-limitations/

Bibliography 154

[Dre13] Jannik Dreier. Formal Verification of Voting and Auction Protocols
: From Privacy to Fairness and Verifiability. PhD thesis, 2013.
Thèse de doctorat dirigée par Lakhnech, Yassine et Lafourcade,
Pascal Informatique Grenoble 2013.

[DRS20] Benjamin Dowling, Paul Rösler, and Jörg Schwenk. Flexible au-
thenticated and confidential channel establishment (fACCE): An-
alyzing the noise protocol framework. In Aggelos Kiayias, Markulf
Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020:
23rd International Conference on Theory and Practice of Public
Key Cryptography, Part I, volume 12110 of Lecture Notes in Com-
puter Science, pages 341–373, Edinburgh, UK, May 4–7, 2020.
Springer, Cham, Switzerland.

[DY83] D. Dolev and A. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[ElG84] Taher ElGamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. In G. R. Blakley and David Chaum,
editors, Advances in Cryptology – CRYPTO’84, volume 196 of Lec-
ture Notes in Computer Science, pages 10–18, Santa Barbara, CA,
USA, August 19–23, 1984. Springer Berlin Heidelberg, Germany.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE Transactions on Information
Theory, 31(4):469–472, 1985.

[Eur20] European Telecommunications Standards Institute (ETSI). ETSI
TS 103 744 V1.1.1 (2020-12): Quantum-safe Hybrid Key
Exchanges, 2020. https://www.etsi.org/deliver/etsi_ts/

103700_103799/103744/01.01.01_60/ts_103744v010101p.pdf.

[Fed21] Federal Office for Information Security (BSI). Quantum Tech-
nologies and Quantum-Safe Cryptography, 2021. https://www.

bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/

Informationen-und-Empfehlungen/Quantentechnologien-und-

Post-Quanten-Kryptografie/quantentechnologien-und-post-

quanten-kryptografie_node.html.

[FK11] Sheila Frankel and Suresh Krishnan. IP Security (IPsec) and In-
ternet Key Exchange (IKE) Document Roadmap. RFC 6071, RFC
Editor, February 2011.

[FMJ24] Markus Friedl, Jan Mojzis, and Simon Josefsson. Secure Shell
(SSH) Key Exchange Method Using Hybrid Streamlined NTRU

https://www.etsi.org/deliver/etsi_ts/103700_103799/103744/01.01.01_60/ts_103744v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/103700_103799/103744/01.01.01_60/ts_103744v010101p.pdf
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Quantentechnologien-und -Post-Quanten-Kryptografie/quantentechnologien- und-post-quanten-kryptografie_node.html
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Quantentechnologien-und -Post-Quanten-Kryptografie/quantentechnologien- und-post-quanten-kryptografie_node.html
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Quantentechnologien-und -Post-Quanten-Kryptografie/quantentechnologien- und-post-quanten-kryptografie_node.html
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Quantentechnologien-und -Post-Quanten-Kryptografie/quantentechnologien- und-post-quanten-kryptografie_node.html
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Quantentechnologien-und -Post-Quanten-Kryptografie/quantentechnologien- und-post-quanten-kryptografie_node.html

Bibliography 155

Prime sntrup761 and X25519 with SHA-512: sntrup761x25519-
sha512. Internet-Draft draft-josefsson-ntruprime-ssh-03, IETF Sec-
retariat, August 2024.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical so-
lutions to identification and signature problems. In Proceedings
on Advances in Cryptology—CRYPTO ’86, page 186–194, Berlin,
Heidelberg, 1987. Springer-Verlag.

[FSXY12] Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki
Yoneyama. Strongly secure authenticated key exchange from fac-
toring, codes, and lattices. In Marc Fischlin, Johannes Buchmann,
and Mark Manulis, editors, Public Key Cryptography – PKC 2012,
pages 467–484, Berlin, Heidelberg, 2012. Springer Berlin Heidel-
berg.

[GGCG+21] Stefan-Lukas Gazdag, Sophia Grundner-Culemann, Tobias Gugge-
mos, Tobias Heider, and Daniel Loebenberger. A formal analysis
of ikev2’s post-quantum extension. In Proceedings of the 37th An-
nual Computer Security Applications Conference, ACSAC ’21, page
91–105, New York, NY, USA, 2021. Association for Computing Ma-
chinery.

