
Modélisation et conception de schémas de
signatures et de protocoles de paiements
anonymes

Thèse de doctorat de l’Université Clermont Auvergne
Spécialité: Informatique

École Doctorale Science Pour l’Ingénieur (SPI)
Laboratoire d’Informatique, de Modélisation et d’Optimisation des Systèmes (LIMOS)
CNRS, UMR 6158, LIMOS, Aubière, France

Thèse soutenu le 13 décembre 2024 par

Charles Olivier--Anclin

Composition du jury:

Olivier Blazy President du jury
Professeur des universités, Ecole Polytechnique
Sébastien Canard Rapporteur
Professeur des universités, Télécom Paris
Cristina Onete Rapporteuse
Maître de conférences HDR, XLIM, Université de Limoges
Katharina Boudgoust Examinatrice
Chargée de Recherche, CNRS, Université de Montpellier, LIRMM
Dario Fiore Examinateur
Associate Research Professor, IMDEA Software électronique Institute
David Pointcheval Examinateur
Directeur de Recherche, ENS, CNRS, en détachement chez Cosmian
Pascal Lafourcade Directeur de Thèse
Professeur des universités, LIMOS, Université Clermont Auvergne
Xavier Bultel Encadrant de Thèse
Maître de conférences, INSA CVL, LIFO, INRIA, Université d’Orléans

2

Dissemination version (February 3, 2025)

Résumé

L’anonymat est une propriété de sécurité d’une primitive cryptographique ou d’un pro-
tocole de communication qui élimine ou limite l’identification des utilisateurs. Elle a
suscité un intérêt prédominant et a évolué pour devenir un élément central des enjeux
sociétaux.

Dans cette thèse, nous contribuons à rendre l’anonymat plus accessible. À cette fin,
nous étudions des signatures électroniques avec différentes propriétés d’anonymat, afin
de développer les mécanismes qui permettront de restreindre le degré d’identification aux
cas strictement nécessaires. Plutôt que d’imposer une identification complète dans des
situations où cela ne serait pas nécessaire. Nous avons porté notre attention sur l’analyse
des propriétés d’anonymat des signatures d’anneaux liées, qui assurent l’anonymat tout
en maintenant un lien entre les signatures des mêmes signataires, ce qui est particulière-
ment pertinent dans le contexte du vote électronique. Notre intérêt s’est aussi porté sur
les mécanismes de délégation de signatures. Nous proposons une méthode permettant
d’assurer l’anonymat du délégué tout en limitant le nombre de signatures qu’il peut
émettre. Le fait de dépasser le seuil implique la révélation de son identité, ainsi que
la possibilité de retracer toutes les signatures qu’il aura émises. Dans ces deux études,
nous avons adopté le paradigme de la cryptographie prouvée et nous nous appuierons
sur des modèles dits calculatoires.

Considérant également un protocole largement déployé - le protocole de paiement par
carte EMV - nous proposons des constructions offrant différents niveaux d’anonymat
et compatible avec la norme existante. Nous montrons ici que, malgré les multiples
contraintes normatives et les lois imposant une identification permanente des parties, il
est possible de concevoir des architectures plus respectueuses de la vie privée qui peut
s’intègre directement au système actuel. Cela vise à démontrer que la protection de
l’identité des entités reste toujours possible même dans un protocole établi de longue
date.

Ainsi, notre étude ne se limite pas à l’anonymat ; nous nous penchons également sur
d’autres propriétés essentielles, pour modérer un anonymat trop fort et assurer que les
primitives soient facilement intégrables dans des systèmes concrets.

3

4

Abstract

Cryptographic anonymity is a security property of cryptographic primitives or commu-
nication protocols eliminating or limiting user identification. It has been of predominant
interest and has now evolved to become central to societal issues.

In this thesis, we contribute to making anonymity more attainable. With this in
mind, we study electronic signatures with various anonymity properties, in order to
develop mechanisms that will make it possible, to restrict the degree of identification
to what is strictly necessary. This, rather than imposing full identification in situations
where it should not be required. We propose the study of the anonymity properties of
linkable ring signatures. These signatures schemes ensure anonymity while maintaining
a link between the signatures of the same signer, a property that is particularly relevant
in the context of electronic voting, for example. We are also interested in signature
delegation mechanisms. Furthermore, we propose a method for ensuring the anonymity
of the delegate while limiting the number of signatures that can be issued. Exceeding
the threshold implies revealing the identity of the signer, as well as the possibility of
tracing all its issued signatures. In these two studies, we have adopted the paradigm of
proven cryptography and will rely on so-called computational models.

Also considering a more practical protocol - the EMV card payment protocol - we
propose constructions allowing degrees of anonymity that comply with the current stan-
dard. We show here that, despite the many normative constraints and laws imposing
permanent identification of parties, it is possible to design more privacy-friendly archi-
tectures that can be integrated directly into the current system. The aim is to demon-
strate that it is still possible to protect the identity of entities even in a long-established
protocol.

Thus, our study is not limited to anonymity; we also look at other essential properties
to moderate too strong anonymity and ensure that primitives can be easily integrated
into concrete schemes.

5

6

Contents

1 Introduction 11
1.1 Cryptology . 11
1.2 Authentication and Anonymity . 13
1.3 Contributions of this Thesis . 16
1.4 Other Published Work . 18

2 Technical Background 23
2.1 Notations . 23
2.2 Computational Background . 24

2.2.1 Algorithms Properties . 24
2.2.2 Provable Security . 25

2.3 Mathematical Background . 29
2.4 Cryptographic Background . 30

2.4.1 Cryptographic Assumptions . 31
2.4.2 Cryptographic Models . 31

2.5 Cryptographic Building Blocks . 33

3 Modeling Anonymity of Linkable Ring Signatures 47
3.1 Introduction to the Chapter Content . 48
3.2 Review of Linkable Ring Signatures Definitions 54
3.3 Anonymity in the Honest-Key Model . 59
3.4 Anonymity of Linkable Ring Signatures 61
3.5 Insecurity of the One-time Anonymity 63

3.5.1 Toy Counter-example Scheme. 64
3.5.2 Model of k-Times Full Traceable Ring Signatures 65
3.5.3 Concrete Counter-example . 67

3.6 Review of our Counter-examples . 70
3.7 Literature Review . 70
3.8 Relationship Between the Properties . 73
3.9 Conclusion of the Chapter . 75

4 k-Times Full Traceable Proxy and Sanitizable Signatures 77
4.1 Introduction to the Chapter Content . 78
4.2 Zero-knowledge Proofs as Building Blocks 82

4.2.1 The Two Zero-knowledge Proofs 83

7

Contents 8

4.2.2 An Example for the Proof Π<k 84

4.2.3 Instantiation of the Proof πσ . 87

4.3 k-Times Anonymous Proxy Signatures 88

4.3.1 Security Model for k-Times Anonymous Proxy Signatures 89

4.3.2 Our k-Times Anonymous Proxy Signature Scheme 95

4.4 k-Times Anonymous Sanitizable Signatures 98

4.4.1 Security Model for k-Times Anonymous Sanitizable Signatures . 99

4.4.2 k-Times Anonymous Sanitizable Signature Scheme 108

4.5 Design Variants . 111

4.6 Conclusion of the Chapter . 112

5 EMV-compliant and Usable Anonymity for Contactless Payments 113

5.1 Introduction . 114

5.2 Acronyms . 117

5.3 Related Work . 117

5.4 A Preamble to Our Solution . 119

5.5 Payments-Privacy Notions . 120

5.5.1 Entities Identification in EMV 120

5.5.2 Our Payment-Privacy Notions 120

5.6 Traditional Payment Systems and Their Privacy 122

5.7 Our Main EMV Ingredients . 127

5.7.1 From Card Issuing to Payment Processing 127

5.7.2 Mobile Payments: Tokenisation and Transaction Data 128

5.8 Sample Real Card Traces . 129

5.9 Sample Mobile Application Traces . 130

5.10 Anonymous EMV In-Shop Payments . 131

5.10.1 Construction PrivBank . 132

5.10.2 Law Abiding and Norm Compliance Aspects of PrivBank 135

5.10.3 Construction PrivProxy . 136

5.10.4 Law Abiding and Norm Compliance Aspects of PrivProxy . . . 138

5.10.5 Comparing PrivBank and PrivProxy 139

5.11 Formal Treatment of Anonymity in PrivBank and PrivProxy 140

5.11.1 Execution Model . 141

5.11.2 EMV-L: A Language for EMV Protocols 141

5.11.3 Threat Model . 142

5.11.4 Formalising Payments’ Privacy 142

5.11.5 Provable Anonymity in PrivBank and PrivProxy 145

5.12 Proofs for Our Main Results in Section 5.11.5 146

5.13 Game Based Formalisation . 149

5.14 Conclusion of the Chapter . 154

6 Conclusion 155

Contents 9

A Résumé Long 173
A.1 Modèle d’Anonymat pour les Signature d’Anneaux Liables 174
A.2 Signature Délégables et Assainissable k-fois parfaitement traçable 178
A.3 Anonymat utilisable en conformité avec la norme EMV pour les paiements

sans contact . 181
A.4 Conclusion . 185

10

Chapter 1
Introduction

1.1 Cryptology

Throughout the development of cryptography, the word privacy has had multiple pre-
dominant meanings. It first sense was associated to the prevention of unauthorised
extraction of information from a communication made over an unsecured channel. Orig-
inally, privacy of messages was ensured by symmetrical encryption schemes, in which
the sender and recipient share a common secret, called secret keys and used to encrypt
the message. This was at a time when the field was still in its early foundations and
encryption relied solely on secret symmetric keys that needed to be shared between the
sender and the recipient and, above all, no one else. Numerous methods were used to
achieve shared secrecy of symmetric keys, including face-to-face meetings and relying on
trusted third parties. However, the secret had to pass from the sender to the recipient
without being disclosed and before any private communication could take place. This is
a major inconvenient, because to send a secure message between two entities, another
message (in this case, the key) had to be transmitted securely from one entity to another.
Hence, as noted by Diffie and Hellman [DH76] in 1976,

“Cryptography was unable to meet the (security) requirements, in that its
use would impose such severe inconveniences on the system users, as to

eliminate many of the benefits.”

This is particularly relevant to today’s modern global networks, where the require-
ment is unrealistic given the billions of new device connections needed every day.

Acknowledging the need to solve this key-exchange limitation, Diffie and Hellman
have set “New Directions in Cryptography” [DH76]. Their seminal work has defined
the modern foundation of cryptography and pushed a new concept called public key
cryptography. Amongst this concept asymmetric encryption assumes that the recipient
has a key pair for which one is private and the other public. In this case, the sender uses
the recipient’s public key to encrypt the message, while the recipient uses its private key
to decrypt it. Besides this major difference, the two types of encryption must offer the
same functionality and the same level of privacy protection.

With the advent of public key cryptography, the notion of privacy took on a broader
meaning: it was no longer just a question of guaranteeing the non-disclosure of encrypted
messages (ciphertexts), the identity of recipient users or devices needed to be verified.
How can you be sure of the identity of the owner of a public key without meeting him? A

11

Chapter 1. Introduction 12

cryptographic mechanism enabling authentication of the recipient was therefore deemed
necessary for secure communications. Otherwise, the entity would always have to rely
on pre-shared keys (which cannot be completely eliminated in reality).

Luckily, while introducing the first asymmetric encryption scheme, Rivest, Shamir
and Adelman [RSA78] also introduced the first digital signature scheme. A digital
signature is a cryptographic mechanism also based on a pair of keys, that is in today’s
world the direct counterpart of the pen and paper signatures we all know about. To
provide more intuition on the concept we illustrate it in Figure 1.1 by representing the
signature, like a seal (affixed on a letter) i.e., one user producing a signature on its
own. The red dot there represents the signature made with a public key leading to “red”
signatures, which is considered to be unique, i.e., any other public key would result in a
signature of a different colour. Digital signatures can be used to verify the authenticity
and integrity of digital messages or documents, guaranteeing that the identity of the
sender is confirmed and that the content has not been altered during transmission or
storage. They are expected to be unforgeable, i.e., they cannot be produced easily
without knowing the secret key. Today, digital signatures play a crucial role in protecting
against frauds, forgeries and data breaches. They also allow to authenticate the owner
of a public key under some trust assumptions thus deporting it to other and less entities
that may be easier and more secure to communicate with.

Signer

Figure 1.1: Seal of a Digital Signature1. (see Definition 13)

However, the implementation of authentication mechanisms can raise significant pri-
vacy issues, as identities can be considered as sensitive information. In many appli-
cations, it is not always necessary to authenticate a specific user. Take the example
of a read-only document shared by several people and stored on a server. Is it neces-
sary to authenticate the person accessing the document, or is it sufficient to prevent
unauthorised access? In many cases where the document is not sensitive, preventing
unauthorised access may be sufficient. In these circumstances, it is often enough to
prove the right to access the document without revealing the identity of the user. Al-
though it may seem surprising, this can be achieved through the use of some digital
signature schemes.

This type of privacy-preserving authentication mechanism is precisely what we ex-
plore in this thesis, they fall within the field of modern cryptographic primitives and
we focus specifically on the privacy of entities. This concept, in cryptography, is called
anonymity. Our primary objectives and contributions involve the study of signature-
based authentication methods, the formalisation of their security, and the development
of practical and efficient means to protect privacy. We provide means to prevent un-
necessary or unwanted disclosure of the identities in some specific use scenarios. To
ensure the applicability and practicality of our primitives (signature schemes in this
thesis) we consider the need to limit the anonymity in most application domains. Total

1This schematic representations and the upcoming ones are inspired from the presentation
of [AHAN+22] by Elena Pagnin in PKC ’22.

Chapter 1. Introduction 13

anonymity, regardless of the circumstances, can lead to fraud or reprehensible behaviour
going unpunished. Hence, we conside the need of requiring forms of linkability of two
authentication, traceability of the user in case of fraud or even in the stronger scenario
full auditability of the system, as required by the banking industry amongst others.

1.2 Authentication and Anonymity

In today’s systems, anonymity often comes into conflict with utility: users who di-
vulge minimal information about themselves are faced with functional restrictions, and
service providers may view them with suspicion. This holds despite the strongly regu-
lated treatments of personal data imposed by the General Data Protection Regulation
(GDPR) [EU16] in the European Union. One of its requirement is the minimal collec-
tion and treatment of personal data for each application. However it has appeared that
quantifying the amount of data required by one given application is no easy task. Take
for example the balance between the usage of cash and bankcard payments.

One is (almost) fully anonymous (the cash), while bankcard payments do not guar-
antee any form of anonymity for the customer against the merchant, the bank, or even
eavesdropper listening around the point of sale. Research has focused on advanced au-
thentication mechanisms since their apearance. The introduction of advanced properties
into signature scheme for authentication purposes began in 1982 with Chaum’s blind sig-
nature scheme [Cha83a] which was originally intended for anonymous card payments.

This type of signatures appears as a seal affixed on a letter, similarly to a signature
represented in Figure 1.1. The difference lies in how it is generated. In this type of
signatures, the signer signs the message without ever seeing its contents: the user holds
the message and interacts with the signer to obtain a signature. First, the user hides the
message before sending it the the signer. Thus the message, and maybe suprisingly, the
signature are not revealed to the signer. This process is akin to signing a sealed envelope
made of carbon paper, where the signature is transferred onto the hidden message inside.
Consequently, the signer remains unaware of the signature they have produced.

The primary use case for blind signatures was for a bank to issue a digital banknote
without viewing its serial number, the main element that can be distinghuised between
two bank notes of the same amount. Hence, the bank only knows the amount and
the identity of the person withdrawing it and cannot trace the bank note through any
means. This allows to remain anonymous in front of the bank, the merchant and any
other kind of malicious entity observing the payment while paying. Hence, based on blind
signatures one could obtain the same functionalities as today’s electronic payments with
better privacy, but this means of payment has not been perpetuated through the wild
adoption of electronic payments.

Other types of authentication mechanisms, each with varying degrees of privacy or
practical aspects, have also been introduced for other use cases. Some of the most
studied types of privacy preserving types of signatures schemes are introduced below,
when they are directly related to the main content of our studies. We go through a
short retrospective.

Chapter 1. Introduction 14

Group of n entities

Figure 1.2: Seal of a Ring Signature [RST01].
(Linked to Chapter 3 on page 47)

Ring Signatures. Introduced by Rivest, Shamir and Tauman [RST01] in 1986, ring
signatures are digital signatures whose allow an entity to sign in the name of an ad hoc
group while concealing its identity from the verifier. We have schematically described
the seal of this signature scheme in Figure 1.2, where several large dots represent several
entities inside the ring, but this circle remains dashed because the ring in this type
of signatures is ad hoc, i.e., it is generated by the signer at the time of signing and
has not required any form of acceptance from the other members included in the ring
(apart from the generation of their public keys). This means that only one of the n
signers (in Figure 1.2, n = 6) actually signed the message, the seal of the other group
members was somehow mimiced by the actual signer. Ring signatures share the same
expectation as regular signatures: they are difficult to forge without possessing the
secret key. Additionally, any signature produced by a signer is indistinguishable from
those generated by other members of the group, ensuring the anonymity of the signers.
This primitive is related to the main theme of the Chapter 3 on page 47, in which we
look at a primitive called linkable ring signatures. Linkable ring signatures balance the
strong anonymity of ring signatures by linking signatures issued by the same signer. It
is expected that two signatures from the same entity should always be linkable, while
signatures from different entities must remain unlinked. These properties of linkable
ring signature are complemented by those of ring signatures. This is visually described
in Figure 1.3, each signer leaves its fingerprint while signing and they are the same
while signing two different messages but differs when two entity signed. Here, we only
used the color to distinguished the fingerprints, their is no link with the potential signer
behind the signature. This is achieved for practical reasons, for example when we want
to determine whether requests come from the same entity without needing its identity.

Linked Not linked

Figure 1.3: Seal of a Linkable Ring Signature and their Linkability [RST01].
(Linked to Chapter 3 on page 47)

Chapter 1. Introduction 15

Group Signatures. Introduced by Chaum and Heyst [CH91] in 1991, group signa-
tures are another type of privacy preserving signatures which allow any member of a
group to sign on behalf of one of the entities inside the group. The privacy of the signer
is preserved and the signature can only be linked to the group and not the entity produc-
ing it. In this case, the group is managed by a central entity, commonly called authority,
which owns the power to manage the group’s registration and can de-anonymise any sig-
nature. The seal left by this type of signature is described schematically in Figure 1.4,
assuming that the whole group and the authority are public information provided to the
verifier. From the point of view of the verifier shown in Figure 1.4, it is impossible to tell
which of the n entities in the group generated the signature. In the Figure, the symbole
“A” denotes the authority and the circle is closed as all entities within the group must
have been accepted by the authority before signing any message.

A

Authority & group of n entities

Figure 1.4: Seal of a Group Signature [CH91].
(Linked to Chapter 4 on page 77)

Proxy Signatures. Introduced by Mambo, Usuda, and Okamoto [MUO96] in 1996,
proxy signatures enable one party, the signer also sometimes called the original signer,
to delegate its signature rights to another party, named proxy, which can then sign
documents on their behalf, facilitating secure delegation in various scenarios. It works
in exactly the same way as a power of attorney for an election. In Figure 1.5, we can see
the seal of the red signer giving delegation to the orange signer who put its own seal, the
red part works like a certificate, like an evidence for the given delegation. The original
concept was later extended in various ways. Our interest mainly goes to the primitive
introduced by Fuchsbauer and Pointcheval [FP08] called anonymous proxy signature.
These signatures provide anonymity for the proxy signer while maintaining the integrity
and authenticity of the signed message. Hence, only the name of the original signer is
disclosed.

Delegator Proxy

Delegation of signature rights

Figure 1.5: Seal of a Proxy Signatures.
(Linked to Chapter 4 on page 77)

We can see that many signature schemes with anonymity and various practical as-
pects have been developed. Here, we have ignored many other types of existing plans.

Chapter 1. Introduction 16

The ongoing research try to make them more efficient, secure, and improve their usabil-
ity in a broad range of scenarios. Notably, there has been a push to develop a unified
formalism encompassing most anonymous signature schemes [BDK24], amongst then
group and ring signatures. However, as is often the case in cryptography, it is unreal-
istic to expect that these mechanisms will seamlessly fit into a single formalism. This
highlights the need of further research to refine and develop the knowledge on these
primitives and of their formalisation to, maybe, end-up with a unified definition in the
future.

Above, we have discussed anonymity from a cryptographic perspective. However, it is
useful to step back and examine it from a broader viewpoint. Digital and communication
systems have been regulated ever since they first appeared, and numerous standards have
been introduced. Systems originally designed from scratch now follow widely adopted
frameworks. Introducing new designs requires adherence to legal aspects and existing
standards and must offer improvements over existing systems to gain acceptance and
later be deployed on our devices. In itself, designing a new protocol with improved
functionality is a challenge, but when it comes to standard adoption and deployment, it’s
almost impossible. For example, a second worldwide payment system standard, aimed
at significantly improving upon current protocols in terms of efficiency and mitigating
numerous attacks, has been introduced in 2013. As of now, 11 years later, it is still not
deployed (then, neither used), this shows the extensive time and willingness needed to
alter established large-scale systems.

As this new norm awaits deployment, various proposals [HMY22, BHMY23] have
been made to further enhance it, anticipating changes to what was originally proposed
as the future standard.

Anonymity was overlooked in the currently used payment service standard and in its
second version: all identity related information are fully broadcast to all entities taking
part in the payment. The authors of [HMY22, BHMY23] tried to address unlinkability
against an eavesdropper’s listening at the point of sale, this is already a step toward more
privacy and security. However, it is not necessary for all the information to be known
by everyone when a payment is made, as demonstrated by cash based transactions. The
oversight of anonymity for customers against entities involved in payments highlights
the need for further research and improvements in customer privacy. Especially as
privacy concerns intensify and legal rights to privacy become more formalised, there is
a critical need to ensure that future systems effectively safeguard user anonymity while
also addressing fraud detection requirements.

1.3 Contributions of this Thesis

This thesis studies cryptography in the context of digital signature, proof technics in
the computational model and anonymity in authentication. While setting the formal
definitions of anonymity for signature schemes, it has been necessary to accommodate
the degree of anonymity provided by each in order to meet the requirements of practical
systems. In particular, we must acknowledge that full anonymity on the Internet has
always been more of a concept than a reality. In most cases, full anonymity is too strong

Chapter 1. Introduction 17

for practical applications. It is in this context that we bring the three contributions of
this thesis: (1) attempting to correct a shortcoming in the definition of anonymity of
linkable ring signatures in Chapter 3. Almost all the previous definitions only guarantee
anonymity for the first signature issued by a signer and do not take into account the
anonymity of any further signatures produced, despite the fact that practical applica-
tions require this [LWW04]. Secondly, (2) we propose a new type of identity-preserving
signature scheme in Chapter 4: k-times fully anonymous proxy signatures. In this type
of signature, the proxy signer is anonymous, i.e., does not reveal its identity unless it
issues more than k signatures. If that limit is exceeded, its identity is revealed and can
then be linked to all the signatures it has issued. We have visually represented these
signatures in Figure 1.6a. In this figure, we see a delegation established by the red seal
to an unknown entity allowed up to k signatures. If this entity exceeds the k authorised
signatures by producing a k+1th signature, then its public key, associated to the orange
color, is revealed and all the signatures produced are linked.

From our k-times fully anonymous proxy signatures, we were able to derive a k-times
fully anonymous sanitizable signature. Sanitizable signatures acts relatively similarly to
proxy signatures, through in addition that messages may be partially modified by the
delegatee. We have visually represented these type signatures in Figure 1.6b and also
introduce the first k-times fully anonymous sanitizable signatures scheme in Chapter 4.

Delegator
Anonymous
Proxy Signer

σ1

σk

Delegator Proxy Signer
σ1

σk

σk+1

Linked

Revealed

Exceeds k signatures

(a) k-times Anonymous Full Traceable Proxy Signature (Section 4.3)

Signer m1, σ1

mk, σk

Anonymous Sanitizer
m′

1, σ1

m′
k, σk

Signer m1, σ1

mk, σk

Sanitizer
m′

1, σ1

m′
k, σk

m′
k+1, σk+1

Linked

Revealed

Exceeds k signatures

(b) k-times Anonymous Full Traceable Sanitizable Signature (Section 4.4)

Figure 1.6: k-times Anonymous Full Traceable Proxy and Sanitizable Signature.

Our third contribution (3) highlights a privacy-preserving architecture for card based
payments compatible with both the current and future standards of payments. The
study examines the global EMV (Europay Mastercard Visa) payment system, delv-

Chapter 1. Introduction 18

ing into more concrete system. It navigates the complexities of European and United
Kingdom regulations to develop privacy-enhancing, EMV-compatible, law-abiding, and
usable contactless payment protocols: PrivBank and PrivProxy. This exploration seeks
to tackle some challenges toward implementing anonymity in practical applications. It
also highlights the limitations and obstacles posed by various constraints and efforts
lobbying against privacy.

Valorisation of this Thesis. The work carried out as part of this thesis has led to
the production of several publications. Three articles, refered to below cover the work
presented in this manuscript.

The various concepts presented in Chapter 2 of this thesis, the technical background
provides the necessary preliminaries to support the reader in the subsequent chapters.
It introduces notations, mathematical background, security notions, cryptographic as-
sumptions, and primitives. These notions are then used to propose either new primitives
or an architecture for improving the anonymity of a pre-existing protocol. We present
the structure of the three main chapters of this manuscript below. They can be consid-
ered independently, but they are all linked by the themes they address and variations
of what is generally refered to as anonymity.

[BOA24a] On the Anonymity of Linkable Ring Signatures, Xavier Bultel and Charles
Olivier-Anclin. Published in the proceedings of CANS 2024.
Content of this work appears in Chapter 3.

[BOA24b] Taming Delegations in Anonymous Signatures: k-Times Anonymity for
Proxy and Sanitizable Signature, Xavier Bultel and Charles Olivier-Anclin. Pub-
lished in the proceedings of CANS 2024.
Content of this work appears in Chapter 4.

[BCC+24] EMV-Compliant and Usable Anonymity for Contactless Payments, Ioana
Boureanu, Liqun Chen, Tom Chothia, Anna Clee, Andreas Kokkinis, Pascal Lafour-
cade, Chris Newton, and Charles Olivier-Anclin. Published in the proceedings of
USENIX Security 2025.
Content of this work appears in Chapter 5.

A conclusion summarizing the contributions of the work presented in this thesis is
provided at the end, in Chapter 6.

1.4 Other Published Work

Other research works were carried out during during this PhD but is left uncovered by
this manuscript, we list such contributions below with a brief abstract for each.

[LMOAR24] Secure Keyless Multi-Party Storage Scheme,
Pascal Lafourcade, Lola-Baie Mallordy, Charles Olivier-Anclin and Léo Robert,
Published in the proceedings of ESORICS 2024

Chapter 1. Introduction 19

Abstract. Using threshold secret sharing, we propose a solution tailored for forgetful
clients (i.e., not required to keep any cryptographic secret) while accommodating the
dynamic nature of multi-cloud deployments. Furthermore, we delegate the computation
and distribution of shares to an intermediate server (proxy), effectively minimizing the
client workload. We propose two variants of a keyless, space-efficient multi-cloud storage
scheme named KAPRE and KAME. Our solution KAPRE requires less communications
and computations, while KAME preserves data confidentiality against a colluding proxy.
Our protocols offer robust guarantees for data integrity, and we demonstrate the proxy’s
ability to identify and attribute blame to servers responsible for sending corrupted shares
during data reconstruction. We establish a comprehensive security model and provide
proofs of the security properties of our protocols. To complement this theoretical anal-
ysis, we present a proof-of-concept to illustrate the practical implementation of our
proposed scheme.

[LMMOA24] Transferable, Auditable and Anonymous Ticketing Protocol,
Pascal Lafourcade, Dhekra Mahmoud, Gael Marcadet and Charles Olivier-Anclin,
Published in the proceedings of ASIACCS 2024

Abstract. Digital ticketing systems typically offer ticket purchase, refund, validation,
and, optionally, anonymity of users. However, it would be interesting for users to transfer
their tickets, as is currently done with physical tickets. We propose Applause, a ticketing
system allowing the purchase, refund, validation, and transfer of tickets based on trusted
authority, while guaranteeing the anonymity of users, as long as the used payment
method provides anonymity. To study its security, we formalise the security of the
transferable E-Ticket scheme in the game-based paradigm. We prove the security of
Applause computationally in the standard model and symbolically using the protocol
verifier ProVerif. Applause relies on standard cryptographic primitives, rendering our
construction efficient and scalable, as shown by a proof-of-concept. In order to obtain
Spotlight, an auditable version, proved to be secure, users will remain anonymous except
for a trusted third party, which will be able to disclose their identity in the event of a
disaster.

[AHKLOA23] Generic Privacy Preserving Private Permissioned Blockchains,
Frédéric A. Hayek, Mirko Koscina, Pascal Lafourcade and Charles Olivier-Anclin,
Published in the proceedings of SAC 2023

Abstract. Private permissioned blockchains are becoming gradually more sought-
after. Such systems are reachable by authorised users, and tend to be completely
transparent to whomever interacts with the blockchain. In this paper, we mitigate
the latter. Authorised users can now stay unlinked to the transaction they propose in
the blockchain while being authenticated before being allowed to interact. As a first
contribution, we developed a consensus algorithm for private permissioned blockchains
based on Hyperledger Fabric and the Practical Byzantine Fault Tolerance consensus.
Building on this blockchain, five additional variations achieving various client-wise pri-
vacy preserving levels are proposed. These different protocols allow for different use
cases and levels of privacy control and sometimes its revocation by an authority. All our

Chapter 1. Introduction 20

protocols guarantee the unlinkability of transactions to their issuers achieving anonymity
or pseudonymity. Miners can also inherit some of the above privacy preserving setting.
Naturally, we maintain liveness and safety of the system and its data.

[BBC+23] Practical Construction for Secure Trick-Taking Games Even With Cards
Set Aside, Rohann Bella, Xavier Bultel, Céline Chevalier, Pascal Lafourcade and
Charles Olivier-Anclin,
Published in the proceedings of FC 2023.

Abstract. Trick-taking games are traditional card games played all over the world.
There are many such games, and most of them can be played online through dedicated
applications, either for fun or for betting money. However, these games have an intrinsic
drawback: each player plays its cards according to several secret constraints (unknown
to the other players), and if a player does not respect these constraints, the other players
will not realise it until much later in the game.

In 2019, X. Bultel and P. Lafourcade proposed a cryptographic protocol for Spades in
the random oracle model allowing peer-to-peer trick-taking games to be played securely
without the possibility of cheating, even by playing a card that does not respect the
secret constraints. However, to simulate card shuffling, this protocol requires a custom
proof of shuffle with quadratic complexity in the number of cards, which makes the
protocol inefficient in practice. In this paper, we improve their work in several ways.
First, we extend their model to cover a broader range of games, such as those implying a
set of cards set aside during the deal (for instance Triomphe or French Tarot). Then, we
propose a new efficient construction for Spades in the standard model (without random
oracles), where cards are represented by partially homomorphic ciphertexts. It can be
instantiated by any standard generic proof of shuffle, which significantly improves the
efficiency. We demonstrate the feasibility of our approach by giving an implementation
of our protocol, and we compare the performances of the new shuffle protocol with the
previous one. Finally, we give a similar protocol for French Tarot, with comparable
efficiency.

[KLM+22] A Survey on Identity-based Blind Signature, Mirko Koscina, Pascal Lafour-
cade, Gael Marcadet, Charles Olivier-Anclin, Léo Robert
Published in the proceedings of FPS 2022.

Abstract. Blind signatures are well-studied building blocks of cryptography, originally
designed to enable anonymity in electronic voting and digital banking. Identity-based
signature were introduced by Shamir in 1984 and gave an alternative to prominent
Public Key Infrastructure. An identity-based blind signature (IDBS) allows any user to
interact directly with the signer without any prior interaction with a trusted authority.
The first IDBS has been proposed in 2002 and several schemes were proposed since then.
Seeking for a full comparison of these primitives, we propose a survey on IDBS and list
all such primitives that seems to maintain some security. We also classify their security
assumptions based on the existing security expectation that have not been formalised yet
in the literature. Moreover, we empirically evaluate the complexity of all the operations
used in those schemes with modern cryptographic libraries. This allows us to perform a

Chapter 1. Introduction 21

realistic evaluation of their practical complexities. Hence, we can compare all schemes
in terms of complexity and signature size.

[BLOR21] Generic Construction for Identity-based Proxy Blind Signature, Xavier Bul-
tel, Pascal Lafourcade, Charles Olivier-Anclin, Léo Robert,
Published in the proceedings of FPS 2021.

Abstract. Generic constructions of blind signature schemes have been studied since
its appearance. Several constructions were made leading to generic blind signatures and
achieving other properties such as identity-based blind signature and partially blind
signature. We propose a generic construction for identity-based Proxy Blind Signature
(IDPBS). This combination of properties has several applications in the real world, in
particularly in e-voting or e-cash systems and it has never been achieved before with a
generic construction. Our construction only requires two classical signatures schemes:
a blind EUF-CMA blind signature and a SUF-CMA unique signature. The security of
our generic identity-based proxy blind signature is proven under these assumptions.

22

Chapter 2
Technical Background

Contents
2.1 Notations . 23

2.2 Computational Background 24

2.2.1 Algorithms Properties . 24

2.2.2 Provable Security . 25

2.3 Mathematical Background 29

2.4 Cryptographic Background 30

2.4.1 Cryptographic Assumptions 31

2.4.2 Cryptographic Models . 31

2.5 Cryptographic Building Blocks 33

Chapter Summary

This chapter provides an overview of the essential concepts and notations required
for our study. We also discuss the main cryptographic primitives used in our work
such as digital signatures, zero-knowledge proofs and hash functions, which are
essential for guaranteeing the confidentiality, integrity and authenticity of data.

To guarantee data security, cryptography aims to ensure, amongst other proper-
ties, confidentiality, authenticity and integrity. To determine whether an encryption or
signature scheme meets these properties, researchers use problems that are considered
computationaly difficult and reduce the security of their schemes to the difficulty of
these problems. Meaning that if an attacker were to break such a protocol, it would
imply that it had solved one of these difficult problems, many of which have been studied
for years and for which the complexity of even the most efficient algorithms is still not
enough to solve it efficiently. These assumptions are commonly referred to as security
assumptions. Our cryptographic constructions follow the same principle and are based
on classical problems presented below. To better formalise the overall concept, we will
present the formalism underlying cryptographic constructions, these assumptions and
define some well-studied constructions.

2.1 Notations

We begin by presenting the most common notations used in this manuscript. Some
notations may also appear later.

23

Chapter 2. Technical Background 24

• Let N and Z respectively denote the sets of positive and relative integers.
• Let 1λ be the unary representation of λ ∈ N.
• Let Zp for p ∈ Z denote the ring of integers modulo p.
• Let JnK denote the set of integers {1, . . . , n}.
• Let |S| denote the cardinality of a set S.
• Let s $←− S denote the uniform sampling of s over the set S.
• Let X p−→ (xi)i∈JnK denote the parsing of a tuple or a set of n elements.
• Let y ← Alg(x) denote the execution of an algorithm Alg outputting y on input x.
• Let AO denote an algorithm A that can call a subroutine/oracle O.
• Let [Alg] denote the set of all possible outputs of the algorithm Alg.
• Let ⊔ denote the union ∪ when applied to multi-sets, thereby preserving the

repetition of elements.
• Let η[i] denote the ith bit of the binary representation of the integer η ∈ N. This

representation is fixed using the canonical bijection between N and {0, 1}∗, given
by the equality η =

∑n−1
i=0 2i · η[i].

2.2 Computational Background

In what follows, we introduce the fundamental concepts of computational complexity
necessary to formalise the security guarantees of cryptographic primitives in the com-
putational model. This discussion is grounded in polynomial-time reductions and the
fundamental security assumptions that support these guarantees.

2.2.1 Algorithms Properties

Definition 1: Negligible Function

A function ϵ : N→ R is negligible if for every positive integer c ∈ N, there exists an
integer Nc ∈ N such that for all x > Nc, |ϵ(x)| < 1/xc.

Definition 2: Polynomial Algorithm

An algorithm Alg with input of size λ ∈ N is said to be polynomial-time, if for every
input of said size, there exists a polynomial P ∈ N[X] such that the number of
operations executed by Alg is bounded by P (λ).

Note that the word operation has not been defined. The rigorous formalisation
comes from the formalisation of mathematical models of computation such as Tur-
ing machine theory in complexity theory. In this work, we do not introduce it from
scratch and refer to [Gol01, GMR19] for full definitions. What we call operations can be
viewed as gate operations at processor level or as additions or multiplications of integers
when there is a mathematical structure. Indeed, these operations have a polynomial
complexity in the number n of bits required to encode the integer involved. Addi-
tions require O(n) operation while multiplications require O(n2) with the schoolbook
multiplication down to O(n log(n)) for the best known algorithm, the Harvey-Hoeven

Chapter 2. Technical Background 25

algorithm [HVDH21]. Therefore, performing a polynomial number of additions or mul-
tiplications is a polynomial-time algorithm.

Algorithms may include a degree of uncertainty in their results, even when they
are executed multiple times on the basis of the same inputs. This is what we call a
probabilistic algorithm.

Definition 3: Probabilistic Algorithm

Let Alg be a algorithm taking inputs in X and producing elements in Y . It is
said to be probabilistic if there exists x ∈ X such that |[Alg(x)]| > 1. Equivalently
formulated, given two executions Alg(x)→ y and Alg(x)→ y′, the results y and y′

have a non-zero probability of being different.

The security parameter λ ∈ N is a variable that measures the input size of a computa-
tional problem, i.e., the number of bits required to represent the problem. An adversary
against a given problem is assumed to be a polynomial-time probabilistic algorithm run-
ning in a time that is polynomial in λ. In this case, security must be guaranteed except
with a negligible probability in the security parameter.

2.2.2 Provable Security

Technical Summary

Based on the notion of a polynomial-time algorithm, we formulate cryptographic
properties in the so-called computational model. A security reduction refers to a
mathematical proof that shows that solving one problem, usually in cryptography
the task of compromising the security a scheme, is at least as difficult as solving an-
other, typically well-established problem believed to be computationally unfeasible.
The quality of a security reduction quantifies how effectively this reduction trans-
lates the difficulty of breaking the cryptographic scheme under consideration to the
known hard problem. Various factors influence the assessment of the quality of a
security reduction, which aids in evaluating the practical security of a cryptographic
scheme. We discuss these elements below.

Let A be any probabilistic (most of the time also polynomial-time and then PPT)
algorithm, called the adversary, with prescribed inputs and outputs (the latter being
specified according to context). We consider another PPT algorithm Exp, called exper-
iment featering an entity called the challenger C and executing A as a subroutine, or
alternatively interacting with A. The cryptographic properties in the computational
model are defined on the basis of the experiment Exp, and are said to be realised by
a scheme S, or not, by observing the probability of occurrence of its outputs. In an
experiment, we generally denote the elements returned by the adversary A with a star
in superscript e.g., “σ∗”. The general notation, in this manuscript, for an experiment
associated to a property prop is the following:

ExppropA,S (1
λ)→ out.

Chapter 2. Technical Background 26

In general, these experiments fall within two categorises:

Computation/Extraction Problem. In this type of problem, we observe if there
exists a PPT algorithm A capable of outputting an element of a prescribed form
for a given scheme S. C generates an execution environment for A and verifies if
the value outputted by A matches the expected properties. Here the output of
ExppropA,S (1

λ) is either 0 (failure) or 1 (success). For the property prop to be achieved,
we require that for a negligible function ϵ(1λ) in the security parameter λ:

AdvpropA,S (1
λ) = Pr[ExppropA,S (1

λ) = 1] = ϵ(1λ).

AdvpropA,S (1
λ) is called the advantage of the adversary A against the property prop

of the scheme S for the security parameter λ.

Decisional Problem. In this type of problem, we observe if there exists a PPT algo-
rithm A capable of distinguishing between two events. Once more, C generates
an execution environment for A and based on a random bit b sampled uniformly
at random in {0, 1}, it executes either the scenario 0 or 1. It is expected that A
determines which of the scenarios is executed. The experiment ExppropA,S (1

λ) still
outputs 0 or 1. For the property prop to hold, we require that:

AdvpropA,S (1
λ) = |Pr[ExppropA,S (1

λ) = 1]− 1/2]| = ϵ(1λ).

Showing that a given property prop is achieved by a scheme S and for all potential
algorithms A is achieved by a security reduction. It consists of finding a polynomial
reduction from breaking a given property of a scheme to solving a (presumably) difficult
problem. This applies if we can provide a polynomial-time algorithm that breaks the
hard problem if there is a PPT algorithm that breaks the property of the scheme.
Combining a polynomial-time reduction with a polynomial-time adversary against the
system property would then lead to a polynomial method for solving the supposedly
difficult problem. Hence, we would obtain a contradiction if the problem is indeed hard
to solve. In practice, it is not known whether such a contradiction actually exists, as
it would require the existence of a problem in the NP complexity class that cannot be
solved in polynomial-time. The existence of such a problem has not been demonstrated.

One of the main methods used to find reductions for complex systems is employing
sequence of games [Sho04]. This consists of introducing, one by one, a sequence of small
differences into the challenge given to an adversary. Consider an experiment ExppropA,S (1

λ)

for a given property prop, an adversary A and a scheme S. The small changes provide a
sequence ExpG0

A,S(1
λ)(= ExppropA,S (1

λ)), . . ., ExpGnA,S(1
λ) where ExpGiA,S(1

λ) and Exp
Gi+1

A,S (1λ)

are always closely related. To simplify the notation, we simply denote the experiment
ExpGiA,S(1

λ) by Gi(A) or even Gi when the adversary is clear in the context. These
sequence are obtained by each time introducing small modifications in an experiment
Gi to produce the experiment Gi+1. This sequence of successive small changes is often
referred to as a game hop [Sho04]. These games which follow one another can be related
in various ways.

Chapter 2. Technical Background 27

Game Hop Based on Indistinguishability. If detected by an adversary, these
changes imply the existence of an adversary capable of distinguishing between two
(assumed) indistinguishable distributions (either statistically or computationally). For
example, consider two successive experiments Gi and Gi+1 in a sequence and a well-
established decisional problem. When we seek to prove that,

|Pr[Gi(A) = 1]− Pr[Gi+1(A) = 1]| ≤ Pr[D solves the difficult decisional problem].

In this order, we consider an adversary A with non-negligible probability of distin-
guishing between Gi and Gi+1, i.e., on the left-hand side of the inequality, and through
a polynomial reduction we can construct a distinguishability algorithm D using A as a
subroutine to find the solution to the hard decisional problem. This creates a contradi-
tion with the main hypothesis of the hardness of the decisional problem. If we relied on
a perfectly indistinguishable problem, this results to Pr[Gi(A) = 1] = Pr[Gi+1(A) = 1].

Game Hop Based on Failure Events. Transitions between games can also be
achieved by introducing failure events. Consider a failure event E. Given an experiment
Gi in a game hop, we instantiate the experiment Gi+1 so that it is similar to Gi but at
some point during its execution, if the failure event E is encountered, the experiment
fails and returns a failure otherwise it proceeds exactly like Gi. If this event E is
never encountered, the experiments Gi and Gi+1 remain identical, leading to an equal
probability of success:

Pr[Gi ∩ ¬E] = Pr[Gi+1 ∩ ¬E].

From this equality of probabilities, it follows that:

|Pr[Gi]− Pr[Gi+1]| ≤ Pr[E].

This formula states that if we considered an event E occurring with negligible prob-
ability, then the difference of success between Gi and Gi+1, as described above, is also
negligible.

Game Hop Based on Polynomial Probability. We also employ a proof technique
based on guessed choice events, made by the challenger, with probability P which is
polynomial as a function of the security parameter λ. For instance, given two indis-
tinguishable users, the challenger selects one at random and expects an attack to be
conducted against this chosen individual. In this case, P (λ) = 1/2. Now, if we consider
a polynomial P in the security parameter λ, and assume that two games are related
as Pr[Gi] = P (λ) · Pr[Gi+1], with the event Gi+1 occurring with negligible probability,
that is Pr[Gi+1] = ϵ(1λ), it follows that Pr[Gi] =

1
P (λ) · ϵ(1

λ), which is also a negligible
quantity.

Bridging steps. These steps are a way of restating how certain elements are com-
puted without changing their distribution, i.e., the change does not affect any of the
distribution of any of the elements, then Diffprop

Gi-Gi+1
(1λ) = 0. The purpose of these steps

is double: to prepare future transitions usually in order to be able to execute a reduction

Chapter 2. Technical Background 28

to an Indecisional problem or a failure event and to make the proof easier to follow and
be verified.

For all i ∈ Jn− 1K, we denote by:

Diffprop
Gi-Gi+1

(1λ) = |Pr[Gi(A) = 1]− Pr[Gi+1(A) = 1]| ,

the difference in A’s success probability in games Gi and Gi+1. When it is shown that
for all i ∈ Jn − 1K, Diffprop

Gi-Gi+1
(1λ) ≤ ϵi(1

λ), and that A cannot win against Gn with
probability gretter than ϵn(1

λ), then we can conclude that AdvpropA,S (1
λ) =

∑
i∈JnK ϵi(1

λ)

is negligible, as the finite sum of negligible functions is also negligible.

Another proof technique used in this manuscript is the hybrid argument [FM21]. A
hybrid argument is a fundamental proof technique used to show the indistinguishability
of two probability distributions, here the distributions of M0 and M1. It is based on a
game hopH0, . . . ,Ht, for t ∈ N (here t is a constant value, but it can be up to polynomial
in the security parameter of the scheme [FM21]), such that the difference between any
Hi and Hi+1 is always the same negligible change (up to indexation) and the probability
of winning against the last game is negligible.

Assessing the quality and relevance of a security reduction provided by a game hop
comes down to several key factors; which we list below.

Adversarial Model. A reduction is meaningful only when it relies on realistic as-
sumptions on the adversary trying to break the system. This means that it must ac-
curately take into account the capabilities of potential attackers. A robust adversarial
model takes into account all the possible methods that an adversary could use. One of
the most widely used models in black box cryptography is the standard model, which
describes the adversary as any probabilistic polynomial-time algorithm interacting with
a challenger. Other adversarial models with more restricted adversaries are discussed in
more detail in Section 2.4.2.

Tightness of the Reduction. A reduction is considered tight if the security guaran-
tee of the cryptographic scheme closely matches (up to a constant factor) the assumed
difficulty of the underlying problem. For instance, if breaking a cryptosystem with a
probability p translates into solving an underlying problem with a probability c · p for a
constant c expected to be as small as possiblen then this is a tight reduction since:

Pr[A breaks the scheme] = c · Pr[B solves the hard problem].

The chances of solving the difficult problem in the event of an adversary breaking
the property of the scheme are directly proportional for any given security parameter.
However this is not always the case. Some reductions show that breaking the cryptosys-
tem with probability p results in solving the underlying problem with probability p/q,
where q is a polynomial in the security parameter. This is still a polynomial reduction
and p/q is proportional to p but the probability of finding a solution to the hard problem
is significantly smaller than p. When q has a high degree polynomial, the reduction is
considered loose. It should be emphasised that there is no clear characterisation in the

Chapter 2. Technical Background 29

literature defining when a reduction becomes loose, though it remains a polynomial re-
duction. Loose reductions typically provide less confidence in the security of the scheme
compared to tight reductions.

Efficiency of the Reduction. The reduction should be possible to carry out. For
example, if a reduction requires large lookup tables to be stored, then a large amount
of memory is needed to run the algorithm prescribed by the reduction in order to solve
the hard problem. Running the algorithm may even be unpractical despite the potential
polynomial reduction that has been achieved if the memory required is too big.

Assumption Strength. The quality of a proof also depends on the assumptions it
makes. Assumptions grounded in widely accepted hard problems (e.g., the hardness
of factoring large integers or the discrete logarithm problem) lend more credibility and
robustness to the security guarantee provided by the reduction than thoses grounded in
less studied problems.

The emergence of quantum computers has opened up new perspectives and the long-
standing problem could be abandoned in favour of new problems that would withstand
the algorithms executed by this new type of computer. We do not discuss these prob-
lem whithin this work as it is out of the scope of this work. In general formalising
new anonymity properties transcend cryptographic security assumptions even so the
instantition of the schemes might not.

2.3 Mathematical Background

We will now examine the mathematical context and requirements of the following chap-
ters. We begin with the notion of groups.

Definition 4: Group

A group (G, ·) is a pair where G is a set of elements and · : G×G→ G a function
verifying:

Associativity. For all a, b and c ∈ G, (a · b) · c = a · (b · c).

Identity Element. There exists an element 1G ∈ G called the identity element,
such that for all a ∈ G, 1G · a = a = a · 1G. This element will be abbreviated
later as 1.

Inverse Element. For all a ∈ G, there exists an unique element a−1 ∈ G such
that a · a−1 = 1G = a−1 · a.

We generally refer to a group only by means of its set of elements G. Let g ∈ G
and k ∈ N, denote gk = g · . . . · g as the repetition of the operation · to k elements
equal to g. For a vector m = (m1, . . . ,mn) ∈ Gn and an integer µ, the notation mµ

indicates the vector (mµ
1 , . . . ,m

µ
n) where all the operations have been applied to all

elements independently.

Chapter 2. Technical Background 30

Definition 5: Generator of a Group

Let (G, ·) be a finite group (G is a finite set). We say that g is a generator of (G, ·)
if G = {gk|k ∈ Z}. If such an element g ∈ G exists, the group G is called cyclic.

Definition 6: Equivalent Classes

An equivalence relation R on a set X is a binary relation satisfying the three
following properties:

Reflexivity. a R a for all a ∈ X.

Symmetry. a R b implies b R a for all a, b ∈ X.

Transitivity. if a R b and b R c then a R c for all a, b, c ∈ X

The equivalence class of an element a ∈ X is denoted as [a]R = {x ∈ X : a R x}.
We may omit the relation R when it is clear from the context. In this manuscrit, only
one is considered : R = {(m,m′) ∈ Gl ×Gl | ∃µ ∈ Zp,m′ = mµ}.

Definition 7: Bilinear Pairing

Let G1, G2 and Gt be three groups of prime order p. A bilinear pairing map
e : G1×G2 → Gt is a polynomial-time computable mapping, satisfying the following
properties:

Bilinearity. For all g1 ∈ G1, g2 ∈ G2, for all a, b ∈ Z, it holds that e(ga1 , gb2) =

e(g1, g2)
ab.

Non-degeneracy. For all g1 ∈ G1 and g2 ∈ G2, it holds that e(g1, g2) = 1 =⇒
g1 = 1 or g2 = 1.

Bilinear pairings have been classified based on the relation between their base groups
G1 and G2.

Type 1. G1 = G2, these pairing are said to be symmetric.

Type 2. G1 ̸= G2 and there exists a polynomial-time homomorphism ϕ : G1 → G2.

Type 3. G1 ̸= G2 and their is no known polynomial-time homomorphism between G1

and G2.

In this manuscript we only consider pairing of type 3 as it required for specific
primitives used in this work such as the SPS signature scheme from [FHS19] described
in Figure 2.1. Moreover it seems to be stronger against existing attacks.

2.4 Cryptographic Background

Cryptographic assumptions are presumably intractable problems that form the founda-
tion of provably secure cryptography. We provide the assumptions necessary for our

Chapter 2. Technical Background 31

work in Section 2.4.1. They form the basis of the security of the primitives introduced
in Section 2.4.2, which are then used as our building blocks in Chapter 3 and 4.

2.4.1 Cryptographic Assumptions

One of the fundamental problems in cryptography is named after Whitfield Diffie and
Martin Hellman. It was originally proposed in their seminal work [DH76].

Definition 8: Decision Diffie-Hellman (DDH) problem

Let G be a group generated by a random generator g. Let a and b be two random
values in Z|G|. Given (g, ga, gb, gz) ∈ G4, the Decisional Diffie-Hellman (DDH)
problem requires determining whether z = a·b or z is sampled uniformly at random.

The hardness of the DDH problem implies hardness of the Discrete Logarithm (DL)
problem.

Definition 9: Discrete Logarithm (DL) problem

Let G be a group generated by a random generator g. Let a and b be two random
values in Z|G|. Given (g, gx) ∈ G2, the Discrete Logarithm (DL) problem require
to return x with non-negligible probability.

Now, consider the relation R over a group G of prime order p defined by R =

{(m,m′) ∈ Gl ×Gl | ∃µ ∈ Zp,m′ = mµ} implying an equivalence classes [M]R ⊂ G for
an element M ∈ Gl. We can formulate the Class-hiding problem as follows.

Definition 10: Class-hiding

Let l > 1 be an integer, and G a group. G is class-hiding if for all PPT adversaries
A, the following probability is negligible:

Pr

[
b

$←− {0, 1}, M $←− (G∗)l, M (0) $←− (G∗)l,
M (1) $←− [M]R, b∗ ← A(M,M (b))

: b = b∗

]
.

Lemma 1: Fuchsbauer et al. [FHS19]

Let l > 1 be an integer, and G be a group of prime order p. Then G is a class-hiding
if and only if the DDH assumption holds in G.

2.4.2 Cryptographic Models

To enable security proofs, models defining the adversary’s capabilities have been studied
and offer various guarantees and security levels. They range from the standard model,
which imposes no restrictions on the adversary’s algorithm capabilities excepting, in
most, but not all cases, the limitation of its computational power: “the adversary A is a
probabilistic polynomial-time algorithm”, to more restricted models such as the Random

Chapter 2. Technical Background 32

Oracle Model (ROM) [BR93] or the Generic Group Model (GGM) [Mau05]. We describe
them below. We discuss the ROM as most construction introduced in the Chapter 3 and
Chapter 4 rely on it and the GGM, because our schemes of Chapter 4 use a building block
whose security has been proven in this model. This building block comes from [FHS19]
and is described in Figure 2.1. Therefore, the security of our signatures of Chapter 4
depends on it.

Technical Summary

The ROM and GGM are heuristic models used to carry out cryptographic security
arguments. Their use limits the confidence placed in the proof of security. In the
ROM, cryptographic signature schemes or encryption schemes can be shown to be
secure, whereas when instantiated with any real hash function, trivial attacks be-
come possible [CGH04, GR04]. On the other hand, the GGM assumes a limitation
on the adversary’s capabilities and therefore does not cover the full range of actions
that could be performed by an adversary. However, no non-artificial scheme proven
within these models has ever been shown to be unsafe. The preferred model is
therefore the standard model, in which no heuristic have been made about the ad-
versary or other parts of the system, and the other models still provide confidence
in the security of the schemes.

Hash Functions and the Random Oracle Model.

Definition 11: Hash Function

A cryptographic hash function H : {0, 1}∗ → {0, 1}λ is a deterministic polynomial-
time algorithm mapping an arbitrary-length message to a bitstring of fixed size λ,
called the hash value or message digest. Cryptographic hash functions are assumed
to be collision resistant as defined below.

Collision Resistant [Dam87]: there is no known polynomial-time algorithm capable
of finding x ∈ {0, 1}∗ and x′ ∈ {0, 1}∗ such that H(x) = H(x′) and x ̸= x′ with
non negligible probability.

The Random Oracle Model (ROM) [BR93] is an heuristic often used in order to
prove the security of cryptographic primitives based on hash functions. It provides an
idealised hash function, which providies uniformly distributed random elements for each
input queried to the function and returns consistent answers when queried twice with
the same input. For this function to be instantiated it would require mapping tables,
i.e., arrays, to store the input queries with the corresponding output. The description
of such a function is exponential in the size of the inputs and outputs. It follows
that such a function may only be an idealised object, as we do not know if efficiently
computable functions with this property do exist. In practice, real-world applications
rely on cryptographic hash functions to instantiate random oracles.

Under this heuristic model, some artificial signature and encryption schemes can be
proven secure, any instantiation thereforce using a non-ideal hash function would makes
them vulnerable [CGH04, GR04]. This demonstrate that a proof in random oracle model
does not guarantee the same security as the standard model. However, no proven non-

Chapter 2. Technical Background 33

artificial scheme in the ROM has yet been broken, hence this model seems to provide
strong evidence of security [KM15]. Hence, a security proof in the random oracle model
can indicate the security of a cryptographic protocol, through it remains weaker in terms
of guarantiees than a proof in the standard model.

Definition 12: Random Oracle Model

A cryptographic scheme is secure in the random oracle model (ROM) when its
security proofs requires that any hash function H : {0, 1}∗ → {0, 1}λ be replaced
by a black box function H (called the random oracle) defined as follows for a set
Out initialised as the empty set (i.e., Out← ∅):

Oracle H(m)

1 : if ∃h ∈ {0, 1}λ, (m,h) ∈ Out,

2 : return h

3 : h
$←− {0, 1}λ

4 : Out← Out ∪ {m,h}

5 : return h

In this manuscript, we prove specific security properties within the framework of the
random oracle model.

Generic Group Model (GGM). The Generic Group Model (GGM) [Mau05] ab-
stracts the capabilities of an adversary by restricting their computations to operations
within a group, without allowing them to exploit the group underlying structure. The
model assumes that group elements do not reveal any information about the group’s
underlying structure that could be used to break cryptographic problems. To this end,
an oracle provides random encodings of group elements that remain consistent across
queries, and algorithms accessing these encodings can only perform group operations
or check for equality. Although it has limitations similar to the random oracle model,
since in real-world scenarios the underlying group structure is usually known and can be
exploited, the GGM is widely used for proving the security of cryptographic schemes,
such as (EC)DSA [FKP16] or Structure-Preserving Signatures [FHS19].

2.5 Cryptographic Building Blocks

The cryptographic literature is extensive with many well-studied primitives, some of
which are used as building blocks to our work. In this section, we present the key
primitives used in the following chapters and detail their individual properties.

Signature Schemes. Digital signatures are the analogue of paper signatures, attest-
ing that a message was issued by a given person or entity. They are working in the same
way as hand-written signatures, with the same expected properties. Unlike hand-written
signatures, unforgeability is attained based on computational problems, and therefore

Chapter 2. Technical Background 34

offers more guarantees than pen-and-paper signatures when one can correctly associate
digital signatures public keys to the entiies holding them.

Definition 13: Signature Schemes [PS00]

A signature scheme S is a set of algorithms composed of:

GenS(1
λ): is a PPT algorithm which takes as input a security parameter λ and

outputs a key pair (pk, sk).

SignS(sk,m): is a PPT algorithm which takes on input a message m and a secret
key sk and outputs a signature σ.

VerifS(pk,m, σ): is a deterministic polynomial-time algorithm, which takes as input
a public key pk, a message m, a signature σ and outputs either 0 or 1.

We require that S meets Correctness and EUF-CMA as defined below.

Correctness. Ensures the validity of an honestly produced signature. For all λ ∈ N, for
allm ∈M and for all (sk, pk) ∈ [GenS(1

λ)], we have VerifS(pk,m,SignS(sk,m)) = 1.

EUF-CMA (Existantial Unforgeability under adaptative Chosen-Message Attacks). The
property ensures that only the person holding the secret key can generate a valid
signature for the associated public key. For all PPT algorithms A, there exists a
negligible function ϵ such that for any security parameter λ, the following holds
AdvEUF-CMA

A,S (1λ) = Pr[ExpEUF-CMA
A,S (1λ) = 1] ≤ ϵ(1λ) where ExpEUF-CMA

A,S (1λ) is as
follows.

ExpEUF-CMA
A,S (1λ)

1 : Out = ∅

2 : (pk, sk)← GenS(1
λ)

3 : (m∗, σ∗)←− AOSignS(sk,·)(pk)

4 : b←− VerifS(pk,m
∗, σ∗)

5 : if m∗ ∈ Out : return 0

6 : else return 1

Oracle OSign(sk,m)

1 : Out← Out ∪ {m}

2 : σ ← SignS(sk,m)

3 : return σ

Asymmetric Encryption Scheme. Data confidentiality has been one of the main
concerns of cryptography, even before authentication. Asymmetric encryption makes
it possible to send an encrypted message on the basis of public knowledge (the public
key) and its decryption is only possible for the entity holding the associated private
knowledge (the private key).

Definition 14: Asymmetric Encryption [GM84]

An asymmetric encryption scheme E is a set of PPT algorithms composed of:

GenEnc(1
λ): is a PPT algorithm which takes on input a security parameter λ, out-

puts a key pair (pk, sk).

Chapter 2. Technical Background 35

Enc(pk, p): is a PPT algorithm which computes and outputs a ciphertext c on the
message m using the public key pk.

Dec(sk, c): is a deterministic polynomial time algorithm, which takes as input a
secret key sk, and a ciphertext c and outputs a plaintext p.

We require that E meets Correctness and IND-CCA as defined below.

Correctness. For all message m, for all security parameter λ ∈ N, for all (sk, pk) ∈
[GenEnc(1

λ)], we have Dec(sk,Enc(pk,m)) = m.

IND-CCA (Indistinguishable under adaptative Chosen Ciphertext Attack). Guarantees
that only the person holding the secret key can distinguish a ciphertext from a
random element, even if access to other choosen decrypted messages is provided.
For all PPT adversaries A which is provided a decryption oracle ODec(sk,·) (which
rejects the challenge c when inputted), the following quantity is at most negligible.∣∣∣∣∣Pr

[
(sk, pk)← GenEnc(1

λ), (m0,m1)← A
ODec(sk,·)
1 (pk)

b
$←− {0, 1}, c← Enc(pk,mb), b

∗ ← AODec(sk,·)
2 (c)

: b = b∗

]
− 1

2

∣∣∣∣∣
Other levels of security for asymetric encryption schemes exist, for example IND-CPA,

which is equivalently defined but this time without the decryption oracle access be-
ing given to the adversaries algorithms A1 and A2. Existing models are defined and
compared in [WSI02]. We only introduced the ones which are required to ensure the
properties of our constructions.

Classical example of a asymetric encryption is Elgamal encryption [ElG85], defined
for a group G of prime order p with a generator g, by the following algorithms:

GenEnc(1
λ): picks sk

$←−Z∗
p and computes pk = gsk. Returns (pk, sk).

Enc(pk,m): draws y $←− Z∗
p and returns c = (c1 = gy, c2 = m · pky).

Dec(sk, c): parses c as (c1, c2) and returns m = c2 · c−sk
1 .

Elgamal is partially homomorphic, i.e., there exists an efficient operation · such that
Enc(pk,m)·Enc(pk,m′) = Enc(pk,m ·m′), and randomizable, i.e., there exists an efficient
algorithm Rand that changes a ciphertext c into a new ciphertext c′ of the same plaintext:

Rand(c, r, pk): parses c as (c1, c2) and returns c′ = (c′1 = c1 · gr, c′2 = c2 · pkr).

Property 1

The Elgamal encryption scheme described above is IND-CPA secure under the DDH
assumption.

Elgamal encryption does not guarantee IND-CCA security as defined above, as it is
a randomisable encryption scheme. Another reason is that Elgamal encryption is ho-
momorphic, which also prevents IND-CCA security from being achieved. It has recently
been shown that Elgamal encryption does not achieve even the non-adaptive variant
of IND-CCA [Sch24], in which the adversary A2 does not have access to a decryption
oracle Dec(sk, ·), hence cannot make decryption requests after receiving the challenge c.

Chapter 2. Technical Background 36

Commitment. A Commitment allows one party (the committer) to commit to a value
while keeping it hidden. The commiter then has the ability to reveal the committed value
whenever it is needed.

Definition 15: Commitment

A commitment is a tuple of PPT algorithms:

Setup(1λ) is a PPT algorithm that outputs parameters pp containing the definition
of the commitment space.

Commit(x, r) is a PPT algorithm that, on input a message x and some randomness
r in a set R outputs a commitment c.

Open(x, c, r) is a PPT algorithm that, on input a message x, and values r and c

outputs either 0 or 1.

We require that a commitment meets the Hiding and Binding properties as
defined below.

Prefect Hiding. The Hiding property ensures that the commitment c does not reveal
any information about the committed value x. For all PPT adversaries A it is
expected that:∣∣∣∣∣Pr

[
pp← Setup(1λ), (x0, x1)← A(pp)
b

$←− {0, 1}, r $←− R, c← Commit(xb, r), b
∗ ← A(c)

: b = b∗

]
− 1

2

∣∣∣∣∣ = 0.

Computationally Binding. The binding property ensures that once the committer
has chosen a value x and created a commitment c, it cannot open the commitment
with a value x′ that would be different fro the first one. For all PPT adversaries
A the following probability is at most negligible,

Pr

[
pp← Setup(1λ),

(x, x′, r, r′, c)← A(pp)
:

Open(x, c, r) = Open(x′, c, r′)

x ̸= x′

]
≤ ϵ(1λ).

Structure-Preserving Signature. Full named Structure-Preserving Signatures for
Equivalence Classes, these are signatures on mathematically structured messages. Orig-
inally issued for a message, the signature can be freely (without the usage of any secret
key) adapted to any given element in the equivalence class of the original messages. In
addition to the classic properties of correctness and unforgeability (EUF-CMA) that ap-
ply to any signature scheme, the adaptation process must be ambiguous: distinguishing
whether the signature has been updated with the message or whether a new one has
been produced based on a new message, should be unfeasible.

Definition 16: Structure-Preserving Signatures [FHS19]

A Structure-Preserving Signatures for Equivalence Classes SPS for an equivalence
classe R over a group G is a set of algorithms composed of:

Chapter 2. Technical Background 37

GenSPS(1
λ, l;R): is a PPT algorithm which takes as input a security parameter λ

and an integer integer l > 1. It returns a key pair (pk, sk).

SignSPS(sk,m;R): is a PPT algorithm which takes as input a secret key sk and a
message m. It returns a signature σ.

ChgRepSPS(m,σ, µ, pk;R): is a PPT algorithm which takes as input a representative
m of an equivalence class, a signature σ, a scalar µ, and a public key pk. It
returns an updated signature σ′ for the message mµ.

VerifSPS(m,σ, pk;R): is a deterministic polynomial-time algorithm, which takes as
input a public key pk, a message m, a signature σ. It returns either 0 or 1.

We require that SPS meets Correctness, EUF-CMA and Signature Adaptation as
defined below.

Correctness. LetR be a relation. For all l ∈ N, for all security parameters λ, (pk, sk) ∈
[GenSPS(1

λ, l;R)], m ∈ Gl, and µ ∈ Z∗
p, the following equations should be true :

VerifSPS(m,SignSPS(sk,m;R), pk;R) = 1 and

VerifSPS(µm,ChgRepSPS(m,SignSPS(sk,m;R), µ, pk;R), pk;R) = 1.

EUF-CMA (Existantial Unforgeability under adaptative Chosen-Message Attacks). Let
l > 1 and λ a given security parameter. The probability,

Pr

[
(pk, sk)← GenSPS(1

λ, l;R),
(m∗, σ∗)← ASignSPS(·,sk;R)(pk, l)

:
∀m ∈ S,m∗ /∈ [m]R∧
VerifSPS(m,σ, pk;R)

]
should be negligible for every PPT adversary A, where S is the set of message
queries that A has issued to the signing oracle.

Signature Adaptation. Randomised signatures must be indistinguishable from new
signatures. Let l > 1 and λ the security parameter, and consider any key pair
(pk, sk) ∈ [GenSPS(1

λ, l;R))], µ ∈ Z∗
p and m ∈ Gl. For all tuples (sk, pk,m, σ, µ) the

distributions of the signature algorithm SignSPS(sk,m;R) and an update signature
generation algorithm ChgRepSPS(m,σ, µ, pk;R) are identical.

Throughout this manuscript, we set the relationR over a group G toR = {(m,m′) ∈
Gl × Gl | ∃µ ∈ Zp,m′ = mµ} defining equivalence classes [M]R ⊂ G for all elements
M ∈ Gl. As we have established and fixed the relation R, we will no longer explicitly
write it when referring to the algorithms of an SPS scheme.

We have designed our models and the signature introduced in Chapter 4 with the
Structure-Preserving Signatures for Equivalence Classes introduced by Fuchsbauer et
al. [FHS19] in mind. The scheme details can be found in Figure 2.1 on the next page.
In [FHS19], key generation involves the creation of l elements in the keys enabling the
signing of messages of dimension l over G (i.e., m ∈ Gl). With a public key designed for
dimension l signatures, it is possible to sign lower-dimensional messages using a subset
of the generated elements and without security loss. We rely on this to instantiate
signatures for vectors with less than l elements.

Chapter 2. Technical Background 38

GenSPS(1
λ, l;R): chooses x ∈ (Z∗

p)
l and sets sk = x and pk = gx2 = (gx1

2 , . . . , gxl2).

SignSPS(sk,m;R): parses sk = x, m ∈ (G∗
1)
l, chooses y $←− Zp and computes

Z1 =

(
l∏
i=1

mxi
i

)y
; Y1 = g

1
y

1 ; Y2 = g
1
y

2 .

Returns σ = (Z1, Y1, Y2).
ChgRepSPS(m,σ, µ, pk;R): verifies the signature, chooses ψ $←− Z∗

p, and returns

(Zψµ1 , Y
1
ψ

1 , Y
1
ψ

2).

VerifSPS(m,σ, pk;R): parses pk = (pk1, . . . , pkl), m ∈ (G∗
1)
l and returns 1 if the

following holds and 0 otherwise:

l∏
i=1

e(mi, pki) = e(Z1, Y2) ∧ e(Y1, g2) = e(g1, Y2).

Figure 2.1: SPS Signature Scheme from [FHS19].

Secret Sharing. Secret Sharing is used to distribute a secret or a piece of sensitive
information to a group of participants in such a way that only specific subsets of partic-
ipants can recover the secret. The basic principle is to divide the secret into shares or
parts, which are distributed amongst the participants. These parts do not individually
reveal any information about the secret, but when all parts are combined, the original
secret can be reconstructed. We present here a simple model where all part are required
to recover the secret.

Definition 17: Secret Sharing [Sha79]

A secret sharing scheme SS amongst n participants is given by:

Split(m,n)→ (si)1≤i≤n: is a PPT algorithm that takes as parameters n and a mes-
sage m and returns a vector of shares (si)1≤i≤n.

Recover((si)1≤i≤n)→ m: is a deterministic polynomial-time algorithm that takes
a vector of shares (si)1≤i≤n and returns a message m.

It must verify the correctness described by the equality Recover(Split(m,n)) = m

and achieve Perfect Secrecy as defined below.

Perfect Secrecy. Recovering a message m split for a threshold of k with less than k

shares is unfeasible. The experiment Expperf-SecA,SS (1λ) for an adversary A and for a
secret sharing scheme is defined as:

Chapter 2. Technical Background 39

Expperf-SecA,SS (1λ) - (Perfect Secrecy)

1 : m0,m1, n, k ← A(λ) // The value k must be contained in the set {1, . . . , n}.

2 : b
$← {0, 1}

3 : (si)1≤i≤n ← Split(mb, n) // Split one of the messages based on a uniform distribution.

4 : b′ ← A((si)1≤i≤n,i̸=k) // Here A must operate Recover with one less share than necessary.

5 : return (b = b′)
and for any adversary it should lead to:

Advperf-SecA,SS (1λ) =
∣∣Pr[Expperf-SecA,SS (1λ) = 1]− 1/2

∣∣ = 0.

The threshold version in which the minimum number of parts required to retieve the
secret can be set to any number do exist. A notable example of this is Shamir’s secret
sharing scheme [Sha79], which is based on Lagrange polynomials.

We remain in our model for secret sharing scheme without threshold and described
a scheme according to our Definition 17 in Figure 2.2.

Split(m ∈ {0, 1}k, n)
1 : s1, . . . , sn−1

$←− {0, 1}k

2 : sn ← m⊕
n−1⊕
i=1

si

3 : return (si)
n
i=1

Recover(s1, . . . , sn)

1 : m←
n⊕

i=1

si

2 : return m

Figure 2.2: Description of the Secret Sharing Scheme.
(For any k ∈ N sufficiently large for the inclusion.)

Zero-knowledge Proofs. Our constructions also make use of Non-Interactive Zero-
Knowledge proofs of knowledge (NIZK) [GMR89]. A Zero-Knowledge Proof (ZK) is used
to prove knowledge of a secret solution for a public statement by interacting with the
verifier. This statement is often a computationaly hard problem. For example, we will
present an example of a proof demonstrating knowledge of the discrete logarithm of
an element of a group. Interaction in ZK proofs reduces their practicality, often their
non-interactive counterpart NIZK proofs are prefered to reduce the overheads associated
with additional communication. These primitives must have the following properties:

Perfect-Completeness. If the statement is true, an honest verifier will be convinced
at the end of the procedure.

Soundness. If the statement is false, no cheating prover can convince an honest verifier
that the statement is true.

Zero-knowledge. The verifier learns nothing other than the fact that the statement is
true.

Let R be a binary relation and ϕ,w two elements verifying (ϕ,w) ∈ R, ϕ is called
the statement of the relation and w the witness. A NIZK is a cryptographic primitive

Chapter 2. Technical Background 40

allowing a prover knowing a witness w that w and ϕ verify the relation R, i.e., (ϕ,w) ∈
R, leaking no information on w. Let LR denote the language associated to the binary
relation R defined by LR = {ϕ|∃w, (w, ϕ) ∈ R}. Let us denote View(P,V(x)) the view
of the messages sent an received by V when interacting with P on common input x.

Definition 18: Zero-Knowledge Proof of Knowledge

A Zero-Knowledge Proof of Knowledge between a prover P and a verifier V for a
family of languages L with relation R is any pair of PPT algorithms such that

Setup(1λ): is a PPT algorithm which takes as input a security parameter 1λ, and
returns the public parameters pp which are inplicit inputs of all the other
algorithms.

Prove(P(x),V(ϕ)): is a two party protocol between P and V with V outputting a
bit b ∈ {0, 1}.

Zero-knowledge proof of knowledge must achieve Completeness, Soudness, Honest
Verifier Zero-Knowledge and Extractability as defined below.

Perfect Completeness. The proof system (P,V) for a family of languages L with
relation R satisfies perfect completeness if for any statement ϕ with a witness w,
it holds that:

Pr[pp← Setup(1λ), (ϕ,w)
$←− R : Prove(P(x),V(ϕ)) = 1] = 1.

Soundness. A ZK proof system for a family of languages L with relation R provides
soundness if for any outcome of Setup(1λ), for any ϕ /∈ LR, for all unbounded
(resp. PPT) adversary A:

Pr[Prove(A(pp, ϕ),V(ϕ)) = 1] = 0 (resp. ≤ ϵ(1λ)).

Honest Verifier Zero-Knowledge. The proof system (P,V) for a family of languages
L with relation R satisfies the Honest Verifier Zero-Knowledge if there exists a
probabilistic simulator Sim running in expected polynomial-time such that for all
pp ∈ [Setup(1λ)] and for all statements ϕ, the distribution of View(Prove(P(w),
A(ϕ))) and Sim(pp, ϕ) are indistinguishable. This indistinguishability can either
hold computationaly or statistically.

Extractability. The proof system (P,V) for a family of languages L with relation R
satisfies extractability if there exist a polynomial-time knowledge extractor Ext and
a negligible function ϵ(1λ) such that, for all pp ∈ [Setup(1λ)], for all statement ϕ,
for any algorithmASim(·,·) that outputs a fresh statement (s, π) with VerifZK(s, π) =

1 such that A has access to a simulator that forges proofs for chosen statements,
ExtA, having access toA, outputs w such that (s, w) ∈ R with probability 1−ϵ(1λ).

Schnorr Proof and Σ-Protocol. The Schnorr zero-knowledge proof, described be-
low, allows a prover to demonstrate knowledge of a secret x ∈ Z∗

p, a discrete logarithm

Chapter 2. Technical Background 41

value, by only revealing the public information y = gx, for a generator g of a group G
of primer order p. It is an interactive proof of knowledge where the proof protocol takes
place in three stages: the prover sends a commitment to the verifier, the verifier sends
a challenge to the prover and the prover sends a final response which is verified by the
verifier. Let x be the prover’s witness and y = gx its statement. The protocol ensuring
that the verifier, generating the challenge, and verifying the proof, learns nothing on x

beyond the validity of the statement and the value of y.

Commitment: The prover selects a random value r ∈ Z∗
p and computes the commit-

ment C = gr.

Challenge: The verifier sends a random challenge c ∈ Z∗
p to the prover.

Response: The prover computes s = r + cx, where x is the prover’s secret and r the
random value used for the commitment. The value s is sent back to the verifier.

The verifier then checks the validity of the proof by verifying that

gs ≡ C · yc.

This type of proof are called Σ-protocols [Sch91].

Definition 19: Σ-Protocol [Sch91]

Let L be a family of languages with relation R and let λ be a security parameter.
Let C be a challenge space of size the security parameter λ. A Σ-Protocol Π for a
language L is a 3-move protocol between a prover P and a verifier V consisting of
a tuple of algorithms Π = (A, C, Z) with the following interfaces:

Setup(1λ): is a PPT algorithm which takes as input a security parameter λ and
returns public parameters pp which are inplicit inputs of all the other algo-
rithms.

A(ϕ,w) (Commitment): is a PPT algorithm which takes as input a statement ϕ,
the corresponding witness w, such that R(ϕ,w) = 1, and outputs the first
message a that P sends to V in the first round. It also outputs an element r.

c
$←− C (Challenge): is the sample of a random challenge c, that V sends to P in

the second round.

Z(ϕ,w, c, r) (Response): is a PPT algorithm which takes as input the statement
ϕ, the witness w, the challenge c and the element r. Outputs the message z
that P sends to V in the third round.

VerifZK(ϕ, a, c, z) (Verification): is a deterministic polynomial-time algorithm run
by V which takes as input the statement ϕ, prover’s messages a, z, and the
challenge c, this algorithm run by V , outputs a bit b ∈ {0, 1}.

Chapter 2. Technical Background 42

We require that the ZK proof system (Setup, (A,Z,VerifZK)) Σ-Protocol guaran-
tees Completeness, Soudness, Honest Verifier Zero-Knowledge and Extractability
as defined previously.

Non-Interactive Zero-Knowledge Proof. As we have seen, zero-knowledge proofs
are systems executed between a prover and a verifier. Of all the existing zero-knowledge
proofs, a subset requires no more than one message sent by the prover to the verifier.
This message is often referred to as a proof and is denoted by π. Below we give a refined
definition of a zero-knowledge proof that requires no interaction between the prover and
the verifier and for which the verifier (or any verifier) can be convinced only by seeing
the statement ϕ and the proof π.

Definition 20: Non-Interactive Zero-Knowledge Proof [GM17]

A Non-Interactive Zero-Knowledge proof (NIZK) for a family of languages L with
relation R is a set of PPT algorithm composed of:

Setup(1λ): is a PPT algorithm which takes as input a security parameter λ and
returns the public parameters pp which are inplicitly input to all the other
algorithms.

ZK(w;ϕ): is a probabilistic polynomial-time process, which takes as input a witness
w for a statement ϕ and returns a proof π that (ϕ,w) ∈ R.

VerifZK(ϕ, π): is a deterministic polynomial-time algorithm, which takes as input
an instance ϕ and a proof π, and returns either 0 or 1.

We require that NIZK satisfies completeness, soundness, and zero-knowledge, as
defined below. ZK proofs may also meet Knowledge-extraction as defined below.

Perfect Completeness (NIZK). A NIZK proof for a family of languages L with rela-
tion R satisfies perfect completeness if given a valid statement, a honest prover
with a witness can convince the honest verifier:

Pr[pp← Setup(1λ), (ϕ,w)
$←− R, π ← ZK(ϕ,w) : VerifZK(ϕ, π) = 1] = 1.

Soundness. A NIZK proof for a family of languages L with relation R satisfies perfect
(resp. computational) soundness if for any pp ∈ [Setup(1λ)], for any statement
ϕ /∈ LR, for all unbounded (resp. PPT) adversary A, it holds that:

Pr[π ← A(pp, ϕ) : VerifZK(ϕ, π) = 1] = 0 (resp. ≤ ϵ(1λ)).

Zero-knowledge. A NIZK proof guarantees zero-knowledge if it does not disclose any
additional information other than the truth of the instance (ϕ,w) ∈ R. This is
modeled based on the ability to distinguish between an honestly-generated proof
and a simulator generating valid proofs without holding the witness based on
a trapdoor information. A NIZK proof for a family of languages L with rela-
tion R provides perfect (resp. computational) zero-knowledge if there exists a

Chapter 2. Technical Background 43

probabilistic simulator Sim running in expected polynomial-time such that for all
pp ∈ [Setup(1λ)], for all statements ϕ, for all PPT (alternatively unbounded) ad-
versary A, AdvSimA,NIZK(1

λ) = |Pr[ExpSimA,NIZK(1
λ)] − 1/2| = 0 (resp. ≤ ϵ(1λ)) for

ExpSimA,NIZK(1
λ).

ExpSimA,NIZK(1
λ)

1 : b
$←− {0, 1}

2 : if b = 0, π ← ZK(pp, ϕ, w)

3 : if b = 1, π ← Sim(pp, ϕ)

4 : b∗ ← ASim(pp, ϕ, π)

5 : return b = b′

We also sometime require knowledge extractability for NIZK proofs. This property
implies the soudness of the proof [Cou17].

Knowledge-extraction. An NIZK scheme is Knowledge-extractable if, whenever a
prover produces a valid argument, it is possible to extract a valid witness from
their state information, i.e., if there exists a PPT algorithm Ext called the knowl-
edge extractor such that, for all statements ϕ, for all pp ∈ [Setup(1λ)], for all
ϕ ∈ LR, for all PPT (alternatively unbounded) adversary A, the advantage
AdvExtA,NIZK(1

λ) = |Pr[ExpExtA,NIZK(1
λ)] − 1/2| ≤ ϵ(1λ) for ExpExtA,NIZK(1

λ) defined as
follows.

ExpExtA,NIZK(1
λ)

1 : π∗ ← ASim(pp, ϕ)

2 : w ← Ext(A(pp, ϕ))

3 : return Verif(ϕ, π∗) ∧ (ϕ,w) /∈ R

We have stated that NIZK proofs are a subset of all ZK proofs. In reality, their
exists an efficient transformation, turning most existing ZK proofs into non-interactive
ones. This technique is the Fiat–Shamir transformation [FS87] which has been proven
secure in the random oracle model [PS00]. Based on this transformation, all sigma zero-
knowledge proof protocols can be made non-interactive. Throughout the rest of this
thesis, we use the Camenisch and Stadler notation [CS97a], i.e., ZK{w : (w, s) ∈ R}
denote the proof of knowledge of w for the statement s and the relation R.

Fiat-Shamir Transformation. Now we give the formal definition of the Fiat-Shamir
transform, converting any Σ-Protocol into a NIZK by replacing the verifier’s challenge
with a hash of the commitment and the other state elements. Under the random oracle
heuristic this can provide a uniform distribution over the set of challenges.

Chapter 2. Technical Background 44

Definition 21: Fiat-Shamir Transformation [FS87]

Let Π be a Σ-Protocol defined as in Definition 19 on page 41. The Fiat-Shamir
Transformation of Π is the NIZK proof scheme ΠNI defined as follows:

Setup(1λ): generates pp′ using the setup algorithm of Π, chooses a hash function
H : {0, 1}∗ → C and returns pp = (pp′, H).

ZK(ϕ,w) : runs a← A(ϕ,w), z ← Z(x,w, c← H(R∥ϕ∥a)) and returns π = (a, z).

VerifZK(ϕ, π): parses π = (a, z), runs and returns VerifZK(ϕ, a,H(R∥ϕ∥a), z).

Property 2: Security of the Fiat-Shamir transform

Let Π be a Σ-Protocol that is complete, sound, honest verifier zero-knowledge and
extractable, then the Fiat-Shamir transformation of Π is a NIZK proof scheme that
is complete, sound, zero-knowledge and extractable.

Proof. The proof of this property is given in [FS87]

Signatures of Knowledge. A Signature of Knowledge (SoK) is similar to a NIZK

except that the proof algorithm SoKm{w : (w, ϕ) ∈ R} defined similarly to ZK{w :

(w, ϕ) ∈ R} (also written as ZK(ϕ,w)) takes a message m as an additional parameter.
As a consequence, the knowledge-extraction of a SoK, similar to knowledge-extraction
of NIZK proofs, implies that it can be used as an EUF-CMA signature scheme, where ϕ
is the public key, w is the secret key, m is the signed message, and π is the signature.
We now give the formal definition of its algorithms.

Definition 22: Signature of Knowledge [GM17]

A Signature of Knowledge (SoK) for a familly of languages L, for a relation R and
a message spaceM is a set of PPT algorithms composed of:

SetupSoK(1
λ,R): is a PPT algorithm which takes as input a relation R and returns

public parameters pp.

SoKm(w;ϕ): is a PPT algorithm which takes as input a pair (ϕ,w) ∈ R and a
message m ∈M, and returns a signature σ.

VerifSoK(ϕ,m, σ): is a deterministic polynomial-time algorithm which takes as input
an instance ϕ, a message m, and a signature σ and outputs 0 or 1.

We require that SoK satisfies correctness, zero-knowledge, and soundness as
defined below. SoK may also meet Knowledge-extraction as defined below.

We now present the security model of signatures of knowledge, which is based on the
security model for NIZK proofs. Indeed, as we shall see, the Fiat-Shamir framework can
be adapted to provide SoK from a ZK proof instead of NIZK. The security requirements

Chapter 2. Technical Background 45

for SoK include only an additional message m in the proof algorithm (called signing
algorithm for signatures of knowledge) and the verification algorithm.

Correctness. Analogous to Perfect completeness of NIZK. A signature of knowledge
is correct if, for a given relation R, ∀λ ∈ N, ∀(ϕ,w) ∈ R, ∀m ∈ M , ∀pp ∈
[SetupSoK(1

λ,R)], ∀σ ∈ [SoKm(w;ϕ)], it holds that Pr[VerifSoK(ϕ,m, σ) = 1] = 1.

Soundness. A SoK proof system for a relation R satisfies the soundness property if,
for any pp ← Setup(1λ), for every statement ϕ /∈ LR, for all unbounded (resp.
PPT) adversary A,

Pr[(m∗, σ∗)← A(pp, ϕ) : VerifSoK(ϕ,m∗, σ∗)] = 0 (resp. ≤ ϵ(1λ)).

Zero-knowledge. A SoK has perfect (resp. computational) zero-knowledge if it does
not disclose any additional information other than the truth of the instance (ϕ,w) ∈
R. This is modeled based on the ability to distinguish between an honestly gen-
erated proof and a simulator generating valid proof without holding the witness,
solely relying on a trapdoor information. A SoK is zero-knowledge if there exists a
probabilistic simulator Sim running in expected polynomial-time such that, for all
pp ∈ [Setup(1λ)], for all statements ϕ, for all PPT (alternatively unbounded) adver-
sariesA, it holds that AdvSimA,NIZK(1

λ) = |Pr[ExpSimA,NIZK(1
λ)]| ≤ ϵ(1λ) (resp. ≤ ϵ(1λ))

for ExpSimA,NIZK(1
λ) define as follows for any (ϕ,w) ∈ R and for any m←M:

ExpSimA,SoK(1
λ)

1 : b
$←− {0, 1}

2 : if b = 0, σ ← SoKm(w;ϕ)

3 : if b = 1, σ ← Sim(pp,m, ϕ)

4 : b∗ ← ASim(pp, ϕ, σ)

5 : return b = b′

We also sometimes require knowledge extractability for SoK proofs. As in the case of
NIZK, knowledge extractability may also imply soudness.