[GHS+20] Guillaume Girol, Lucca Hirschi, Ralf Sasse, Dennis Jackson, Cas
Cremers, and David Basin. A Spectral Analysis of Noise: A Com-
prehensive, Automated, Formal Analysis of Diffie-Hellman Proto-
cols. In USENIX 2020 - 29th Usenix Security Symposium, Virtual,
United States, August 2020.

[GJJS04] Philippe Golle, Markus Jakobsson, Ari Juels, and Paul Syverson.
Universal re-encryption for mixnets. In Tatsuaki Okamoto, edi-
tor, Topics in Cryptology – CT-RSA 2004, pages 163–178, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[Gjø12] Kristian Gjøsteen. The norwegian internet voting protocol. In
Aggelos Kiayias and Helger Lipmaa, editors, E-Voting and Identity,
pages 1–18, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[GLR14] Rosario Giustolisi, Gabriele Lenzini, and Peter Y. A. Ryan. Re-
mark!: A secure protocol for remote exams. In Security Protocols
Workshop, 2014.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Jour-
nal of Computer and System Sciences, 28(2):270–299, 1984.

Bibliography 156

[GMP21] Paul Grubbs, Varun Maram, and Kenneth G. Paterson. Anony-
mous, robust post-quantum public key encryption. Cryptology
ePrint Archive, Paper 2021/708, 2021.

[Gol96] D. Gollmann. What do we mean by entity authentication? In
Proceedings of the 1996 IEEE Symposium on Security and Privacy,
SP ’96, page 46, USA, 1996. IEEE Computer Society.

[HBD17] Lucca Hirschi, David Baelde, and Stéphanie Delaune. A method
for unbounded verification of privacy-type properties. CoRR,
abs/1710.02049, 2017.

[HGS21] Thomas Haines, Rajeev Goré, and Bhavesh Sharma. Did you mix
me? formally verifying verifiable mix nets in electronic voting. In
42nd IEEE Symposium on Security and Privacy, SP 2021, San
Francisco, CA, USA, 24-27 May 2021, pages 1748–1765. IEEE,
2021.

[HKL23] Rolf Haenni, Reto Koenig, and Philipp Locher. Private internet
voting on untrusted voting devices. In 7th Workshop on Advances
in Secure Electronic Voting. 2023.

[HKLD17] Rolf Haenni, Reto E. Koenig, Philipp Locher, and Eric Dubuis.
CHVote protocol specification. Cryptology ePrint Archive, Paper
2017/325, 2017.

[HM20] Ross Horne and Sjouke Mauw. Discovering epassport vulnerabili-
ties using bisimilarity. Logical Methods in Computer Science, Vol-
ume 17, Issue 2, 02 2020.

[HMA02] Specifications for the keyed-hash message authentication code. Na-
tional Institute of Standards and Technology (NIST), FIPS PUB
198, U.S. Department of Commerce, March 2002.

[HMLP25] Ayoub Ben Hassen, Dhekra Mahmoud, Pascal Lafourcade, and
Maxime Puys. Formal Analysis of SDNsec: Attacks and Correc-
tions for Payload, Route Integrity and Accountability. In ASIA
CCS ’24: Proceedings of the 20th ACM Asia Conference on Com-
puter and Communications Security, Hanoi, Vietnam, August 2025.

[HNS+20] Andreas Hülsing, Kai-Chun Ning, Peter Schwabe, Fiona Jo-
hanna Weber, and Philip R. Zimmermann. Post-quantum
wireguard. https://github.com/KPN-CISO/pq-wg-theory/blob/
master/pq_wireguard.spthy, 2020. Accessed: 2025-04-6.

https://github.com/KPN-CISO/pq-wg-theory/blob/master/pq_wireguard.spthy
https://github.com/KPN-CISO/pq-wg-theory/blob/master/pq_wireguard.spthy

Bibliography 157

[HNS+21] Andreas Hülsing, Kai-Chun Ning, Peter Schwabe, Fiona Johanna
Weber, and Philip R. Zimmermann. Post-quantum WireGuard.
In 2021 IEEE Symposium on Security and Privacy, pages 304–
321, San Francisco, CA, USA, May 24–27, 2021. IEEE Computer
Society Press.

[HS11] Rolf Haenni and Oliver Spycher. Secure internet voting on lim-
ited devices with anonymized DSA public keys. In 2011 Electronic
Voting Technology Workshop/Workshop on Trustworthy Elections
(EVT/WOTE 11), San Francisco, CA, August 2011. USENIX As-
sociation.

[ISO09] Common criteria for information technology security evaluation -
part 2: Security functional components. Standard, International
Organization for Standardization, July 2009.

[IVX23] Specification of IVXV estonian voting protocols, 2023.
https://www.valimised.ee/sites/default/files/2023-

02/IVXV-protocols.pdf.

[Jak98] Markus Jakobsson. A practical mix. In International Conference
on the Theory and Application of Cryptographic Techniques, 1998.

[JCCS19] Dennis Jackson, Cas Cremers, Katriel Cohn-Gordon, and Ralf
Sasse. Seems legit: Automated analysis of subtle attacks on proto-
cols that use signatures. In Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz, editors, Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2019, London, UK, November 11-15, 2019,
pages 2165–2180. ACM, 2019.

[JJ01] Markus Jakobsson and Ari Juels. An optimally robust hybrid mix
network. pages 284–292, 08 2001.

[JKKR23] Charlie Jacomme, Elise Klein, Steve Kremer, and Maïwenn Racou-
chot. A comprehensive, formal and automated analysis of the ED-
HOC protocol. In Joseph A. Calandrino and Carmela Troncoso,
editors, USENIX Security 2023: 32nd USENIX Security Sympo-
sium, pages 5881–5898, Anaheim, CA, USA, August 9–11, 2023.
USENIX Association.

[KBB17] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. Au-
tomated verification for secure messaging protocols and their im-
plementations: A symbolic and computational approach. In 2017

https://www.valimised.ee/sites/default/files/2023-02/IVXV-protocols.pdf
https://www.valimised.ee/sites/default/files/2023-02/IVXV-protocols.pdf

Bibliography 158

IEEE European Symposium on Security and Privacy, pages 435–
450, Paris, France, April 26–28, 2017. IEEE Computer Society
Press.

[KHNE10] C. Kaufman, P. Hoffman, Y. Nir, and P. Eronen. Internet Key
Exchange Protocol Version 2 (IKEv2). RFC 5996, RFC Editor,
September 2010.

[KMST16] Ralf Kuesters, Johannes Mueller, Enrico Scapin, and Tomasz
Truderung. sElect: A lightweight verifiable remote voting system.
Cryptology ePrint Archive, Paper 2016/438, 2016.

[KMW12] Shahram Khazaei, Tal Moran, and Douglas Wikström. A mix-net
from any cca2 secure cryptosystem. In Xiaoyun Wang and Kazue
Sako, editors, Advances in Cryptology – ASIACRYPT 2012, pages
607–625, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[KNB18] Nadim Kobeissi, Georgio Nicolas, and Karthikeyan Bhargavan.
Noise explorer: Fully automated modeling and verification for arbi-
trary noise protocols. Cryptology ePrint Archive, Paper 2018/766,
2018.

[KNB19] Nadim Kobeissi, Georgio Nicolas, and Karthikeyan Bhargavan.
Noise explorer: Fully automated modeling and verification for ar-
bitrary noise protocols. In IEEE European Symposium on Secu-
rity and Privacy, EuroS&P 2019, Stockholm, Sweden, June 17-19,
2019, pages 356–370. IEEE, 2019.

[KNW03] Deepak Kapur, Paliath Narendran, and Lida Wang. An e-
unification algorithm for analyzing protocols that use modular ex-
ponentiation. In Robert Nieuwenhuis, editor, Rewriting Techniques
and Applications, pages 165–179, Berlin, Heidelberg, 2003. Springer
Berlin Heidelberg.

[Kra05] Hugo Krawczyk. Hmqv: A high-performance secure diffie-hellman
protocol. In Victor Shoup, editor, Advances in Cryptology –
CRYPTO 2005, pages 546–566, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg.