Knowledge-extraction. A SoK scheme is Knowledge-extractable if whenever a valid
argument is produced it is possible to extract a valid witness from their state in-
formation, i.e., there exists a PPT algorithm Ext called the knowledge extractor
such that, for all pp ∈ [Setup(1λ)], for all statement ϕ, for all PPT (alterna-
tively unbounded) adversary A, for all ϕ ∈ LR, it holds that AdvExtA,NIZK(1

λ) =

Pr[ExpExtA,NIZK(1
λ)] ≤ ϵ(1λ) for ExpExtA,NIZK(1

λ).

ExpExtA,SoK(1
λ)

1 : (m∗, σ∗)← ASim(pp, ϕ)

2 : w ← Ext(A(pp,m, ϕ))

3 : return VerifSoK(ϕ,m, σ
∗) ∧ (ϕ,w) /∈ R

Chapter 2. Technical Background 46

The Fiat-Shamir framework provides a practical construction for converting any Σ-
Protocol into a NIZK proof. It is also possible to convert a Σ-Protocol into a signature
of knowledge [CS97b]. In Definition 21 on page 44, instead of generating the challenge
as H(R∥ϕ∥a), we embed a message m ∈ M in the hash function, then compute c ←
H(R∥ϕ∥a∥m) for the verifier’s challenge. This directly extends the transformation and
embeds the message into the proof without affecting the security of the NIZK, which
becomes a SoK. In fact, the two security models are closely related and differ only in
the message inclusion within the proof.

Chapter 3
Modeling Anonymity of Linkable Ring Signatures

Chapter Summary

In this chapter, we point out the imprecise modeling of linkable ring signatures
in 16 out of 18 schemes proposed in the literature. We highlight the inability
to guarantee the expected anonymity properties as is and identify discrepancies
between theoretical models and practical security needs. In light of this problem,
we present a refined model that better matches real-world expectations. Here are
our four main contributions:

• Model discrepancy: highlighting that current anonymity models for linkable
ring signatures fail to provide guarantees on the hiding of user identities for
more than one signature.

• Refined security: highlighting the model proposed by Backes et al. [BDH+19]
for LRS, which corresponds to practical needs but has been ignored in all
subsequent work.

• Practical alignment: showing that existing systems are implicitly designed for
this improved model and, for most of them, achieve this level of security.

• Classification: providing a complete hierarchy of the two existing anonymity
formalisms in the possible corruption models.

Contents
3.1 Introduction to the Chapter Content 48

3.2 Review of Linkable Ring Signatures Definitions 54

3.3 Anonymity in the Honest-Key Model 59

3.4 Anonymity of Linkable Ring Signatures 61

3.5 Insecurity of the One-time Anonymity 63

3.5.1 Toy Counter-example Scheme. 64

3.5.2 Model of k-Times Full Traceable Ring Signatures 65

3.5.3 Concrete Counter-example 67

3.6 Review of our Counter-examples 70

3.7 Literature Review . 70

3.8 Relationship Between the Properties 73

3.9 Conclusion of the Chapter 75

47

Chapter 3. Modeling Anonymity of Linkable Ring Signatures 48

3.1 Introduction to the Chapter Content

Ring signatures [RST01], digital signatures on behalf of ad hoc groups hiding which of
the entities created them, are amongst the most studied privacy-preserving signatures.
Over the years, they have been used in many real-world applications, making them one,
if not the most widely deployed type of privacy-preserving signatures. Their applica-
tions are numerous and include blockchains (Monero, based on CryptoNote [VS13]),
electronic voting [TW05], attestation [TW05], etc. These applications regularly require
a mitigation of the powerful property of anonymity brought by the original concept.

Anonymity Mitigation. To adapt to its use cases, variations of the original con-
cept have been developed to mitigate its full anonymity. These mitigations, introduced
as new properties, are, amongst others, traceability of the signer if it produces more
than one signature [FS07a], repudiation of the signature for non-signers or claimability
for signers [PS19] and revocability of the signer’s anonymity by a revocation author-
ity [ZLS+20]. In this chapter, we focus on yet another property: linkability of the
signature produced by the same signer, and its implications on anonymity. Introduced
by Liu et al. [LWW04], linkable ring signatures (LRS) have been the subject of many
research papers and allows any verifier to link signatures produced by the same signer
while concealing the signer’s identity under the names of the ring members. A list of
existing works is provided in Table 3.1 on the next page. We give an example to illus-
trate its application and functionality: consider the certification of ballot in an election.
Here, each voter signs its ballot paper not only under its identity but also under the
identities of all the voters, which allows him to sign its ballot paper without disclosing
its identity. This is done by generating a ring signature. In this case, linkable ring
signatures would allow an auditor to link the signatures of two electronic ballots from
the same entity. This prevents voters from voting multiple times without manipulating
the identity of voters, and allows voting to be modified during the elections (as in the
Estonian electronic voting system [Val24]).

In the definition of linkable ring signatures, just like ring signatures, include a key
generation algorithm, a signature algorithm, and a verification algorithm. Unlike tradi-
tional ring signatures, they allow for the verification of whether two signatures were pro-
duced by the same signer based on a linking algorithm, while still concealing the signer’s
identity. This preservation of privacy for the signer is often referred to as pseudonymity,
partial anonymity, or anonymity. In the existing literature, the term anonymity has
been preferred, but we highlight that for linkable ring signatures it represents a weaker
property than when applied to ring signatures.

Security Considerations. Four security properties have been defined to model what
is expected from linkable ring signatures:

Unforgeability of signatures: it is computationally unfeasible for anyone who is not
part of the ring to produce a valid signature that would be accepted as legitimate.

Anonymity of signer: given a signature, it is unfeasible to determine which member
of the ring generated it.

Chapter 3. Modeling Anonymity of Linkable Ring Signatures 49

Reference Assumption Model
Liu et al. [LWW04] DL related ROM

Tsang et al. [TWC+05] Strong RSA & DDH ROM
Liu and Wong [LW05] DL related ROM
Tsang and Wei [TW05] DL related ROM

Liu et al. [LASZ13] DL related ROM
Yuen et al. [YLA+13] DL related Standard

Boyen and Haines [BH18] CDL1 ROM
Branco and Mateus [BM18] GSDD2 ROM

Baum et al. [BLO18] SIS, LWE ROM
Lu et al. [LAZ19] SIS ROM

Liu et al. [LNY+19] M-SIS, D-MLWE ROM
Zhang et al. [ZLS+20] DL related ROM
Balla et al. [BBG+22] DL related ROM

Bootle et al. [BEHM22] DL related ROM
Xiangyu et al. [HC24] DL related ROM
Xue et al. [XLAZ24] Generic construction ROM

(a) Existing Linkable Ring Signatures Proven Secure Under The Model for One-time
Anonymity 1-ano.

Reference Assumption Model
Alberto et al. [ATSS+18] R-SIS ROM

(b) Existing One-time Linkable Ring Signatures.
Reference Assumption Model

Backes et al. [BDH+19] Generic construction Standard
Beullens et al. [BKP20] SIDH, M-LWE ROM

(c) Existing Linkable Ring Signatures with Proven Anonymity ano.

Table 3.1: Existing Linkable Ring Signatures.

Linkability of signatures: it is unfeasible to generate two unlinked signatures from the
same secret key.

Non-slanderability of signatures: it is unfeasible to create a situation where a valid
signature is falsely claimed to be generated by another member of the ring.

Of these properties, unforgeability and anonymity are derived from ring signatures,
while the other two are necessary to guarantee the security of the linkability. Although
supposedly adapted from ring signatures, the level of anonymity formalised by most
previous works, even the most recent ones, is insufficient. In fact, the associated con-
structions could suffer from a total lack of anonymity. What is more, the environments
in which they could suffer concrete breaches in the anonymity of entities. In recent
works such as [BEHM22] and the other schemes of Table 3.1 (except for [ATSS+18]),
Anonymity (ano) is informally characterised by the following statement:

“Anonymity, demands that an adversary cannot tell which of a ring’s secret
keys was used to produce a signature.”

Despite the accurate informal descriptions, we show in this chapter that the definitions
for all schemes listed in Table 3.1a essentially formalise this same concept as follows:

1CDL: Central Decoding Problem
2GSD: General Syndrome Decoding

Chapter 3. Modeling Anonymity of Linkable Ring Signatures 50

Anonymity demands that an adversary cannot tell which of a ring’s secret
keys was used to produce an entity’s first signature.

We see a direct implication of the second statement by the first one. Throughout this
chapter, we refer to the second quote and weaker notion as One-time Anonymity (1-ano).

And, while it may be a feature of some schemes, as in [TW05], which main caracter-
istics are described in Table 3.1b, this statement does not model the actual expectation
formulated for linkable ring signatures in the literature. Figure 3.1 on the next page
shows a schematic comparison of the experiment of anonymity of ring signatures and
the most frequently used one-time anonymity (1-ano) of linkable ring signatures. In
Figure 3.1b, the one depicting the anonymity of linkable ring signatures, there is no
guarantee regarding what the second signature might reveal about the identity of the
signer, as we elucidate below. This is why we refer to this definitions of anonymity
as one-time anonymity in order to better reflect the actual guarantees provided by the
formalisation of this property. In looking for the rationale behind such a definition, one
might speculate that it is linked to a statement made in Bender et al.’s seminal pa-
per [BKM06], whose provided a security framework for ring signatures. The statement
in question is as follows:

"a weaker definition of anonymity (one-time anonymity of Figure 3.1b)
whereby the adversary obtains only users’ public keys and a single signa-
ture – but cannot obtain multiple other signatures via a signing oracle – does
not imply unlinkability [of the signatures produced by the same signer]" .

At first glance, removing the right to obtain multiple signatures in the experi-
ment may seem like a reasonable way of defining anonymity with linkability. However,
upon closer examination, this statement actually discusses the fact that unlinkability
is not considered when only one signature is issued to the adversary. Therefore, all
we can ascertain about the definition of anonymity is that this weak definition of one-
time anonymity 1-ano appeared in the very first articles on linkable ring signatures
and has persisted across most existing schemes (of Table 3.1a). Only two existing
works [BDH+19, BKP20], reported in Table 3.1c on the preceding page have formalised
the anonymity of LRS in a more realistic experiment, schematically described in Fig-
ure 3.1c on the next page using a Left or Right challenge oracle. However, their model
is left unconsidered in all subsequent works reported in Table 3.1a.

Our Contributions. In this chapter, we argue that the modelisation of the anonymity
experiment for linkable ring signatures in all the schemes cited in Table 3.1a does not
match the security expectations formalised in their respective works. This discrepancy
means that 16 of the 18 existing linkable ring signatures may suffer from a deep lack of
protection of the signer’s identity after only the second signature. The most commonly
used security model for linkable ring signatures, which we have referred to as one-time
anonymity (1-ano) (above and in Figure 3.1b on the facing page), remains broadly similar
across all the works listed in Table 3.1a. The one-time anonymity experiment only hides
the identity of the signer when they first sign, not necessarily on the second signature.
This does not match the informal expectations described in all these works. Our main

Chapter 3. Modeling Anonymity of Linkable Ring Signatures 51

A(pk0, pk1)

b
$←− {0, 1}

SignLRS(skb, ·, ·)

SignLRS(ski,m, {pkj}j∈R)

b∗
?
= b

b∗
σ

SO(R,m, i)
σ

(a) Anonymity of Ring Signatures [BKM06].

A(pk0, pk1)

b
$←− {0, 1}

If i /∈ {0, 1},
SignLRS(ski,m, {pkj}j∈R)

SignLRS(skb, ·, ·)

b∗
?
= b

σ
b∗

SO(R,m, i)
σ

(b) One-time Anonymity 1-ano of Linkable Ring Signatures (Exp1-anoLRS (1λ) in Section 3.2).
Referred to as Anonymity in all the articles cited in the Table 3.1a.

A(pk0, pk1)

b
$←− {0, 1}

SignLRS(ski,m, {pkj}j∈R)

Left : SignLRS(skb,m, {pkj}j∈R)
Right : SignLRS(sk1−b,m, {pkj}j∈R)

b∗
?
= b

LoR(Left/Right,m)

σ
b∗

SO(R,m, i)
σ

(c) Anonymity ano of Linkable Ring Signatures (ExpanoA,LRS(1
λ) in Section 3.4 or 3.3).

Figure 3.1: Schematic Comparison of Anonymity Experiments for Ring and Linkable
Ring Signatures. (Corruption models are not specified.)

contribution is to highlight the absence of an appropriate formalism for anonymity, even
in some of the most recent research.

Another model exists in the literature and has only been used for the schemes pre-
sented in Table 3.1c. This model takes better account of the anonymity expected from
linkable ring signatures. It is based on an oracle and we called it anonymity (ano)
as illustrated in Figure 3.1c. We recall it in Section 3.4 and show, by our upcoming
counter-examples, that it is strictly stronger than 1-ano.

Linkable ring signatures admit two corruption models for linkable ring signatures:

The Honest Key model: a scenario where all signature keys must have been gener-
ated honestly by the challenger in the experiment.

The Adversarially-chosen Keys Model: a scenario where signature keys may have
been generated maliciously by the adversary.

Chapter 3. Modeling Anonymity of Linkable Ring Signatures 52

After introducing both 1-ano and ano in each of the models, we can formulate a first
counter-example, showing what we claimed above: in the one-time anonymity experi-
ment 1-ano, there are schemes revealing the identity of the signer on the second signature.
We also propose a second counter-example based on existing literature [BL16]. These
counter-examples are realised by proposing two constructions that could have been con-
sidered as "secure linkable ring signatures", in Section 3.5. We therefore argue for the
stronger notions of anonymity ano. We discuss the insecurity of our counter-examples
under this stronger model with ano-anonymity in Section 3.6. Next, we review all exist-
ing works citied in the Table 3.1a and initially based on the weaker notion of one-time
anonymity 1-ano in Section 3.7. With this, we rule out a general lack of anonymity in
existing constructions. By studying the proofs of existing schemes, we observed that
many of them follow a similar proof pattern that can be extended by simple hybrid
arguments. These results are summarised in Table 3.1.

The final contribution of this chapter is a complete classification of anonymity prop-
erties in the two corruption models for linkable ring signatures. For this, a second
counter-example is needed to demonstrate the strict difference between the two corrup-
tion models. We construct it on the basis of an IND-CPA encryption scheme and any of
the linkable ring signature scheme of the literature.

Related Work. Since 2004, numerous works have focused on linkable ring signature.
In Table 3.1 on page 49 we provide, to the best of our knowledge, an exhaustive de-
scription of the existing linkable ring signatures in the literature, at the time of writing,
while omitting signatures that have been attacked and thus provide insufficient security.
These primitives claim either computational or unconditional anonymity. Most rely on
discrete logarithm related assumptions, though few are based on lattice based assump-
tions [ATSS+18, BLO18, LNY+19, BKP20] and could achieve some post-quantum secu-
rity. Some of these schemes achieve additional properties, such as threshold [TWC+05]
or forward-security [BH18]. Alberto et al. [ATSS+18] proposed the only existing one-
time linkable ring signature. However, their definition of anonymity is in fact the same
as that of most linkable ring signatures. This should have given rise to concern.

All the signatures highlighted in the Table 3.1 on page 49 are based on security
models adapted for individual purposes. However, these models consistently encompass
a weak formalisation of the anonymity experiment, with only two works stand out with
a definition that is consistent with informal descriptions [BDH+19, BKP20]. Similar
realistic models have also been provided by Branco and Mateus [BM18] for Same Ring
Linkable Ring signature and by Aranha et al. for Same Message Linkable Ring Sig-
nature [AHAN+22]. Their signatures allow more anonymity than generally considered
for linkable ring signature schemes, as it limits the possibility of linking signatures in
scenarios in which two signatures were generated, respectively, for the same ring or
the same message. Fujisaki and Suzuki introduced a security model for Traceable Ring
signatures [FS07a] that extends and is stronger than those considered for linkable ring
signatures. Indeed, their model is similar to what was later proposed in [BDH+19] for
linkable ring signatures, however, it includes additional failure conditions to prevent
the adversary from trivially tracing the signer behind the challenges. All these related
primitives are not strictly linkable ring signatures and their authors have not directly

Chapter 3. Modeling Anonymity of Linkable Ring Signatures 53

provided a model adapted to linkable ring signatures. Nonetheless the general idea be-
hind their formalism is more accurate. In order to focus only on the existing model
for linkable ring signatures, we leave aside their formalism and concentrate only on the
definitions that aim to formalise the security of linkable ring signatures.

Other linkable signatures have been proposed, which are based on two types of
privacy preserving signatures:

Group Signatures (visually introduced in Figure 1.4 on page 15): such as link-
able group signatures [ZLL+19], from which LRS originate, are its centralised ver-
sion where an authority is responsible for managing the group. There are also
weaker linkability properties, for example selective linkability [GL19, FGL21] which
means that all signatures are unlinkable per default and only when needed, a set of
signatures can be linked through the central authority. Unlike the case of ring sig-
natures, it is possible to use hybrid arguments showing that providing one or more
signatures to the adversary leads to the same property of anonymity, as the adver-
sary has the secret signature keys of all the members of the group [BMW03]. Their
decentralised equivalent also exists [FGK+22] and their anonymity is formalised
in a realistic way. Diaz and Lehmann [DL21] also introduced a user-controlled
Linkable Group Signature for which signers can provide proof of links between
their signatures. With such a property, the model differs from linkable group or
ring signatures as the proof of a link must be produced by the signers before a
connection can be established by a verifier, and is therefore not de facto accessible.
The same weakness has not passed on to their security model.

Group and Ring signatures with User-controlled Linkability: A signer of a user-
controled linkable signature scheme can produce a linking witness for any of its sig-
natures. This type of linkability was introduced by Diaz and Lehmann [DL21] for
group signatures and later extended to ring signatures by Fiore et al. [FGK+22]. In
the definitions, signatures are accompanied by a pseudonym within an event scope.
Re-using the same scope leads to the same pseudonym allowing linking of signa-
tures by the verifier. Signers can also provide explicit linking between signatures
with different pseudonyms, hence allowing more linking that originally intended.
In both works, the security provided by their experiment for the anonymity of
the signer is analogous to the definition of anonymity ano, our arguments do not
apply as they use strong anonymity notions, their schemes are not vulnerable to
the exposed incorrect formulation of the anonymity experiment.

Attribute-based Signatures: Attribute-based Signatures [EKCGD14, EKG17] are a
type of cryptographic signatures for which the signing capability is determined by
the possession of certain attributes, rather than depending on the signer’s public
keys. This method enables the signer to demonstrate that they possess specific at-
tributes. Attribute-based Signatures have also been proposed with user-controlled
linkability. The same observation can be made as for user-controled linkable group
signature. We found no weaknesses in the formalisation of anonymity in existing
definitions of attribute-based signatures.

Chapter 3. Modeling Anonymity of Linkable Ring Signatures 54

Outline. We start by presenting the most commonly used model of linkable ring signa-
ture in Section 3.2, thus formalising one-time anonymity 1-ano in both corruption mod-
els. We subsequently provide an alternative model, derived from the model of Backes et
al. [BDH+19] for anonymity 1-ano in Section 3.3 in the honest key corruption model and
then present the model of Backes et al. [BDH+19] in a stronger model in Section 3.4.
In Section 3.5, we show that the models of Section 3.2 are too weak to model what is
expected from a linkable ring signature. In Section 3.6, we review our counter-examples
and shown them unsecure in the stronger models of Section 3.3 and 3.4. Subsequently,
we review all linkable ring signature schemes to determine whether they can satisfy the
stronger security requirements of Section 3.4, in Section 3.7. Last, in Section 3.8, and
before concluding in Section 3.9, we provide the full relation diragram between the two
anonymity properties (1-ano and ano) in the two corruption models.

3.2 Review of Linkable Ring Signatures Definitions

Definitions of linkable ring signatures vary across the literature (see references given in
Table 3.1 on page 49). Despite that, the prescribed algorithms have been defined in the
same way in almost all presented works. This is not always the case for their associated
security definitions, even if they remain relatively similar.

Definition 23: Linkable Ring Signature - LRS

A Linkable Ring Signature scheme is composed of five algorithms defined as follows:

SetupLRS(1
λ): is a PPT algorithm that takes the security parameter λ and produces

the public parameters pp.

We assume these parameters pp as common inputs to all the upcoming algorithms.

GenLRS(1
λ): is a PPT algorithm that takes the security parameter λ, and it returns

a pair of keys (pk, sk).

SignLRS(ski,m, {pkj}j∈R): is a PPT algorithm that takes a public key set {pki}i∈R

for a ring set R, a signer secret key ski (with i ∈ R) and a message m. It
returns a ring signature σ.

VerifLRS(m,σ, {pki}i∈R): is a deterministic polynomial-time algorithm that takes a
public key set {pki}i∈R, a signature σ, and a message m. If the signature σ
is valid, then it returns 1, otherwise, it returns 0.

LinkLRS(σ, σ
′): is a deterministic polynomial-time algorithm that takes two signa-

tures σ and σ′, it returns 1 if they are linked, otherwise, it returns 0.

A linkable ring signature must guarantee Correctness, Unforgeability, One-time
Anonymity, Linkability and Non-slanderability as defined below.

Chapter 3. Modeling Anonymity of Linkable Ring Signatures 55

Correctness. Honestly generated signatures on any message m should verify the equa-
tion:

∀λ, ∀R ⊂ N,∀i ∈ R,∀pp ∈ [SetupLRS(1
λ)],∀(pkj , skj)j∈R ∈ [GenLRS(1

λ)]|R|,

∀σ ∈ [SignLRS(ski,m, {pkj}j∈R)],VerifLRS(m,σ, {pkj}j∈R) = 1.

As discussed in depth in [BKM06], the corruption model of RS, in particular the
anonymity of the signer, can be based on different corruption setups, from the weakest
to the strongest:

Honest Key Model (HK). The Honest Key Model assumes that all the keys within
the rings are generated honestly by the challenger. They may later be corrupted
by the adversary. Consequently, no security is provided against keys generated
maliciously.

Adversarially-Chosen Keys Model (ACK). The Adversarially-Chosen Keys Model
allows the adversary to supply maliciously generated keys to the signing oracle and
the challenge signature ring, hence dropping the assumption that all keys need to
be generated honestly. This model solves the problem of the honest key model by
assuming that keys could have been generated maliciously by the signers. However,
it does not guarantee that the entities in the ring are unable to identify the signer
if they all collude, including the signer, i.e., if all secret keys are revealed to the
adversary.

Full Key Exposure Model (FKE). The Full Key Exposure Model was proposed for
ring signatures, assuming full disclosure of all secret keys to the adversary. In the
context of ring signatures this model ensured anonymity even in case of leakage of
all the secret keys. However, this level of security cannot be achieved for linkable
ring signature schemes: given knowledge of all the secret key, the adversary can
generate signatures with every single keys and use the LinkLRS algorithm to identify
the signers.

These corruption models, originally proposed for ring signatures, also apply to link-
able ring signatures, with the exception of the full key exposure model. We elucidate
on this fact at the end of this section, after presenting the property of anonymity.

Like in all the previous models proposed by the papers listed in Table 3.1a, the
security of LRS is introduced here in the honest key model, i.e., all keys must have
been generated honestly by the challenger and only some of them can be corrupted
based on a corruption oracle provided to the adversary. The honest key model leads to
a weak corruption model, contradicting the ad hoc purpose of ring signatures, as any
signer may generate its own key without any checks by other parties. We first introduce
the definition of the required oracles before presenting the four game-based security
requirements for Secure Linkable Ring Signatures. We discuss the model provided by
Backes et al. [BDH+19] in Sections3.4 and 3.3 and also discuss the more apropriate
adversarially-chosen keys model.

Chapter 3. Modeling Anonymity of Linkable Ring Signatures 56

Oracles. The adversary has access to the following oracles when it attempts to break
the security of a linkable ring signature scheme.

JO. The Joining Oracle. Given the security parameter λ, runs (pk, sk) ← GenLRS(1
λ)

and outputs the public key pk.

CO. The Corruption Oracle. Given a public key pk which is the output of a previous
query to JO, CO returns its corresponding secret key sk.

SO. The Signature Oracle. Given a public key vector {pki}i∈R an insider public key
pki, for i ∈ R previously generated by JO, and a message m, SO returns the
signature σ ← SignLRS(ski,m, {pki}i∈R) and keeps record of the signed messages
m in the set SO.

For notation purposes, in our security experiments, we use the above oracle to desig-
nate the set of public keys of the entity that have been either introduced into the oracle
or generated by it for JO. The set SO records multiple types of elements:

Messages: SO records the set of messages input to the oracle, when we write m ∈ SO
for m a message, or;

Messages and signatures: SO records the set of message-signature pairs input to
the oracle, when we write (m,σ) ∈ SO for m a message and σ the associated
signature, or;

Public keys of signers: SO records the set of public keys of the signers which pro-
duced the linkable ring signatures when the oracle is called, when we write pk ∈ SO
for the public key pk of a signer.

Security Model. We now describe the properties expected for linkable ring signa-
tures, namely unforgeability, one-time anonymity, linkability and non-slanderability. We
always denote by AdvpropA,LRS(1

λ) the advantage of A against the property prop of a link-
able ring signature LRS for a given security parameter λ. Experiences are provided in
the honest key model.

Unforgeability (unf-HK). Constructing a valid signature without using the secret key
should be unfeasible. Formally, the probability Advunf-HKA,LRS (1

λ) of a PPT adversaryA
winning (i.e., making the challenger return 1) against the experiment Expunf-HKA,LRS (1

λ)

should be negligible in the security parameter λ. Note that we could instead require
a stronger variant, where a new signature on a signed messages would be accepted
as a forgery. For that, a record of the messages input to the signature oracle and
the output signature is kept in the set SO, and line 5 of Expunf-HKA,LRS (1

λ) checks if
(m∗, σ∗) ∈ SO instead.

Chapter 3. Modeling Anonymity of Linkable Ring Signatures 57

Expunf-HKA,LRS (1
λ) - (Unforgeability Experiment in the Honest Key Model)

1 : pp← SetupLRS(1
λ)

2 : (m∗, σ∗, (pki)i∈R)← AJO,CO,SO(pp)

3 : if {pki}i∈R ̸⊂ JO : return 0

// All of the public keys in {pki}i∈R were output by JO.

4 : if {pki}i∈R ∩ CO ̸= ∅ : return 0 // No public key in (pki)i∈R were queried to CO.

5 : if m∗ ∈ SO : return 0 // The message m∗ was not an input to SO.

6 : return VerifLRS(m
∗, σ∗, {pki}i∈R) = 1

One-time Anonymity (1-ano -HK) (previously named anonymity). It must be diffi-
cult to guess the public key corresponding to the secret key used to produce a
signer’s first signature. Here we present the property generally provided in the lit-
erature and call it One-time Anonymity whereas the property was previously given
as Anonymity. Formally, for any PPT adversary A, the experiment Exp1-ano-HKA,LRS (1λ)

should have a negligible probability to output 1:

Adv1-ano-HKA,LRS (1λ) = |Pr[Exp1-ano-HKA,LRS (1λ) = 1]− 1/2| ≤ ϵ(1λ).

Exp1-ano-HKA,LRS (1λ) - (One-time Anonymity Experiment in the Honest Key Model)

1 : pp← SetupLRS(1
λ)

2 : (m∗, (pki)i∈R∗ , i0, i1)← AJO,CO,SO(pp)

3 : b
$←− {0, 1}∗

4 : σ ← SignLRS(skib ,m
∗, {pki}i∈R∗ ∪ {pki0 , pki1})

5 : b∗ ← AJO,CO,SO(σ)

6 : if {pki}i∈R∗ ̸⊂ JO : return b // All of the public keys in (pki)i∈R∗ are outputs of JO.

7 : if {pki}i∈R∗ ∩ CO ̸= ∅ : return b // No public key in (pki)i∈R∗ was queried to CO.

8 : if {pki0 , pki1} ∩ SO ≠ ∅ : return b // The oracle SO did not allow the link.

9 : return b = b∗

This property only allows the adversary A to obtain a single signature σ produced
by the signer associated with the key pkib and no signature from the signer associated
with the key pki(1−b) (line 4 and 5 of Exp1-ano-HKA,LRS (1λ)). Consequently, the property offers
no guarantees on the anonymity of the signer when several signatures are produced with
the same keys. This formalism contradicts the intended use for LRS, which is designed
for different use cases than one-time LRS. In particular, the anonymity of the signer is
expected to persist throughout the lifespan of the keys.

Some models, such as in [LASZ13], are even weaker and assume that none of the
members of the challenge ring (i.e., all entities associated with keys in {pki}i∈R∗) have
ever produced a signature with their keys. These definitions do not reflect the actual use
of linkable ring signatures, as this primitive was designed to allow multiple anonymous
signatures for a single entity. In Section 3.5, we give further arguments and two counter-
examples for obtaining the above property, but without what was informally described

Chapter 3. Modeling Anonymity of Linkable Ring Signatures 58

as anonymity (see Section 3.1). This shows the limits of the experiment proposed above
as Exp1-ano-HKA,LRS (1λ).

Linkability (link -HK). It must be difficult to generate two unlinked valid signatures
from the same signer. To obtain linkability, the probability Advlink-HKA,LRS (1

λ) of win-
ning the experiment Explink-HK

A,LRS (1
λ) must be negligible.

Explink-HKA,LRS (1
λ) - (Linkability Experiment in the Honest Key Model)

1 : pp← SetupLRS(1
λ)

2 : (m∗
0, σ

∗
0 , (pki)i∈R∗

0
), (m∗

1, σ
∗
1 , (pki)i∈R∗

1
)← AJO,CO,SO(pp)

3 : if {pki}i∈R∗
0∪R∗

1
̸⊂ JO : return 0

// Public keys in (pki)i∈R∗
0∪R∗

1
are honestly generated.

4 : if ∃i, j ∈ R∗
0 ∪R∗

1, i ̸= j, pki, pkj ∈ CO : return 0

// Max. one corrupted key in the rings.

5 : if {pki}R∗
0∪R∗

1
∩ SO ≠ ∅ : return 0

// The oracle SO did not return a linked signature.

6 : return VerifLRS(m
∗
0, σ

∗
0 , {pki}i∈R∗

0
) = VerifLRS(m

∗
1, σ

∗
1 , {pki}i∈R∗

1
) = 1

∧ LinkLRS(σ
∗
0 , σ

∗
1) = 0

Non-slanderability (slan-HK). It should be unfeasible to link two valid signatures cor-
rectly generated by different signers. To obtain non-slanderability, the probability
Advslan-HKA,LRS (1λ) of winning the experiment Expslan-HKA,LRS (1λ) must be negligible.

Expslan-HKA,LRS (1λ) - (Non-slanderability Experiment in the Honest Key Model)

1 : pp← SetupLRS(1
λ)

2 : (pk∗,m∗
0, {pki}i∈R∗

0
)← AJO,CO,SO(pp)

3 : if {pk∗} ∪ {pki}i∈R∗
0
̸⊂ JO : return 0

// The key pk∗ is honestly generated and the set R∗
0 only contains honestly generated keys.

4 : σ ← SignLRS(sk,m
∗
0, {pk

∗} ∪ {pki}i∈R∗
0
) // sk is the secret key associated to pk.

5 : (m∗
1, σ

∗, {pki}i∈R∗
1
)← AJO,CO,SO(σ)

6 : if {pki}i∈R∗
1
̸⊂ JO : return 0 // The set R∗

1 only contains honestly generated keys.

7 : if pk∗ ∈ CO : return 0 // The public key pk∗ has not been requested from CO.

8 : if pk∗ ∈ SO : return 0 // The oracle SO did not produce the signature σ∗.

9 : return VerifLRS(m
∗
1, σ

∗, {pki}i∈R∗
1
) = 1 ∧ LinkLRS(σ, σ

∗) = 1

Some definitions of non-slanderability, such as the one in [ATSS+18] require A to
use specific keys to generate a signature. We deviate slightly from that definition by
prohibiting corruption of the entity targeted by the attack, but follows the main idea of
that formalisation.

From here on we can note that the correctness of the linking algorithm LinkLRS is
guaranteed by the properties of linkability and non-slanderability.

Unconditional Variant. We say that a property prop is obtained unconditionally if,
for any unbounded probabilistic adversary A, its advantage AdvpropA,LRS(1

λ) is equal to 0.

Chapter 3. Modeling Anonymity of Linkable Ring Signatures 59

Amongst existing work (see Table 3.1 on page 49), only a few schemes, such as [LASZ13,
BH18, ATSS+18, BBG+22], have achieved unconditional one-time anonymity 1-ano.

Adversarially-chosen Keys Model. As stated above, most existing work listed in
Table 3.1a sets unusually low security requirements. All of the security experiments
presented in this section and in all previous work refered to in Table 3.1a are modelled
within the framework of the honest key model HK, hence, failing to take into considera-
tion the possibility of potentially malicious adversarially generated keys, the ACK model.
This is inconsistent with informal security expectations for LRS as already stated. We
present the experiment for one-time anonymity in the 1-ano in the ACK corruption model
below.
Exp1-ano-ACKA,LRS (1λ, n) -
(One-time Anonymity experiment with respect to adversarially-chosen keys)

1 : pp← SetupLRS(1
λ)

2 : {pki, ski}ni=1 ← GenLRS(1
λ) // Abusing notations, the algorithm is executed n times.

3 : (m∗, (pki)i∈R∗ , i0, i1)← ASO(pp, {pki}ni=1)

// The set R for which SO is queried can also contain public keys picked by the adversary.

4 : b
$←− {0, 1}

5 : σ ← SignLRS(skib ,m
∗, {pki}i∈R∗ ∪ {pk0, pk1})

6 : b∗ ← ASO(σ)

7 : if {pki0 , pki1} ∩ SO ≠ ∅ : return b // The oracle SO did not allow any link.

8 : return b = b∗

The introduction of the other properties, unf-ACK, link-ACK, slan-ACK is postponed
to Figure 3.2 on page 62 in Section 3.4 with the introduction of Backes et al. [BDH+19]’s
property of anonymity ano.

The full key exposure corruption model, which is stronger than the adversarially-
chosen keys corruption model, cannot be achieved for linkable ring signatures. This
is because anonymity of LRS cannot be achieved in the full key exposure corruption
model. Linkable ring signature are always claimable, e.g., by performing a signature
for any given message and using the link algorithm anyone can test if they were both
produced by the same signer. Therefore, revealing the challenger’s secret key always
breaks anonymity.

3.3 Anonymity in the Honest-Key Model

The security properties of ring signatures were formalised in a work by Bender et
al. [BKM06]. In particular, unforgeability and anonymity of ring signatures were exten-
sively studied in this research paper. Their models encompass three levels of corruptions.
The honest key model is the most considered one for linkable ring signature and always
with the flawed one-time anonymity experiments. Only two works [BDH+19, BKP20]
stand out and consider linkable ring signatures in the adversarially-chosen keys model
that we will introduce later in Section 3.4. Moreover, their definition of anonymity, that
of the second [BKP20] resulting from the first [BDH+19], is the only one in the literature

Chapter 3. Modeling Anonymity of Linkable Ring Signatures 60

to consider a natural and stronger formalisation of anonymity for linkable ring signa-
tures. They take advantage of what is sometimes called a Left-or-Right (LoR) oracle. It
acts as a challenge oracle providing signatures to the adversary for consistent unknown
left and right signers. The adversary must uncover how the identity of the two signers
are distributed in between the two challenger signers. The LoRHK oracles is defined in a
context in which two key pairs (pki0 , ski0) and (pki1 , ski1) are known by the challenger,
which also holds a bit b ∈ {0, 1}. The oracle is defined as follows:

LoRHK. The Left-or-Right oracle LoRHK
b (·, ·) is such that for a call LoRHK

b (m, {pki}i∈R),
it checks that all the public keys {pki}i∈R were honestly generated, hence belongs
to JO, and if so, it returns a signature SignLRS(skib ,m, {pki}i∈R ∪ {pki0 , pki1}).

The LoRHK oracle can be queried for any arbitrary set of registered keys {pki}i∈R.
This set is always supplemented by the key of the two challengers, pki0 and pki1 , in
order to avoid trivial identification attacks based on the failure of the oracles.

We introduce the definition of anonymity for linkable ring signatures as per [BDH+19]
in the honest-key model. For the anonymity under the honest key model to hold
against a PPT adversary A, it should be computationally difficult to guess the pub-
lic key corresponding to the secret key used during the production of the signatures of
a signer. Formally, the experiment ExpanoA,LRS(1

λ, n) should have a negligible probability
AdvanoA,LRS(1

λ, n) given by:

AdvanoA,LRS(1
λ, n) = |Pr[Expano-HKA,LRS (1

λ, n) = 1]− 1/2| ≤ ϵ(1λ).

This bound must hold for every n ∈ N and the following experiment.
Expano-HKA,LRS (1

λ, n) - (Anonymity in the honest keys model)

1 : pp← Setup(1λ)

2 : {pki, ski}ni=1 ← GenLRS(1
λ)

3 : (m∗, i0, i1)← ASO(pp, {pki}ni=1) // Requests SO must be made using the provided keys.

4 : b
$←− {0, 1}

5 : b∗ ← ASO,LoRHK
b (1λ)

6 : if {pki0 , pki1} ∩ SO ≠ ∅ : return b

// The SO oracle did not output a signature for the signer pkib
.

7 : if SO was queried for a ring R with a public key which is not in {pki}ni=1 :

8 : return b

9 : if LoRHK was queried for a ring R with a public key which is not in {pki}ni=1 :

10 : return b

11 : return b = b∗

In this experiment, the challenge is not directly sent to the adversary, but is deported
to the answers of the LoRHK oracle which provides challenges as output when called by
the adversary. Therefore, when proving the anonymity of LRS under this model, every
execution of the oracle LoRHK would have to be considered by the reduction instead of
just the first signature, which could lead to less tight reductions when these reductions

Chapter 3. Modeling Anonymity of Linkable Ring Signatures 61

are not unconditional. However, it does more accurately formalise the anonymity of the
linkable ring signature than has previously been achieved in the literature.

Definition 24: Linkable Ring Signature in the Honest-key Model

A Linkable Ring Signature scheme is defined with algorithms described in Defi-
nition 23 on page 54 and achieves security in the honest-key model if it achieves
the properties of Unforgeability unf-HK, Linkability link-HK and Non-slanderability
slan-HK as described in Section 3.2 and Anonymity ano-HK as described above in
this Section.

This model with anonymity formalised in the honest key model can only be used
when key generation is fully trusted. The use cases are then either (1) when it is
possible to prove the honesty of the key generations, or (2) when all the members of the
ring are honest. While this assumption may be realistic for some threat models, ring
signatures are, by their nature, intended for use in contexts where there is no central
authority responsible for verifying the validity of public keys, otherwise linkable group
signatures could be used [ZLL+19]. As a result, this definition does not always reflect
the actual security requirements for linkable ring signatures, especially when used in
decentralised scenarios such as blockchains [ATSS+18]. This model leaves open possible
attack scenarios in which (1) an adversary arbitrarily generates public keys (which may
possibly depend on the public keys of honest users), and then (2) a legitimate signer
generates a signature for a ring containing some of these adversary-generated public
keys. Definition 24 offers no protection in these scenarios. This motivates the use of a
stronger definition in the adversary-selected key model.

3.4 Anonymity of Linkable Ring Signatures

Technical Summary

Despite more than 20 years of research in this area, misconceptions have persisted
about the one-time anonymity experiment for linkable ring signatures. At the time
of writing, only two works [BDH+19, BKP20] have considered realistic models: in
the adversarially-chosen keys model ACK and with anonymity formalised based on
a Left-or-Right (LoR) signer oracle as a challenge. This oracle allows to provide
multiple signatures from the challenger to the adversary. This accurate model has
largely been overlooked in subsequent work, despite seemingly being achieved by
most linkable ring signatures. We restate their definition, demonstrating its pre-
cision and that the introduction of the LoR oracle excludes the counter-examples
later presented in Section 3.5 and demonstrated our claim of weakness of the defi-
nition of one-time anonymity 1-ano.

For the formalisation of the security properties of linkable ring signatures in the
adversarially-chosen keys model ACK, we instantiate two oracles: the SOACK and the
LoRACK oracles. They are both defined below. The LoRACK oracles is defined in a

Chapter 3. Modeling Anonymity of Linkable Ring Signatures 62

Expano-ACKA,LRS (1λ, n) - (Anonymity Experiment in the Adversarially-chosen Keys Model)

1 : pp← SetupLRS(1
λ)

2 : {pki, ski}ni=1 ← GenLRS(1
λ)

3 : (i0, i1)← ASOACK

(pp, {pki}ni=1)

// The set R for which SOACK is queried can also contain public keys picked by the adversary.

4 : b
$←− {0, 1}

5 : b∗ ← ASOACK,LoRACK
b (1λ)

6 : if {pki0 , pki1} ∩ SO
ACK ̸= ∅ : return b // The oracle SOACK did not allow any link.

7 : return b = b∗

Expunf-ACKA,LRS (1λ) - (Unforgeability Experiment in the Adversarially-chosen Keys Model)

1 : pp← SetupLRS(1
λ)

2 : {pki, ski}ni=1 ← GenLRS(1
λ)

3 : (m∗, σ∗, {pki}i∈R)← ASOACK

(pp, (pki)1≤i≤n)

4 : if R ̸⊂ {1, . . . , n} : return 0 // No corrupted public key in the ring.

5 : if m∗ ∈ SOACK : return 0 // The message m∗ has not been an input of SOACK.

6 : return VerifLRS(m
∗, σ∗, {pki}i∈R) = 1

Explink-ACKA,LRS (1λ, n) - (Linkability Experiment in the Adversarially-chosen Keys Model)

1 : pp← SetupLRS(1
λ)

2 : {pki, ski}ni=1 ← GenLRS(1
λ)

3 : (m∗
0, σ

∗
0 , {pk

∗
i }i∈R∗

0
), (m∗

1, σ
∗
1 , {pk

∗
i }i∈R∗

1
)← ASOACK

(pp, {pki}1≤i≤n)
4 : if ∃i ∈ R∗

0,∃j ∈ R∗
1, pki ̸= pk∗j , pk

∗
i , pk

∗
j /∈ {pki}1≤i≤n : return 0

// Only one common corrupted key or many in the same ring.

5 : if (m0, σ
∗
0) or (m1, σ

∗
1) ∈ SO

ACK : return 0

// The oracle SOACK did not produce the signatures.

6 : return VerifLRS(m
∗
0, σ

∗
0 , {pk

∗
i }i∈R∗

0
) = 1 ∧ VerifLRS(m

∗
1, σ

∗
1 , {pk

∗
i }i∈R∗

1
) = 1

∧ LinkLRS(σ
∗
0 , σ

∗
1) = 0

Expslan-ACKA,LRS (1λ, n) - (Non-slanderability Experiment in the Adversarially-chosen Keys
Model)

1 : pp← SetupLRS(1
λ)

2 : {pki, ski}ni=1 ← GenLRS(1
λ)

3 : i∗,m∗
0, {pk

∗
i }R∗

0
← ASOACK

(pp, {pkk}1≤k≤n)
4 : if i∗ /∈ {1, . . . , n} : return 0 // The designated signer has been produced by the challenger.

5 : σ ← SignLRS(ski∗ ,m
∗
0, {pk

∗
i }i∈R∗

0
)

6 : m∗
1, σ

∗,R∗
1 ← ASOACK

(σ)

7 : if pki∗ ∈ SOACK : return 0

// The oracle SOACK did not allowed to produce the signature σ∗ for the key pki∗ .