[Kra10] Hugo Krawczyk. Cryptographic extraction and key derivation:
The HKDF scheme. In Tal Rabin, editor, Advances in Cryptol-
ogy – CRYPTO 2010, volume 6223 of Lecture Notes in Computer
Science, pages 631–648, Santa Barbara, CA, USA, August 15–19,
2010. Springer Berlin Heidelberg, Germany.

Bibliography 159

[KS23] Ehren Kret and Rolfe Schmidt. The PQXDH key agreement pro-
tocol, 2023.

[KSH24] Panos Kampanakis, Douglas Stebila, and Torben Hansen. PQ/T
Hybrid Key Exchange in SSH. Internet-Draft draft-kampanakis-
curdle-ssh-pq-ke-03, IETF Secretariat, August 2024.

[KTV14] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Formal anal-
ysis of chaumian mix nets with randomized partial checking. In
2014 IEEE Symposium on Security and Privacy, pages 343–358,
2014.

[LBB19] Benjamin Lipp, Bruno Blanchet, and Karthikeyan Bhargavan. A
Mechanised Cryptographic Proof of the WireGuard Virtual Private
Network Protocol. In 2019 IEEE European Symposium on Security
and Privacy (EuroS P), pages 231–246, 2019.

[LHT16] Adam Langley, Mike Hamburg, and Sean Turner. Elliptic Curves
for Security. RFC 7748, RFC Editor, January 2016.

[lib] liboqs. https://github.com/open-quantum-safe/liboqs.

[Lin20] Linux 5.6. https://kernelnewbies.org/Linux_5.6, 2020.

[LMMOA24] Pascal Lafourcade, Dhekra Mahmoud, Gael Marcadet, and Charles
Olivier-Anclin. Transferable, Auditable and Anonymous Ticketing
Protocol. In 2024 Asia Conference on Information, Computer and
Communications Security, Singapore, Singapore, July 2024.

[LMR24] Pascal Lafourcade, Dhekra Mahmoud, and Sylvain Ruhault. A
Unified Symbolic Analysis of WireGuard. In Usenix Network and
Distributed System Security Symposium, San Diego (CA), United
States, February 2024.

[LMRT25] Pascal Lafourcade, Dhekra Mahmoud, Sylvain Ruhault,
and Abdulrahman Taleb. Sapic files for pq-wireguard and
hybrid-wireguard. https://osf.io/rdy7c/?view_only=

8833688721584887b5d84698383bf0d7, 2025. Accessed: 2025-
04-11.

[LN15] Adam Langley and Yoav Nir. ChaCha20 and Poly1305 for IETF
Protocols. RFC 7539, RFC Editor, May 2015.

[Low95] Gavin Lowe. An attack on the needham-schroeder public-key au-
thentication protocol. Information Processing Letters, 56(3):131–
133, 1995.

https://github.com/open-quantum-safe/liboqs
https://kernelnewbies.org/Linux_5.6
https://osf.io/rdy7c/?view_only=8833688721584887b5d84698383bf0d7
https://osf.io/rdy7c/?view_only=8833688721584887b5d84698383bf0d7

Bibliography 160

[Low97] G. Lowe. A hierarchy of authentication specifications. In Proceed-
ings 10th Computer Security Foundations Workshop, pages 31–43,
1997.

[LSB24] Felix Linker, Ralf Sasse, and David Basin. A Formal Analysis of
Apple’s iMessage PQ3 Protocol. Cryptology ePrint Archive, 2024.

[Lud23] Justin Ludwig. Wireguard key on an openpgp card.
https://www.procustodibus.com/blog/2023/03/openpgpcard-

wireguard-guide/, 2023.

[Mil89] R. Milner. Communication and Concurrency. Ph/AMA Series in
Marketing. Prentice Hall, 1989.

[MLK24] Module-lattice-based key-encapsulation mechanism standard. Na-
tional Institute of Standards and Technology, NIST FIPS PUB 203,
U.S. Department of Commerce, August 2024.

[MLM24] Mounira Msahli, Pascal Lafourcade, and Dhekra Mahmoud. For-
mal Analysis of C-ITS PKI protocols. In SECRYPT 2024 : In-
ternational Conference on Information Security and Cryptography,
Dijon, France, July 2024.

[Möd12] Sebastian Mödersheim. Diffie-hellman without difficulty. In Gilles
Barthe, Anupam Datta, and Sandro Etalle, editors, Formal Aspects
of Security and Trust, pages 214–229, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[Mül22] Johannes Müller. Breaking and fixing vote privacy of the estonian
e-voting protocol ivxv. In Financial Cryptography Workshops, 2022.

[MW04] Daniele Micciancio and Bogdan Warinschi. Soundness of formal
encryption in the presence of active adversaries. In Moni Naor,
editor, Theory of Cryptography, pages 133–151, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

[Nat23] National Institute of Standards and Technology (NIST). NIST SP
1800-38: Migration to Post-Quantum Cryptography: Preparation
for Considering the Implementation and Adoption of Quantum Safe
Cryptography, 2023. https://csrc.nist.gov/pubs/sp/1800/38/
iprd-(1).

[Nor] NordVPN. NordLynx. https://nordvpn.com/blog/nordlynx-

protocol-wireguard/.

https://www.procustodibus.com/blog/2023/03/openpgpcard-wireguard-guide/
https://www.procustodibus.com/blog/2023/03/openpgpcard-wireguard-guide/
https://csrc.nist.gov/pubs/sp/1800/38/iprd-(1)
https://csrc.nist.gov/pubs/sp/1800/38/iprd-(1)
https://nordvpn.com/blog/nordlynx-protocol-wireguard/
https://nordvpn.com/blog/nordlynx-protocol-wireguard/

Bibliography 161

[NS78] Roger M. Needham and Michael D. Schroeder. Using encryption
for authentication in large networks of computers. Communications
of the Association for Computing Machinery, 21(21):993–999, De-
cember 1978.

[Ope01] OpenVPN. https://openvpn.net/, 2001.

[oSN25] National Institute of Standards and Technology NIST. Nist
selects hqc as fifth algorithm for post-quantum encryption.
https://www.nist.gov/news-events/news/2025/03/nist-

selects-hqc-fifth-algorithm-post-quantum-encryption,
2025. Accessed: 2025-04-3.

[Per18] Trevor Perrin. The Noise protocol framework. noiseprotocol, Pro-
tocol Revision, 34, 2018.

[Pfi94] Birgit Pfitzmann. Breaking efficient anonymous channel. In In-
ternational Conference on the Theory and Application of Crypto-
graphic Techniques, 1994.

[PIK93] Choonsik Park, Kazutomo Itoh, and Kaoru Kurosawa. Efficient
anonymous channel and all/nothing election scheme. In Advances
in Cryptology - EUROCRYPT ’93, Workshop on the Theory and
Application of of Cryptographic Techniques, Lofthus, Norway, May
23-27, 1993, Proceedings, volume 765 of Lecture Notes in Computer
Science, pages 248–259. Springer, 1993.

[Pos80] J. Postel. User Datagram Protocol. RFC 768, RFC Editor, August
1980.

[PP90] Birgit Pfitzmann and Andreas Pfitzmann. How to break the di-
rect RSA-implementation of mixes. In Jean-Jacques Quisquater
and Joos Vandewalle, editors, Advances in Cryptology – EURO-
CRYPT’89, volume 434 of Lecture Notes in Computer Science,
pages 373–381, Houthalen, Belgium, April 10–13, 1990. Springer
Berlin Heidelberg, Germany.

[PQ01] O. Pereira and J.-J. Quisquater. A security analysis of the cliques
protocols suites. In Proceedings. 14th IEEE Computer Security
Foundations Workshop, 2001., pages 73–81, 2001.

[pqs] pq-strongswan. https://github.com/strongX509/docker/tree/

master/pq-strongswan.

[PST20] Christian Paquin, Douglas Stebila, and Goutam Tamvada. Bench-
marking post-quantum cryptography in TLS. In Jintai Ding and

https://openvpn.net/
https://www.nist.gov/news-events/news/2025/03/nist-selects-hqc-fifth-algorithm-post-quantum-encryption
https://www.nist.gov/news-events/news/2025/03/nist-selects-hqc-fifth-algorithm-post-quantum-encryption
https://github.com/strongX509/docker/tree/master/pq-strongswan
https://github.com/strongX509/docker/tree/master/pq-strongswan

Bibliography 162

Jean-Pierre Tillich, editors, Post-Quantum Cryptography - 11th
International Conference, PQCrypto 2020, pages 72–91, Paris,
France, April 15–17, 2020. Springer, Cham, Switzerland.