8 : return VerifLRS(m
∗
1, σ

∗, {pk∗i }i∈R∗
1
) = 1 ∧ LinkLRS(σ, σ

∗) = 1

Figure 3.2: Experiments for Anonymity, Unforgeability, Linlability and
Non-slanderability in the Adversarially-chosen Keys Model.

(Similar to the one given in [BDH+19].)

Chapter 3. Modeling Anonymity of Linkable Ring Signatures 63

context where two key pairs (pki0 , ski0) and (pki1 , ski1) are known by the challenger as
well as a bit b ∈ {0, 1}.

SOACK. The oracle SOACK(·, ·, ·) is such that for a call SOACK(i,m,R), it returns
SignLRS(ski,m, {pki}i∈R), where ski must be known by the challenger and i ∈ R.

LoRACK. For two honestly generated key pairs (pki0 , ski0) and (pki1 , ski1). The Left-or-
Right oracle LoRACK

b (·, ·) is such that for a call LoRACK
b (m, {pki}i∈R), it returns

a signature SignLRS(skib ,m, {pki}i∈R ∪ {pki0 , pki1}).

In these security experiments the registration and corruption oracles JO and CO
are removed to better reflect the ad hoc ring construction. Instead, arbitrary key input
to the SOACK and LoRACK oracles is allowed and provide alternatives to the corruption
oracle. The same modification can be made for the other properties in a similar manner.
We depict the alternative experiments in Figure 3.2 on the facing page.

Definition 25: Linkable Ring Signature in the Adversarially-chosen Key
Model

A Linkable Ring Signature scheme is defined with algorithms described in Defini-
tion 23 on page 54 and achieves a security in the adversarially-chosen key model if it
achieves the properties of Unforgeability unf-ACK, Anonymity ano-ACK, Linkability
link-ACK and Non-slanderability slan-ACK, described in Section 3.2 but, this time,
on the basis of the experiments provided in Figure 3.2 on the facing page.

Most linkable ring signatures have been proposed without regard to this model (see
the other works in Table 3.1 on page 49), although we believe that most linkable ring
signatures could achieve this stronger properties in the adversarially-chosen key model,
as it is not much more demanding on the design than the honest key model. Only two
schemes in [BDH+19] and [BKP20] stand out from the rest of the literature and have
been shown to be secure within the framework of this model. Further work is needed
to re-examine the security of existing schemes in these models. Table 3.1 on page 49,
column named Anonymity and Section 3.7 provide a literature review of the anonymity
of the existing linkable ring signatures. Their we try to provide arguments towards the
potential achievement of anonmity ano by most of the schemes of the literature.

3.5 Insecurity of the One-time Anonymity

Technical Summary

We set out our main concerns about the modelling of signer’s anonymity 1-ano in
Section 3.2. Despite this, it is the model used by almost all existing works. In
this section, we present two counter-examples showing that this definition lacks
anonymity. Our first counter-example is a dedicated scheme, while the second
comes from an existing work [BL16] which has different purposes. Both show the
need to adopt a stricter definition of anonymity, as after the second signature the
identity of the signer is purposely revealed. Nevertheless, these constructions are

Chapter 3. Modeling Anonymity of Linkable Ring Signatures 64

secure linkable ring signatures in the model of Section 3.2. This model was used
to demonstrate the security of 16 linkable ring signatures out of the 18 existing
schemes.

3.5.1 Toy Counter-example Scheme.

We start our dedicated construction from a secure linkable ring signature LRS, such any
of the ones exposed in Table 3.1 on page 49. From this LRS we instantiate a new linkable
ring signature scheme CeLRS for Counter-example linkable ring signature, by combining
LRS with a secret sharing scheme (Split,Recover) (Definition 17 on page 38).

CeLRS.SetupLRS(1
λ): corresponds to the execution of LRS.SetupLRS(1λ).

CeLRS.GenLRS(1
λ): executes (skLRS, pkLRS)← LRS.GenLRS(1

λ) and s1, s2 ← Split(pkLRS, 2).
Sets and returns sk = (skLRS, s1, s2), pk = pkLRS.

CeLRS.SignLRS(ski,m, {pkj}j∈R): parses ski into (skLRS, s1, s2), randomly samples b $←−
{1, 2} and returns σLRS ← LRS.SignLRS(skLRS,m∥sb, {pkj}j∈R) and sb as σ.

CeLRS.VerifLRS(m,σ, {pkj}j∈R): parses σ into σLRS and s. Executes LRS.VerifLRS(m∥s,
σLRS, {pkj}j∈R) and returns its result.

CeLRS.LinkLRS(σ, σ
′): parses σ into σLRS and s, and σ′ into σ′

LRS and s′. Executes and
returns the result of LRS.LinkLRS(σLRS, σ′

LRS).

The secret sharing share included in a single signature does not reveal any informa-
tion about the signer’s public key, since the secret sharing scheme is perfectly secret. On
the other hand, we have considered a LRS scheme with one-time anonymity, which there-
fore does not reveal the identity of the signer. Nevertheless, a signer has a probability of
at least 1/2 of revealing its identity when it sends its second signature. Since one-time
anonymity is modelled by a single signature disclosed to the adversary (see Section 3.2),
this construction is proved secure as per Property 3 below and its proof. Moreover, the
disclosure of the identity of the signer when more signatures can be claimed does not
affect the other properties. This highlights limitations of the one-time anonymity 1-ano
property in ensuring the hiding of the identity of the signer to its first signature for all
linkable ring signatures of Table 3.1a.

Property 3

Consider a secure linkable ring signature LRS and a secret sharing scheme with per-
fect secrecy. Then, the above toy counter-example scheme CeLRS is a linkable ring
signature with correctness, unforgeability unf, one-time anonymity 1-ano, linkabil-
ity link and non-slanderability slan under the definitions introduced in Section 3.2
in any of the corruption models HK or ACK.

Proof. The correctness is straightforward. To give an intuition of the following argu-
ment, anonymity of the CeLRS construction follows from the anonymity of the LRS and
the perfect secrecy of the secret sharing scheme. The other properties of the CeLRS

Chapter 3. Modeling Anonymity of Linkable Ring Signatures 65

construction uniquely follow based on the security of the LRS scheme which has already
been proven.

Unforgeability (unf). First, it should be noted that the LRS scheme is assumed to sat-
isfy the unforgeability unf prescribed in Section 3.2, and that the share sb is signed with
the message. An adversary modifying sb in the signature would cause the verification
to fail because the wrong message would be introduced into the verification algorithm.
Hence, the property follows from a direct reduction to unf of the LRS signature. A
forgery against the CeLRS scheme for a message m would correspond to a forgery for a
message m∥s for a random s amongst s1 or s2.

One-time Anonymity (1-ano) (unconditional if unconditional for the LRS). This is
a two step proof. As only one signature is provided to the adversary for the public
identities pki0 and pki1 , the first step is to replace the element s embedded in the
signature σ by a random element based on the perfect secrecy, this is possible as one of
the shares is never disclosed during the experiment. From then on, the signature σ of
the CeLRS construction is just a LRS signature with a random elements concatenated
to the signed message. The one-time anonymity 1-ano of the LRS scheme guarantees
that no identity related information would leak from the signature σLRS, hence from the
signature σ provided to the adversary.

Linkability (link) and Non-slanderability (slan). As the linking algorithm only take
into account the sub-signatures σLRS∗0, σLRS∗1, these experiments give the same answers
for the CeLRS construction and the LRS scheme used as its base. Hence, linkability link

and non-slanderability slan are both ensured under the hypothesis that the LRS scheme
is secure.

3.5.2 Model of k-Times Full Traceable Ring Signatures

This section recalls the model for k-Times Full Traceable Ring Signature originally intro-
duced by Bultel and Lafourcade [BL16]. Their construction is a linkable ring signature
that can be traced back to the signer when it produces more than k authorised signa-
tures. We define it here as it is used in Section 3.5 to show that the 1-time full traceable
ring signature presented in [BL16] can be demonstrated secure under the model of link-
able ring signature with one-time anonymity 1-ano ilustrated in Section 3.2 despite the
fact that it explicitly discloses the identity of the signer on the second signature. We
chose to present this construction, we could also have presented the same arguments for
the traceable ring signature in [FS07a].

Definition 26: k-Times Full Traceable Ring Signature (k-FTRS)

A k-Times Full Traceable Ring Signature scheme is composed of five algorithms
defined as follows:

Setupk-FTRS(1
λ): is a PPT algorithm that takes the security parameter λ and pro-

duces the public parameters pp.

We assume these parameters pp as common input to all the following algorithms.

Chapter 3. Modeling Anonymity of Linkable Ring Signatures 66

Genk-FTRS(1
λ, k): is a PPT algorithm that takes the security parameter λ and a

threshold value k denoting the maximum number of anonymous signatures
authorised, it returns a pair of keys (pk, sk).

Signk-FTRS(ski,m, {pkj}j∈R, l): is a PPT algorithm that takes a vector {pki}i∈R of
public keys for a ring set R, a signer secret key ski (with i ∈ R), a the witness
l ∈ {1, . . . , k} and a message m. It outputs a ring signature σ.

Verifk-FTRS(m,σ, {pki}i∈R): is a deterministic polynomial-time algorithm that takes
a public key vector {pki}i∈R, a signature σ, and a message m, if the signature
σ is valid, it returns 1, else it returns 0.

Linkk-FTRS(σ, σ
′): is a deterministic polynomial-time algorithm that takes two sig-

natures σ and σ′, it returns 1, if they are linked, otherwise, it returns 0.
Before running this algorithm, both signatures must be verified.

Matchk-FTRS(σ, σ
′): is a deterministic polynomial-time algorithm that takes two sig-

natures σ and σ′, if Linkk-FTRS(σ, σ′) = 1, it returns the public key of the signer
pk and a tracing element ω, else it returns ⊥.

Tracek-FTRS(σ, ω): is a deterministic polynomial-time algorithm that takes a sig-
nature σ and a tracing element ω, it returns 1 if the signature σ has been
produced by the signer associated to the tracer ω, else it returns 0.

A k-times full traceable ring signature k-FTRS must satisfy the properties of Cor-
rectness, k-Unforgeability, k-Anonymity and k-Traceability.

k-Unforgeability: constructing a valid signature without using the secret key should
be unfeasible. The probability Advk-unfA,k-FTRS(1

λ, k, n) of a PPT adversary A winning
against the experiment Expk-unfA,k-FTRS(1

λ, k, n) should be negligible for any integer
n ∈ N, any k ≤ n and any security parameter λ.

Expk-unfA,k-FTRS(1
λ, k, n) - (Unforgeability experiment for k-FTRS)

1 : pp← Setupk-FTRS(1
λ)

2 : {pki, ski}1≤i≤n ← Genk-FTRS(1
λ, k)

3 : (m∗, σ∗, (pki)i∈R∗)← AkSO1(pp, (pki)1≤i≤n)

4 : if R ̸⊂ {1, . . . , n} : return 0 // No corrupted public keys in the ring.

5 : if σ∗ /∈ kSO1 : return 0 // The signature σ∗was not output by kSO1.

6 : return Verifk-FTRS(m
∗, σ∗, {pki}i∈R∗) = 1

In this experiment, kSO1 is a signing oracle that takes (pki, {pkj}j∈R∗ ,m, l) as input
to sign the message m. If pki /∈ {pki, ski}1≤i≤n then it returns ⊥, else it computes
σ ← Signk-FTRS(ski,m, {pkj}j∈R, l) and returns σ.

k-Anonymity: guessing the public key corresponding to the secret key used to produce
less than (k + 1) signatures should be hard. Any PPT adversary A should have a
negligible advantage to win the the experiment Expk-anoA,k-FTRS(1

λ, k, n):

Advk-anoA,k-FTRS(1
λ, k, n) = |Pr[Expk-anoA,k-FTRS(1

λ, k, n) = 1]− 1/2| ≤ ϵ(1λ),

Chapter 3. Modeling Anonymity of Linkable Ring Signatures 67

for any integer n ∈ N, any k ≤ n and any security parameter λ.

Expk-anoA,k-FTRS(1
λ, k, n) - (Anonymity experiment for k-FTRS)

1 : b
$←− {0, 1}

2 : pp← Setupk-FTRS(1
λ)

3 : {pki, ski}ni=1 ← Genk-FTRS(1
λ, k)

4 : (m∗, i0, i1)← AkSO2(pp, {pki}ni=1)

5 : σ0 ← kSO2(m, {pkj}j∈R, ski0 , l)

6 : σ1 ← kSO2(m, {pkj}j∈R, ski1 , l)

7 : b∗ ← AkSO2(σb)

8 : return b = b∗

In this experiment kSO2 is a signing oracle that takes (pki, {pkj}j∈R,m, l) in input
to sign the message m. If l > k or pki /∈ {pkj , skj}nj=1 then it returns ⊥ and aborts.
If l ∈ {1, . . . , k} was already queried for pki, it also returns ⊥. Else, it computes
σ ← Signk-FTRS(ski,m, {pkj}j∈R, l) and returns σ.

k-Traceability: more then k signatures coming from the same signer are always (link-
able and then) traceable. The probability Advk-traceA,k-FTRS(1

λ, k, n) of a PPT adversary
A winning against the experiment Expk-traceA,k-FTRS(1

λ, k, n) should be negligible for any
integer n ∈ N, any k ≤ n and any security parameter λ.

Expk-traceA,k-FTRS(1
λ, k, n) - (Traceability experiment for k-FTRS)

1 : pp← Setupk-FTRS(1
λ)

2 : {pki, ski}1≤i≤n ← Genk-FTRS(1
λ, k)

3 : i∗ ← AkSO1(pp, {pki}1≤i≤n)

4 : ({pkj}j∈R∗
i
,m∗

i , σ
∗
i)1≤i≤l ← AkSO1(ski∗)

5 : if l ≥ k ∧ (∀i ∈ {1, . . . , k},Verifk-FTRS(m∗
i , σ

∗
i , {pkj}j∈R∗

i
) = 1

∧ ({pkj}j∈R∗
i
,m∗

i , σ
∗
i) /∈ kSO1) ∧

(
(∀1 ≤ a < b ≤ k, Linkk-FTRS(σa, σb) ̸= 1)

∨ (∃a, b, i,Matchk-FTRS(σa, σb) = (pk, ω), pk ̸= pki∗ ∨ Tracek-FTRS(σi, ωi) ̸= 1)
)

6 : return 1

7 : return 0

3.5.3 Concrete Counter-example

We present a second counter-example based on a construction which has been designed
for a different purpose: revealing the public identity of signers overpassing a limit of k
signatures. Originally proposed in [BL16], this primitive is called k-times full traceable
ring signature. It is a ring signature that becomes linkable when the signer exceeds its
limit of k allowed signatures. Once this limit has been exceeded, any verifier is capable
of tracing the identity of the signer using an algorithm pk← Trace(σ, σ′).

Here, we only consider 1-time full traceable ring signatures, which allow a signer
to produce one ring signature before disclosing their public key. Under the definition
currently in use, we claim that this type of signature is also a linkable ring signature,

Chapter 3. Modeling Anonymity of Linkable Ring Signatures 68

even though a linkable ring signature should not reveal the identity of the signer, even
after an arbitrary number of issued signatures. We now examine the instance of the
scheme from [BL16] with k = 1.

SetupLRS(1
λ): generates three groups G1, G2, Gt of prime order p with a pairing mapping

e : G1 × G2 → Gt (a computable non-degenerate bilinear map). Picks up six
generators g1, h0, h1, h2, h3 ∈ G1 and g2 ∈ G2 and a hash function H mapping to
Z∗
p.

GenLRS(1
λ): the keys come in two parts, two secret discrete logarithms x and y constitute

the secret key sk and the two associated elements of G1, pk1 = gx1 and pk2 = gy1
constitute the public key pk.

SignLRS(ski,m, {pki}i∈R): samples a random r
$←− Z∗

p and computes u = H(m, 0, gr2),
v = H(m, 1, gr2), T1 = hy1, T2 = hy2 · gu·x1 , T3 = hy3 · hv·x4 , T4 = gr2, T5 = e(h4, T4)

x.
Generates a zero-knowledge proof to wrap up all the elements:

Π← ZK

x, y, r :
(∨

(pk1,pk2)∈{pki}i∈R
(pk1 = gx1 ∧ pk2 = gy1)

)
∧T1 = hy1 ∧ T2 = hy2 · gu·x1 ∧ T3 = hy3 · hv·x4

∧T4 = gr2 ∧ T5 = e(h4, T4)
x

 .

Returns σ = (T1, T2, T3, T4, T5,Π) as the signature of the message m.

VerifLRS(m,σ, {pki}i∈R): parses the signature, computes u = H(m, 0, T4), v = H(m, 1,

T4) and verifies the zero-knowledge proof.

LinkLRS(σ, σ
′): parses the signatures, checks if T1 = T ′

1 and returns 1 if so, otherwise
returns 0. We assume that the signatures have been verified before.

For the sake of completeness and the rest of our argument, we also provide the tracing
algorithm that identify signers who have produced more than one signature. It also
encompass the matching algorihm Match directly inside the tracing algorithm Trace.

Trace(σ, σ′): checks the link between the two signatures by executing LinkLRS(σ, σ
′) and

stop if it fails. On two signatures σ, σ′ being linked, computes u, u′ and id =

(T2/T
′
2)

1/(u−u′). Returns the identity id. A second element w = (T3/T
′
3)

1/(v−v′) is
also recovered in the construction presented in [BL16], this element is not useful
in the case k = 1.

Property 4

The 1-time full traceable ring signature from Bultel and Lafourcade introduced
in [BL16] and depicted above is a linkable ring signature and achieves correctness,
unforgeability unf, one-time anonymity 1-ano, linkability link and non-slanderability
slan under the definitions introduced in Section 3.2 in any of the corruption models
HK or ACK.

Chapter 3. Modeling Anonymity of Linkable Ring Signatures 69

Proof. Correctness is straightforward. Security proofs for the scheme are given for the
associated model in [BL16], we rely on them to construct ours. Indeed, their model is
quite similar to the security model of linkable ring signatures.

Unforgeability. The experiment unf presented in Section 3.2 matches the k-unf exper-
iment in [BL16] (recalled in Section 3.5.2): the adversary has to return a valid signature,
i.e., VerifLRS(m

∗, σ∗, {pki}i∈R) = 1, for a set of uncorrupted users with honestly gen-
erated keys {pki}i∈R. Furthermore, this signature should not have been output by
a call to the signature oracle. Thus, unforgeability unf is obtained directly from the
proof of unforgeability k-unf given in [BL16]. It relies mainly on the soundness of the
zero-knowledge proof Π.

One-time Anonymity. The experiment Expk-anoA,k-FTRS(1
λ) (recalled in Section 3.5.2)

is stronger than the one-time anonymity 1-ano introduced for the LRS schemes and
presented in Section 3.2. In their model, the authors of [BL16] made it possible for the
adversary to obtain multiple signatures from the same designated signer, with a limit
of k signatures per signer. Here we have set the limit k = 1 which directly provides
1-ano. The model from [BL16] works in a static framework: the number of public keys
in the ring is fixed to an integer n. Reducing our case to the static environment implies
the introduction of a polynomial factor in the reduction. Consequently, k-ano implies
one-time anonymity 1-ano.

Linkability. We are looking at the construction proposed in [BL16] using the setup
k = 1, where k denotes the number of signatures that can be produced without being
traced (linkability of all the produced signatures and identification of authors of the
signatures). As the adversary can infer the identity of signers through its calls to the
signing oracles, the ability to trace does not reveal any information. Hence, this property
falls under the traceability of the 1-time full traceable ring signature as only one signature
is queried for the challenger signers. Moreover, the proof Π is sound under the hardness
of the DL problem (see [BL16] for the security proof). Since the adversary is unable to
forge a signature for an honest and uncorrupted user under the soudness of π, linkability
is an implication of the correctness of the Link algorithms.

Non-slanderability. In this experiment the condition LinkLRS(σ, σ
∗) = 1 enforces that

T1 = hy1 = hy
∗

1 = T ∗
1 , hence y = y∗, where y and y∗ are such that for pk = (pk1, pk2)

and pk∗ = (pk∗1, pk
∗
2), pk2 = gy1 and pk∗2 = gy

∗

1 . Under the soundness of the proof Π,
the adversary must know y∗ (thus y too). And under the zero-knowledge property of
Π, the security of the against non-slanderability is reduced to the hardness of the DL
problem.

Therefore, the 1-time full traceable ring signature of [BL16] can also be considered
as a linkable ring signature secure under the 1-ano -HK model presented in Section 3.2.
From these counter-examples, we have demonstrated the existence of a gap between
the definition of anonymity provided in most of the literature and the informal and
expected purposes of this property. We now provide the formalism which has only been
used by [BDH+19, BKP20]. Later, in Section 3.6, we demonstrate that these definitions
bridge the anonymity gap in the definition.

Chapter 3. Modeling Anonymity of Linkable Ring Signatures 70

3.6 Review of our Counter-examples

In this section, we evaluate the anonymity of our counter-examples.

Since it is now possible to obtain multiple signatures of the challenger signer based on
the LoR oracle, our two counter-examples have become insecure for the new definition
of anonymity. This is because a PPT adversary can claim more than one signature for
one of the challenger signers when interacting with the challenger in one of the two
ExpanoLRS(1

λ) experiments. As shown in Section 3.5, both schemes have non-negligible
probabilities of revealing the identity of their signer after the second signature. For our
counter-example construction, the probability of obtaining both secret sharing shares
after the second signature is 1/2, which allows identity recovery with a probability
significantly different from 1/2 (random guessing) even if we had obtained unconditional
one-time anonymity based on an unconditionally anonymous LRS and a perfectly secret
secret sharing scheme. This shows that even some schemes with unconditional one-time
anonymity 1-ano may reveal the identity of a signer after its second signature.

Regarding Bultel and Lafourcade’s 1-time full traceable ring signature [BL16], their
primitive is specifically designed to reveal the identity of the signer after a given number
of signatures. We have set this value to 2 in Section 3.5. Thus, given a polynomial
number of queries to the signature oracle, an adversary can always query the oracles
twice and break the game by revealing the identity of the signer based on the Trace

algorithm. The arguments above show that our two counter-examples cannot achieve
the definitions of anonymity of Section 3.4 and this holds even under the honest key
model provided in Section 3.3. The above arguments imply the following property.

Property 5

Our counter-example of Section 3.5.1 and the 1-time full traceable ring signature
from [BL16] do not guarantee anonymity ano in the adversary-chosen keys model,
nor in the honest keys model.

3.7 Literature Review

Technical Summary

The results of these investigations regarding expected security, obtained after a
broad review of the literature, are summarized in Table 3.2 on the facing page. We
are expecting that most schemes verify the stronger definitions of Section 3.4 as they
were constructed with this idea in mind, while schemes in [BDH+19] and [BKP20]
have already been proven secure by their authors in the model of Section 3.4.
Furthermore, most security reductions of existing schemes were provided based on
arguments applied to one signature and decorrelating it from the keys of the signer.
Their security proofs, for most of them, can be generalised when these arguments
can be applied independently using hybrid arguments. This is unlike the reduction
we provided for our counter-examples3.

Chapter 3. Modeling Anonymity of Linkable Ring Signatures 71

Reference One-time Anonymity (1-ano) Anonymity (ano)
Liu et al. [LWW04] Computational →

Tsang et al. [TWC+05] Computational →
Liu and Wong [LW05] Computational →
Tsang and Wei [TW05] Computational →

Liu et al. [LASZ13] Unconditional → (Unconditional)
Yuen et al. [YLA+13] Computational →

Boyen and Haines [BH18] Unconditional ?4

Branco and Mateus [BM18] Computational ?5

Baum et al. [BLO18] Computational →
Lu et al. [LAZ19] Computational ?5

Liu et al. [LNY+19] Computational No Proof Found
Zhang et al. [ZLS+20] Computational →
Balla et al. [BBG+22] Unconditional → (Unconditional)

Bootle et al. [BEHM22] Computational →
Xiangyu et al. [HC24] Computational →
Xue et al. [XLAZ24] Computational →

(a) Existing Linkable Ring Signatures. “ → ” means that it seems possible to extend the
existing proof. N.A. for “Not Applicable”.

Reference One-time Anonymity (1-ano) Anonymity (ano)
Alberto et al. [ATSS+18] Unconditional 5

(b) Existing One-time Linkable Ring Signatures.
Reference One-time Anonymity (1-ano) Anonymity (ano)

Backes et al. [BDH+19] N.A. (already proven)
Beullens et al. [BKP20] N.A. (already proven)

(c) Existing Linkable Ring Signatures with Proven Anonymity. N.A. for “Not Applicable”.

Table 3.2: Anonymity of Existing Linkable Ring Signatures.

In this section, we provide a systematic review of all existing schemes in the lit-
erature in term of the experiment introduced in Section 3.4. Given the arguments of
Section 3.5 and 3.6, it becomes apparent that the security of linkable ring signatures
with one-time anonymity 1-ano should be re-evaluated, even when one-time anonymity
holds unconditionally. We give an overview of how the stronger security requirement
of anonymity applies to existing systems. Yet, we do not seek to prove the security of
existing schemes.

Given their design choices, it seems that the authors of the schemes in the literature
aimed to offer the security described in the stronger model, when one-time anonymity
was not considered to be a feature of the scheme. Indeed, this is reflected in the informal
description of anonymity provided in previous works. We stress however that, even if
the quoted schemes seem to have been designed to achieve our security, it would be
necessary to re-analyse their security in the model of Section 3.4.

All linkable ring signatures include the ability to link signatures generated from
the secret key sk. In general, these signatures can be divided into two parts: σ the
"signature" itself and a tag. The purpose of the tag is to link valid signatures by their

3Our counter-examples where purposely lacking security when more signature needed to be produced,
but their reduction involved arguments that were not limited to a single signature each time (e.g., the
perfect secrecy of the Sharmir secret sharing apply to k − 1 shares but does not holds anymore when
the kth shared is revealed).

4There is no direct argument one way or the other, we are leaving this question open.
5This scheme is a one-time LRS, in their case, one-time anonymity is expected.

Chapter 3. Modeling Anonymity of Linkable Ring Signatures 72

direct comparison while being bound to the "signature" part. The tags are usually in
the form tag = hsk, for some fixed element h when relying on DL related hypothesis,
or similarly when relying on other mathematical bases. The "signature" part wraps
everything together to avoid modification of the tag, it can for example be an “OR” proof
over the Schnorr NIZK proof [CDS94, FS87] over all the public keys pk = gsk. This
construction was studied in [TWC+05] with a proof in the model of Section 3.2. As part
of the security reduction of the anonymity, these tags are being stripped of the signer’s
identity by applying decisional hypothesis, e.g., the DDH hypothesis for tags formed as
above, then, providing a random value gz instead of hsk = gx·sk for some unknown x.
The reduction for other parts of the signature is more specific to the design. We detail
below existing lines of work and their methods.

General Idea of our Analysis. When investigating the anonymity proofs of existing
signature schemes, it was common to be able to divide the proof into three parts: (1) an
initial sequence of game hops, e.g., programming the ROM, (2) a sequence involving the
modification of elements limited to the signature part σ of the challenge decorrelating
all but the tag from the signer’s secret key, e.g., simulation of the NIZK proof wrapping
up the signature, (3) a sequence of game hops making it possible to decorrelate the
signature tag of the signature σ from the signer’s keys for example the one based on the
DDH and mentioned above. Now, given steps 2 (associated with the challenge signature)
and 3 (associated with the label value), a hybrid argument seems to be possible most
of the time to apply independently these parts of the proof to the multiple challenges
generated by the LoR oracle. In particular, the proof of [BKP20], for which the scheme
is secure in the strong model of Section 3.4, mainly follows these steps. We therefore
investigated whether it is possible to obtain a hybrid argument based on the reductions
provided to decorrelate the multiple challenges of the signer’s identity and summarised
our results in Table 3.2 on the previous page.

Zero-knowledge Based LRS Schemes. As a prominent basis for LRS, the construc-
tions from [TWC+05, LW05, TW05, YLA+13, BM18, BEHM22, HC24, XLAZ24] are
based on zero-knowledge proofs, zero-knowledge arguments, or signature of knowledge.
These schemes are used to wrap up ring signatures and link them with tags. The
reductions provided by the authors of the existing schemes are mainly based on the
zero-knowledge security of their NIZK proofs. This leads us to believe that the security
of the previous schemes can be extended to anonymity ano in the adversarially-chosen
keys model. This is because the proofs corresponding to the signature can be simulated
independently and, by virtue of the existing proof for one-time anonymity, it must be
possible to decorrelated the tag from the signer’s keys. This last reduction for the tag
most likely applies to several signatures at the same time.

Pedersen Commitment Based LRS Schemes for Unconditional Anonymity.
The Pedersen commitment [Ped91] where two secret values r and s are sampled and
form a public commitment c = grhs, for two generators g and h of a group, was used
to obtain unconditional anonymity for LRS. LRS scheme based on this commitment
scheme uses the elements r and s as the secret key and c the public key. As multiple

Chapter 3. Modeling Anonymity of Linkable Ring Signatures 73

pairs (r, s) leads to the same public key pk, an unbounded adversary is unable to recover
the secret from the public key. The anonymity reductions provided by the authors of
these schemes [LASZ13, BH18, BBG+22] are essentially the same. For any signature,
there is always a secret key pair leading to any public key involved and from which the
same signature could result. Put differently, whatever secret key is used, the statis-
tical distribution of the signature remains unchanged. Given the independence of the
signatures from the secret keys, we claim that the proof for all three schemes can be
generalised to prove the stronger notion of anonymity ano, at least under the honest key
model.

Remaining LRS Schemes. Among the existing schemes, some do not fall into the
previous two categories and their anonymity relies solely on decisional hypotheses,
such as the DDH problem for [LWW04, ZLS+20] or the Decisional Module-LWE prob-
lem [BDK+18] for [BLO18] and [LNY+19]. Another scheme [LAZ19] is based on the
chameleon hash function. For the first two schemes [LWW04, ZLS+20], each of the
provided arguments only apply to a single element in the signatures and the associated
reductions can be performed an arbitrary polynomial number of times. We therefore
believe that a hybrid argument could be carried out based on part of the provided reduc-
tion and generalise the proof for any number of signatures produced by a single signer.
That is why anonymity ano seems possible to guarantee. As for the scheme [LNY+19],
we cannot verify how the reduction is performed for this scheme as we were unable to
find an obvious reference to the full proofs.

The security of the remaining [ATSS+18] scheme does not need to be addressed
because its authors have proposed a singleone-time linkable ring signature: a LRS that
is intended to be used to produce a single signature for each generated key pair. In
particular, this scheme is unforgeable only if a single signature has been produced with
a key pair. There is therefore no need to consider more than one signature for each key
pair in the anonymity experiment.

3.8 Relationship Between the Properties

All the relationships between the four anonymity properties are shown in Figure 3.3.
Some of them have not yet been demonstrated, and we discuss them below.

1-ano-ACK ano-ACK

1-ano-HK ano-HK

Sec. 3.8

\
Sec. 3.5

\

\

\

Sec. 3.5

\

\Sec. 3.8

Figure 3.3: Comparison of the Anonymity Levels in the Various Corruption Models.

The anonymity ano presented in Section 3.4 (resp. in Section 3.3) in the ACK cor-
ruption model (resp. the HK) is stronger than the anonymity 1-ano, as it allows access
to several challenge signatures whereas only one is provided to the adversary in the
1-ano-ACK model (resp. 1-ano-HK). This has been demonstrated in Section 3.5.

Chapter 3. Modeling Anonymity of Linkable Ring Signatures 74

Now, we examine the relationship between the HK corruption model and the ACK

corruption model. Consider an adversary A winning, with non-negligible probability,
against the experiment 1-ano or ano in the honest key model HK. According to the
prescriptions of the honest key model, in the case of experiment 1-ano, A did not query
oracle SO and did not issue a public key vector (pki)i∈R∗ with an unregistered or
corrupted public key. Similarly for the case of the ano experiment, A did not query oracle
SO or oracle LoR with unregistered or corrupted public keys. Hence, the same answer
provided in the ACK model would also be accepted by the respective decisional problems
in the ACK model. Therefore, 1-ano-HK is weaker than the 1-ano-ACK experiment and
ano-HK is weaker than the ano-ACK experiment. Let us now show that there is a scheme
that achieves security in the HK model but not the ACK model. To do this, we provide
a second toy scheme showing that the inequalities between the corruption models are
strict.

Second Toy Counter-example Scheme. Consider a secure signature LRS in any
of the corruption models and a IND-CPA secure encryption scheme E . The following
counter-example encrypts the signer’s identity under all the other public encryption
keys of the ring members. This allows anyone with the secret key associated with one
of the public keys of any of the ring members to recover the identity of the signer, but
not anyone outside the ring. We formalise below the linkable ring signature scheme with
such a property and show that it fulfils all the properties of LRS schemes in the HK

corruption model but not in the ACK corruption model.

SetupLRS(1
λ): corresponds to the execution of LRS.SetupLRS(1λ).

GenLRS(1
λ): executes (skLRS, pkLRS) ← LRS.GenLRS(1

λ) and (skE , pkE) ← GenEnc(1
λ).

Sets and returns sk = (skLRS, skE), pk = (pkLRS, pkE).

SignLRS(ski,m, {pkj}j∈R): parses ski into (skLRS, skE) and for all i in the ring R parses
pkj

p−→ (pkLRS,j , pkE,j). It computes ej ← Enc(pkE,j , pki) and returns σLRS ←
LRS.SignLRS(ski,m∥(ej)j∈R, {pkj}j∈R) and (ej)j∈R as σ.

VerifLRS(m,σ, {pkj}j∈R): parses σ into σLRS and (ej)j∈R and verify σLRS by executing
LRS.VerifLRS(m∥(ej)j∈R, σLRS, {pkj}j∈R) and returns its result.

LinkLRS(σ, σ
′): parses σ into σLRS and (ej)j∈R, and σ′ into σ′

LRS and (e′j)j∈R′ . Executes
and returns the result of LRS.LinkLRS(σLRS, σ′

LRS).

Property 6

Consider a secure linkable ring signature LRS with one-time anonymity 1-ano (resp.
anonymity ano) and a IND-CPA secure encryption scheme E . Then, the second toy
counter-example scheme is a linkable ring signature with correctness, unforgeability
unf, one-time anonymity 1-ano (resp. anonymity ano), linkability link and non-
slanderability slan under the honest key model HK.

Proof. This proof follows an analogous path to the proof of the first toy counter-example,
the proof of Property 3 but relyies on the IND-CPA security of the encryption scheme

Chapter 3. Modeling Anonymity of Linkable Ring Signatures 75

for the |R| encrypted elements ej for j ∈ R instead of the perfect secrecy of the secret
sharing scheme (for the element s1 or s2 in the proof of the first toy counter-example).
We now only elaborte for the proof of the property of anonymity 1-ano-HK or ano-HK:

First, for all challenge signatures with a ring R, we reduce to the IND-CPA security
of the encryption scheme for all the elements ej , for all j ∈ R. This is possible as in the
honest key model, the secret key associated to the public key used by the challenger to
encrypt the signers’ identities remains unknown by the adversary. After this reduction,
all elements ej , for any j ∈ R and for all R supplied by the adversary, are uniformly
random. Thus, in a similar way to the proof of Property 3, the 1-ano-HK property (resp.
the ano-HK property) of the LRS leads to the proof of the 1-ano-HK property (resp. the
ano-HK property) of our second toy example.

Our arguments are valid for both the 1-ano-HK or link-HK experiment depending on
the anonymity of the LRS scheme. And yet, it is clear that the ACK corruption model
allows neither. Therefore, we conclude that the HK model is strictly weaker than the
ACK model as presented in Figure 3.3.

The combination of the two counter-examples introduced in this Section and in
Section 3.5, directly implies that there is no hierarchy between the 1-ano-ACK experiment
and the ano-HK model. If we take any 1-ano-ACK secure linkable ring signature scheme
and introduce it into our first toy counter-example, we still get a 1-ano-ACK secure
linkable ring signature scheme. However, this time we ensure that it does not achieve
ano anonymity, and therefore does not reach ano-HK. Similarly, if we consider a ano-HK
secure linkable ring signature scheme and introduce it into our second toy counter-
example, we still obtain a ano-HK secure linkable ring signature scheme, but we ensure
that it does not achieve any type of anonymity in the ACK model. With these last
elements, we conclude the comparison introduced in Figure 3.3.

3.9 Conclusion of the Chapter

We have demonstrated that most security analyses for existing linkable ring signatures
lacked of any guarantee of anonymity, even for the most recently proposed ones. To
support our claim, we provided two constructions that can be proven secure under the
most commonly used security model, despite clearly breaking the informal anonymity
expected from such schemes. Indeed, these counter-examples leaked the identity of the
signer after only two signatures.

On the basis of this observation, we highlighted the model proposed by Backes et
al. [BDH+19] and subsequently used by Beullens et al. [BKP20] which has been left out of
subsequent works. We believe that their model in the adversarially-chosen keys setting,
better reflects the use cases of linkable ring signatures unlike the currently used one. In
particular, they leave out the two counter-example constructions as we demonstrated.

Based on their model, we reviewed the literature providing arguments in favor of ex-
isting schemes realising the new properties. Thus, we rule out a global lack of anonymity
for existing schemes.

Finally, for completeness, we have fully classified the two anonymity properties in
both the honest key model and the adversarially-chosen keys model.

76

Chapter 4

k-Times Full Traceable Proxy and Sanitizable

Signatures

Chapter Summary

This chapter introduces a method to achieve fully traceable k-times anonymity
in anonymous signature schemes, particularly for proxy and sanitizable signatures.
For each of these properties, we formalise the concept, propose a security model, and
present a schema under the DDH assumption. These schemes are efficient due to
their logarithmic key/signature size relative to k. Here are our main contributions:

• Achieve k-times full traceability anonymity for delegation-based signatures.

• Formalise the definition of algorithms, provide a security model and present
a provably-secure scheme under the DDH assumption.

• Ensure that keys/signatures are logarithmic in k, making schemes practical
even for large values of k.

Contents
4.1 Introduction to the Chapter Content 78

4.2 Zero-knowledge Proofs as Building Blocks 82

4.2.1 The Two Zero-knowledge Proofs 83

4.2.2 An Example for the Proof Π<k 84

4.2.3 Instantiation of the Proof πσ 87

4.3 k-Times Anonymous Proxy Signatures 88

4.3.1 Security Model for k-Times Anonymous Proxy Signatures . . 89

4.3.2 Our k-Times Anonymous Proxy Signature Scheme 95

4.4 k-Times Anonymous Sanitizable Signatures 98

4.4.1 Security Model for k-Times Anonymous Sanitizable Signatures 99

4.4.2 k-Times Anonymous Sanitizable Signature Scheme 108

4.5 Design Variants . 111

4.6 Conclusion of the Chapter 112

77

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 78

4.1 Introduction to the Chapter Content

Proxy signatures [MUO96], enable a signer to delegate the ability to sign messages
on its behalf to a delegate. This cryptographic primitive has attracted a great deal
of interest in recent decades. In some contexts, it is preferable to hide the delegate’s
identity from the signature verifier. Such a signature is called an anonymous proxy
signature [FP08]. A trivial way of achieving this property is to give the delegate the
signing key directly; however, this technique allows the delegate to impersonate the
signer without any constraint, which is clearly not desirable. The signer therefore needs
a way of tracing its delegates if one of them abuses their power. This leads to two
inherent issues: the signer must be active to manage the actions of its proxies, and must
have access to the signatures.

The concept of traceable k-times anonymity offers an alternative way to delegate
tracing. Signature schemes following this paradigm allow users to create k signatures
anonymously. If they exceed this limit, a verifier can then publicly link two signa-
tures and trace the identity of the signer. This property has been defined for ring
signatures [FS07b], group signatures [ASY06], and anonymous authentication [TFS04].
Moreover, a k-times signature is said to be fully traceable when the verifier can retrieve
all the signatures generated by the signer which has exceeded the k limit a posteriori.
To the best of our knowledge, this more powerful property has only been defined for
ring signatures [BL16] (more details are given in Section 3.5.2).

However, k-times anonymity has never been applied directly to proxy signatures, even
though they seem naturally suited to this property. Achieving k-times anonymity would
enable a verifier, which has access to all signatures, to publicly trace dishonest proxies
on its own, while preserving the anonymity of honest proxies, without the intervention
of the signer. In this chapter, we close this gap by modeling and instantiating the first
k-times fully traceable anonymous proxy signatures. We have illustrate this concept in
Figure 1.6a on page 17 before examining it in detail in Section 4.3 on page 88.

On the other hand, sanitizable signatures [ACDMT05] are conceptually close to
proxy signatures: in this primitive, the delegate (called the sanitizer) can no longer
produce signatures by itself, but can modify certain parts of a signed message. When
considering a setting where the sanitizer must remain anonymous, the same problems
arise as with proxy signatures. Applying a similar approach, we propose the first k-times
fully traceable anonymous sanitizable signatures. We have illustrated this concept in
Figure 1.6b on page 17 before examining it in detail in Section 4.4.

Contributions and Technical Overview. We give a formal definition, a security
model, and an efficient scheme (in term of size of the keys/signatures) for fully traceable
k-times anonymous proxy signatures and fully traceable k-times anonymous sanitizable
signatures. We give security proofs for these schemes. From a technical point of view,
we rely on the method proposed in [BL16]: the delegate has k different public/secret
keys; if it reuses the same key twice, then it is possible to link the two signatures to the
user and extract an element that links all its other signatures. However, this method
requires a number of keys linear in k; our main technical contribution is a method for
generating k distinct and mutually unlinkable keys from 2 log2(k) keys only. The idea

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 79

is to compose, at the ith signature, the keys corresponding to the bits of i to obtain a
new public/secret key pair. These keys must be certified by the delegator, but must
be unlinkable. To achieve these two properties simultaneously, we use a signature on
equivalence class [FHS19], which allows the delegate to randomise the 2 log2(k) keys
while maintaining the validity of their certificate. This method requires the creation
of an ad hoc zero-knowledge proof ensuring the verifier that the delegate has correctly
generated its key. For the special case where k is not a power of 2, we build another
ad hoc zero-knowledge range proof to ensure that i is indeed less than k. Both of these
proofs have logarithmic complexity in size, enabling us to obtain logarithmic complexity
in size for both our keys and our signatures. This method is fairly generic, so we think it
could be of independent interest in other primitives requiring the generation of several
certified keys. Our sanitizable signature scheme uses the same technique as the one
proposed in [BB21], combined with the method described above to make it k-times
anonymous. The main technical challenge here is to adapt the signature to enable the
signer to simulate the use of the 2 log2(k) keys in the original signature, so that it is not
possible to determine whether it has been sanitized or not.

For each signature primitive, we define the following properties in addition to un-
forgeability:
Anonymity: signatures are anonymous as long as the delegate does not exceed k sig-

natures. In particular, they cannot be linked to each other.
Traceability: if the delegate exceeds the k signatures limit, it cannot prevent anyone

from linking all its signatures and recovering its identity.
Non-framability: a delegate cannot produce a signature that can be traced back to

another entity.
We also adapt the security properties of sanitizable signatures:
Immutability: it is not possible to modify parts of messages that are not intended to

be modified.
Transparency: it is not possible to guess whether a signature has been sanitized or

not. This property implies the property of privacy : it is not possible to determine
any information about the original message.

Unlinkability: it is not possible to link a sanitized signature to the original signature,
or to link sanitized signatures from the same original signature. A few schemes,
such as [FKM+16], achieve this property. Note that unlinkability differs from
anonymity, which ensures that it is not possible to link signatures from the same
user. We provide more details about this in Section 4.4.

Invisibilty: it is not possible to identify which part of the message is modifiable.
Note that designing schemes that are both unlinkable and invisible is challeng-
ing, and there are only two schemes in the literature that combine these proper-
ties [BLL+19, BB21].