[RA12] Pance Ribarski and Ljupcho Antovski. Mixnets: Implementation
and performance evaluation of decryption and re-encryption types.
Journal of Computing and Information Technology, 20:225–231, 09
2012.

[RGL22] Mohammadamin Rakeei, Rosario Giustolisi, and Gabriele Lenzini.
Secure internet exams despite coercion, 2022.

[Ros05] A. Roscoe. The Theory and Practice of Concurrency. 01 2005.

[RS11] Mark D. Ryan and Ben Smyth. Applied pi calculus. In Véronique
Cortier and Steve Kremer, editors, Formal Models and Techniques
for Analyzing Security Protocols, chapter 6. IOS Press, 2011.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A
method for obtaining digital signatures and public-key cryptosys-
tems. Communications of the Association for Computing Machin-
ery, 21(2):120–126, February 1978.

[Rya15] Peter Y. Ryan. Crypto santa. In LNCS Essays on The New Code-
breakers - Volume 9100, page 543–549, Berlin, Heidelberg, 2015.
Springer-Verlag.

[SA15] Markku-Juhani O. Saarinen and Jean-Philippe Aumasson. The
BLAKE2 Cryptographic Hash and Message Authentication Code
(MAC). RFC 7693, RFC Editor, November 2015.

[SD18] A Suter-Döring. Formalizing and verifying the secu-
rity protocols from the noise framework, bachelor the-
sis. https://ethz.ch/content/dam/ethz/special-

interest/infk/inst-infsec/information-security-group-

dam/research/software/noise_suter-doerig.pdf, 2018.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete
logarithms and factoring. In 35th Annual Symposium on Founda-
tions of Computer Science, pages 124–134, Santa Fe, NM, USA,
November 20–22, 1994. IEEE Computer Society Press.

[SKD20] Dimitrios Sikeridis, Panos Kampanakis, and Michael Devetsikiotis.
Post-quantum authentication in TLS 1.3: A performance study.
Cryptology ePrint Archive, Report 2020/071, 2020.

https://ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/information-security-group-dam/research/software/noise_suter-doerig.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/information-security-group-dam/research/software/noise_suter-doerig.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/information-security-group-dam/research/software/noise_suter-doerig.pdf

Bibliography 163

[SM16] Douglas Stebila and Michele Mosca. Post-quantum key exchange
for the internet and the open quantum safe project. In Roberto
Avanzi and Howard M. Heys, editors, SAC 2016: 23rd Annual
International Workshop on Selected Areas in Cryptography, vol-
ume 10532 of Lecture Notes in Computer Science, pages 14–37, St.
John’s, NL, Canada, August 10–12, 2016. Springer, Cham, Switzer-
land.

[SP07] Krishna Sampigethaya and Radha Poovendran. A survey on mix
networks and their secure applications. Proceedings of the IEEE,
94:2142 – 2181, 01 2007.

[SSH14] Efstathios Stathakidis, Steve Schneider, and James Heather. Ro-
bustness modelling and verification of a mix net protocol. pages
131–150, 12 2014.

[SSW20] Peter Schwabe, Douglas Stebila, and Thom Wiggers. Post-quantum
TLS without handshake signatures. In Jay Ligatti, Xinming Ou,
Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020:
27th Conference on Computer and Communications Security, pages
1461–1480, Virtual Event, USA, November 9–13, 2020. ACM Press.

[Ste24] Douglas Stebila. Security analysis of the iMessage PQ3 protocol.
Cryptology ePrint Archive, Paper 2024/357, 2024.

[Swi22] Symbolic analysis of the swiss post voting system.
https://gitlab.com/swisspost-evoting/e-voting/e-voting-

documentation/-/tree/master/Symbolic-models, 2022.