Finally, we informally discuss alternatives in terms of functionality and security for
our protocols. As the ad hoc secret keys are generated by the delegator, it can always
trace the signatures. This feature is desirable in most cases, but we note that it is
possible to adapt our protocol to achieve full anonymity, even from the delegator’s point
of view. To achieve this, the proxy simply generates the 2 log2(k) secret keys itself,
and sends the corresponding public keys to the proxy to produce the certificate. In

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 80

return, the delegation process becomes interactive, whereas it is not when the delegator
generates the keys.

On the other hand, we have chosen to define sanitizable signatures where the sanitizer
is anonymous, and where the overall number of sanitizations (potentially applied to
different signatures) is limited by k. We could also have defined a non-anonymous
sanitizer and parameterized the primitive so that unlinkability is guaranteed as long as
the sanitizer does not exceed the sanitization limit k for each signature. Note that the
limit could be different for each signature. In this case, the primitive would have been
k-times unlinkable and not k-times anonymous. This variant follows naturally from our
construction: we only need to store an ad hoc delegation keys in each signature, using
randomizable encryption.

Motivations. Anonymous proxy signatures are used wherever an entity wishes to
delegate the ability to sign on its behalf to others, without making the delegation policy
transparent to the recipient of the messages. Anonymity can also protect proxies when
their identity must remain secret, for example in legal proceedings where retaliation is
possible. Conversely, anonymity provides a high level of protection for proxies who might
be tempted to abuse their power. The k-times fully traceable anonymity property can
significantly limit this, even in the absence of the delegate. Sanitizable signatures extend
proxy signatures by adding a degree of control over the messages sent by delegates. For
example, they can be used to force the use of message templates.

For instance, consider a manager who delegates the ability to sign and send emails
on their behalf from their email address to multiple entities. These could be employees
or servers that automatically send emails that contain, depending on their role, specific
messages, appointments, contracts, payments, invoices, reminders, summons or other
legal or commercial documents. If too many emails are being sent from the same entity
on behalf of the manager, the company’s mail server can use the k-times mechanism to
locate the offending entity, block the emails it is sending, list all its signatures and alert
the manager and anyone else who has received emails from this entity in the past. Note
that in our case the server is honest but curious: we trust it to check signatures and
detect anomalies (it cannot be fully corrupted by an active attacker), but the information
it processes does not allow it to learn anything about the identity of honest proxies or
the delegation policy (a passive attacker can observe everything that passes through the
server without compromising anonymity).

To control the content of messages, it is helpful to use sanitizable signatures that
force delegates to use templates. For example, by setting the metadata it is possible to
allow emails to be sent only to certain people, on certain dates, with certain subjects,
or by forcing the addition of copy users who can check the content of the email. In
the case of automatic emails, such as invoices, it is possible to impose a very precise
template where only the customer’s name, date and amount can be changed. Note that
thanks to the security properties of our sanitizable signatures (transparency, anonymity,
unlinkability, and invisibility), the company’s delegation policy remains entirely private
from the point of view of the verifiers and the mail server as long as the k limit is not
exceeded.

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 81

Related work. Anonymous proxy signatures were introduced by Fuchsbauer and
Pointcheval [FP08]. Since then, several other anonymous proxy signature schemes were
proposed [WYM14, WYML15]. Unfortunatly, as mentioned above, they all consider
active traceability management by the original signer or a dedicated semi-trusted proxy.
Unlike our scheme, Fuchsbauer and Pointcheval’s scheme allows hierarchical manage-
ment of proxies (a delegate can allow a sub-delegate to sign in its place, etc.). This
feature could naturally be achieved by extending our scheme, despite a linear growth in
the number of delegations. This function is left outside of the scope of this work.

k-times anonymity was introduced for authentication, group signatures (where the
group is managed by an authority that generates keys), and ring signatures (where
the group is chosen ad hoc at the time of signing) in [TFS04], [ASY06], and [FS07b]
respectively. In some schemes, the identity of the signer leaks if it produces more than
k signatures. The property of k-times fully traceable anonymity [BL16] extends this
concept by making it possible to trace all signatures produced a priori by the user that
exceeds the k signature bound (and not just a pair of signatures). To the best of our
knowledge, the only scheme that matches this property is the ring signature described
in [BL16], and this at the cost of a signature size in O(nk) where n is the number of
users, and a secret key size in O(k).

In [FP08], Fuchsbauer and Pointcheval mention that anonymous proxy signatures
can be seen as group signatures: the delegator becomes the group manager and each
delegate (i.e., each group member) can sign anonymously on behalf of the manager
(i.e., within the group). We can therefore view our fully traceable k-times proxy signa-
ture as the first fully traceable k-times group signature. Since our aim is also to design
sanitizable signatures, which have some similarities with proxy signatures (in both cases
a delegator gives a delegate the power to create new signatures on its behalf), we have
chosen to present our scheme as an anonymous proxy signature rather than as a group
signature. In comparison with the only k-times group signature scheme [ASY06] in the
literature, our scheme achieves full traceability. In return, the key/signature size is in
O(log(k)), whereas [ASY06] claims a constant key/signature size (note, however, that
in this scheme, the delegator must produce and share a public key of size linear in k,
moreover if the limit k is different for each delegate, then this key must be kept secret
by each delegate, which significantly retains its practicability for large k).

Sanitizable signatures were introduced by Ateniese et al. [ACDMT05], who identified
several security properties (unforgeability, immutability, privacy, transparency, and ac-
countability) formally defined later in [BFF+09]. They show that privacy (the original
message does not leak from the sanitized signature) is implied by transparency. Invis-
ibility was also introduced in [ACDMT05], but received formal treatment much later
in [CDK+17]. Last, but not least, unlinkability has been introduced and formalised
in [BFLS10] and studied in [BPS14, FKM+16]. Only two schemes guarantee all these
properties at once [BLL+19, BB21]. In this chapter, we adapt and prove all these prop-
erties on our scheme, with the exception of accountability, which consists in allowing
the signer to reveal the author (i.e., the original signer or the sanitizer) of a problematic
signature, since this information leaks spontaneously if the sanitizer exceeds the limit
of k sanitizations.

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 82

k-times traceable anonymous proxy signatures should not be confused with the k-
times (not anonymous) proxy signatures introduced by Liu et al. in [LYMW13], where if
the (non-anonymous) proxy exceeds a limit of k signatures, then its secret key leaks. This
primitive is close to ours, but differs in two crucial points: (i) the proxy is not anonymous,
so there is no need to trace it or link signatures, thus full traceability makes no sense
in [LYMW13], and (ii) unlike [LYMW13] we do not want to leak the proxy’s secret key
for security reasons. Indeed, if a verifier recovers a proxy secret key, it can sign messages
as a proxy without the original signer having chosen to give it this power. As a result,
users which have not had access to the k + 1 proxy signatures (including the original
signer) are unaware that this verifier can impersonate the signer, which causes serious
security problems in most applications. Similarly, one line of work, started in [KL06],
aims to limit the sanitizer’s power in various ways in sanitizable signatures [CJ10]. In
particular, in [KL06, CJ10] the authors propose a scheme where if the (non-anonymous)
sanitizer exceeds a limit of k signatures, then its secret key leaks, as in k-times (not
anonymous) proxy signatures [LYMW13]. The differences between this primitive and
ours are the same as those between k-times proxy signatures [LYMW13] and our k-
times anonymous proxy signatures. Note also that our scheme guarantees more security
properties simultaneously (in particular anonymity, unlinkability, and invisibility), which
is much more restrictive, e.g. we have to ensure that the signature is fully randomizable
by the sanitizer.

Finally, k-times anonymous sanitizable signatures should not be confused with γ-
times sanitizable signatures [BB21], where γ bounds the number of blocks that can be
modified instead of the number of times the signature can be sanitized. In the primitive
introduced in [BB21], the sanitizer is not anonymous, and cannot (in the computational
sense) sanitize a signature by modifying more than γ blocks. The mechanism is therefore
very different, as there is no intention of triggering some secret information leak when
the limit is exceeded.

4.2 Zero-knowledge Proofs as Building Blocks

Technical Summary

Our constructions require two zero-knowledge proofs for dedicated purposes. Of
these two, one is called Π<k and is a range proof showing that a prover knows a
committed integer η such that η is less than a specified threshold k, where η is in
{0, . . . , k − 1}. Notably, our construction maintains a linear relationship between
the size of the proof transcript and the number of bits of k, despite the complexity
of the boolean formula thereafter.

On the other hand, a second zero-knowledge proof, called πσ, is subsequently
used to link all the tracing elements and prove their well-formedness. It uses con-
struction bases similar to those of Π<k and is inspired by the construction of the
k-times full traceable ring signature of [BL16].

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 83

We now detail the two non-interactive zero-knowledge proof constructions. The
proof Π<k is described in Section 4.2.1, an example of which is given in Section 4.2.2.
Subsequently, the proof πσ is then described in Section 4.2.3.

We now detail our two constructions of non-interactive zero-knowledge proofs. The
proof Π<k is described in Section 4.2.1, an example of which is given in Section 4.2.2 to
provide more intuition for the reader. Next, the proof πσ is described in Section 4.2.3.

4.2.1 The Two Zero-knowledge Proofs

The Π<k proof guarantees the limit of k signatures authorised by the delegator to its
proxy. In practice, the Π<k proof ensures that the prover knows an elements s and
an integer η such that (i) ỹi = ysi,j and p̃ki = pksi,j are well formed according to s,
some integer η of l bits (i.e., l = log2(k)) and the public values yi,j and ppki,j , for
i ∈ {0, . . . , k − 1} and j ∈ {0, 1}. And (ii) η < k. Proving (i) is equivalent to prove
(g̃1 = gs1 and ỹi = ysi,0 and p̃ki = pksi,0) or (g̃1 = gs1 and ỹi = ysi,1 and p̃ki = pksi,1) for
all i ∈ J0, lK. Formulated now based of the Camenisch and Stadler [CS97a] notation
introduced in Definition 20 on page 42, we obtain:

ZK

s :
l∧
i=0

1∨
j=0

(
g̃1 = gs1 ∧ ỹi = ysi,j ∧ p̃ki = pksi,j

) .

The transcript of this proof is linear in l. On the other hand, proving (ii) consists in
proving η < k, where each bit η[i] of η is committed in ỹi = ysi,η[i]. So to prove that η is
smaller than k, we need to compare k and η as binary words across commitments ỹi, by
going through the bits, from most to least significant. For instance, using k = 1001101,
proving that η < k consists in proving that η[0] = 0 or (η[1] = 0 and η[2] = 0 and
(η[3] = 0 or (η[4] = 0 or (η[5] = 0 and η[6] = 0))). In this case, the required proof is:

ZK

s :
(g̃1 = gs1 ∧ ỹ0 = ys0,0) ∨ ((g̃1 = gs1 ∧ ỹ1 = ys1,0) ∧ (g̃1 = gs1 ∧ ỹ2 = ys2,0)

∧((g̃1 = gs1 ∧ ỹ3 = ys3,0) ∨ ((g̃1 = gs1 ∧ ỹ4 = ys4,0)

∨((g̃1 = gs1 ∧ ỹ5 = ys5,0) ∧ (g̃1 = gs1 ∧ ỹ6 = ys6,0)))))

 .

This technique can be generalised as follows. Let (ij)0≤j≤n be the indices of the 1’s in
the binary word k. Note that i0 is always 1. Proving that η < k consists of providing
the following proof:

ZK

s :
(g̃1 = gs1 ∧ ỹi0 = ysi0,0) ∨ (

∧i1−1
i=i0+1(g̃1 = gs1 ∧ ỹi = ysi,0)∧

((g̃1 = gs1 ∧ ỹi1 = ysi1,0) ∨ (
∧i2−1
i=i1+1(g̃1 = gs1 ∧ ỹi = ysi,0) ∧ (. . .

(g̃1 = gs1 ∧ ỹin = ysin,0) ∨ (
∧l
i=in+1(g̃1 = gs1 ∧ ỹi = ysi,0)) . . .))))

The relation of this proof is a boolean combination of l proofs of equality of discrete log-
arithms. Using the techniques presented above, we thus obtain a proof whose transcript
size is l times the transcript size of a proof of equality of discrete logarithms. This may
seem surprising, since the development of the boolean formula gives on the order of l2

terms, however the generic transformations we use for the and and the or proofs depend

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 84

on how the formula is expressed, and the size of the proofs is linear in the number of
termes in the formula.

Instantiating the proof Π<k, requires several building blocks. In [CP93], Chaum and
Pedersen introduce a zero-konwledge proof of knowledge for discrete logarithm equality
ZK {x : y1 = gx1 ∧ y2 = gx2} in a group of prime order p. This proof is a sigma pro-
tocol: the prover sends a commitment, the verifier sends a challenge (chosen in Z∗

p),
and the prover sends a response. This proof can be extended to prove the equality
of more than two discret logarithms. In this case the size of the resulted transcript
is linear in the number of statements. In general, if two sigma protocols for two in-
stances ϕ1 and ϕ2 and two relations R1 and R2 use the same challenge space, it is
possible to merge the proofs by using the same challenge in order to obtain an and-
proof ZK {w1, w2 : (w1, ϕ1) ∈ R1 ∧ (w2, ϕ2) ∈ R2}. This method can also be extended
to any number of instances. In [CDS94], Cramer et al. proposed a zero-knowledge
proof to prove the knowledge of the witness corresponding to one of two instances
ZK {w : (w, ϕ1) ∈ R1 ∨ (w, ϕ2) ∈ R2}, under the hypothesis that ZK {w : (w, ϕ1) ∈ R1}
and ZK {w : (w, ϕ2) ∈ R2} are sigma protocols that use the same challenge space. The
challenge space of the resulting proof remains the same as that of the two combined
proofs. The method can be extended to prove the knowledge of a witness in relation
to one instance amongst n, in which case the transcript size is equal to the sum of the
transcript sizes of the proofs of each instance. In Section 4.2.2, we detail an example to
illustrate this point. Finally, we use the Fiat-Shamir [FS87] transform to change these
proofs into non-interactive ones. The proof Π<k is the composition of the two proofs
presented above.

Property 7: Security of Π<k

The zero-knowledge proofs Π<k is perfectly complete, zero-knowledge, sound and
simulation-extractable.

Proof. This proof is constructed based of the framework provided in [CP93], [CDS94]
and the Fiat-Shamir transformation [FS87], which makes the Σ-protocol non-interactive.
In particular, the security of the zero-knowledge proof for the equality of the discrete
logarithm comes from the results of [CP93] (and statements) and the security of the or

statements appearing in the zero-knowledge proof comes from the results of [CDS94].

4.2.2 An Example for the Proof Π<k

In this section, we give more details about the structure of the proof Π<k, then we
show an example that illustrates how the proof works and why it is linear in l. We first
recall some facts about Σ-protocols and or-proofs. A Σ-protocol is made up of three
interractions, enabling the exchange of a commitment R, a challenge c, and a response
z. Usually, the simulator of such a protocol for some discrete logarithm relation in a
group of prime order p randomly picks a challenge c ∈ Z∗

p and a response z ∈ Z∗
p, then

computes the comitment R from (c, z) to complete the simulated transcript (R, c, z).
The Cramer et al. or-proof transformation [CDS94] transfoms n Σ-protocols sharing

the same challenge space for the respectives statements/relations (ϕi)i∈JnK and (Ri)i∈JnK

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 85

denoted ZK {w : (w, ϕi) ∈ Ri} into an or-proof Σ-protocol ZK
{
w :
∨
i∈JnK(w, ϕi) ∈ Ri

}
.

This transformation works as follows: assume that the prover knows the witness wj for
the statement/relation ϕj and Rj . It first produces the commitment Rj for ϕj as in
the proof ZK {w : (w, ϕj) ∈ Rj}, then simulates the transcripts (Ri, ci, zi) for the other
statements ϕi where i ̸= j. It sends the commitments (Ri)i∈JnK to the verifier and
receives the challenge c. The prover then computes cj = c⊕

⊕
i∈JnK;i ̸=j ci, computes the

response zj from wj , Rj and cj as in ZK {w : (w, ϕj) ∈ Rj}, and returns (ci, zi)i∈JnK to
the verifier. The verifier checks that c =

⊕
i∈JnK ci, and that each transcript (Ri, ci, zi)

is valid according to ϕi and Ri for i ∈ JnK.

On the other hand, the and-proof transformation that we use to construct zero-
knowledge proofs ZK

{
(wi)i∈JnK :

∧
i∈JnK(w, ϕi) ∈ Ri

}
consists of executing the proofs

ZK {wi : (wi, ϕi) ∈ Ri} in parallel by using a unique challenge c: the prover sends the
commitments (Ri)i∈JnK, receives a challenge c, and outputs the responses (zi)i∈JnK such
that each (Ri, c, zi) is a valid transcript for the statement/relation (ϕi,Ri).

In what follows, we will show how the second part of the proof Π<k works for the
example k = 1001101 given in Section 4.2.1. We stress that the aim of this proof is to
prove that the witness is a number η for η < k.

ZK

s :
(g̃1 = ĝs1 ∧ ỹ0 = ŷs0,0) ∨ ((g̃1 = ĝs1 ∧ ỹ1 = ŷs1,0)

∧(g̃1 = ĝs1 ∧ ỹ2 = ŷs2,0) ∧ ((g̃1 = ĝs1 ∧ ỹ3 = ŷs3,0)

∨((g̃1 = ĝs1 ∧ ỹ4 = ŷs4,0) ∨ ((g̃1 = ĝs1 ∧ ỹ5 = ŷs5,0)

∧(g̃1 = ĝs1 ∧ ỹ6 = ŷs6,0)))))

 .

Throughout this section:

• R denotes the relation:

(g̃1 = ĝs1 ∧ ỹ0 = ŷs0,0) ∨ ((g̃1 = ĝs1 ∧ ỹ1 = ŷs1,0) ∧ (g̃1 = ĝs1 ∧ ỹ2 = ŷs2,0)

∧((g̃1 = ĝs1 ∧ ỹ3 = ŷs3,0) ∨ ((g̃1 = ĝs1 ∧ ỹ4 = ŷs4,0) ∨ ((g̃1 = ĝs1 ∧ ỹ5 = ŷs5,0)

∧(g̃1 = ĝs1 ∧ ỹ6 = ŷs6,0))))).

• R0 denotes the relation (g̃1 = ĝs1 ∧ ỹ0 = ŷs0,0).

• R1,2− (as an abbreviation of R1,2,3,4,5,6) denotes the relation:

(g̃1 = ĝs1 ∧ ỹ1 = ŷs1,0) ∧ (g̃1 = ĝs1 ∧ ỹ2 = ŷs2,0) ∧ ((g̃1 = ĝs1 ∧ ỹ3 = ŷs3,0)

∨((g̃1 = ĝs1 ∧ ỹ4 = ŷs4,0) ∨ ((g̃1 = ĝs1 ∧ ỹ5 = ŷs5,0) ∧ (g̃1 = ĝs1 ∧ ỹ6 = ŷs6,0)))).

• R3 denotes the relation (g̃1 = ĝs1 ∧ ỹ3 = ŷs3,0).

• R4 denotes the relation (g̃1 = ĝs1 ∧ ỹ4 = ŷs4,0).

• R5,6 denotes the relation (g̃1 = ĝs1 ∧ ỹ5 = ŷs5,0) ∧ (g̃1 = ĝs1 ∧ ỹ6 = ŷs6,0).

Moreover, (Rx, cx, zx) will denote the transcript for the relation Rx in the proof. Ac-
cording to the boolean structure of the relation R, the challenges c chosen by the verifier
and the challenges c0, c1,2−, c3, c4 and c5,6 sent by the verifier must verify the following

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 86

k = 1001101

η = 1001101
valid: R1,2−, R5,6,
invalid: R0, R3, R4

η = 10010xx
valid: R1,2−, R4

invalid: R0, R3, R5,6

η = 1000xxx
valid: R1,2−, R3

invalid: R0, R4, R5,6

η = 0xxxxxx
valid: R0,

invalid: R1,2−, R3, R4, R5,6.

Figure 4.1: Tree Structure of the Π<k Proof for k = 1001101 and a Valid η.

equations:

c = c0 ⊕ c1,2− ;

c1,2− = c3 ⊕ c4 ⊕ c5,6 .

If the prover is honest (i.e., R holds), then we have the following cases also highlighted
in Figure 4.1.

Case η = 1001100: the relations R1,2− and R5,6 hold, but the relations R0, R3 and R4

are not verified. The prover chooses (c0, z0), (c3, z3) and (c4, z4), then simulates
the transcripts for these relations. It then receives c from the verifier, which fixes
the values of c1,2− and c5,6:

c1,2− = c0 ⊕ c ;

c5,6 = c3 ⊕ c4 ⊕ c1,2− .

Since R1,2− and R5,6 hold, the prover is able to compute the responses z1,2− and
z5,6 from c1,2− and c5,6.

Case η = 10010xx (where each x can be replaced by any bit): the relationsR1,2−

and R4 hold, but the relations R0, R3 and R5,6 may not be verified. The prover
chooses (c0, z0), (c3, z3) and (c5,6, z5,6), then simulates the transcripts for these
relations. It then receives c from the verifier, which fixes the values of c1,2− and
c4:

c1,2− = c0 ⊕ c ;

c4 = c3 ⊕ c5,6 ⊕ c1,2− .

Since R1,2− and R4 hold, the prover is able to compute the responses z1,2− and
z4 from c1,2− and c4.

Case η = 1000xxx (where each x can be replaced by any bit): the relationsR1,2−

and R3 hold, but the relations R0, R4 and R5,6 may not be verified. The prover
chooses (c0, z0), (c4, z4) and (c5,6, z5,6), then simulates the transcripts for these
relations. It receives c from the verifier, which fixes the values of c1,2− and c3:

c1,2− = c0 ⊕ c ;

c3 = c4 ⊕ c5,6 ⊕ c1,2− .

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 87

Since R1,2− and R3 hold, the prover is able to compute the responses z1,2− and
z3 from c1,2− and c3.

Case η = 0xxxxxx (where each x can be replaced by any bit): the relation R0

holds, but the relations R1,2−, R3, R4 and R5,6 may not be verified. The prover
chooses z1,2−, (c3, z3), (c4, z4) and (c5,6, z5,6), which fixes the value c1,2−:

c1,2− = c3 ⊕ c4 ⊕ c5,6 .

The prover then simulates the transcripts for these relations and receives c from
the verifier, which fixes the values of c0:

c = c0 ⊕ c1,2− .

Since R0 holds, the prover is able to compute the responses z0 from c0.

On the other hand, if the prover is dishonest (i.e., R does not hold), then we have the
following cases:

Case η = 1001101: the relations R0, R3, R4, and R5,6 are not verified. The prover
chooses (c0, z0), (c3, z3), (c4, z4), and (c5,6, z5,6) then simulates the transcripts for
these relations. It then receives c from the verifier, which fixes the value of c1,2−
in order that the equation c1,2− = c0 ⊕ c holds. However, since c1,2−, c3, c4, and
c5,6 are fixed, the probability that the equation c1,2− = c3 ⊕ c4 ⊕ c5,6 holds is 1/p

(each challenge is chosen in Z∗
p), which is negligible.

Case η = 100111x (where x can be replaced by any bit): this case is similar to the
previous one.

Case η = 101xxxx (where each x can be replaced by any bit): the relations R0

and R1,2− are not verified. The prover chooses (c0, z0) and (c1,2−, z1,2−) then
simulates the transcripts for these relations. It then receives c from the verifier;
however the probability that the equation c1,2− = c0 ⊕ c holds is 1/p, which is
negligible.

Case η = 11xxxxx (where each x can be replaced by any bit): this case is simi-
lar to the previous one.

This example covers all the cases in the structure of the binary word k, and can
easily be generalised. Note that the size of the transcript of this proof is linear in l.
As the prover/verifier needs to check the equations on the challenges that follow a tree
structure, the time complexity is quadratic in l. However, we note that the number of
exponentiations remains linear in l, making this proof efficient.

4.2.3 Instantiation of the Proof πσ

In this section, we show how to instantiate the proof πσ later used in our k-times
anonymous proxy and sanitizable signatures in Sections 4.3 and 4.4. For the sake of
clarity, we write this proof with generic notations (where for any integer i, each gi, γi,
and hi are elements of a groups Gi of the same prime order p), later specialised in our

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 88

signatures. The proof πσ is as follows:

πσ ← ZK

{
x, y, z :

h1 = g1
x ∧ h2 = g2

y ∧ h3 = g3
x ∧ h4 = g4

z

h5 = g5
x · γy5 ∧ h6 = g6

x · γy6 ∧ h7 = g7
y

}
.

Our construction follows the Schnorr protocol structure:

• The prover picks (r, s, t)
$←− Z3

p and sets R1 = gr1; S2 = gs2; R3 = gr3; T4 =

gt4; R5 = gr5; S5 = gs5; R6 = gs6; S6 = gs6; and S7 = gs7. The prover sends
(R1, S2, R3, T4, R5, S5, R6, S5, S7) to the verifier.

• The verifier picks a challenge c $←− Zp and sends it to the prover.

• The prover computes α = r + x · c, β = s + y · c, and δ = t + z · c, then sends
(α, β, γ) to the verifier.

• If the following equations holds, then the verifier accepts the proof: gα1 = R1 · hc1;
gβ2 = S2 · hc2; gα3 = R3 · hc3; gδ4 = T4 · hc4; gα5 · γ

β
5 = R5 ·S5 · hc5; gα6 · γ

β
6 = R6 ·S6 · hc6;

and gβ7 = S7 · hc7. Else the verifier rejects.

This proof is complete by construction.
To show that this proof is sound, we show that knowing two valid transcripts

τ0 = ((R1, S2, R3, T4, R5, S5, R6, S5, S7), c0, (α0, β0, γ0)) and τ1 = ((R1, S2, R3, T4, R5,

S5, R6, S5, S7), c1, (α1, β1, γ1)) both using the same commitment (R1, S2, R3, T4, R5, S5,

R6, S5, S7) but different challenges c0 and c1, it is possible to deduce (x, y, z) in polynomial-
time (special soundness). Since the two transcripts are valid, we have: gα0

1 = R1 · hc01 ;
gβ0

2 = S2 ·hc02 ; gα0
3 = R3 ·hc03 ; gδ04 = T4 ·hc04 ; gα0

5 ·γ
β0

5 = R5 ·S5 ·hc05 ; gα0
6 ·γ

β0

6 = R6 ·S6 ·hc06 ;
gβ0

7 = S7 · hc07 ; gα1
1 = R1 · hc11 ; gβ1

2 = S2 · hc12 ; gα1
3 = R3 · hc13 ; gδ14 = T4 · hc14 ;

gα1
5 · γβ1

5 = R5 · S5 · hc15 ; gα1
6 · γβ1

6 = R6 · S6 · hc16 ; and gβ1

7 = S7 · hc17 . Setting
x = (α1 − α0)/(c1 − c0); y = (β1 − β0)/(c1 − c0); and z = (δ1 − δ0)/(c1 − c0) and
using the equations above, we find that: h1 = g1

x; h2 = g2
y; h3 = g3

x: h4 = g4
z;

h5 = g5
x · γy5 ; h6 = g6

x · γy6 ; and h7 = g7
y, which concludes the proof of soundness.

We show that this proof is zero-knowledge by giving a polynomial-time simula-
tor that outputs transcrpits indistinguishable from the transcripts of the real protocol
without using the secret value (x, y, z). The simulator picks (c, α, β, δ) $←− Z4

p; R5
$←− G5;

and R6
$←− G6. Then the simulator computes: R1 = gα1 /h

c
1; S2 = gβ2 /h

c
2; R3 = gα3 /h

c
3;

T4 = gδ4/h
c
4; S5 = (gα5 · γ

β
5)/(R5 · hc5); S6 = (gα6 · γ

β
6)/(R6 · hc6); and S7 = gβ7 /h

c
7. The

simulator returns ((R1, S2, R3, T4, R5, S5, R6, S5, S7), c, (α, β, γ)).

Finally, as this proof is a Σ-protocol, it can be made non-interactive using the
Fiat-Shamir transformation [FS87].

4.3 k-Times Anonymous Proxy Signatures

Technical Summary

Anonymous proxy signatures schemes [FP08] allow a designated proxy to sign mes-
sages on behalf of an original signer, ensuring the signer’s anonymity. In this section,

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 89

we bound the delegation provided to the proxy in order to limit it to a maximum
of k signatures and guarantee fully traceability by the verifier in the event of over-
passed limit. This new primitive is called k-times full traceable proxy signatures.
For simplicity, we use the term k-Times Anonymous Proxy Signatures, provide a
security model for this new primitive and instantiate it based on an SPS scheme
(Definition 16 on page 36) and the NIZK proofs presented in Section 4.2. We also
provide a security proof to demonstrate the security of our scheme.

k-Times Anonymous Proxy Signatures involves three main steps: (1) key generation:
both the original signer and proxy generate key pairs (sk, pk) and (psk, ppk), respectively;
(2) delegation: the original signer generates a delegation token del, enabling the proxy
to sign messages on its behalf. (3) signing and verification: the proxy signs a message m
using del and psk to produce a signature σ. The verifier checks the signature’s validity
using pk without learning the proxy signer’s identity denoted as ppk, thereby preserving
its anonymity.

4.3.1 Security Model for k-Times Anonymous Proxy Signatures

We start our discussion on k-times (fully traceable) anonymous proxy signatures by
giving a formal definition and security model. In this primitive, a signer can delegate
to a proxy the authority to anonymously produce at most k signatures. To do this, the
signer generates a delegation certificate (denoted cert) via the algorithm Delegatek-APS,
using the proxy’s public key and the limit k as input. To produce a proxy signature,
the proxy uses this delegation with an integer η ∈ {0, . . . , k − 1} that must be different
for each of the k signatures. Note that η must not appear in the signature to preserve
anonymity (we will describe the corresponding security model in more detail later in
this section), so it is not given as input to the verification algorithm. If the proxy
decides to produce more than k signatures, it will be forced to use the same index η

twice, triggering a mechanism that allows any user to link these two signatures using an
algorithm Linkk-APS, and to extract the identity of the proxy. The algorithm Linkk-APS

also returns a token w which, when used with a signature as input to the Tracek-APS

algorithm, indicates whether or not the signature was generated by the same proxy,
enabeling the traceability of all the signatures generated by the proxy in the past. Note
that the signer can extend the limit by generating new delegations for the same proxy.

Definition 27: k-times Anonymous Proxy Signature scheme - k-APS

A k-times Anonymous Proxy Signature scheme (k-APS) is a tuple of algorithms:

Setupk-APS(1
λ) : given a security parameter, returns a public parameter pp. Note

that pp is assumed to be an implicit input to all the following algorithms.

Genk-APS(1
λ, k) : given a limit k ∈ N, returns the signer’s secret/public keys (sk, pk).

PKeyGenk-APS(1
λ) : returns the proxy’s secret/public keys (psk, ppk).

Delegatek-APS(sk, ppk, l) : given the keys sk, ppk and l ≤ k, returns a delegation
certificate cert.

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 90

Signk-APS(pk, psk,m, cert, η) : given the keys pk, psk, a message m, a certificate cert,
and an index η, returns a signature σ.

Verifk-APS(pk,m, σ) : given the key pk, a message m, and a signature σ, returns 0
or 1 (for reject or accept).

Linkk-APS(pk,m, σ,m
′, σ′) : given a key pk and two pairs (m,σ), (m′, σ′), returns

an identity ppk and a witness w or ⊥ in case of failure.

Tracek-APS(w, σ) : given a witness w and a signature σ, returns 0 or 1.

We require that k-APS meets Correctness, Unforgeability, Anonymity, Traceabil-
ity and Non-frameability as defined thereafter.

A k-APS is said to be correct if, using keys and certificates honestly generated by the
algorithms Genk-APS, PKeyGenk-APS, and Delegatek-APS, (i) any signature produced by the
algorithm Signk-APS is verified by the algorithm Verifk-APS using the signer public key,
(ii) 2 signatures are linked by the algorithm Linkk-APS which outputs the corresponding
public key if and only if they were produced with the same delegation certificate and the
same η, and (iii) the algorithm Tracek-APS returns 1 on the token outputted by Linkk-APS

and any of the signatures produced from this delegation certificate.

Our security model is inspired both by that of anonymous proxy signatures [FP08]
and that of k-times full traceability for ring signatures [BL16].

Before looking at each of the experiments, we highlight the type of oracle on which
they rely. These oracles are: a registration oracle, a delegation oracle, a signature oracle
and also in some experiments a challenge oracle. These oracles are then specialised to
model each of the properties.

ORegister. The registration oracle allows the adversary to request the registration of an
entity, requesting the challenger to generate an entity with new keys based on the
execution of the PKeyGenk-APS algorithm.

ODelegate. The delegation oracle allows the adversary to request the delegation to a spec-
ified entity based on the execution of the Delegatek-APS algorithm.

OSign. The signing oracle allows the adversary to request a signature from a designated
registered entity which has obtained a delegation. It is produced based on the
execution of the Signk-APS algorithm.

Ochal. The challenge oracle allows the adversary to request chalenges, here signatures
from an unknown signer produced by running the Signk-APS algorithm. This oracle
ressembles, in its purpose, the LoR oracle of Chapter 3.

For each of the oracles, which have yet to be defined, the underlined entries corre-
spond to those chosen by the adversary, the other inputs being provided by the chal-
lenger. Experiments use multisets (sets that may contain the same element multiple
times) that are considered to be global variables (and can therefore be accessed and
modified in oracles): U stores the registered users, D stores the delegations, S stores

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 91

the produced signatures, and H stores the signature indexes. The main reason we in-
stantiate these oracles independently for each experiment is that the sets need to be
populated with elements that differ according to each property.

Aside from the fundamental requirement of correctness, the security principles of
k-APS encompass several crucial aspects: Unforgeability, Anonymity, Traceability, and
Non-frameability. In Figure 4.2, we start by introducing an oracle common to the
experiments of anonymity and non-frameability.

Oracle ODelegate(sk, ppk, l ≤ k)

1 : cert← Delegatek-APS(sk, ppk, l)

2 : D ← D ⊔ {(ppk, cert, l)}
3 : return cert

Figure 4.2: Description of the ODelegate Oracle for k-APS.

Unforgeability. This property ensures that an adversary playing the role of proxies
will not be able to produce a signature unless they have received a delegation certificate.
For this property to hold, a PPT adversary A must forge a valid fresh message/signature
pair (m∗, σ∗) for a message that was never queried to the signature oracle.

Ounf
Register(⊥)

1 : (ppk, psk)← PKeyGenk-APS(1
λ)

2 : U ← U ∪ {(ppk, psk)}
3 : return ppk

Ounf
Delegate(sk, ppk, l ≤ k)

1 : if ∃psk, s.t.(ppk, psk) ∈ U ,
2 : cert← Delegatek-APS(sk, ppk, l)

3 : D ← D ⊔ {(ppk, cert, l)}
4 : return cert

5 : else return ⊥
Ounf

Sign(pk, ppk, cert, η,m)

1 : if ∃psk, s.t.(ppk, psk) ∈ U ,
2 : σ ← Signk-APS(pk, psk,m, cert, η)

3 : S ← S ∪ {(m,σ)}
4 : return σ

5 : else return ⊥

(a) Description of the Ounf
Register, Ounf

Delegate and Ounf
Sign Oracles.

ExpunfA,k-APS(1
λ)

1 : D,S ← ∅
2 : pp← Setupk-APS(1

λ)

3 : (pk, sk)← Genk-APS(1
λ, k)

4 : (m∗, σ∗)←− AOunf
Register,O

unf
Delegate,O

unf
Sign(pk, k)

5 : return Verifk-APS(pk,m
∗, σ∗) ∧ ((m∗, ·) /∈ S)

(b) Description of Unforgeability Experiment.

Figure 4.3: Description of Unforgeability Experiment and Oracles for k-APS.

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 92

In the unforgeability experiment, the adversary can request delegation certificates
generated for non-corrupted proxies and signatures associated with their public keys
through three oracles: Ounf

Register, Ounf
Delegate, Ounf

Sign, all introduced in Figure 4.3a on the
preceding page.

A k-APS is unforgeable if for any PPT algorithm A, the probability AdvunfA,k-APS(1
λ) =

Pr[ExpunfA,k-APS(1
λ) = 1] is negligible. ExpunfA,k-APS(1

λ) is described in Figure 4.3b on the
previous page.

Anonymity. Anonymity ensures that signatures do not disclose the identity of the
proxy signer (corresponds to its public key) and that signatures generated by the same
proxy signer remain unlinkable. Note that in our model, anonymity is only considered
against concerns the signature verifiers, and not the delegator; indeed, in our application,
there is no reason why the delegator should not know the identity of the proxy signing
on its behalf. In fact, it is even rather preferable that the delegator is aware of the
proxies allowed to generate signatures, for accountability reasons. In the corresponding
experiment, the adversary chooses a limit t ≤ k, then tries to distinguish the origin of a
challenge signature produced by one of two honest proxies.

Oano
Sign(t, (pski, certi)i∈{0,1}, j,m)

1 : if j = b ∧ ηj = t− γ,
2 : return ⊥
3 : if j = 1− b ∧ ηj = t− 1,

4 : return ⊥
5 : σ ← Signk-APS(pk, pskj ,m, certj , ηj)

6 : ηj ← ηj + 1

7 : return σ

Oracle Oano
chal(t, (pski, certi)i∈{0,1},m)

1 : if γ = 0, return ⊥
2 : γ ← 0

3 : σ ← Oano
Sign(b, t, (pski, certi)i∈{0,1}, b,m)

4 : return σ

(a) Description of the Oano
Sign and Oano

chal Oracles.

ExpanoA,k-APS(1
λ)

1 : b
$←− {0, 1},D ← ∅, η0, η1 ← 0, γ ← 1 // defined as global variables

2 : pp← Setupk-APS(1
λ)

3 : (pk, sk)← Genk-APS(1
λ, k)

4 : for j ∈ {0, 1},
5 : (ppkj , pskj)← PKeyGenk-APS(1

λ)

6 : t← AODelegate(pk, ppk0, ppk1)

7 : if t /∈ JkK,
8 : return b

9 : for j ∈ {0, 1},
10 : certj ← Delegatek-APS(sk, ppkj , t)

11 : b∗ ← AODelegate,Oano
Sign,O

ano
chal(pk, ppk0, ppk1)

12 : return b∗ = b

(b) Description of Anonymity Experiment.

Figure 4.4: Description of Anonymity Experiment and Oracles for k-APS.

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 93

In the anonymity experiment, the adversary can request to the oracles a maximum of
t− 1 signatures for each of the proxies, and a single signature for one of the two proxies
(the one chosen by the challenger), which guarantees that the adversary cannot obtain
more than t signatures for one of the two proxiesif it did then it would trivially link
these signatures to the challenge, which is an inherent property of our primitive. For
each of the two proxies, the signature oracle increments the index η at each signature,
which ensures that the same value η is not used twice for the same proxy. Our model
therefore considers adversaries trying to link two signatures from two different proxies
with the same η, which would allow the adversary to infer that two signatures are not
from the same proxy, and thus generally ensures that η is not leaked from the signature.
The adversary can request delegation using the common oracle ODelegate provided above,
signatures and the challenges of the experiment through their respectively oracles Oano

Sign

and Oano
chal both introduced in Figure 4.4a on the facing page.

A k-APS is said to be anonymous if for any PPT A, the probability AdvanoA,k-APS(1
λ) =

|Pr[ExpanoA,k-APS(1
λ) = 1] − 1/2| is negligible. ExpanoA,k-APS(1

λ) is described in Figure 4.4b
on the preceding page.

CheckTrace(pk, (m∗
i , σ

∗
i)
qs
i=1)

1 : if D is defined,D p−→ (pki, deli, ki)
n
i=1

// For proxy signatures only.

2 : if S is defined ∧ ∃i ∈ JqsK, (m∗
i , σ

∗
i , ∗, ∗) ∈ S, return 0

// For sanitizable signatures only.

3 : T ← 0,W, ID← ∅, diff ← qs −
∑

1≤i≤n

ki // diff is required to be strictly positive.

4 : if (∃i ∈ JqsK,Verif(pk,m∗
i , σ

∗
i) = 0) ∨ (∃i, j ∈ JqsK, j ̸= i, (m∗

i , σ
∗
i) = (m∗

j , σ
∗
j))

5 : ∨ (diff ≤ 0), return 0

6 : for 1 ≤ i < j ≤ qs,
7 : (idi,j , wi,j)← Link(pk,m∗

i , σ
∗
i ,m

∗
j , σ

∗
j)

// Try linking any two signatures.

8 : if (idi,j , wi,j) ̸=⊥ ∧idi,j /∈ ID,

// Identities for which signatures have been linked.

9 : ID← ID ∪ {idi,j},W [idi,j]←W [idi,j] ∪ {wi,j}

10 : T ←
∑
id∈ID

 ∑
w∈W[id]

(
qs∑
i=1

Trace(w, σi)

)
// The number of traced signatures is compared to the number of signatures allowed.

11 : if T <
∑

pki∈ID

ki + diff, return 1

12 : else , return 0

Figure 4.5: CheckTrace Subroutine for the Traceability Experiment for k-APS and
k-SAN.

(Algorithms Verif, Link and Trace are those of a k-times anonymous Proxy or
Sanitizable Signature.)

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 94

Traceability. This property guarantees that the Trace algorithm leaks the identity
of any adversary overpassing the delegation limit. In the corresponding experiment,
the adversary’s target is to produce more signatures than allowed by the delegator,
without the Linkk-APS and Tracek-APS algorithms being able to correctly link or trace
the signatures. For that, the adversary can obtain multiple delegation certificates for
different limits and different public keys ppk. Since each delegation certificate allows
it to produce ki signatures, it is required to produce strictly more than

∑n
i=1 ki valid

signatures. The adversary wins the experiment if the number of traced signatures is less
than the number of signatures that would have been traced if they had been generated
honestly. This test, which is described in Figure 4.5 on the preceding page, has to take
into account all the delegations that were exceeded in any execution scenario. First, note
that if the limit of a delegation certificate for a public key is exceeded, then it must be
possible to trace all the signatures generated by the owner of that public key, even if they
were generated using a different delegation certificate. Thus, the number of signatures
traced T should be at least the sum of the limits ki of each delegation produced for
each public key traced (expressed as

∑
pki∈ID ki in Figure 4.5 on the previous page),

to which we add the number of signatures that exceed the global sum of the limits for
all delegation certificates used by the adversary (expressed as diff = qs −

∑n
i=1 ki in

Figure 4.5 on the preceding page, where qs is the number of signatures output by the
adversary). The adversary can request delegations using the oracle ODelegate provided
above.

A k-APS is traceable if for any PPT algorithm A, the probability AdvTraceA,k-APS(1
λ) =

Pr[ExpTraceA,k-APS(1
λ) = 1] is negligible. ExpTraceA,k-APS(1

λ) is described in Figure 4.6.

ExpTraceA,k-APS(1
λ)

1 : D ← ∅
2 : pp← Setupk-APS(1

λ)

3 : (pk, sk)← Genk-APS(1
λ, k)

4 : (m∗
i , σ

∗
i)
qs
i=1 ← A

ODelegate(pk)

5 : b← CheckTrace(pk, (m∗
i , σ

∗
i)
qs
i=1)

6 : return b

Figure 4.6: Description of the Traceability Experiment for k-APS.

Non-frameability. This property prevents a PPT adversary from framing another
user by generating malformed, yet valid, signatures. More precisely, the goal of the
adversary is to output two signatures traceable to a registered proxy who remains honest.
The adversary has access to oracles that can be used to register users, obtain delegation
certificates, and obtain signatures for honest users. The adversary will not be able to
abuse the signature oracle by producing more than k signatures for the proxy it wishes
to trace. Note that in our model we implicitly assume that linking two signatures and
tracing a user are performed by the same entity (we do not consider the case where
an adversary only generates a tracing token w that traces an honest user without the
linked signatures). In practice, this means that to delegate tracing, the delegate must

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 95

Ono-Frame
Register (U , ppk)

1 : if ppk =⊥,
2 : (ppk, psk)← PKeyGenk-APS(1

λ)

3 : U ← U ∪ {(ppk, psk, |U|, 1)}
4 : else U ← U ∪ {(ppk,⊥, |U|, 0)}
5 : return ppk

Ono-Frame
Sign (pk, (pski, certi)i∈{0,1}, j, η,m)

1 : if η ∈ S[ppk], return ⊥
2 : if ∃psk, i s.t. (ppk, psk, i, 1) ∈ U ,
3 : S[ppk]← S[ppk] ∪ {η}
4 : return Signk-APS(pk, pskj ,m, certj , η)

5 : else return ⊥

(a) Description of the Ono-Frame
Register and Ono-Frame

Sign Oracles.

Expno-Frame
A,k-APS(1

λ)

1 : U ,D,S ← ∅
2 : pp← Setupk-APS(1

λ)

3 : (pk, sk)← Genk-APS(1
λ, k)

4 : (m∗
1, σ

∗
1), (m

∗
2, σ

∗
2)← AOno-Frame

Register ,ODelegate,Ono-Frame
Sign (pk)

5 : (id, w)← Linkk-APS(pk,m
∗
1, σ

∗
1 ,m

∗
2, σ

∗
2)

6 : if (id, ·, ·, 1) ∈ U ∧ |S[id]| ≤ k,
7 : return 1

8 : return 0

(b) Description of the Non-frameability Experiment.

Figure 4.7: Description of Non-frameability Experiment and Oracles for k-APS.

be provided with the two linked signatures so that it can link them and produce its own
token w.

In the non-frameability experiment, the adversary can request registration using
the oracle Ono-Frame

Register and signatures using the oracle Ono-Frame
Sign , both introduced in Fig-

ure 4.7a. A k-APS signature is non-frameable if for any PPT algorithm A, the proba-
bility Advno-Frame

A,k-APS(1
λ) = Pr[Expno-Frame

A,k-APS(1
λ) = 1] is negligible. The security experiment

Expno-Frame
A,k-APS(1

λ) is described in Figure 4.7b.

4.3.2 Our k-Times Anonymous Proxy Signature Scheme

In this section, we present our k-times anonymous proxy signature (Setupk-APS,Genk-APS,

PKeyGenk-APS,Delegatek-APS,Signk-APS,Verifk-APS, Linkk-APS,Tracek-APS), which uses a bi-
linear group setting (p,G1,G2,Gt, e) and a SPS scheme.

Construction Intuition. The setup (algorithm Setupk-APS) of our construction re-
turns several group elements and the description of a hash function. In particular, the
group element g1 will be used as a bases for the proxy public key ppk = gpsk1 (where psk

is the proxy secret key). The signer key pair (generated from based on Genk-APS) is an
SPS key pair supporting vectors of 4l + 1 group elements in G1, where l = ⌈log2(k)⌉.

To delegate (algorithm Delegatek-APS) the power to create k anonymous signatures,
the signer will create two sets of l public/secret keys (yi,0, xi,0)i∈JlK and (yi,1, xi,1)i∈JlK.
The idea behind this technique is to be able to create k public/secret keys by composing
the previous 2 log2(k) keys: given an integer η < k, the key corresponding to η will be

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 96

composed of the keys corresponding to each of the bits in η. For each i, the signer also
produce a Diffie-Hellman key ppki,j = g

psk·xi,j
1 between yi,j = g

xi,j
1 and ppk = gpsk1 . This

will enable us to link the keys produced by these elements to the owner of the proxy
public key ppk later on. Finally, all these public keys are signed with an SPS, acting as
a certificate, so that they can be randomised, and they are stored in the delegation del.
Thanks to cert, we have already shown that the proxy can produce k distinct pairs of
certified Elgamal public/secret keys. The idea of our signature algorithm (Signk-APS) is
to use one of its keys for each signature. If the same key is used several times, however,
it will be possible to find its owner thanks to the mechanism introduced in [BL16] (this
point will be discussed further in this section). However, to preserve anonymity, these
keys must not be linkable, so they must be randomised (note that the SPS properties
preserve their certification by the signer).

Assume that the delegate is using the algorithm for the ηth time. First, the delegate
randomises g1 and all the elements yi,j and ppki,j using the same random r as an
exponent, and adapts the SPS accordingly. The randomised version of g1 is denoted
ĝ1, and the keys are respectively denoted ŷi,j and p̂pki,j . This first step randomises
all the elements in the delegation yi,j and ppki,j , so that it is not possible to make the
link between the randomised delegation ŷi,j and p̂pki,j and the original one. Then, the
delegate chooses a new random s, randomises the basis ĝ1 in g̃1, and randomises only
the ŷi,η[i] and p̂pki,η[i] corresponding to the bits of η to obtain the keys ỹi and p̃pki.
The delegate uses a zero-knowledge proof to ensure that the randomization has been
done correctly and with an integer η actually lower than k (the instantiation of this
proof is rather technical and described in more details in the next section). In this
way, it is possible to multiply the public keys ỹ =

∏l
i=1 ỹi and add the corresponding

secret keys x =
∑l
i=1 xi,η[i] to obtain a new public/secret key pair (ỹ, x) that verifies

ỹ = g̃x1 . This second step allows the proxy to hide its chosen η in the elements ỹi and
p̃pki (by randomizing the ŷi,η[i] and p̂pki,η[i] again) while preserving the link between
the randomised delegation ŷi,j and p̂pki,j and the generated key pair (ỹ, x). Note that
p̃pk =

∏l
i=1 p̃pki is the Diffie-Hellman of ỹ and ppk, which links ỹ to the owner of ppk in a

hidden way. It allows the delegate to prove in zero-knowledge that the identity revealed
by the mechanism of [BL16] is indeed the identity of the delegate. This proof, denoted
πσ, also proves that the mechanism of [BL16] triggers correctly if the delegate signs
more than k messages. The technical description of this proof is given in Section 4.2.3.

The signature verification (algorithm Verifk-APS) consists of re-computing ỹ and p̃pk

and checking that the proof πσ is valid. Finally, the Linkk-APS and Tracek-APS algorithms
work in the same way as in [BL16]: each signature contains α1 = hx1 , α2 = gt2, α3 =

hx2 · g
u·psk
1 , and α4 = hx3 · h

v·psk
4 . Thus, if the same key x is used twice in signatures,

they can be linked since they share the same α1 = hx1 . Let’s note α′
3 = hx2 · g

u′·psk
1 the

element α3 corresponding to the second signature. It is possible to find the identity of
the delegate by computing (α3/α

′
3)

1/(u−u′) = ppk. In a similar way, the token ω = hpsk4

leaks from α4 when two signatures are linked. Each signature also contains elements of
the form τ = e(ω, α2). Without knowledge of ω, τ is indistinguishable from a random
element under the DDH assumption, but a user which knows the delegate’s token ω can
retrieve its signatures by recomputing τ , thus achieving full traceability.

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 97

Formal Description. Below is the formal instantiation of our k-APS scheme.
Setupk-APS(1

λ) : samples random base elements g1, h1, h2, h3, h4 ∈ G1 and g2 ∈ G2,
chooses a hash function H : {0, 1}∗ → Z∗

p, and sets them as the common parame-
ters.

Genk-APS(1
λ, k) : sets l = ⌈log2(k)⌉, and returns (pk, sk)← GenSPS(1

λ, 4l + 1).

PKeyGenk-APS(1
λ) : samples psk

$←− Zq and sets ppk = gpsk1 . Returns the pair (psk, ppk).
Delegatek-APS(sk, ppk, k) : sets l = ⌈log2(k)⌉, aborts if the SPS key sk does not support

message of 4l + 1 elements. For all (i, j) ∈ JlK × {0, 1}, samples xi,j
$←− Z∗

p, sets
yi,j = g

xi,j
1 , ppki,j = ppkxi,j and produces σ̂ ← SignSPS(sk, (g1, y1,0, . . . , yl,1, ppk1,0,

. . . , ppkl,1)). Returns cert = ((xi,j , yi,j , ppki,j)i∈JlK;j∈{0,1}, σ̂).

Signk-APS(pk, psk,m, cert, η) : set l = ⌈log2(k)⌉. Samples r, s $←− Z∗
p, sets ĝ1 = gr1 and

g̃1 = ĝ1
s. For all i ∈ JlK and j ∈ {0, 1}, computes ŷi,j = yri,j and p̂pki,j = ppkri,j ,

adapts the SPS signature σ̂ into an independent one σ̂ ← ChgRepSPS((g1, y1,0,

. . . , yl,1, ppk1,0, . . . , ppkl,1), σ̂, r, pk), computes ỹi = ŷsi,η[i], and p̃pki = p̂pk
s

i,η[i].
Generates a zero-knowledge proof Π<k of knowledge of s and η which proves that
(i) ỹi and p̃pki are well formed according to s and some integer η of l bits and
(ii) η < k. We have presented the formalisation of this zero-knowledge proof
in Section 4.2.1. Sets x =

∑l
i=1 xi,η[i], ỹ =

∏l
i=1 ỹi, p̃pk =

∏l
i=1 p̃pki, samples

t
$←− Z∗

p and computes α1 = hx1 , α2 = gt2, u = H(m, 0, α2) and v = H(m, 1, α2).
Generates the matching elements α3 = hx2 · g

u·psk
1 and α4 = hx3 · h

v·psk
4 , and the

tracing element τ = e(h4, α2)
psk. Also generates:

πσ ← ZK

{
psk, x, t :

ỹ = g̃1
x ∧ p̃pk = ỹpsk ∧ α1 = hx1 ∧ α2 = gt2

∧α3 = hx2 · g
u·psk
1 ∧ α4 = hx3 · h

v·psk
4 ∧ τ = e(h4, α2)

psk

}
.

Set σcert = (ĝ1, ((ŷi,b, p̂pki,b)b∈{0,1}, ỹi, p̃pki)i∈JlK, σ̂,Π<k) and return the signature
σ = (g̃1, α1, α2, α3, α4, τ, πσ, σcert).

Verifk-APS(m,σ, pk) : parse σ
p−→ (g̃1, α1, α2, α3, α4, τ, πσ, σcert) and σcert

p−→ (ĝ1, ((ŷi,b,

p̂pki,b)b∈{0,1}, ỹi, p̃pki)i∈JlK, σ̂,Π<k). Compute u = H(m, 0, α2), v = H(m, 1, α2),
ỹn =

∏l
i=1 ỹi, and p̃pk =

∏l
i=1 p̃pki. Verify the signature σ̂ and the proofs Π<k

and πσ. If all checks are correct, returns 1, otherwise 0
Linkk-APS(pk,m, σ,m

′, σ′) : verifies that VerifSPS(m,σ, pk) = VerifSPS(m
′, σ′, pk) = 1 and

returns 0 if α1 ̸= α′
1 or if one of the verification failed. Compute u = H(m, 0, α2),

v = H(m, 1, α2), u′ = H(m′, 0, α′
2), v′ = H(m′, 1, α′

2), id = (α3/α
′
3)

1/(u−u′) and
w = (α4/α

′
4)

1/(v−v′). Returns (id, w).
Tracek-APS(w, σ) : returns 1 if and only if τ = e(w,α2).

In the following, we informally explain why each of the security properties presented
in Section 4.3 holds in our scheme.

Unforgeability. Zero-knowledge proofs produced during the signing process ensure
that the delegate has used its certificate correctly. This means that a user who has not
been delegated cannot produce a valid fresh signature under the assumption that the
proof is sound.

Anonymity. Since the elements in the certificate are randomised for each new signature,
and since the delegate is able to create public keys ỹ for k different secret keys x, it is not

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 98

possible to link two signatures from the elements ŷi,j and ỹi under the DDH assumption.
Recall also that the p̂pki,j and p̃pki do not allow the signature to be linked to ppk under
the DDH assumption either. On the other hand, the element hx2 (resp. hx3) is the Diffie-
Hellman of h2 (resp. h3) and ỹ (where ỹ varies with each of the k signatures), and
therefore hides the elements linked to the identity of the delegate including α3 (resp.
α4). Finally, τ hides the value of ppk under the DDH assumption on the elements h4
and ppk. Assuming that the proofs are indeed zero-knowledge, it is not possible to link
two signatures from the same honest user.

Traceability and Non-frameability. Zero-knowledge proofs ensure that the signature
is correct and that the delegate knows the secret key corresponding to the public key used
in the certificate. Thus, the delegate cannot bypass the mechanism for linking/tracing
its signatures if it exceeds the limit, which ensures traceability, and the delegate can
only use elements of its own delegation, which ensures non-frameability.

We therefore have the following theorem, for which the proofs are available in [BOA24b].

Theorem 1: Security of our k-APS.

Instantiated by a signature on equivalent classes that is unforgeable, class-hiding,
and signature adaptatable, by NIZK proofs which are zero-knowledge and sound,
and by a collision-resistante hash function, our k-APS scheme is unforgeable, anony-
mous, traceable and non-frameable under the DDH assumption in G1 and G2.

4.4 k-Times Anonymous Sanitizable Signatures

Sanitizable signature schemes [ACDMT05] enable a delegate called the sanitizer to
modify specific sections of a signed message m = m1∥ . . . ∥mn and update the signa-
ture consistently with these modifications. Sanitizable signatures can also be seen as a
more restrictive variant of proxy signatures, in which the sanitizer receives delegations
prescribing portions of the messages it can sign: the signer produces both a signature
enforcing parts of the message and data enabling the delegate to produce new signatures
using the sanitization algorithm (corresponding to the delegation certificate in the proxy
signatures) as long as the restrictions chosen by the signer are respected. In this section,
we bound the delegation provided to sanitizers in order to limit it to a maximum of k
signatures and guarantee full traceability by the verifier in the event of the limit being
exceeded.

Technical Summary

In this section we formalise the notion of a k-times (fully traceable) anonymous
sanitizable signature (k-SAN). We first informally describe its purpose, algorithms
and the security model for k-SAN. The full definitions is provided in Section 4.4.2.
We then extend our proxy signature scheme to the case of sanitizable signatures in
Section 4.4.2. Our formal definition combines the features of the k-times anonymous

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 99

proxy signatures defined in Section 4.3, with the standard features of sanitizable
signatures [BFF+09, CJ10, KSS15, BB21]. In contrast with previous sanitizable
signature models, each sanitization requires the use of a delegation that can only
be used k times, even if it is used for different signatures.

4.4.1 Security Model for k-Times Anonymous Sanitizable Sig-
natures

Highlight of the Model. A k-SAN consists of the following algorithms: Setupk-SAN,
Genk-SAN, SaKeyGenk-SAN, Delegatek-SAN, Signk-SAN, Sanitizek-SAN, Verifk-SAN, Linkk-SAN

and Tracek-SAN. With the exception of Signk-SAN and Sanitizek-SAN, all these algorithms
are defined in a similar way to k-APS (SaKeyGenk-SAN corresponds to PKeyGenk-APS and
generates the sanitizer key pair (ssk, spk)). The only difference with the previously de-
scribed Signk-SAN and Sanitizek-SAN algorithms is that the modification of the authorised
message must be prescribed.

A k-times Anonymous Sanitizable Signature scheme is required to achieve Unforge-
ability, Immutability, Transparency, Invisibility, Unlinkability, Anonymity, Traceability
and Non-frameability.

Note that sanitizable signatures usually have two additional algorithms, Prove and
Judge, which allow the delegating signer to reveal a posteriori that a given signature was
produced by the sanitizer. In this case, an additional security property, accountability,
is required to ensure that the signer cannot blame the sanitizer for a signature it did not
produce, and that the sanitizer will not be able to produce a signature that cannot be
traced by the signer. Since in this chapter we are considering a scenario where the tracing
of dishonest users is not done by the signer, but by the verifier using the mechanism
triggered when the sanitizer produces too many signatures, we have not provided our
construction with these algorithms and have not adapted the accountability model.

Formal Definition. We now fully detail the model for k-times anonymous sanitizable
signature schemes.

Definition 28: k-times Anonymous Sanitizable Signature scheme - k-SAN

A k-times Anonymous Sanitizable Signature scheme (k-SAN) is a tuple of polynomial-
time algorithms:

Setupk-SAN(1
λ) : given a security parameter, returns public parameters pp. Note

that pp is assumed to be an implicit input to all the following algorithms.

Genk-SAN(1
λ, k, n) : given a security parameter and two integers k and n, returns a

pair of key (sk, pk).

SaKeyGenk-SAN(1
λ) : given a security parameter 1λ, returns a pair of keys (ssk, spk).

Delegatek-SAN(sk, spk, k) : given the keys sk and spk and an integer k, returns a
delegation del.

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 100

Signk-SAN(m,ADM, sk, spk) : given the keys sk and spk, a messagem = m1∥ . . . ∥mn,
for a given index n, and a admissible set ADM ⊂ JnK, returns a signature σ.

Sanitizek-SAN(m,σ,MOD, ssk, pk, del, η) : given the keys pk and ssk, a message-signa-
ture pair (m,σ), a modification MOD, a delegation del and a signature index
η, returns a signature σ′.

Verifk-SAN(pk,m, σ) : given a key pk, a message m and a signature σ, the algorithm
returns 0 or 1.

Linkk-SAN(pk,m, σ,m
′, σ′) : given a key pk, two message-signature pair m,σ and

m′, σ′, returns an identity id and a witness w or the special symbol ⊥.

Tracek-SAN(w, σ) : given a witness w and a signature σ, returns 0 or 1.

We require that k-SAN meets Unforgeability, Immutability, Transparency, Invisi-
bility, Unlinkability, Anonymity, Traceability and Non-frameability as defined here-
after.

For the following definitions, we provide two notations ADM and MOD, which are
respectively the admissible modification for the message associated to the signature
produced by the signer and the modification desired by the sanitizer. ADM is defined as
a subset of JnK for a message consisting of n parts in Definition 28. In order to simplify
notations, we will also use ADM as a function taking as input a given modification MOD

and returning 1 if these modifications are admissible, i.e., if MOD(m) has modified
only blocks of the message whose index is in the set ADM. Otherwise, the value for
ADM(MOD) is 0.

The security properties of sanitizable signatures have already been investigated in
numerous previous works [ACDMT05, BFF+09, CJ10, BB21]. We have adapted the
existing security properties to the newly introduced model. We also add the properties
related to the k-times mechanism: anonymity, traceability and non-frameability. These
properties stay consistent with what was defined for proxy signatures (Section 4.3), as
both type of signatures share conceptual similarities, but diverge in practical usages.

Before stating the security experiments, we begin the presentation of the properties
of k-times Anonymous Sanitizable Signature schemes with the description of the com-
mon oracles used to formalise the properties of immutability, transparency, invisibility,
unlinkability and anonymity.

Odel(sk, spk, l ≤ k)

1 : del← Delegatek-SAN(sk, spk, l)

2 : return del

OSign(sk, spk,m,ADM)

1 : σ ← Signk-SAN(m,ADM, sk, spk)

2 : S ← S ∪ {(m,σ,ADM, spk)}
3 : return σ

Figure 4.8: Description of the Odel and OSign Oracles for k-SAN.

Unforgeability. Users cannot generate a valid signature without knowing a secret key
which has obtained a delegation. A k-times anonymous sanitizable signature is unforge-
able when for any PPT adversary A, the probability that A wins the SUF experiment

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 101

is negligible for every n ∈ N. The security experiment ExpSUFA,k-SAN(1
λ) is described in

Figure 4.9b. In the unforgeability experiment, the adversary can request signatures from

OSUF/unlink
Sign (sk, spk,m,ADM)

1 : σ ← Signk-SAN(m,ADM, sk, spk)

2 : S ← S ∪ {(m,σ,ADM, spk)}
3 : return σ

OSUF
San (ssk, pk, del,m, σ,MOD, η)

1 : σ ← Sanitizek-SAN(m,σ,MOD, ssk, pk, del, η)

2 : S ← S ∪ {(MOD(m), σ)}
3 : return σ

(a) Description of the OSUF/unlink
Sign and OSUF

San Oracles.

ExpSUFA,k-SAN(1
λ, n)

1 : S ← ∅
2 : pp← Setupk-SAN(1

λ)

3 : (pk, sk)← Genk-SAN(1
λ, k, n)

4 : (spk, ssk)← SaKeyGenk-SAN(1
λ)

5 : del← Delegatek-SAN(sk, spk, k)

6 : (m∗, σ∗)← AOSUF/unlink
Sign ,OSUF

San (pk, spk)

7 : if ∃ADM, spk, (m∗, σ∗,ADM, spk) /∈ S : return Verifk-SAN(m
∗, σ∗, pk)

8 : return 0

(b) Description of the Unforgeability Experiment.

Figure 4.9: Description of Unforgeability Experiment and Oracles for k-SAN.

the signer based on OSUF/unlink
Sign and sanitizations from the targeted sanitizer via OSUF

San ,
both introduced in Figure 4.9a. No signature limit is imposed, as revealing the identity
of the signer after too many signatures should not affect the unforgeability of the saniti-
zable signature scheme. Also, due to the anonymity of the signature, this experiment is
modelled without providing delegations to the adversary, otherwise a signature verifying
Verifk-SAN(m

∗, σ∗, pk) would be easily produced by the adversary based on other signa-
ture keys which have received a delegation. This is because signatures from different
sanitizers are expected to be indistinguishable, according to the property referred under
this name.

Immutability. A sanitizable signature is immutable when no adversary is able to san-
itize a message by means of making unauthorised modifications. A k-times anonymous
sanitizable signature is immutable when for any PPT time adversary A, the probability
that A wins the Immut experiment is negligible for every n ∈ N. The security experi-
ment ExpImmut

A,k-SAN(1
λ) is described in Figure 4.10 on the following page. The adversary

has access to a delegation oracle Odel and a signature oracle OSign described in Figure 4.8
on the preceding page.

Common Experiment for Multiple Properties. We strucutre the transparency,
invisibility and unlinkability in the same generic way, but using different oracles. The
security experiment ExpO-Sanitize

A,k-SAN (1λ) is described in Figure 4.11 on the following page and
mainly follows the direct execution of algorithms. It starts by sampling a random value
b

$←− {0, 1} and setting up the environment via the Setup algorithm. It then generates

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 102

ExpImmut
A,k-SAN(1

λ, n)

1 : S ← ∅
2 : pp← Setupk-SAN(1

λ)

3 : (pk, sk)← Genk-SAN(1
λ, k, n)

4 : (m∗, σ∗)← AOdel,OSign(pk)

5 : if (Verifk-SAN(m
∗, σ∗, pk) = 1)∧

6 : (∀ MOD,∀(m,σ,ADM, spk) ∈ S s.t. ADM(MOD) = 1,m∗ ̸= MOD(m)) :

7 : return 1

8 : return 0

Figure 4.10: Description of the Traceability Experiment for k-SAN.

the signer’s key pair (pk, sk), the sanitizer’s key pair (spk, ssk) and a delegation del.
Once these elements are produced, the adversary obtains the public keys pk and spk and
accesses the oracles in an oracle list O. Amongst these oracles, the challenge oracles are
those related to the winning condition. The adversary is asked to produce a decision bit
b∗ based on the challenges accessed via one of the oracles. The experiment produces a
value that depends on the equality of the bits b and b∗.

ExpO-Sanitize
A,k-SAN (1λ, n)

1 : S,H ← ∅, b $←− {0, 1} // defined as global variables

2 : pp← Setupk-SAN(1
λ)

3 : (pk, sk)← Genk-SAN(1
λ, k, n)

4 : (spk, ssk)← SaKeyGenk-SAN(1
λ)

5 : del← Delegatek-SAN(sk, spk, k)

6 : b∗ ← AO(pk, spk)

7 : return b = b∗

Figure 4.11: Description of the O-Sanitize Experiment for k-SAN.
Generic Experiment for Transparency, Invisibility and Unlinkability.

Transparency. The verifier cannot decide whether a given signature has been sani-
tized or not. A k-times anonymous sanitizable signature is transparent when for any
PPT adversary A, the probability that A wins the {Otran

Sa/Si,Odel,OSign,Otran
San }-Sanitize ex-

periment is negligible for every n ∈ N. ExpO-Sanitize
A,k-SAN (1λ) is described in Figure 4.11. The

adversary has access to a delegation oracle Odel and a signature oracle OSign described
in Figure 4.8 on page 100. It also has access to the oracle Otran

San which provides the
sanitization of the experiment by the sanitizer and to the challenge oracle Otran

Sa/Si which
produces either signatures from the signer (case b = 0) or signatures sanitized by the
sanitizer (case b = 1). These last two oracles are described in Figure 4.12 on the next
page.

Invisibility. The invisibility property prevents an adversary which is neither the signer,
nor the sanitizer of a signature from determining any information on the modifiable

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 103

Otran
Sa/Si(sk, ssk, del,m,ADM,MOD, η)

1 : if ADM(MOD) = 0 ∨ η ∈ H ∨ η ≥ k :
2 : return ⊥
3 : if b = 0:

4 : σ ← Signk-SAN(m,ADM, sk, spk)

5 : σ ← Sanitizek-SAN(m,σ,MOD, ssk, pk, del, η)

6 : if b = 1:

7 : σ ← Signk-SAN(MOD(m),ADM, sk, spk)

8 : H ← H∪ {η}
9 : return σ

Otran
San (ssk, pk, del,m, σ,MOD, η)

1 : if ADM(MOD) = 0 ∨ η ∈ H ∨ η ≥ k :
2 : return ⊥
3 : σ ← Sanitizek-SAN(m,σ,MOD, ssk, pk, del, η)

4 : H ← H∪ {η}
5 : return σ

Figure 4.12: Description of the Otran
Sa/Si and Otran

San Oracles for Transparency of k-SAN.

blocks. More formally, a k-times anonymous sanitizable signature is invisible when for
any PPT adversaryA, the probability thatA wins the {OInvis

LRADM,Odel,OSign,OInvis
San }-Sanitize

experiment is negligible for every n ∈ N. The security experiment ExpO-Sanitize
A,k-SAN (1λ) is

described in Figure 4.11 on the facing page. The adversary has access to a delegation
oracle Odel, and a signature oracle OSign described in Figure 4.8. It also has access to the
oracle OInvis

San , which provides the sanitization of the experiment by the sanitizer, and to
the challenge oracle OInvis

LRADM which is a Left-or-Right oracle producing either signatures
for an admissible set ADM0 of for a an admissible set ADM1, depending on the value of
the bit b which has to be guessed by the adverary. These last two oracles are described
in Figure 4.13.

OInvis
LRADM(sk, spk,m,ADM0,ADM1)

1 : σ ← Signk-SAN(m,ADMb, sk, spk)

2 : S ← S ∪ {(m,σ,ADM0 ∩ ADM1, spk)}
3 : return σ

OInvis
San (ssk, pk, del,m, σ,MOD, η)

1 : if for some ADM, ((m,σ,ADM, spk) ∈ S)
2 : ∧ (ADM(MOD) = 0): return ⊥
3 : if Verifk-SAN(m,σ, pk) = 0, return ⊥
4 : σ ← Sanitizek-SAN(m,σ,MOD, ssk, pk, del, η)

5 : S ← S ∪ {(MOD(m), σ,ADM, spk)}
6 : return σ

Figure 4.13: Description of the OInvis
LRADM and OInvis

San Oracles for Invisibility of k-SAN.

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 104

Unlinkability. Considering a fixed sanitizer assigned with two signatures, the verifier
cannot link a sanitized signature with its original version. A k-times anonymous sanitiz-
able signature is unlinkable when for any PPT adversary A, the probability that A wins
the {Ounlink

LRSan,Odel,OSUF/unlink
Sign ,Ounlink

San }-Sanitize experiment is negligible for every n ∈ N.
ExpO-Sanitize

A,k-SAN (1λ) is described in Figure 4.11 on page 102. The adversary has access to a
delegation oracle Odel described in Figure 4.8. It also has access to the oracle OSUF/unlink

Sign ,
which provides signatures for any provided messages and admissible set ADM and to the
Ounlink

San , which provides the sanitization by the sanitizer of the experiment. The challenge
oracle Ounlink

LRSan is a Left-or-Right oracle, producing signatures for either an admissible set
ADM0 of for a an admissible set ADM1, depending on the value of the bit b which has
to be guessed by the adverary. These last two oracles are described in Figure 4.14.

Ounlink
LRSan(ssk, pk, del, (mi,MODi, σi)i∈{0,1}, η)

1 : if ∃i ∈ {0, 1},ADMi(MODi) = 0 ∨
2 : ∃i ∈ {0, 1},Verifk-SAN(mi, σi, pk) = 0

3 : ∨ ADM0 ̸= ADM1 ∨MOD0(m0) ̸= MOD1(m1)

4 : ∨ η ∈ H ∨ η ≥ k : return ⊥
5 : σ ← Sanitizek-SAN(mb, σb,MODb, ssk, pk, del, η)

6 : S ← S ∪ {(MODb(mb), σ,ADMb, spk)}
7 : H ← H∪ {η}
8 : return σ

Ounlink
San (ssk, pk, del,m, σ,MOD, η)

1 : if ADM(MOD) = 0 ∨ η ∈ H ∨ η ≥ k : return ⊥
2 : if ((m,σ,ADM, spk) ∈ S) ∧ (ADM(MOD) = 0,

3 : for some ADM) : return ⊥
4 : σ ← Sanitizek-SAN(m,σ,MOD, ssk, pk, del, η)

5 : S ← S ∪ {(MOD(m), σ,ADM, spk)}
6 : H ← H∪ {η}
7 : return σ

Figure 4.14: Description of the Ounlink
San and Ounlink

LRSan Oracles for Unlinkability of k-SAN.

Anonymity. Upon receiving a delegation for k sanitizations, a sanitizer leaks its iden-
tity only if it sanitizes more than k signatures (this is guaranteed by the upcoming
property of traceability), otherwise, it is not possible to link a signature to a sanitizer.
A k-times anonymous sanitizable signature is anonymous when for any PPT adversary
A, the probability that A wins the ano experiment is negligible for every n ∈ N. The
security experiment ExpanoA,k-SAN(1

λ) is described in Figure 4.15b on the facing page.
The experiment allows the adversary to choose the index t ∈ JkK such that, for

any number of delegated signatures, the adversary should remain unable to distinguish
the challenges provided on the basis of two challenge oracles: a) oracle Oano

chal-Sign which
provides a signature that can only be sanitized by the challenger sanitizer, b) oracle
Oano

chal-San which can only be requested based on the signature previously produced by
the oracle Oano

chal-Sign and generates a signature sanitized by the challenger’s sanitizer.

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 105

Oano
San(pk, (sski, deli)i∈{0,1}, j,m, σ,MOD)

1 : if ∄ADM, (m,σ,ADM, spkj) ∈ S, s.t. (ADM(MOD) = 1) :

2 : return ⊥
3 : σ ← Sanitizek-SAN(m,σ,MOD, sskj , pk, delj , ηj)

4 : S ← S ∪ {(MOD(m), σ,ADM, spkj)}
5 : ηj ← ηj + 1

6 : return σ

Oano
chal-Sign(sk, (sski, deli)i∈{0,1},m,ADM)

1 : σ ← Signk-SAN(m,ADM, sk, spkb)

2 : Schal ← Schal ∪ {(MOD(m), σ,ADM)}
3 : return σ

Oano
chal-San(sk, (sski, deli)i∈{0,1},m, σ,MOD)

1 : if ∄ADM, (m,σ,ADM) ∈ Schal, s.t. (ADM(MOD) = 1) :

2 : return ⊥
3 : σ ← Sanitizek-SAN(m,σ,MOD, sskb, pk, delb, ηb)

4 : Schal ← Schal ∪ {(MOD(m), σ,ADM)}
5 : ηb ← ηb + 1, γ ← γ + 1

6 : return σ

(a) Description of the Oano
San, Oano

chal-Sign and Oano
chal-San Oracles for Anonymity of k-SAN.

ExpanoA,k-SAN(1
λ, n)

1 : b
$←− {0, 1}, η0, η1 ← 0, γ ← 0,S,Schal ← ∅ // defined as global variables

2 : pp← Setupk-SAN(1
λ)

3 : (pk, sk)← Genk-SAN(1
λ, k, n)

4 : for j ∈ {0, 1},
5 : (spkj , sskj)← SaKeyGenk-SAN(1

λ)

6 : t← AOdel,OSign(pk, spk0, spk1)

7 : if t /∈ JkK, return b

8 : for j ∈ {0, 1},
9 : delj ← Delegatek-SAN(sk, spkj , t)

10 : b∗ ← AOdel,OSign,Oano
San,O

ano
chal-Sign,O

ano
chal-San(pk, spk0, spk1)

11 : if ηb ≥ t ∨ ηb−1 ≥ t-γ, return b

12 : return b = b∗

(b) Description of the Anonymity Experiment.

Figure 4.15: Description of Anonymity Experiment and Oracles for k-SAN.

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 106

These two oracles are described in Figure 4.15a on the previous page. The adversary
also has access to the delegation oracle Odel and the signature oracle OSign described
in Figure 4.8 on page 100, as well as to the sanitization oracle Oano

San, which sanitizes
the signature produced by the oracle OSign. These last two oracles are described in
Figure 4.15a on the previous page.

Traceability. Whenever an adversary exceeds the sanitization bound, it must be pos-
sible to trace all the signatures generated by it. A k-times anonymous sanitizable signa-
ture is traceable when, for any PPT adversary A, the probability that A wins the Trace

experiment based on the CheckTrace algorithm of Figure 4.5 on page 93 is negligible
for every n ∈ N. The security experiment ExpTraceA,k-SAN(1

λ) is described in Figure 4.16b.
The adversary also has access to a signing oracle OSign described in Figure 4.8, and a
delegation oracle described in Figure 4.16a.

Otrace
del (sk, spk, l ≤ k)

1 : del← Delegatek-SAN(sk, spk, l)

2 : D ← D ∪ {(spk, del, l)}
3 : return del

(a) Description of the Otrace
del Oracle for Traceability of k-SAN.

ExpTraceA,k-SAN(1
λ, n)

1 : S,D ← ∅
2 : pp← Setupk-SAN(1

λ)

3 : (pk, sk)← Genk-SAN(1
λ, k, n)

4 : (m∗
i , σ

∗
i)
qs
i=1 ← A

Otrace
del ,OSign(pk)

5 : return CheckTrace(pk, (m∗
i , σ

∗
i)
qs
i=1)

(b) Description of the Traceability Experiment.

Figure 4.16: Description of Traceability Experiment and Oracle for k-SAN.

Non-frameability. This property prevents an adversary from framing someone else
by generating malformed, yet valid sanitizations. A k-times anonymous sanitizable
signature is non-frameable when, for any PPT adversary A, the probability that A
wins the no-Frame experiment is negligible for every n ∈ N. The security experiment
Expno-Frame

A,k-SAN(1
λ) is described in Figure 4.17b on the facing page. The adversary has

access to four oracles: a registration oracle Ono-Frame
Register , generating keys for new sanitizers,

a delegation oracle Ono-Frame
del providing delegation from the signer to any sanitizer, a

signature oracle OSign, and a sanitization oracle Ono-Frame
San . The OSign oracle is shown in

Figure 4.8, while the three others are shown in Figure 4.17a.

Anonymity versus unlinkability. We highlight the fact that, although conceptually
close, the properties of unlinkability and anonymity capture independent attack scenar-
ios. In unlinkability, the adversary tries to link signatures modified for a single known
sanitizer, while in anonymity, the adversary has to guess the identity of an unknown

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 107

Ono-Frame
Register

1 : (spk, ssk)
$←− SaKeyGenk-SAN(1

λ)

2 : U ← U ∪ {(spk, ssk, 1)}
3 : return spk

Ono-Frame
del (sk, spk, l ≤ k)

1 : del← Delegatek-SAN(sk, spk, l)

2 : D[spk]← (del, l)

3 : H[spk]← ∅
4 : return del

Ono-Frame
San (pk, spk,m, σ,MOD, η)

1 : Extract (spk, ssk, b) from U
2 : if b = 0 ∨ D[spk] =⊥ ∨η ∈ H[spk] :
3 : return ⊥

4 : D[spk] p−→ (del, l)

5 : if η > l : return ⊥
6 : σ ← Sanitizek-SAN(m,σ,MOD, ssk, pk, del, η)

7 : H[spk]← H[spk] ∪ {η}
8 : return σ

(a) Description of the Ono-Frame
Register , Ono-Frame

del and Ono-Frame
San Oracles for Non-frameability of k-SAN.

ExpnoFrameA,k-SAN (1λ, n)

1 : U ,D,H ← ∅

2 : (pk, sk)
$←− Genk-SAN(1

λ, k, n)

3 : (m∗
i , σ

∗
i)

2
i=1 ← A

Ono-Frame
Register ,O

no-Frame
del ,Oano/no-Frame

Sign ,Ono-Frame
San (pk)

4 : (id, w)← Linkk-SAN(pk,m
∗
1, σ

∗
1 ,m

∗
2, σ

∗
2)

5 : if ∃ssk s.t. (id, ssk, 1) ∈ U : return 1

6 : return 0

(b) Description of the Non-frameability Experiment.

Figure 4.17: Description of Non-frameability Experiment and Oracles for k-SAN.

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 108

sanitizer for a given message and can control the modifications this sanitizer makes to
these signatures.

Since in the anonymity game the adversary chooses for itself how and by whom signa-
tures are modified via oracles, and cannot have a signature modified by several different
sanitizers, knowing how to link a sanitized signatures to its original gives it no advan-
tage. Note that for signatures sanitized by the unknown sanitizer that the adversary has
to determine, the sanitization oracle will always use the key of the unknown sanitizer,
thus avoiding trivial attacks where the adversary tests whether the sanitization of its
signature by a chosen sanitizer fails or not.

On the other hand, for the unlinkability experiment, the adversary receives a sig-
nature sanitized by a given user, and must determine the original signature key used.
As the original signature can only be sanitized by one sanitizer chosen a priori by the
signer, guessing the identity of this sanitizer by attacking anonymity gives the adversary
no advantage. So there is no implication between unlinkability and anonymity.

Note that when the limit of k sanitizations is exceeded, it is the identity of the
sanitizer and the link between their signatures that is leaked, but it is still not possible
to link the sanitized signatures to the original signatures. We link the signatures of a
sanitizer, but the unlinkability property still holds for these signatures.

4.4.2 k-Times Anonymous Sanitizable Signature Scheme

Our k-times anonymous sanitizable signatures combine the design of the sanitizable sig-
natures in [BLL+19, BB21] with the mecanism we introduced in our k-times anonymous
proxy signature. The signature contains commitments that allow the sanitizer to show
that only admissible blocks are modified. More precisely, the sanitizer provides a proof
that for every block within the altered message, the commitment corresponds to the
hash of the index or the hash of the index combined with its content. If any unautho-
rised block is altered, then the sanitizer is unable to generate the proof. In addition,
the sanitizer produces elements that enable our tracing mechanism to work if it exceeds
its sanitization limit. In order to achieve transparency, we show how the signer can
simulate these elements in the original signature. This results in two computationally
identically distributed signatures outputed by SignSan and SanitizeSan. In what follows,
we describe our k-SAN scheme.

The Setup algorithm is the same as in Section 4.3.2.
Genk-SAN(1

λ, k, n) : if n > 1, sets l = ⌈log2(k)⌉, and generates two SPS keys pairs
(pkdelSPS, sk

del
SPS) ← GenSPS(1

λ, 4l + 1) and (pkMOD
S , skMOD

S) ← GenSPS(1
λ, 2n). The

the algorithm samples sklog
$←− Z∗

p and set pklog = g
sklog
1 , and returns pk = (pkdelSPS,

pkMOD
SPS , pklog) and sk = (skdelSPS, sk

MOD
SPS , sklog).

SaKeyGenk-SAN(1
λ) : samples ssklog

$←− Zq, set spklog = g
ssklog
1 , runs (sske, spke) ←

GenEnc(1
λ) and returns ssk = (ssklog, sske) as the secret key and spk = (spklog, spke)

as the public key.
Delegatek-SAN(sk, spk, k) : sets l = ⌈log2(k)⌉, abort if the SPS key skdelSPS does not sup-

port messages of 4l + 1 group elements. For all (i, j) ∈ JlK × {0, 1}, samples
xi,j

$←− Z∗
p, set yi,j = g

xi,j
1 , spki,j = spklog

xi,j and producesx the SPS signature σ̂ ←
SignSPS(sk

del
SPS, (g1, y1,0, . . . , spkl,1)). Returns del = ((xi,j , yi,j , spki,j)i∈JlK;j∈{0,1}, σ̂).

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 109

Below, we describe the Signk-SAN and Sanitizek-SAN algorithms, drawing parallels between
their similarities and specifying their respective executions when they differ.

Both Signk-SAN(m,ADM, sk, spk) and Sanitizek-SAN(m,σ,MOD, ssk, pk, del, η) sets l =
⌈log2(k)⌉. Then:

Signk-SAN: Parses m p−→ m1∥ . . . ∥mn, samples η $←− J0, k − 1K, s $←− Z∗
p, and ĝ1, ŷi,j ,

ŝpki,j
$←− G1 for all (i, j) ∈ JlK × {0, 1}. Simulates a delegation by signing σ̂ ←

SignSPS(sk
del
SPS, (ĝ1, ŷ1,0, . . . , ŝpkl,1)). For all i ∈ JlK and j ∈ {0, 1}, sets ỹi = ŷsi,η[i],

and s̃pki = ŝpk
s

i,η[i].
Sanitizek-SAN: Parses MOD(m)

p−→ m1∥ . . . ∥mn, σ
p−→ (delσ, tra, πσ), delσ

p−→ (ĝ1, g̃1,

{{ŷi,b, ŝpki,b}b∈{0,1}, ỹi, s̃pki}i∈JlK, σ̂,Π<k) and tra
p−→ ({ui, vi}ni=1, ỹ, α1, α2, α3, α4,

τ, πMOD, σMOD, e) (note that the values of most of these variables will be updated
by reallocation during the algorithm). Then the algorithm proceeds similarly to
the initial steps of the Sign algorithm of the k-APS signature scheme, halting before
the execution of the proof Π<k.

Both algorithms generate the proof Π<k of knowledge of s and η which proves that (i) ỹi
and s̃pki are well formed according to s and some integer η of l bits and (ii) η < k. This
proof follows the same instantiation as before. To conclude this first part, set delσ = (ĝ1,

g̃1, {{ŷi,b, ŝpki,b}b∈{0,1}, ỹi, s̃pki}i∈JlK, σ̂,Π<k).

Both algorithms start the second phase by setting the message blocks:

Signk-SAN: To mandate the sanitizer for a set of modifiable blocks: samples a $←− Z∗
p. For

all i ∈ ADM let ui = H(mi, i, 0)
a and vi = H(mi, i, 1)

a, otherwise let ui = H(i, 0)a

and vi = H(i, 1)a. Encrypt e← Enc(spke, a)

Sanitizek-SAN: Samples b $←− Z∗
p, decrypt a← Dec(sske, e) and updates e← Enc(spke, a · b).

Sets ADM = ∅ and ∀i ∈ JnK, let ui = H(mi, i, 0)
a·b and vi = H(mi, i, 1)

a·b when
the signature contains H(mi, i, 0)

a and H(mi, i, 1)
a, otherwise let ui = H(i, 0)a·b

and vi = H(i, 1)a·b. Checks if MOD ⊂ ADM and then sets a = a · b, otherwise
return ⊥.

Both algorithms generate the signature of knowledge:

πMOD ← SoKe

a : ∧
1≤i≤n

(ui = H(mi, i, 0)
a ∧ vi = H(mi, i, 1)

a)

∨ (ui = H(i, 0)a ∧ vi = H(i, 1)a)

 .