[TTB+23] CJ. Tjhai, M. Tomlinson, G. Bartlett, S. Fluhrer, D. Van Geest,
O. Garcia-Morchon, and V. Smyslov. Multiple Key Exchanges in
the Internet Key Exchange Protocol Version 2 (IKEv2). RFC 9370,
RFC Editor, May 2023.

[TW10] Björn Terelius and Douglas Wikström. Proofs of restricted shuffles.
In Daniel J. Bernstein and Tanja Lange, editors, Progress in Cryp-
tology – AFRICACRYPT 2010, pages 100–113, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

[VLZ+24] Karolin Varner, Benjamin Lipp, Wanja Zaeke, Lisa Schmidt,
and Prabhpreet Dua. Rosenpass. https://rosenpass.eu/

whitepaper.pdf, 2024.

[WG06] Douglas Wikström and Jens Groth. An adaptively secure mix-
net without erasures. In Michele Bugliesi, Bart Preneel, Vladimiro

https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/tree/master/Symbolic-models
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/tree/master/Symbolic-models
https://rosenpass.eu/whitepaper.pdf
https://rosenpass.eu/whitepaper.pdf

Bibliography 164

Sassone, and Ingo Wegener, editors, Automata, Languages and Pro-
gramming, pages 276–287, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

[Wik04a] Douglas Wikström. Five practical attacks for “optimistic mixing for
exit-polls”. In Mitsuru Matsui and Robert J. Zuccherato, editors,
Selected Areas in Cryptography, pages 160–174, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

[Wik04b] Douglas Wikström. A universally composable mix-net. In Moni
Naor, editor, Theory of Cryptography, pages 317–335, Berlin, Hei-
delberg, 2004. Springer Berlin Heidelberg.

[Wik05] Douglas Wikström. A sender verifiable mix-net and a new proof
of a shuffle. In Bimal Roy, editor, Advances in Cryptology - ASI-
ACRYPT 2005, pages 273–292, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg.

[WSF+03] Burkhart Wolff, Oliver S, Hannes Federrath, Stefan Kispsell,
and Andreas Pfitzmann. Towards a Formal Analysis of a
Mix Network. Technical report, Institut für Informatik Al-
bert–Ludwigs–Universität Freiburg, 2003.

Bibliography 165

	Introduction
	Background
	The Applied -Calculus
	Mathematical Background
	Cryptographic Primitives
	Public key Encryption
	Signatures Schemes.
	Authenticated Encryption with Associated Data.
	Key Encapsulation Mechanisms

	Conclusion

	Automated Discovery of Subtle Attacks on Protocols using Mix-Networks
	Introduction
	Our Contributions
	Related Work

	Overview of Known Attacks on Mix-Nets and Countermesures
	Decryption Mix-Nets
	Re-Encryption Mix-Nets
	Exponentiation Mix-Nets
	Countermesures

	Refined Modeling of Cryptographic Primitives
	Refined Model of ElGamal and DSA Signatures
	Refined Model of Zero-Knowledge Proofs

	Formal Model of Exponentiation and Re-Encryption Mix-Nets
	Formal Analysis of Exponentiation Mix-Nets
	Formal Analysis of Re-Encryption Mix-Nets

	Applications
	Remark! Protocol
	Crypto Santa Protocol
	Haenni's Internet Vote Protocol
	IVXV Internet Vote Protocol

	Conclusion

	Formal Analysis of the WireGuard Protocol
	Introduction
	Our Contributions
	Related Work

	The WireGuard Protocol
	Landscape of Prior Analysis of WireGuard
	Protocol Models used Previous Analyses
	Adversary Models
	Security Properties Defined in Previous Analyses

	Offensive, Defensive Models
	Symbolic Analysis of WireGuard with Sapic+
	Adversary Model, Security Formulas
	Agreement, Secrecy and Perfect Forward Secrecy
	Anonymity
	Performances
	Comparison with Previous Analyses

	Conclusion and Discussion

	Hybridization of Wireguard
	Introduction
	Our Contributions
	Related Work

	PQ-WireGuard
	Cryptographic Building Blocks
	The Handshake

	Formal Analysis and Claimed Properties
	Protocol Model
	Claimed Security Properties
	Results of the Analysis of PQ-WireGuard

	Hybrid-WireGuard: Protocol and Analysis
	Conclusion and Future Work

	Conclusion