Signk-SAN: executes σMOD ← SignSPS(sk
MOD
SPS , (u1, v1, . . . , un, vn)). Sets ỹ =

∏l
i=1 ỹi,

s̃pk =
∏l
i=1 s̃pki, u =

∑n
i=1 ui, v =

∑n
i=1 vi and samples the elements α1, α3, α4

$←−
G1, α2

$←− G2 and a tracing element τ $←− Gt.
Sanitizek-SAN: Adapts σMOD given randomness b: σMOD ← ChgRepSPS((u1, v1, . . . , un,

vn), σMOD, b, pk
MOD
SPS). Set x =

∑l
i=1 xi,η[i], ỹ =

∏l
i=1 ỹi, s̃pk = ỹssklog , and com-

putes α1 = hx1 . Let u =
∑n
i=1 ui, v =

∑n
i=1 vi and samples t $←− Z∗

p. Computes
α2 = gt2, the matching elements α3 = hx2 · g

u·ssklog
1 , α4 = hx3 · h

v·ssklog
4 and a tracing

element τ = e(h4, α2)
ssklog .

The vector of elements tra = ({ui, vi}ni=1, ỹ, α1, α2, α3, α4, τ, πMOD, σMOD, e) is set by
both entities and embed in a signature of knowledge where the sanitizer proves the first

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 110

part of the or statement and the signer the second part:

πσ ← SoK(del,tra){sklog : (ỹ = ĝ1
x·s ∧ s̃pk = ỹssklog ∧ α1 = hx1 ∧ α2 = gt2∧

α3 = hx2 · g
u·ssklog
1 ∧ α4 = hx3 · h

v·ssklog
4 ∧ τ = e(h4, α2)

ssklog) ∨ (pklog = g
sklog
1)}.

Finally Signk-SAN and Sanitizek-SAN return the signature σ = (delσ, tra, πσ).

Signature verification consists of re-computing the elements that are necessary for the
verification of every SPS and signature of knowledge. The linking and tracing algorithms
are the same as Linkk-APS and Tracek-APS.

We will now informally recall the security properties of k-SAN and explain why they
hold for our scheme, except for the anonymity, traceability and non-frameability that
are reached in a similar way as in our k-APS scheme (Section 4.3.2).

Unforgeability. The users cannot generate a valid signature without knowing a secret
key which has obtained a delegation. This property relies on the hardness of recovering
the secret key of the signer or one of the sanitizers, which is ensured by the DDH
assumption. Once this is ruled out, we can reduce the ability of an adversary to forge a
signature to its ability to forge SPS signatures.

Immutability. A sanitizable signature is immutable when no adversary is able to
sanitize with unauthorised modification. This property relies on the collision resistance
of the hash function, as well as the soundness and zero-knowledge properties of the
signature of knowledge πMOD (as they link the message to the signature). Moreover, the
EUF-CMA security of the SPS and the DDH assumption prevent impersonation of the
signer.

Transparency. The verifier cannot decide whether a given signature has been san-
itized or not, which means that the outputs of Signk-SAN and Sanitizek-SAN should be
computationally indistinguishable. The randomised delegation encompassed in the sig-
nature is identically distributed to a newly produced one. All SoKs can be produced by
both the signer and the sanitizer, while the other elements are shown to be computa-
tionally indistinguishable based on the DDH problem.

Invisibility. The invisibility property prevents an adversary which is neither the signer,
nor the sanitizer of a signature from determining any information on the modifiable
blocks. The difference between a modifiable block and a non-modifiable block is the
input of the hash function serving as a commitment. The obtained hash is then ele-
vated to a secret random power. Therefore, invisibility mainly relies on the class hiding
property (Definition 10 on page 31).

Unlinkability. For a fixed sanitizer assigned with two signatures, the verifier cannot
link a sanitized signature with its original version. In the proposed signature scheme, all
elements undergo randomization during sanitization or are entirely new, which ensures
this property.

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 111

We therefore have the following theorem, for which the proofs are available in [BOA24b].

Theorem 2: Security of our k-SAN.

When instantiated by a signature on equivalense classes that is unforgeable, class-
hiding, and signature adaptatable, by NIZK proofs which are zero-knowledge and
sound, by a collision-resistante hash function, by an SoK that has perfect simu-
lability and simulation-extractability, and by an IND-CCA public key encryption,
our k-SAN is unforgeable, immutable, transparent, unlinkable, anonymity, invisi-
ble, k-traceable and non-frameable under the DDH assumption in G1 and G2 in the
random oracle model.

4.5 Design Variants

In this section, we show how to adapt our techniques to a variety of situations, by
presenting minor variants of our schemes.

k-times group signatures. As mentioned in the introduction, an anonymous proxy
signature scheme can be generically transformed into a group signature scheme, con-
sidering the delegator as a group manager and the delegates as group members. The
idea remains valid for k-times signatures, so our scheme can be viewed as the first fully
k-times group signature.

Full anonymity for proxy signature We considered that anonymity was not desir-
able from the point of view of the original signer. Indeed, as delegates sign on behalf
of the original signer, it seems legitimate for it to know their identity through the
proxy/sanitized signature. However, in some cases, we might want to guarantee full
anonymity for the delegates, especially if we use our scheme as a group signature, as it
is explained in the Introduction. Anonymity is not guaranteed because the secret keys
xi,j are chosen by (and therefore known) the delegator, which can therefore, from a
signature, find the keys xi,j used to forge x and thus trace the delegate’s identity from
ỹ. To prevent this, the delegate simply has to choose the xi,j ’s secretly. For the delega-
tor, delegation therefore consists in signing public keys whose secrets it does not know.
Without this information, as these public keys are randomized with a random element
known only to the delegate, the delegator will no longer be able to lift the anonymity
of the signatures under the DDH assumption. In particular, being the author of the
equivalence class signature is of no help to the delegator, since once randomized, this
signature is perfectly indistinguishable from a new signature, even for the user which
generated it.

k-times anonymity versus k-times unlinkability/transparency In this chapter,
we have focused on sanitizable signatures where the sanitizer is anonymous, the identity
of the sanitizer being revealed after the k-th signature. However, if the delegate is
not anonymous, the k-times approach can be applied to other information protection
properties, in particular unlinkability and transparency.

Chapter 4. k-Times Full Traceable Proxy and Sanitizable Signatures 112

The k-times unlinkability ensures unlinkability as long as the signature has not been
sanitized more than k times. Once the limit is exceeded, all signatures derived from that
signature can be linked to each other (note that the limit applies to a single signature,
so the other signatures will remain unlinked). Our scheme can be easily adapted for
this property: for each signature, the original signer uses the Delegate algorithm, and
adds the del element to the e cipher. The sanitizer then recovers del by decrypting e,
and can use it to sanitize the signature. Note that in this paradigm, there is no need to
communicate a key to the sanitizer a priori. Signature size remains logarithmic in k.

If we consider sanitizable signatures linkable by design, we can use the k-times limit
for transparency: if the limit is exceeded, it is possible to distinguish the signatures pro-
duced by the sanitizer from the original, which guarantees an accountability mechanism
that is triggered without the active participation of the signer. This property can be
ensured by the same mechanism as for k-times unlinkability. This variant is similar to
the scheme in [CJ10], except that the scheme in [CJ10] leaks the sanitizer’s secret key,
which seems less reasonable for practical use as discussed in the introduction.

4.6 Conclusion of the Chapter

In this chapter, we have studied how delegation can be modified and restricted to a given
number of k signatures when necessary to limit the proxies’ capabilities for practical or
legal reasons. We believe that the application of our method, involving a new zero-
knowledge proof, can be easily applied to many real-world contexts. We defined k-times
full traceable anonymity for proxy signatures and sanitizable signatures. In both cases,
we define a security model, give an efficient scheme (in the sense that the size of keys
and signatures is logarithmic in k), and prove its security. We have ended this chapter
by describing minor variants of our schemes which can easily be derived from the two
introduced concepts.

Outside the scope of our work, there are still limitations that if removed make the
usage of these signature easier or more secure. In all our constructons, the use of
SPS implies two limitations: the need for the generic group model, and the need to
set an upper bound for k (the size of vectors signed by SPS must be prespecified).
Proposing a construction without SPS would simplify our schema and provide more
security guarantees for our constructions.

Another limitation we would like to fix in the future is the use of a fixed upper
bound on parameter generation for k and for the number n of blocks in the sanitizable
signature. This limitation is inherent in the use of SPS, as the size of vectors signed by
SPS must be prespecified.

Chapter 5
EMV-compliant and Usable Anonymity for Contactless

Payments

Chapter Summary

EMV (Europay Mastercard Visa) is the worldwide, de facto card-payment system
we all use. Despite modern facilities, in-shop EMV contactless payments are not
anonymous or private. The payers’ long-term identification data leaks to Merchants
or even to observers. Furthermore, the bank that issued the card are also capable to
potentially profile their account-holders. The same set of laws and regulations that
protects users against fraud lead to this lack of privacy. Balancing these regulations,
we propose two privacy-enhancing, EMV-compatible contactless payment protocols:
PrivBank and PrivProxy. For these proposals we:

• Define desired privacy properties: payers’ anonymity regarding various enti-
ties, merchant anonymity concerning payers’ banks, and payment unlinkabil-
ity.

• Detail the feasibility of our solutions and their compliance with EMV payment
regulations (AML, KYC, SCA).

• Compare our proposals with traditional payment solutions, evaluating their
alignment with AML, KYC, and SCA regulations.

• Formally prove these properties for our proposals and compare them with
other payment solutions.

Contents
5.1 Introduction . 114

5.2 Acronyms . 117

5.3 Related Work . 117

5.4 A Preamble to Our Solution 119

5.5 Payments-Privacy Notions 120

5.5.1 Entities Identification in EMV 120

5.5.2 Our Payment-Privacy Notions 120

5.6 Traditional Payment Systems and Their Privacy 122

5.7 Our Main EMV Ingredients 127

113

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 114

5.7.1 From Card Issuing to Payment Processing 127

5.7.2 Mobile Payments: Tokenisation and Transaction Data 128

5.8 Sample Real Card Traces . 129

5.9 Sample Mobile Application Traces 130

5.10 Anonymous EMV In-Shop Payments 131

5.10.1 Construction PrivBank . 132

5.10.2 Law Abiding and Norm Compliance Aspects of PrivBank . . 135

5.10.3 Construction PrivProxy . 136

5.10.4 Law Abiding and Norm Compliance Aspects of PrivProxy . 138

5.10.5 Comparing PrivBank and PrivProxy 139

5.11 Formal Treatment of Anonymity in PrivBank and PrivProxy 140

5.11.1 Execution Model . 141

5.11.2 EMV-L: A Language for EMV Protocols 141

5.11.3 Threat Model . 142

5.11.4 Formalising Payments’ Privacy 142

5.11.5 Provable Anonymity in PrivBank and PrivProxy 145

5.12 Proofs for Our Main Results in Section 5.11.5 146

5.13 Game Based Formalisation 149

5.14 Conclusion of the Chapter 154

5.1 Introduction

EMVCo [emv22a] is the largest consortium of payment providers, including the ubiq-
uitous Visa, Mastercard, American Express, and UnionPay. In this chapter, we are
interested in EMV card-present transactions, as this is indeed still the largest payments
market, representing 94% of the entire payment market [EMV23a], with 12.8 billion
bankcards in circulation. Yet, in the last 10 years, the EMV standard has substantilly
evolved, adding numerous new features primarily to support contactless and mobile pay-
ments at scale. The security of even the newest EMV-protocols has been scrutinised
by many [AT17, BCI20, BCDD20]; unfortunately however the privacy of the entities
involved, and especially payers, has not.

No Privacy in EMV by Default. Indeed, despite its modern features, EMV pay-
ments do not provied privacy guarantees: in-shop, contactless EMV payments, be it by
“plastic”/physical card or mobile device, allow for payees and payers to be tracked. For
starters, payment providers (e.g., Visa, Mastercard) link together mobile and plastic-
card payment data, in their standard form, for instance, in the context of loyalty schemes
and statistics [Inc24]. In addition, card-issuing banks as well as EMV payment networks
always know where we shop, with which merchants, at which location, at what time,
and can potentially use this data to profile us. Worse, despite the fact that all modern,
EMV-compliant mobile-apps such as SamsungPay, GooglePay, and ApplePay generate
and use a new “account number” with every payment one makes, merchants can link any
of our purchases together, even if we make some with GooglePay, others with ApplePay,

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 115

and other, with SamsungPay. What is more, there is no complexity in creating these
links: just observing the in-shop transaction between the payment device (i.e., card or
phone) and the merchant’s payment-terminal/PoS (Point of Sale) suffices. In fairness,
some customers may have signed up to a loyalty scheme with such a store, yet these
customers may be unaware that their in-shop/by-PoS transactions, made with standard
payments devices (payment cards, mobile-phone payment apps), can be linked together,
even without the use of their loyalty card.

A Growing Interest in Anonymous Payments. While some users may not be
concerned with this loss of privacy, others would like to be able to remain anonymous if
possible [Han11, SLZ20]. Clearly, this is not possible for all EMV contactless purchases
(e.g., subscription-based ones), but in some cases there is no reason why it should not
be possible, as was previously the case with banknotes.

Existent Privacy-aware EMV: Online Only and Potential for Improvements.
Certain banks (such as Revolut [Rev23]) have taken steps towards better EMV-payment
security and with that they gained some (weak) form of pseudonymity by emiting cards
for one-time use. However, these cannot be used for in-shop/by-PoS purchases, but
rather only for online shopping. Moreover, such solutions lack a degree of end-to-end
usability: a one-time card is generated on an app, then the payer has to go online
separately and pay with it.

Meanwhile, anonymous payments have been considered since the introduction of
electronic payments in the 1980 in the form of e-cash [Cha83b, Raz02], and large-scale
projects such as GNU TALER [BDGS16, Dol19] aim to revive that. Their drawback
(with respect to our goals) is that they are not EMV-compliant, and in fact they would
need to replace in-shop EMV transactions with a new online payment system. Deploying
that at a large scale would be costly.

Adding Usable Privacy to EMV In-shop Contactless Payments. In conclu-
sion, there is no in-shop/by-PoS contactless payment solution existis that provides
pseudonymity and unlinkability for payers and for merchants, whilst being EMV-compliant,
or as usable as normal EMV contactless payments.

Indeed, achieving this is not trivial: due to money laundering and fraud-protection
regulations, legal requirements inherently do not align with privacy-preservation in EMV
contactless in-shop payments, making it hard to attain. In other words, pseudonymity
in EMV is hindered by the need for EMV payments to be auditable by the decision-
making entities. There are several Anti-Money Laundering (AML) regulations [EU21b],
including Know Your Customer (KYC); Furthermore Strong Customer Authentication
(SCA) [EU18] regulations to protect customers from fraud. There are also further fraud-
protection mechanisms which are not mandatory, but lack thereof increases the risk of
financial losses for banks and financial bodies, as they have to reimburse customers for
unauthorised use of their cards. So, there is one added complexity to proposing a scheme
for privacy-preserving EMV contactless, in-shop payments: making that scheme abide
by the laws and regulations governing EMV.

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 116

Contributions. Given the above state below our concrete contibutions, and set the
tone of this chapter.

Our first contribution is to create a in-shop, contactless payments with some degree
of anonymity, which remain EMV-compliant from the viewpoint of system-requirements’
engineering. Our goal is to render this payment method usable.

It is clear given the above, that the solution must not add heavy privacy-enhancing
cryptographic machinery (such as homomorphic encryption, etc.) on top of EMV pay-
ments. Such solution would immediately lead to a system that is not compliant with
today’s EMV back-ends, but will also likely increase the duration of a payment, likely
infringing the timing constraints that are in place today (i.e., a contactless payment end-
to-end takes only 12 seconds [Tak24]). Thus, our payment scheme will closely follow
existing EMV payments, adding to it not privacy-enhancing cryptography but rather
privacy-enhancing parties, such as anonymising proxies and instant escrows. We pursue
this idea in Section 5.10 on page 131.

Since the first layer of our contribution relies on adding privacy-enhancing proxies
to the infrastructure, we discuss how these proxies fit in with pseudonymity-hindering
AML, SCA laws, and fraud-prevention mechanisms.

At present time, these pseudonymity-hindering AML and SCA laws and fraud pre-
vention mechanisms are primarily observed and implemented by card-issuing banks.
With this in mind, there are two avenues forward for payment-anonymising proxies in
EMV: (a) the issuing banks provision these proxies themselves ; (b) third-party proxies
are used, introducing a trade-off between liability and risks between the third-parties
and the issuing banks.

Here, we provide two designs, PrivBank and PrivProxy, which can be plugged
directly into the banking system. They modulate liability and risks differently, as per
(a) and (b) above. We compare them, including in terms of usability, see Section 5.10.5
on page 139.

We subsequently formulate adequate pseudonymity requirements of payment schemes
in a way that is clear and easy to understand by lay persons, since they will need to
choose the levels of privacy and products suited to them. Moreover, these easy-to-
understand privacy/pseudonymity properties need to be general enough to fit not just
EMV, but also other payment systems that use similar parties, so that lay persons
can compare and contrast. We do just this in Section 5.5 on page 120 (pseudonymity
notions), Section 5.6 on page 122 (assessing other payment means against these notions)
and Section 5.11 on page 140 (analysis for PrivBank and PrivProxy).

This intuitive and usable model for privacy and pseudonymity is subsequently com-
pared to more traditional cryptographic formalisms for privacy and pseudonymity. In-
deed, to gain confidence in a privacy-reasoning model such as the one presented in
Section 5.11 on page 140 (which is based on building relations between data), one may
need to see how it translates to a well-accepted model, e.g., the cryptographic game-
based one. We do this in Section 5.12 on page 146, giving cryptographic game-based
definitions of payment anonymity, proving them equal to the intuitive ones given be-
forehand. We prove that our two designs PrivBank and PrivProxy attain these formal
cryptographic definitions in the game-hoping proofs, as well.

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 117

Thus, in this chapter, we will balance various engineering, usability, security, and
legal aspects to address the above and create solutions for in-shop, by-PoS contactless
payments, which provably provide pseudonymity and unlinkability for payers and for
merchants, whilst being EMV-compliant, arguably law-abiding and usable in the current
infrastructure.

5.2 Acronyms

In this chapter, we frequently use various acronyms to streamline the presentation of
complex terms and concepts. For the reader’s convenience, we provide a list of these
acronyms along with their full forms below. Readers may choose to skip this section, as
the acronyms are all recalled or already defined in the text.

EMV Europay Mastercard Visa
EMV-L EMV language
EUR Euro
EU Europe
UK United Kingdom
GBP Great Britain Pound
AML Anti-Money Laundering
KYC Know Your Customer
SCA Strong Customer Authentication
PSD2 Payment Services Directive (version 2)
MCC Merchant Category Code
MN Merchant Name
MRI Merchant Risk Index
ML Merchant Location
PAN Application Primary Account Number
PAR Payment Account Reference
TEE Trusted Execution Environment
CVM Cardholder Verification Method
CDCVM Consumer Device CVM
CBDC Central Bank Digital Currency
PSP Payment Service Provider
T&C Terms and Conditions
CBDC Central Bank Digital Currency

Table 5.1: List of Acronys Used in this Chapter.

5.3 Related Work

In Sections 5.5 and Section 5.6 we describe the privacy allowed by payments schemes
with respect to our interests, that is law-abiding, regulation compliant, and privacy-
provisioning. We also compare our solution to the privacy-preserving architectures in-
troduced in this chapter.

Research into EMV is vast, ranging from applied works such as [GY19, Yun21, TY21]
to formal treatments [RCN+22, MDAB10, DRP12, BCM+14, AT17, BCI20, BSTP21,
BCDD20]. Most formalisms for EMV analysis are based on the symbolic/Dolev-Yao
model [DY83], very few are computational (e.g., [BSWW13]) like the one we gave in

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 118

Section 5.13. Also, all these formalisms look at security, not at privacy like us. We are the
first to give a model based on mathematical relations (see Section 7) to encode privacy in
EMV. The closest idea to this, not in EMV, speaks of traceability relations [BBW+23],
but, these are complex links made between protocol layers. Next, we will cover works
related to ours directly: on privacy or close to traditional payment systems.

EMV Payments and Privacy. [BCM+14] showed that long-term, plastic-cards’
PANs can be used to track people. This gave rise to tokenised, mobile-devices’ EMV
PANs, which would go towards PAn, should it not be for their associated introduction
of PARs in EMV. Later, mobile EMV payments, including tokenisation were studied,
e.g., [AT17], [CFF+17], but from a security perspective, not a privacy one. Some aspects
therein, even if not privacy-centric, are relevant to us: the requirements we make of our
app not be corrupted are grounded on certain mobile wallets having been shown [AT17]
to be it.

In our case, the card-to-PoS channel is insecure as per current EMV specifications.
Meanwhile, [HMY22, BHMY23] work in the setting of future-generation EMV, where
this channel will be secure. In this setting, considering a corruption model and linka-
bility attack stronger than one against Unlnk, [HMY22] find future-generation. EMV
payments to be linkable. The authors of [BHMY23] build on [HMY22], extend their
model to dishonest terminals and achieve unlinkability and anonymity for smart card-
based payments. Both proposals yielded non-EMV compliant patches.

EMV payment tokenisation for mobile payment has now been standardised [EMV21].
Althrough our work heavily relies on EMV, its usage raises new questions, particularly in
terms of the trust that can be placed in the smartphone hosting the application. Trusted
Execution Elements which are Secure elements are part of the solution. Their progre-
sive deployment on smartphones raises new questions on how to use them efficiently.
To answer this question, Cortier et al. [CFF+17] has introduced an EMV-compliant
tokenisation system that makes practical use of the secure element.

The authors of [AT17] took a closer look at the security aspects of mobile payments.
In their work, they took into account the threats to privacy and the various adverse
attacks that mobile systems have twart while implementing EMV compatible payments.
They also examine how NFC-enabled mobile wallets exchange sensitive transaction data
with contactless point-of-sale terminals. These considerations are deemed necessary to
implement our proposals (see the discussion in Section 5.10.5).

Other EMV or Traditional Payments. Cryptocurrencies [NB08] are alien to
EMV. But, non-EMV payments close to EMV exist. For instance, Lyf [Lyf23] and
Visa [Vis24] propose payment services which rely on their own payment network and QR
codes. A large-scale, EU-funded project tries to push new payments based on the GNU
Taler initiative [BDGS16] and using the well-known e-cash idea by Chaum [Cha83b].
They perform online transactions and are compliant with online-payments’ regulation,
they do not use the card-to-PoS-merchant payment networks like us. Attaining privacy
via online transactions is easier – e.g., via one-time cards without the worry of “in-shop"
SCA but relying on 3D secure, without having to share credentials over an app between
different-domain entities. Further in this paper, we do not consider these payment
methods because they differ from the payment network already in place.

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 119

5.4 A Preamble to Our Solution

We take inspiration from existing payment systems: plastic-card and mobile EMV,
disposable EMV cards, proxying of EMV payments by Curve [Cur23], and machinations
during EMV-payment authorisation.

(A) On payers’ Pseudonymity and Payments’ Unlinkability. The main inspi-
ration for our designs here come from mobile EMV-payments and one-time/disposable
cards for online shopping, and we bring the latter into the space of “in-shop” pay-
ments. As a result of enhanced security, mobile payments are already more privacy-
preserving than plastic cards, as they hide the main identifier of the physical card, the
Primary Account Number (PAN), via ephemeral card-like number called tokenised PAN.
This enhances towards payers’ pseudonymity. Yet, mobile-payments made via the same
bankcard still contain a fixed card-identifying value called the Payment Account Refer-
ence (PAR). Which enables the linkability of payments. All our designs will revert to
tokenisation and PAN-PAR-based constructions in mobile payments. Instead, our mo-
bile apps use one-time disposable cards which produce transactions as per plastic cards,
which is akin to having a one-time PAN. This does not impact security but significantly
enhances user anonymity.

(B) On merchants’ Pseudonymity. Here, we take inspiration from EMV-payment
proxies such as Curve [Cur23] (see Section 5.7 on page 127). We add an intermediary
party in the interaction between the payer and the merchant, which also relays the
payment to the issuing bank, stripped of certain merchant-related data. In more detail,
based on an agreement between the issuer and the proxy with respect to, e.g., certain
categories of merchants with sufficiently low Merchant Risk Indicators, the proxy omits
sending the merchant name to the issuer, while still providing the latter with some
merchant identification data.

However, there is one last hurdle to our designs, chiefly the sets of regulations, as
follows.

(1) AML and counter-terrorist financing regulations require the auditability of pay-
ments by certain payment-system parties; therefore, for any transaction, the payer
and the merchant must be traceable.

(2) SCA/(Payment Services Directive) (PSD2) require identification of payers prior to
using a payment service, including opening bank-accounts and making payments.

Therefore, we need to carefully combine the ideas in (A) and (B) above to achieve
payers and merchant pseudonymity as well as payment unlinkability, and, simultaneously
EMV-compliance and abiding by regulations (1) and (2) above.

To achieve this, some entities may retain some of the identity information required
and, if all combined, the system can be controlled in accordance with laws (1) and (2).

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 120

5.5 Payments-Privacy Notions

We propose privacy notions from the perspective of different entities in the payment
systems: a payer who pays for goods/services, a merchant selling them, an issuer who
gives the payer a means of payments (bank account, cards, banknotes, etc.), and a proxy
who mediates the purchase from the payer to the merchant.

5.5.1 Entities Identification in EMV

Law-Enforced Payer Identifications. Firstly, in EMV payments, the payer has to
be identified at the on-boarding phase with its banks. To obtain a bank card, customers
must provide a piece of identification such as a passport and proof of address to the
card-issuer. These measures fall under the Know Your Customer (KYC) regulations.
Secondly, in EMV payments, the payers have to be identified during transactions: its
PIN (Personal Identification Number), biometrics, similar knowledge or possession must
be checked as they pay. This is know as Strong Customer Authentication (SCA) and
it is governed by Payments Security Directive (PSD2) regulations [EU21a]. Thirdly,
payers must be identified (even beyond SCA) for all transfers or payments amounting
to certain values over a certain period (e.g., EUR/GBP1000 per month in the EU/UK).
Together, it is all driven by fraud protection (e.g., in the case of SCA) and/or AML
includes The Money Laundering and Terrorist Financing Regulations (AML) regula-
tions [EU21b, Actb, Acta]. The Financial Conduct Authority (FCA)’s Handbook FCG
3.2.5 [Aut] requires regulated firms such as issuers to perform (real-time) monitoring
of transactions and submit “Suspicious Activity Reports” (containing the payer identity
with the payment details) to the FCA, if concern arise.

Merchant Identification. In EMV payment systems, the issuers usually get the
following merchant information with each of its customers’ transactions: Merchant Cat-
egory Code (MCC), merchant’s name, Merchant Risk Index (MRI), Merchant Location
(ML).

Issuer Identification. The identity of the issuer is generally disclosed to the entities
participating to a payment, and of no interest to outer parties. If there is a proxy in the
system, this proxy may learn who someone banks with, but one can argue that most
proxies would be chosen, and are less of a mainstream worry therefore. Symmetrically,
if a party is proxying payments, its pseudonymity is less crucial than that of the payer
and the merchant.

We have formalised all this in the threat model of Section 5.11 on page 140.

5.5.2 Our Payment-Privacy Notions

Now, we are in a position to put forward a set of desirable privacy notions, generic
enough that they can be meaningful in most payment systems. These properties can be
acticulated from the perspective of the different relevant entities involved: with respect
to a merchant, an issuer, a proxy or an observer.

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 121

Payer Pseudonymity (PAn). An instance of PAn holds if a given entity does not
get to know a payer’s identity ID or a long-term pseudonym.

The PAn property comes in various flavours with respect to what is termed as iden-
tifiable “object”. For instance, in EMV-like payment systems:

PAnID: imposes that the merchant does not learn the payer’s long-term identity ID;

PAnCID : imposes that the merchant does not learn the payer’s long-term card-number
or bank account.

By contrast, in EMV payments even made by mobile phone, the merchant does
get to learn always a long-term pseudonym of the payer. Although there is generally
no implication between PAnID and PAnCID , as demonstrated below, our constructions
realise both at the same time.

PAnCID ̸⇒ PAnID. For instance, paying for goods with the long-term card currently
reveals the PAN/PAR of the card CID to the (PoS of the) merchant, but the
identity of the payer ID is not disclosed in the payment.

PAnID ̸⇒ PAnCID . A payer utilising a payment-proxy system (e.g., Revolut, see Sec-
tion 5.6 on the next page) may undergo a KYC procedure with the proxy thus
leaking its ID, but this said proxy may never know a long-term card identifier
CID of the payer, as the latter may always top up its proxy account from one-time
cards.

Payments’ Unlinkability (Unlnk). An instance of Unlnk holds if a relevant entity
in payment systems will remain unable to link payments made by the same payer.

For instance, if one pays by cash twice in the same store, the banknotes used are
not per se linkable to this same payer. Thus, a merchant should ideally be unable of
knowing if two EMV payments are made by the same payer; unfortunately, this is not
the case with current EMV-payments.

Merchant/Seller Pseudonymity (MAn). An instance of MAn holds if an entity
in a payment system (e.g., an issuer) does not infer the identity of the merchant in-
volved in a payment. During a regular EMV transaction, merchant-related information
is transmitted to the acquirers, making it possible to identify the merchant and to mon-
itor the risks of potential fraud. It is not clear which data is required to validate a
transaction and which could remain optional. We note that some data such as the mer-
chant category code does not necessarily allow full identification of the merchant. Other
metadata, such as the Merchant Identifier (which is an acquirer-dependent identifier),
gives full knowledge of the merchants identity. Given the need for fraud management, it
is worth mitigating full merchant pseudonymity for practical use and toward improving
the acceptance rate. Therefore, we also restricted the set of merchants with similar
characteristics (e.g., ML, MCC).

Discussions On PAn, Unlnk, andMAn. As expected, PAn and Unlnk are considered
from the viewpoint of the merchant or an observer, since the issuer may always know

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 122

Payment method SCA KYC Pseudonymity
Issuer Proxy Issuer Proxy Issuer Merchant Proxy

1. Cash no N.A. N.A. N.A. MAn PAn, Unlnk N.A.
2. Cheque y N.A. y N.A. ¬MAn ¬PAn,¬ Unlnk N.A.
3. E-cash y N.A. y N.A. MAn PAn, Unlnk N.A.
4. Physical cards y N.A. y N.A. ¬MAn ¬PAn,¬ Unlnk N.A.
5. Google, Apple Pay, etc. y N.A. y N.A. ¬MAn PAn,¬ Unlnk N.A.
6a. Top-up cards y N.A. y N.A. ¬MAn PAn/¬PAn,¬ Unlnk ¬PAn,¬ Unlnk,¬MAn
6b. Pre-Paid/gifts cards no (n) n (n) MAn/¬MAn PAn, Unlnk/¬ Unlnk (¬PAn,¬ Unlnk,¬MAn)
7. Virtual cards y (y) y (y) MAn/¬MAn PAn, Unlnk (¬PAn,¬ Unlnk,¬MAn)
8a. PayPal y y/no y y/no MAn PAn,¬ Unlnk ¬PAn,¬ Unlnk,¬MAn
8b. Curve y y y y ¬MAn ¬PAn,¬ Unlnk ¬PAn,¬ Unlnk,¬MAn
9. Online Marketplaces y no y y/no MAn PAn,¬ Unlnk ¬PAn,¬ Unlnk,¬MAn
PrivBank y no y no MAn PAn, Unlnk PAn,¬ Unlnk, ¬MAn
PrivProxy y y no y MAn PAn, Unlnk ¬PAn,¬ Unlnk,¬MAn

Table 5.2: SCA, KYC and pseudonymity properties of payment methods from the
point of view of the Issuer, Merchant and the Proxy when it exists. ¬PAn and ¬ Unlnk
holds in all systemes for the Issuer and ¬MAn holds in all systems for the Merchant.
Detailed explanations are provided in the Section 5.6. (Notation: N.A. stands for “not
applicable”, PAn for PAnID and PAnCID , brackets are used when the proxy may not

necessarily exist in all systems and / when deployment can lead to different properties.)

the payer’s identity due to KYC. Similarly, MAn its most naturally required from the
issuer’s viewpoint.

Additional relations between these properties apply: unlinkability is required for
PAn, i.e., ¬PAn ⇒ ¬Unlnk. Indeed, an entity deducing the identity of the payer or
information that is persistent across transactions can link said transactions. However,
the reverse does not hold, i.e., PAn ̸⇒ Unlnk. An example for the above is provided
by EMV payment tokenisation [EMV22c]: there, each payment yields an ephemeral
identifier for the card/payer called tokenised Primary Account Number (PAN): i.e.,
PAnCID holds. But payments by the same payer are linkable together by a data called
Payment Account Reference (PAR): i.e., Unlnk does not hold. The merchant and any
observer between the payer and the merchant PoS get these tokenised PANs and PARs.

5.6 Traditional Payment Systems and Their Privacy

We now look at what one may call “traditional” payment systems and some modern
ones1, yet built on the previous ones, and discuss where they sit with respect to KYC and
SCA regulations, and how they fare against our privacy requirements PAn, Unlnk, and
MAn. We exclude crypto currencies [NB08] and QR-code-based payments [Lyf23]. The
reason for this is that their infrastructure is totally different from other long-established
payments, especially the EMV-based systems, which we aim to augment here. Thus,
the systems of interest in our analysis are: 1. cash, 2. cheque, 3. e-cash [Cha83b],
4. physical/classical bankcards, 5. mobile-phone apps [App23, Pay23], 6. top-up and
pre-paid cards [Inc23, Vis22], 7. virtual/one-time cards [Rev23], 8. payment service
providers such as 8a. PayPal [Pay22] and 8b. Curve [Cur23] and 9. online market-
places [Ama23, eBa23]. We believe the reader may be familiar with most of these
systems to the level where it can judge if they have SCA, KYC, PAn, Unlnk, MAn.

Analysis of KYC, PAn, Unlnk, MAn in Payments. Table 5.2 shows the way pay-
ment systems fare against SCA and KYC requirements (as described in Section 5.5.1

1Online payments are included here as they may give some insights into what might be possible.

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 123

on page 120), and our notions PAn, Unlnk, MAn (see Section 5.5.2 on page 120). We
obtained these results via an empirical analysis, as they are straightforward2 and do not
require formal argument. For instance, e-cash, physical card, Payment Apps (Google
Pay, Apple Pay, etc.), top-up and virtual cards are all payments card for which the
SCA/KYC apply to the issuer, unlike pre-paid cards, which fall under both exemptions
cases. PayPal applies strict limits unless the customer is identified, and thus the appli-
cation of rules depends on the usage scenario. For Online Marketplace, we assume that
they act as an intermediary between the purchaser and the merchant, and, no KYC or
SCA is deemed required in their case. In this section, we look at them and consider
aspects linked to our main interests. We provide a description of each of them and give
reasons for the claimed properties.

1. Cash (banknotes and coins). This works for in-shop purchases only. There
is no KYC and strong pseudonymity, although shops may use security cameras and
subsequent review may allow the payer to be identified, this is beyond the scope of
the payment method. Banknotes might be traced, based on their serial numbers, but
that requires a complicated set of steps taken by various banks and the Merchant, which
again turns the matter beyond into a complex type of identifiability. Coins do not feature
serial numbers. Thus, we can say that cash has no KYC and provides pseudonymity
and unlinkability (within reasonable/normal measures). For the same reason, namely
that cash cannot be linked to the payer, SCA cannot be required before payments.

2. Cheques. They provide a payment mechanism which involves banks as an in-
termediary between the payer and the merchant or the entity that is being paid. In
addition, cheques are required to indicate the name of the payer and of the merchant,
as well as a bank account number for the payer. The account number also divulges the
bank issuing the cheque to the payer. This method therefore has KYC, but provides no
pseudonymity. In many countries, it has become common practice to require a proof
of identity in order to make a payment by cheque. In such cases, the payer is strongly
authenticated and SCA holds.

3. E-cash. This method was originally proposed by Chaum in his 1983 paper on
“Blind Signatures for Untraceable Payments” [Cha83b]. Payers have an e-wallet topped-
up with e-cash, from which they spend e-cash like they would real cash. Limits on the
expenditure exist though, e.g., for AML reasons. Thus, this digital mechanism aims to
provide the user with the same level of pseudonymity that they achieve when using cash.
If the link between the e-cash wallet and the owner’s bank account is just for applying
limits to the amount of e-cash stored on a wallet, then the merchant should not obtain
information about the customer and even the bank should gain little information. How
it is regulated and implemented will determine the outcomes which may differ from
Table 5.2 on the preceding page.

We proceed to give further details on e-cash, since it approches our goals and meth-
ods. E-cash requires a separate network to EMV, but it still has supporters today.
Chaum commercialised this idea, by founding DigiCash in 1994. This and other early

2The main value of this analysis is reviewing/systematising these systems and concepts.

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 124

e-cash developments are described in [Raz02]. Although none of these have been com-
mercially successful, there is still interest in developing e-cash systems [BDGS16].

In the US, the “Electronic Currency And Secure Hardware Act” [eca22] proposes that
an electronic dollar should be created with the same privacy properties as the dollar
itself. If achieved, there would be no Static Data Authentication (SDA) requirement
and this could also be used for online purchases, although for full pseudonymity the
purchaser may need to use a VPN to hide its IP address, use a separate e-mail account
and a delivery locker for its purchase.

In contrast, the European Central Bank’s document discussing e-cash (Central Bank
Digital Currency, CBDC) [Ban21] recommends to avoid too much money being stored
in consumer’s digital wallets, and not in the banks. Hence limits are recommanded and
e-cash payments are enabled, if the consumer is identified and their CBDC wallet is
linked to their bank account. Others [gnu22] opposed it, and it is not clear what will
ultimately be decided.

4. Plastic/physical credit or debit cards. Such cards are used in shops or online
to make payments in ways we are all familiar with. We have deferred the description of
payment cards to the Section 5.7.1 on page 127. In the the meantime, we focus on the
statement provided in Table 5.2 on page 122 with respect to such payments KYC, SCA,
and pseudonymity.

5. Google Pay [Pay23] and Apple Pay [App23]. These are two of the most used
methods of mobile payment, i.e., payment via a mobile app “inside” which a physical
card is registered. Like in physical cards, KYC and SCA are the norm here. In mobile-
payment SCA, when making the payment, the customer may be asked to confirm their
identity onto the payment device too, via PIN, fingerprint, or face recognition. But, un-
like payments by physical cards, making and authorising mobile payments require both
intermediaries in the payment networks, and tokenisation (as outlined in Section 5.7.1
on page 127). Due to this tokenisation mechanism, the merchant can link purchases
by the same payer using their long-term PAR – created once during the onboarding of
their card onto the app and used in all their payments thereafter. The PAR replaces the
PAN, which is then hidden from the merchant, making payments anonymous without
unlinkability.

6. Pre-paid cards. These are cards which may have no bank-account associated to
them and one tops him up with a set amount or one buys reading topped up and uses.
We divide pre-paid cards into two categories:

a) Top-up cards – cards offered with services such as those by Revolut [Rev23]. Other
providers exist: for example, UK pre-paid Mastercard cards providers, listed on
the Mastercard website, for general use and as a gift all behave as per the below.
The Payer may not have to undergo credit checks, but must satisfy identity and
address checks and have money available in their account to cover any payments
made. So, KYC is generally done. Indeed, most of the issuers of such pre-paid
cards act as electronic money institutions and are regulated by the Electronic
Money Regulations [leg11]. Since these are cards, their pseudonymity properties

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 125

are the same as those of plastic cards, or that of mobile apps – if they are loaded
therein.

b) Gift cards – card that can be bought is store cards, with set amounts preloaded
onto them. There is generally no KYC. Their use is thus restricted (to spe-
cific merchants) and the amount on each card is small, to satisfy AML require-
ments [EU21b]. If they are purchased with cash and not linked to a bank account
(for re-charging, for example), then, subject to the same caveats about IP ad-
dresses, e-mail accounts, and deliveries, payer pseudonymity can be achieved.

7. Virtual or “one time” cards (VC). These provide pseudorandom card details
(card number, expiry date, CVV), for each transaction. A payer can remain anonymous
to the merchant, but the virtual card is linked to that ‘real’ card to enable payment to
be made and so the issuer knows who the payer is and from whom they are purchasing.
These are marketed for online use, in general. One example is the Revolut card [Rev23].
Another company, Swidch [Swi23], offers a range of services based on One Time Ac-
cess Codes (OTAC) and this includes ephemeral cards. As for other virtual cards the
latter are linked to a registered real payment card (requiring KYC). In this context,
an intermediary may be acting as a payment proxy, although how individual providers
handle the payments differs from one company to another. In addition, unless strict
usage limits are applied, SCA is required for all payments.

8. Payment service providers. There are a number of providers in this category,
and we list a few other examples below.

8a. PayPal. PayPal offers a range of services. In terms of the discussion here, PayPal
accounts can be used to make payments. Figure 5.1 shows how PayPal is used for this
purpose. The stages are:

e a

b

d

c

f

Bank Paypal Payer Merchant

Figure 5.1: Making payments with PayPal.

1. The cardholder opens an account and registers a card to be used for payment.
SCA for the Issuer is carried out at this point, but is not necessary afterwards.
Unless the account holder confirms their identity and address (KYC), accounts
are restricted and have limits placed on amounts that can be sent, received, or

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 126

withdrawn [Pay22]. PayPal is acting as the payment service provider (PSP) and
knows who the payer is and gets to see who is making the sale and when.

2. The cardholder purchases an item from a merchant and pays using their PayPal
account. Purchases can be made online or in person.

3. The merchant receives their payment from PayPal dnd not directly from the payer.
Thus the purchaser may use a pseudonyme and separate the email account and a
delivery locker for their purchase in order to obtain full pseudonymity.

4. PayPal pays the merchant.

5. PayPal charges the issuer. The issuer knows that something was purchased, but
not from whom.

6. The cardholder pays the issuer.

In this case, payment or identity information has been provided to PayPal, but has
not been made known to the merchant because PayPal has filtered most of it. Other
information, such as email, or perhaps also pseudonyms, is not linked to the payer’s
identity.

Amazon Pay. Amazon Pay [Ama23] offers a similar service to PayPal and allows
paying online with a credit card, debit card or by direct debit. They make it clear that
the merchant does not receive the payer’s payment details: “We do not share your full
credit card, debit card, or bank account number with sites or charitable organizations
that accept Amazon Pay. The merchant only receives information that is required to
complete and support your transaction. This information may include your name, email
address, and shipping address”.

8b. Curve. Curve [Cur23] provides a payer with a card and a payment application.
Curve users must satisfy KYC rules. The payer registers multiple bankcards issued by
one or several banks in the Curve app.

When the payer pays using their Curve card or the Curve app, the payment network
(e.g., Visa, Mastercard) and the bank authorise the payment based on Curve card data
and merchant information, as the Curve card interacts with the merchant’s PoS system
and both sends their own data. Curve pays the merchant on behalf of the payer on the
spot, and one of the payer’s Curve-registered bankcards is charged, but the payment is
not entirely “settled” (i.e., the payment onto the classical card remains “pending”).

Curve provides the payer a period of up to 120 days to potentially move the trans-
action to another of their registered bankcards. This results in an intricate “payment
authorisation” process involving Curve, the traditional bankcard issuers, and the pay-
ment network. During this process, all necessary information is shared between the
entities, so that each party knows the identities involved.

9. Online Marketplaces. Examples of these are provided by Amazon and eBay. We
view these are merchants here. So, from that viewpoint, clearly, here is generally no
KYC or SCA needed to open accounts with them, as a payer for their goods. However,

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 127

eBay, for example, states in their terms [eBa23] that they may require “any other data
about the buyer which the buyer’s payment service provider or we may require”. Aside
from that, if goods bought from them are sent to a pickup locations, then some degree
of pseudonymity can be achieved.

5.7 Our Main EMV Ingredients

We recall the notions related strictly to EMV payments which are relevant to us focusing
on aspects linked to Payers’ and Merchants’3 identification and related regulations.

5.7.1 From Card Issuing to Payment Processing

We divide EMV card-based payments in 4 main stages also represented in Figure 5.2.

Bank Payer Merchant
1

2

3 4

Figure 5.2: Overview of typical card payments.

1. Card-issuing, KYC and AML. A future Payer opens a bank-account with
a card-issuer (i.e., bank). We discuss the case where it receives a credit/debit card,
associated to the account. The card is supplied by one of the current card providers
(e.g,. Mastercard, Visa, American Express, . . .). We will losely refer to the collection
of Issuers, card providers and the proxies linking them as payment networks. To obtain
such a card, the customers must provide a piece of identification, such a passport and
proof of address to the card-issuer, in line with KYC regulations. KYC falls under the
AML regulations [EU21b] (see Section 5.5.1 on page 120).

2. Making a Card Payment and Relevant Payment Data: PAN, MCC, ML.
A cardholder goes to pay with their card to a Merchant, using their card-readers, known
also as points of sale: the cardholder inserts the card into the PoS or taps the PoS in
the case of contactless transactions. The basic operations of the protocol between the
card and the PoS are defined in the set of standards from EMVCo. A partial example
of the data exchanged between the card and the reader, called the payment transcript,
is available in Section 5.8 on page 129.

Due to the transmission of the PAN, plastic-card EMV does not have PAn from the
viewpoint of the Merchant, or an observer between the card and the Merchant’s PoS.

At the end of the protocol, certain transaction data is signed by the card and returned
to the PoS for its checks. Equally, the card sends a MAC of certain transaction data to

3Capital letters are used to refer formally to entities in the system: e.g., “payer” – a personal paying,
in Sections 1-4, vs “Payer” – a formal algorithmic party, from Section 5 onwards .

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 128

the PoS to forward it to the card-issuers for checks therein. They check this data and
based on it, they approve/decline the transaction.

Alongside the card-centric data sent on the back-end from the Merchant’s PoS to the
Issuer, payment networks and others, the Merchant’s PoS also adds some or all of the
following merchant-identifying details, relevant to us: Merchant category code (MCC),
Merchant’s name (MN), Merchant risk index (MRI), Merchant location (ML). Thus,
due to the transmission of the MN, plastic-card EMV does not have MAn from the
viewpoint of the Issuer.

3. Customer Identification During Payments. When the card is presented to
the Merchant’s PoS for payment, the SCA/PSD2 [EU18, EU21a] regulation requires two
factor authentication of the Payer (e.g., possession of card and associated PIN). The
Issuer checks the payment data sent by the Merchant along with this SCA identification-
data of the payer. Should the checks fail, the payment is declined by the bank. There are
variations to card and PIN verifications, especially if the payment is not made by card4.
If the payment is contactless, derogation to the SCA rules can apply and single-factor
authentication is required instead. SCA remains required every few payments or after
a set of payments has exceeded a spent value (e.g., EUR/GBP150 in EU/UK).

4. Payment Authorisation and Clearing. Funds are settled during the final phase,
called clearing, as follows. (i) The Merchant, via its acquirer, requests payment from
the card issuer. The issuer verifies details like transaction location, the payer’s identity,
and merchant information. (ii) If the cardholder has sufficient funds, the issuer deducts
the amount from its account5. The final authorization is handled by the issuing bank,
possibly in consultation with payment networks like Visa or Mastercard. Once approved,
the funds are transferred to the Merchant’s/acquiring bank.

As stated in Section 5.4 on page 119, the information necessary for a payment au-
thorisation varies based on the business model (e.g., from Visa to Mastercard) and not
all Merchant information is truly necessary. For example, Curve [Cur23] operates (and
e.g., Visa incentivise it [Vis21]): they over-submit Merchant data especially if its MRI is
high, so as to increase the probability of authorisation and therefore maintain customer
satisfaction. There may be leeways in provisioning MAn from the viewpoint of the Is-
suer, since the minimal amount of Merchant-data needed proportionate to its partial
role in payment authorisation is not standardised.

5.7.2 Mobile Payments: Tokenisation and Transaction Data

Mobile payment applications such as ApplePay [App23], Google Pay [Pay23] etc. allow
plastic cards to be used via a mobile application. The onboarding requires an authorisa-
tion from the card’s issuing bank, and therefore KYC is observed. The Payer can then
use the app for contactless payments. When a payment is made, the card’s long-term
PAN is tokenised, and the payment transcript between the phone and the Merchants PoS

4E.g., if the Payer uses a smartphone SCA verification by the issuing bank is replaced by Consumer
Device Cardholder Verification Method (CDCVM) executed on the phone. That is, the payers finger-
print or face identification is read by the phone and used as customer authentication. The result of that
is later checked by the issuing bank.

5This is for debit cards. For credit cards, this differs slightly.

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 129

looks different from one made with the physical card, with PAN-related data replaced
by tokenised values. Mobile-payment transcripts (see Section 5.9 on the following page
for an example) include the following payer-identifying data relevant to us:

• one-time tokenised PAN – an ephemeral account number that changes with each
payment and each app: each payments made with card C through mobile app A1

or app A2 will each generate a different number.

• long-term PAR – a fixed value that is shared amongst various/all payment(s) apps
A1, A2 . . . to refer to any/all payment made based on the same pysical card C. The
PAR value was introduced at the request of the Merchants and payment networks,
so that one card C used for mobile payments hence, showing varying tokenised
PAN, can all be linked together.

The tokenised PAN and PAR values are sent by the Merchant onto the payments
networks, just as the “plastic” PAN was. However, before these reach the Issuer, the
tokenised PAN is de-tokenised by entities in the EMV system which transform it back to
the associated PAN. The rest of the backend part of payment processing is as described
in Section 5.7.1 on page 127. Details of payment tokenisation and use cases are given
in [EMV22c, EMV23b].

From the viewpoint of the Merchant, mobile EMV payments achieve a form of PAn,
via the PAN, but do not achieve Unlnk, due to the PAR. Now, we can re-state our
aim: augment mobile EMV payments to obtain PAn, Unlnk, and MAn without breaking
AML, KYC and PSD2/SCA .

5.8 Sample Real Card Traces

Here we give a number of traces from card-based payments, with the goal of illustrating
the points made earlier about the data included in card transactions. Here is part of a
trace from a MasterCard card:

5A | len:8 Application Primary Account Number: 5521573039705376

5F24 | len:3 Application Expiration Date YYMMDD: 240430

5F25 | len:3 Application Effective Date YYMMDD: 200401

5F28 | len:2 Issuer Country Code: 0826

5F34 | len:1 Application Primary Account Number Sequence Number: 01

The card record contains the PAN and the expiration date. We can also find information
determining the currency in which the card is issued. Note: In the same trace we also
see:

9F02 | len:6 Amount, Authorised (Numeric): 000000004600

9F03 | len:6 Amount, Other (Numeric): 000000000000

9F1A | len:2 Terminal Country Code: 0826

95 | len:5 Terminal Verification Results: 0000008001

5F2A | len:2 Transaction Currency Code: 0826

9A | len:3 Transaction Date: 210318

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 130

9F35 | len:1 Terminal Type: 22

9F34 | len:3 Cardholder Verification Method Results: 1F0302

1F No CVM required;

This part shows the amount to be paid and other information about the terminal, such
as the currency and the country where it is located. The cardholder verification method
is also indicated. Merchant information comes from the terminal and are only sent to
the acquirer in the backend, which is why it is not shown in the trace.
The same type of trace can be observed for other EMV-compatible card brands (Visa,
AmericanExpress, etc.).

5.9 Sample Mobile Application Traces

Here we give a number of traces from mobile phone applications to illustrate the points
made earlier concerning tokenisation and the PAR, starting with a part of a trace from
an iPhone transaction:

70 | len:37 Record Template

5F28 | len:2 Issuer Country Code: 0826

9F07 | len:2 Application Usage Control: C000

9F19 | len:6 Token Requestor ID: 040010030273

5F34 | len:1 Application Primary Account Number (PAN): 00

9F24 | len:29 Payment Account Reference (PAR):

5630303130303133303136313936333535353639313035303937383933

The Token Requestor ID and the Payment Account Reference are part of the tokenisation
process.

In the same trace we also see:

70 | len:81 Record Template

5A | len:8 Application Primary Account Number (PAN): 4831920272059474

5F24 | len:3 Application Expiration Date YYMMDD: 231231

9F46 | len:176 ICC Public Key Cert:

149DD6A920995B05A5146C6ABEE823AFD2E2CBE91C701C2648E395EA

D23F5AD04C8C6B2D2DA4CD271B154339C1AB342E683964F812CA7C67

2E15F0407E6D3A9253E064F9ECD01A49DD7D4C5B22388367F9C26108

FCC4AE2D94B169A322E29F65B02438FC0EC648AB949BAE006E270C4F

17E52B40D11E2CDC8782C7AB873FD625119DB250AED39E3CFF60F526

35708BB36ED60C8FEA5EC4

9F47 | len:1 ICC Public Key Expo: 03

However, the PAN in this case identifies the Payment Token and is not the primary
account number (see EMV Payment Tokenisation Specification Technical Framework
v2.2, Page 74). This is a "shared token".

A payment from a Samsung phone with the same card loaded into the payment appli-
cation gives the following trace:

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 131

70 | len:81 Record Template

9F69 | len:7 Card Authentication Related Data: 01DC7BA93B0000

9F4B | len:128 Signed Dynamic Application Data (SDAD):

80892716925C6DBD4AB0817A929D40A6D56DBE58535ACC74B05C491B

AA28E62D6951FFC5F49DE9FAB97389DE800AFD04D391DEF44152C212

F6959100B479BE204124F847A4C005481D3998EDD5C2349F50274900

13DE56D77F98084EC49D748B2F45680075EF7F786813E6AF17851F26

DFF92392363F85AEF8ED225F9E462C41

9F07 | len:2 Application Usage Control: C000

5F28 | len:2 Issuer Country Code: 0826

5F24 | len:3 Application Expiration Date YYMMDD: 231231

5A | len:8 Application Primary Account Number (PAN): 4831920272190329

9F19 | len:6 Token Requestor ID: 040010043095

9F24 | len:29 Payment Account Reference (PAR):

5630303130303133303136313936333535353639313035303937383933

We notice that, while the Token Requestor ID and Payment Token are different, the
PAR values are the same. According to the EMV FAQs on tokenisation [EMV22b] the
PAR “was introduced to resolve the challenges faced in the broader acceptance com-
munity including Merchants, Acquirers and Payment Processors, in regards to linking
Payment Token transactions with each other or transactions initiated on the underlying
PAN. This supports a variety of payment processes and value added services". Thus, in
this scenario the payments can be linked both by the Payment Token and more widely
by the PAR.

5.10 Anonymous EMV In-Shop Payments

We proceed to propose two constructions, both compatible with EMV contactless pay-
ments, providing privacy as per PAn, MAn, Unlnk, with provable guarantees, all the
while being compliant with the aforementioned laws and regulations governing these
matters (SCA/PSD2, AML, etc.).

At the core of our first construction PrivBank depictied in two different representa-
tions in Figure 5.3a on the following page and 5.4 on page 133, there is a privacy-friendly,
issuing bank which provisions PAn and Unlnk for its customers. To do this, this bank
strongly partners with a Payment Proxy which mediates and curates customers’ pay-
ments providing MAn. Meanwhile, at the heart of our second construction PrivProxy,
depicted in Figure 5.3b on the following page and 5.5 on page 137, there is no longer a
bank, but rather a pseudonymity-friendly Payment Proxy which aims to provide PAn,
MAn, Unlnk of its own accord and at its own risks, to Payers who bank with whoever
they chose to, independently of the Payment Proxy.

The crux of our designs is to compose several standard, non-private EMV-payments
or parts thereof, such as to obtain one payment mobile, contactless EMV payment
which is anonymous (w.r.t. PAn, MAn, Unlnk). We realise this via the design and
use of proxies, without modifying EMV elements in the original payments, and without
cryptographic additions. As such, all the cryptography used in our schemes and all

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 132

Issuer

Payer IDA

Card CIDA

Identity IDX

Payment
Proxy

P

Payer IDX

One-time Virtual Card CIDY

Identity IDY

Merchant M

Acquirer 1

Acquirer 2

Pseudo-merchant identity
N sent on PrivBank’s back-
end

KYC
SCA

Agreement

(a) PrivBank: EMV-Compliant Payments with Pseudonymity Provisioned Collaboratively by
Privacy-friendly Issuer and Third-party Proxy

Issuer

Payee IDA

Payment
Proxy

P
Payee IDX

One-time Virtual Card CIDX

Merchant M

Acquirer 1 Acquirer 2

KYC

KYC

SCA

P as Merchant, or Merchant
M ’s MCC and ML, sent on
EMV network

(b) PrivProxy: EMV-Compliant Payments with Pseudonymity Provisioned by Third-Party
Proxy

Figure 5.3: Graphical description of the our two proposals. (Black arrows denote the
execution flow. Red arrows are for KYC and SCA requirements. Blue arrows denote

identity knowledge. Green arrows denote Clearing inquiries.)

EMV building blocks can be treated as black-boxes inherited from EMV, and our only
focus is going to be the design of the proxied systems, from an engineering perspective
alone. Indeed, our proofs w.r.t. PAn,MAn, Unlnk follow from the proxied construction,
and the cryptographic or inner protocol details (e.g., Visa, Mastercard variations) are
irrelevant therein, as they are in the descriptions that follow.

We will now describe the functionality of our proposals by describing the main aspects
and intricacies of PrivBank and PrivProxy.

5.10.1 Construction PrivBank

PrivBank (Figure 5.3a and 5.4 on the next page) can be summarised as follows. A
Payment Proxy contractually committed with the bank, plays the intermediary between
all in-store transactions done by a Payer with a Merchant. The Payment Proxy gets to
know who the Merchants are, but not the long-term identifiers of the Payers, whereas
the bank knows who the Payers are, but not the Merchants. As this is required by
AML regulation, the two entities can work together to recover full knowledge on any
transaction. They have an agreement in place, thus sharing risk and liability. It is
important to note that an agreement can create civil liability e.g., to indemnify the
bank for a fine if the proxy fails to do something it has promised but it cannot apportion
criminal liability or liability to pay a fine. Civil liability to the customer would only be

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 133

Payer IDA Issuer Proxy P Merchant M, MCC, ML

“Open bank account”, IDA with KYC
App enrolement linked to IDA

App enrolement (unlinked to IDA)

App is opened
for payment

“Request Anonymous Payment”

SCA authentication process

AML-caps
verification

“SCA success”
“SCA success”, One-time identity IDX New authorised identity IDX

“Payment authorised”, IDX

“One-time-card”, CIDY
,”Identity”, IDY

“EMV compactible Payment (SDA or DDA or CDA)”, IDY ,CIDY

“Request authorisation”, IDX , “Merchant ID”, M

EMV Payment Network
AML-caps verification & Scrutinising

“Request EMV verification”, CIDY

“Success”

“Success”

“Clearing”, IDY , “Merchant name”, M, MCC, ML

“Clearing”, IDX , (N, MCC, ML) or P
“Clearing done” “Transfer to Proxy”, TPP “Transfer to Merchant”, M, TM

1

EMV-L phases
Pseudonymity Enabeling Contract

S
et
u
pI

D
S
et
up
P
ay
m
en
t

P
ay
m
en
t

C
le
ar
in
g

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8 & Step 9

Figure 5.4: Protocol-Implementation Flow of PrivBank. All communications appart
from the payment from the Payer to the Merchant are assumed to be executed on a

secure channel (encrypted and authenticated communications).

by the bank. Payments done via PrivBank are supported via one mobile app6 provided
in partnership between, the Issuer and the Proxy. We now describe, step by step, how
a payment is made possible as being well as carried out through via PrivBank. These
steps are also highlighted in Figure 5.4.

Step 1. The Payer (whose identity is denoted by “IDA” in Figure 5.3a on the
preceding page and Figure 5.4) opens a bank account with the Issuer. This bank account
comes with a “premium” option of support for privacy à la PAn, MAn, Unlnk, which
is achieved via PrivBank. The Payer’s banking and PrivBank ’s accounts are with the
Issuer, which handles KYC authentication, not the Proxy. The Issuer does not share
the Payer ’s identification details with the Proxy. To allow this, the contract stipulates
certain terms and conditions (T&C) as we detail below.

As an account-holder with the Issuer, the Payer accesses the PrivBank app, which
connects the Payer, Issuer, and Proxy from an engineering standpoint. However, the app
is provided by the Issuer and links only the app-store identifier to the Payer’s identity
IDA on the Issuer’s servers. The Proxy and other third parties identify the Payer
through their app-store account, not the Issuer’s method. See SetupID on Figure 5.4.

Under AML regulations, and similar to other payment methods, the amounts spent
using PrivBank may be capped (e.g., EUR/GBP1000 per month). We call these the
AML-caps. The T&Cs set this limit, which the Issuer and Proxy enforce.

Step 2. When a payment is to be made by the Payer to a PoS of a Merchant’s, the
Payer IDA opens the PrivBank app. The opening of the app prompts both the Issuer
and the Proxy on secure (e.g., HTTPS) channels:

6For compliance with banking regulations, this app may require a Trusted Execution Environments
(TEE), chips designed for secure storage and cryptographic operations.

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 134

(a) App-Triggers on the Proxy’s Side: At this stage, the push by the app to the Proxy
only says that someone, with no specific identity revealed, intends to make a pay-
ment.

(b) App-Triggers on the Issuer’s Side: The SCA and AML checks are triggered through
a request to the Issuer. SCA is a two-factor authentication, ensuring that Payer
IDA is making the payment. If needed, the Issuer also verifies that IDA has not
exceeded the AML caps for PrivBank. If the caps are reached or if SCA fails, the
protocol halts.

Upon successful SCA and AML checks, the Issuer creates a one-time virtual iden-
tity IDX , pseudorandom and statistically independent of IDA/CIDA .

Step 3. On the back-end (i.e., not via the PrivBank app), the Issuer sends the
identifier IDX to the Proxy, which, in the light of Steps 1 and 2, only knows that an
account holder with the Issuer using PrivBank wants to make a payment.

The Proxy expects this push7, having received an alert in Step 2 that someone intends
to make a payment.

Step 4. At this stage, the Proxy issues – for a user it knows as Payer IDX – a
one-time, virtual, EMV-compliant card CIDY with all aspects (PAN, etc.) being freshly
generated for one-time use, included an attached one-time, virtual card-holder name
of “IDY ”. IDY /CIDY are pseudorandom and statistically independent of IDX and of
IDA/CIDA . The card issued is “loaded” onto the app.

Step 5. The Payer pays with the one-time card by the Merchant’s PoS. Here,
SCA authentication may have to be carried out offline using the CDCVM tag in the
case of preloaded payment methods IDY /CIDY . The Proxy (and/or the Issuer) checks
that the issuer would not reach the AML-caps through this specific amount being paid
via PrivBank and executes the AML scrutinising. If any of these conditions fail, the
protocol stops. AML caps were checked in Step 2 of PrivBank, but those checks did not
account for the current payment.

Liability Shifts and Fraud-protection. Under its partnership with the Proxy,
the Issuer accepts controlled shift of liability with respect to fraud protection. To this
end, for selected stores – that are nominated based on MCC, MRI and ML, etc.– the
partnership allows that the Issuer receives from the Proxy sanitized information when
it comes to payment authorisation. In practice, the list of selected stores can be large
(e.g., all Merchants in a country with given MCCs), as is for the “Ticket Restaurant”
services with Edenred [Ede23] or Up-one [UO23]. The sanitized information does not
reveal the original Merchants’ full identity, instead it contains so called pseudo-merchant
identities. These are prescribed, such that the Issuer can check the Proxy’s compliance
to the agreement8.

If fraud-detection disputes should be raised, the Proxy and the Issuer have to come
together to resolve this, and the Proxy has to disclose to the Issuer the full Merchant
data. This is reflected in the T&C of the contract that the Payer has with the Issuer on

7The time between any push by the app in Step 2 and receiving IDX is capped at 2 seconds due to
EMV security constraints.

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 135

using the PrivBank product, i.e., the Payer knows that it can use PrivBank, in selected
stores.

Step 6. Using standard EMV mechanisms, the (Acquirer of the) Merchant begins
to resolve the payer’s payment by contacting the Proxy, which is the Issuer of CIDY .

Step 7. If the Merchant M is not on the “pre-selected” list, the protocol stops.
Otherwise, using the PrivBank’s back-end, the Proxy goes to Issuer, to resolve a payment
for Payer IDX , and provides a pseudo-merchant identity N instead of the true identity
of the Merchant M.

Step 8. The Issuer checks if Payer IDX can pay to a pseudo-merchant N via
PrivBank as per the pre-agreed list of merchant and as per the rules of PrivBank.
Then, further checks that Payer IDX has funds to pay.

Step 9. If step 8 went through, the payment is resolved towards the Proxy and
then from the Proxy to the Merchant.

5.10.2 Law Abiding and Norm Compliance Aspects of PrivBank

PrivBank comply with the norm and all regulation applicable to the banking system.
We discuss why below.

On the Norm Compliance. Two aspects need to be examined: firstly, the payment
transcript produced between the app and the Merchant’s PoS. When a payment is made
with this app, the transcription is that of the EMV contactless payment card, with the
exception of the CDCVM, which can be filled in thanks to SCA verification with the
Issuer.

Secondly, the timing compliance with the EMV norm. EMV-compliant payments
are required to set a maximum general processing time for each transaction. Allowed
timings range between a few hundred milliseconds to a few seconds. In the stages defined
in PrivBank, Step 1 corresponds to an initial setup independent of any payment. Steps
2 to 4 involve SCA authentication, up to the point where the card is loaded into the
app. This process can be executed ahead of time for one or several one-time virtual
cards. Steps 5 to 9 exactly correspond to a timed EMV process of payment. As a result,
PrivBank results in a processing time within the range of current payment standard
and similar to already deployed solutions such as tokenization or Curve. Then, from a
technical point of view, PrivBank complies with the standard.

On the KYC Compliance. KYC regulations are fulfilled via the Issuer, who checks
Payers’ identification documents upon them opening a bank account. A contract in
between the Issuer and the Proxy mandate the Issuer for the identity verification. On
the other side, there is a liability-shift towards the Proxy on the verification of the
Merchant’s identity.

8e.g., a Merchant M in the country, with Merchant Location and Merchant Category Code getting
pseudonymised as a fixed pseudo-merchant identity

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 136

On the SCA Compliance. Strong customer authentication is checked by the Issuer
when Payer IDA intends to pay at Step 2 to provide IDY /CIDY to Payer IDA. Note
that an SCA authentication (that may be carried out offline using the CDCVM tag)
may be required for the payment if it is not executed within a few seconds after the first
one.

On the AML Compliance. The T&Cs of PrivBank subscribers are such that the
amount of payments that any Payer IDA makes via PrivBank may be capped to values
in line with the current AML legislation derogation (e.g., EUR/GBP1,000). To avoid
breaking the failure to disclose regulations the bank in the PrivBank model needs to en-
sure that the proxy it has partnered with is performing the required ongoing monitoring
of transactions on its behalf. It would be possible to maintain the pseudonymity of the
customer provided that the proxy would have access to any previous transaction data of
the customer (if there is any) and be able to generate automated alerts if transactions
were not in line with the customer’s profile. Those alerts would be remitted to the issuer
and the issuers’s officers would investigate and generate a Suspicious Activity Report.
In these cases of suspected fraud, the transaction would be linked to the customer’s
identity by the Issuer.

5.10.3 Construction PrivProxy

PrivProxy is based on the same three main parties, but when at the core of PrivBank’s
sat an “pseudonymity-friendly” Issuer, now, in PrivProxy, it is a Payment Proxy which
provides a service to add pseudonymity on top of EMV payments. Note that there could
be many such Proxies. Figure 5.3b on page 132 summarise PrivProxy while Figure 5.5
on the next page describe the protocol flow.

Step 1. The Payer is known via their identity dubbed as “IDA” in Figure 5.3b on
page 132 and 5.5 on the next page by the Issuer and the Payment Proxy, and it holds
accounts with both. In the onboarding process, the Payer IDA links the bank-account
that they hold with the Issuer with the user-account it holds with the Proxy.

EMV Compliance. At onboarding with PrivProxy, there is a banking pre-
authorisation made, where the Proxy can take up to a fixed total from the Payers bank
account. In line with the EMV rules, this pre-authorisation caps can be a maximum of
x amount per year/month/day (e.g., EUR/GBP1000/month). The Payer gets access to
the PrivProxy app as a Proxy-provisioned service and has to comply to KYC procedure
via their identity IDA to use it. This time, the app, from an engineering perspective,
has nothing to do with the Issuer.

Step 2. When a payment is to be made by the Payer IDA to a Merchant M, the
Payer opens the PrivProxy app. The opening of the app prompts the Proxy to do the
SCA process, see SetupPayment in Figure 5.5 on the facing page. Upon successful SCA
checks, the Proxy checks if IDA did not reached its AML-cap. If they have, the protocol
stops.

Step 3. At this stage, for Payer IDA, the Proxy creates a one-time virtual
identity and a one-time, EMV-compliant card, shown as IDX and CIDX on Figure 5.3b
on page 132 and 5.5 on the facing page. They are pseudorandom and statistically

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 137

Payer IDA Issuer Proxy P Merchant M, MCC, ML

“Open bank account”, IDA with KYC
“Mean of payment”, CIDA

App enrolement linked to IDA with KYC

“Success Enrolement”, “Provide payment mean”

“Payment mean”, CIDA

Payment authorisation for CIDA
Payment authorisation for CIDA

App is opened
for payment

SCA authentication process

AML-caps
verification

“SCA success”, “One-time ID”, IDX , “One-time-card”, CIDX

“EMV compactible Payment (SDA or DDA or CDA)”,CIDX
, IDX

“Request authorisation”, IDX , “Merchant ID”, M

AML-caps verification & Scrutinising
EMV Payment Network

“Request authorisation”,
CIDA

, (M,MCC,ML) or P “Request EMV verification”, CIDX

“Success”“Success”

“Success”

“Clearing”, IDX , “Merchant name”, M, MCC, ML

“Clearing”, IDX , (MCC, ML) or P
“Clearing done” “Transfer to Proxy”, TPP “Transfer to Merchant”, M, TM

1

EMV-L phases
Pseudonymity Enabeling Agreement

(optional)

S
et
u
pI

D
S
et
up
P
ay
m
en
t

P
ay
m
en
t

C
le
ar
in
g

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7 & Step 8

Figure 5.5: Protocol-Implementation Flow of PrivProxy. All communications appart
from the payment from the Payer to the Merchant are assumed to be executed on a

secure channel (encrypted and authenticated communications).

indenpendent of IDA and CIDA . The card issued is automatically “loaded” onto the
PrivProxy app. The transcript produced between the app and the Merchant’s PoS,
when paying with this app, is that of the EMV physical card except for CDCVM.

Step 4. The Payer goes to pay with it by the Merchant’s PoS, as shown on
Figure 5.3b on page 132 and as Payment in Figure 5.5. Accounting for the value of
the current payment, the Proxy checks that the Payer’s pre-authorisation caps are not
reached, and nor are the AML-caps and executes the AML scrutinising.

Step 5. Using standard EMV mechanisms, the (Acquirer of the) Merchant begins
to resolve the payer’s payment by contacting the Proxy, which is the Issuer of CIDX .

Step 6. The Proxy behaves differently if the Merchant is on their pre-vetted,
selected stores’ list to use PrivProxy or not. In either case, the Proxy aims to provide
Merchant pseudonymity and proceeds as described below.

If the Merchant is on the “selected-stores” list, then, using the payment networks’
back-end, the Proxy matches IDX with the payer’s identity IDA and goes to Issuer and
asks to resolve a payment for Payer IDA. It does not declare Merchant M but its own
identity P as being the Merchant.

If the Merchant is not on the “selected-stores” list, then, using the payment networks’
back-end, the Proxy does still not declare Merchant M identity to the Issuer, instead
provides restricted information (e.g., ML and MCC). In this case, the Proxy takes on
risks in terms of their authorisation rates (i.e., it is possible that the Issuer will not
approve the payment due to too little information on the Merchant).

Liability and Fraud-protection. In terms of fraud-detection disputes, the Proxy
takes on the liability, this is stipulated in the contract it has with the Payer, meaning it
will have to reimburse the payer in some cases as it is the payment provider. Should the

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 138

Criteria PrivBank PrivProxy
1. Payer pseudonymity with respect to the Proxy

and the Merchant ,
with respect to the Merchant
/

2. Merchant
pseudonymity

with respect to the Issuer , with respect to the Issuer ,

3. Liability for legal
compliance

Issuer and Proxy Proxy

4. Liability for Eco-
nomic risk

Joint between Issuer and
Proxy

Proxy

5. Payers’ identities
distributed

Yes / No ,

6. Payer’s trust In the Proxy and the Issuer In the Proxy
7. System’s assump-
tions

Trust between the Payment
Proxy and the Issuer /

No ,

8. Security assump-
tions

Issuer’s app not leaking
identities /

No ,

9. Feasibility Privacy-friendly Issuers may
be rare /

Immediately feasible by some
companies ,

10. False Rejection
Rate

None , Risks of low payment autho-
rization rates /

Table 5.3: PrivBank and PrivProxy: Pseudonymity-provision, Advantages and
Disadvantages

Issuer need to be involved, this is done entirely by the Proxy, with no legal obligation
on the Payer.

Step 7. If the payment is not authorised by the Issuer (which is unlikely for
Merchants on the selected-stores list), the protocol stops. Otherwise, the Issuer checks
if Payer IDA has funds to pay and approves the transaction if it does.

Step 8. If all went through the payment is resolved towards the Proxy and then
from the Proxy to the Merchant M .

5.10.4 Law Abiding and Norm Compliance Aspects of PrivProxy

PrivProxy also complies with the norm and all regulations applicable to the banking
system. Arguments similar to those set out in Section 5.10.2 on page 135 apply. Some
additional elements are discussed below.

On the Norm Compliance. EMV-compliant one-time card are issued and delays
are managed in the same way as in PrivBank. Here, it is also possible to pre-load the
pseudo-identity IDX and the card CIDX in order to carry out EMV contactless payment
with CDCVM authentication.

On the KYC Compliance. KYC regulations are fulfilled by the Issuer and the
Proxy, who check Payers’ identification documents upon them opening accounts with
each.

On the SCA Compliance. Since the Proxy did KYC onboarding of the Payer, the
Proxy can do the SCA step and checks that it is indeed Payer IDA attempting to pay.

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 139

On the AML Compliance. What we called AML-caps may be in place, also for
payments made via PrivProxy. In this case, it is the T&Cs of the account held with
the Proxy that enforces this: the Proxy will check that the amount of payments that
any Payer makes via PrivProxy are capped to values in line with the current AML
regulations. As a payment services provider, it is the Proxy which is liable to comply
with the AML and SCA frameworks. From the perspective of the bank, the relevant
payment is the payment made to the Proxy. As there is no unlinkability of customer
information and transaction details from the Proxy’s point of view, there should be no
difficulty in the Proxy generating automated alerts and Suspicious Activity Reports as
required.

5.10.5 Comparing PrivBank and PrivProxy

PrivBank and PrivProxy offer different pseudonymity guarantees (see Table 5.2 on
page 122). Most of the relevant comparative aspects between our two protocols are
detailed in Table 5.3 on the preceding page with the relevant design choices. Specifically,
entries such as rows 1 and 6 (also rows 3, 7, 8, and 10 in Table 5.3 on the facing page)
illustrate that neither PrivBank nor PrivProxy can be deemed superior.

Varying Features. For instance, PrivBank requires additional assumptions to en-
hance pseudonymity, such as a legal agreement of collaboration between the Proxy and
the Issuer (rows 6 and 7). Conversely, PrivProxy could be offered by the Proxy inde-
pendently of an Issuer, though legitimate payments may be rejected (row 10) due to
the lack of such an agreement and the Proxy curating Merchant-related information
of their own accord. Furthermore, PrivBank allows for multiple Proxies as partners
of the Issuers, offering Payers a choice of providers. If it is the Payers who pay for
the Proxy service, then balance of trust may shift, potentially making PrivBank more
appealing to some Payers. Also, liability is shared in PrivBank, but not in PrivProxy

(row 3). PrivBank boasts stronger decentralisation of knowledge, however, it requires
collaboration between Issuers and Proxies from the management of the app, as it neces-
sitates a robust agreement (row 8), but –in reality– pseudonymity-friendly Issuers may
be rare. Ultimately, the choice between the two proposals depends on priorities and
incentives driving system deployment. Thus, we continue to present and analyse both
PrivBank and PrivProxy, as they cater to different markets and operate under distinct
assumptions.

Achieving PAn, MAn, Unlnk. PrivBank achieves PAn in front of the Proxy, which is
down to Issuer and the Proxy having partial views on identifiers. This is not the case in
PrivProxy, so PAn cannot be achieved there. All such results recounted in Table 1 are
formalised in Section 5.11 on the next page. The information essential for pseudonymity
are divided between the proxy (payment information) and the card issuer (identification
information). This is necessary to comply with legislation.

On the Legal Compliance. For a summary of compliance with KYC and SCA reg-
ulations, see Table 5.2 on page 122. We require KYC from the Issuer in both PrivBank

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 140

and PrivProxy, but we only require it from the Payment Proxy in PrivProxy. In
PrivBank, a legal agreement allows the Payment Proxy to rely on the Issuer for KYC
and SCA. Thus, payments can proceed only when the Payment Proxy has received SCA
approval from the Issuer. This is unlike the case of PrivProxy where the SCA is no
longer required with the Issuer, as the Payment Proxy has done KYC and there is also
a pre-authorisation by the Payer on their some of their funds made to the Proxy during
enrolment.

On the Acceptability of the Proxy. The use of proxies in the banking system,
such as Curve and Revolut, is already established and widely accepted. These services
demonstrate that the concept is viable and secure, which helps mitigate concerns about
trust in our solutions. Additionally, our design leverages the principle that banks do not
require all merchant data for payment authorisation. This ensures that both the Issuer
and the Proxy can potentially monetise the service, supporting the acceptability and
feasibility of our approach.

On Implementation Aspects. Both solutions/apps generate one-time cards (i.e., a
single-use PAN) and run contactless EMV as for physical cards with the PoS. Loading
a card mandates use of TEE to comply with the AML regulations. Alternatively, the
server could load tokens associated one-time cards. Tokens do not require to be securely
stored. This second scenario generates a single-use PAR, but this element would lose
its traceability purposes, thus, we prefer the first solution. Apart from these minor
considerations, our two solutions can be implemented on the basis of an adapted version
of the services provided by existing proxies.

On the Cost Aspects. Processing payments incurs costs that are currently borne
by merchants. Our proposed solutions impose greater demands on the network. The
economic risks vary from one scheme to another, as shown in Table 5.3 on page 138.
Consequently, this form of payment may entail higher costs, which could be absorbed
by merchants, as is the norm and/or by users opting for a “premium” privacy-preserving
service.

5.11 Formal Treatment of Anonymity in PrivBank and

PrivProxy

Now, we will introduce a formalism that allows us to reason formally about our proposals
PrivBank and PrivProxy realising the privacy notions PAn, Unlnk and MAn. This
formalism is aimed to be accessible. Meanwhile, in Section 5.13 on page 149, we give a
“traditional” cryptographic model and analysis of our schemes. Notably, in Section 5.13
on page 149, we show that the “simpler” definitions in this section fully capture the
cryptographic definitions.

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 141

5.11.1 Execution Model

To study the security/privacy of (payment) protocols, we formalise first the parties
executing them, and call them payment parties, or simply parties and denote E: Pay-
ers, Issuers, Merchants, and Proxies. These represent machines or devices or humans,
associated with long-term identifiers, well-defined PPT (probabilistic polynomial-time)
algorithms to execute, and they may hold cryptographic material. There can be any
number of such parties. The execution of these parties gives rise to what we call party
instances. Each party can be instantiated multiple times. This setting where party
instances execute is denoted as an execution environment.

5.11.2 EMV-L: A Language for EMV Protocols

To describe the main parts of the algorithms onboard the payment parties, we define
an API-like language (Application Programming Interface). It describes the main pro-
cedures and sub-procedures of any EMV-compliant payment protocol, hence us calling
it EMV-L.

Definition 29: EMV-L: A Language for EMV Protocols

Consider a security parameter for the payment system9. Our EMV-language is
formed of the following procedures:

SetupID(ID)→ λID sets up the part of the execution environment denoted here
λID, in which instances of a Payer party with the identity ID can make
payments. The object λID enables and encapsulates all payment-related al-
gorithms as executed/related by/to the Payer identified as ID.

SetupPayment(ID)→ C: based on a Payer’s identity ID and its sub-environment
λID, creates an EMV-compliant payment device C (e.g., a physical card, or
a mobile-device with a card registered to it) that can transact with an EMV-
compliant PoS.

Payment((ID,C),M)→ pay: based on an identity ID, a payment device C cor-
rectly set up as above, and a Merchant M , generates a EMV-complaint pay-
ment transcript pay.

Clearing(ID,M, pay)→ T : based on an identity ID, a Merchant M and a transac-
tion pay produced as per the above, this procedure concludes the payment by
balancing the account of the participants. It returns the terminating data T .

.
A classical, in-shop EMV payment or an EMV-compliant one, like our PrivBank and

PrivProxy using our EMV-L language, requires the following flow of EMV-L procedures:

SetupID → SetupPayment → Payment → Clearing.

9The security parameter is defined by Visa, MarterCard etc. at the level of the system. As here, we
only aim to describe the Payer’s relationship with the system, we omit it from our descriptions to make
the notation more accessible.

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 142

In this study, we examining the above operations from a network perspective rather
than delving into cryptographic consideration. Indeed, actions like registering a payer
to the Issuer does not involves cryptography. Only SetupPayment and Payment can
be viewed as cryptographic protocols, respectively card’s key generation and payment
protocol [EMV11]. Moreover, the clearing process (Clearing) occurs between Issuers and
the network lacking any unique or public specifications. Hence, we treat the above
operations as black boxes.

5.11.3 Threat Model

We move on to the threat model which we consider in our subsequent analysis of
PrivBank and PrivProxy.

Corruptions and Eavesdroppers. We assume that parties, Payers, Issuers, Mer-
chants and Proxies, can be corrupted, at any point in the execution, and they can be
made to behave arbitrarily. The set of corrupted parties is denoted Pcor. Yet, due to the
auditability requirement, distinct party-types, both involved in one execution cannot
be simultaneously corrupted, otherwise trivially breaking any pseudonymity property.
Active Issuer and Proxy cannot be both corrupted for PAn and Unlnk, active Merchant
and Proxy cannot both be corrupted for MAn. Our corruptions and adversaries also
vary with the properties:

For PAn and Unlnk: (1) any Payer can be corrupted except the one against whom
the property is considered and at least one other; (2) an adversary can eavesdrop all
payments made by the Payers to Merchants’ PoS10;

For MAn: (1) any Merchant can be corrupted except the one against whom MAn

is considered and at least one other. (2) An adversary can eavesdrop all payments
submitted by the Proxies to the Issuers11.

We also assume two realistic aspects. One, the (application implementing our so-
lution on the) payer’s phone will not be corrupted, unless the Payer is also corrupted.
Second, other data (values, dates, etc.) in funds transfers are independent of the Payer’s
long-term identity. It means that the Payer does not encode their identity in the time
or value of the payment.

5.11.4 Formalising Payments’ Privacy

Our PAnCID holds if, when a card C was used to make payment P , the attacker as per
above cannot build a (mathematical) relation of the type “payment P is related to a
card C”. Below, we formally define relations to describe PAn, Unlnk, andMAn, starting
with some notions on mathematical relations.

10This particularly pertinent in the case where the channel between the PoS and Payer is public/un-
encrypted, which is the case today. In this setting, the eavesdropper attacker is weaker than a corrupted
Merchants/Payers. However, there are proposals to make this channel secure in EMV 2nd Gen [EMV14].

11This is a very strong attacker in practice, as it would mean that there is breach in the backend of
the payment networks.

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 143

Preimage Resistant. Let T be a function which image is of size a security parameter.
We say it is preimage resistant if for all v ∈ Im(T) (the image of the function T), finding
T−1(v) is hard to compute it with non-negligible probability for all PPT algorithm.

Class Hiding. Let T be a binary relation on pairs (x, x′). This relation is class hiding
if for two elements x and x′, it is hard to determine if (x, x′) belongs to T .

Let ·E : PAY → PAYE be a restriction function associating a view of a payment
transcript pay in the set of all possible payment transcripts PAY to a restricted transcript
payE for the parties in E ⊂ E. To formalise PAn, we introduce a Payer relation, linking
the Payer’s long-term identity ID to payment transcripts pay generated in any EMV
protocol (described in EMV-L) and its restricted version.

Definition 30: (Restricted) Payer Relation

Let π be an EMV protocol described in EMV-L. Let ID be a set of at least two
long-term Payers’ identifiers. Let PAY be a list of outputs of the protocol Payment

in π, generated by the Payers with identifiers in ID. We define the Payer relation
RPIdt ⊊ ID× PAY as (ID, pay) ∈ RPIdt if

∃λ ∈ [SetupID(ID)],∃C ∈ [SetupPayment(ID)], pay ∈ [Payment((ID,C),M)].

Given a subset E ⊂ E, we can now restrict the relation to the view of parts of
the entities that have been involved in the EMV protocol. We define the restricted
Payer relation RE

PIdt as

(ID, payE) ∈ RE
PIdt if (ID, pay) ∈ RPIdt.

Assuming that no two transactions within any of the protocol’s views leads to iden-
tical data transcript (due to the same timestamp amongst others), then ·E is a bijection
and the elements in RE

PIdt are in bijection with the elements in RPIdt.
We now define the payments relation, which enable us to define Unlnk: it denotes a

relationship associating two payment transcripts, pay and pay′, when they are executed
by the same Payer, in any EMV protocol (described in EMV-L).

Definition 31: (Restricted) Payments Relation

Let π be an EMV protocol described in EMV-L. Let ID be a set of, at least two,
long-term identifiers. Let PAY be a list of outputs of the protocol Payment executed
in π by Payers with identifiers in ID. We define the payments relation RPayms ⊊
PAY × PAY as follows: (pay, pay′) ∈ RPayms if

∃ID,M,M ′,∃λ ∈ [SetupID(ID)],∃C,C ′ ∈ [SetupPayment(ID)],

pay ∈ [Payment((ID,C),M)], and pay′ ∈ [Payment((ID,C ′),M ′)].

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 144

Given a subset E ⊂ E, the restricted payments relation RE
Payms is defined by

(payE , pay′E) ∈ RE
Payms if (pay, pay′) ∈ RPayms.

Similarly to the payer relation, which refers to Payers, we introduce a Merchant
relation.

Definition 32: (Restricted) Merchant Relation

Let π be an EMV protocol described in EMV-L. Let M be a set of at least two
Merchant identifiers and PAY a set of payments for some M ∈ M. We define the
Merchant relation RMIdt ⊊M× PAY as

(M, pay) ∈ RMIdt if ∃ID, ∃λ ∈ [SetupID(ID)],∃C ∈ [SetupPayment(ID)],

pay ∈ [Payment((ID,C),M)].

We define the restricted Merchant relation for a set E of parties as

(M, payE) ∈ RE
MIdt if (M, pay) ∈ RMIdt.

Next, by requiring intractability of properties on these relations, define our three
payments-privacy properties.

Payer Pseudonymity. The pseudonymity with respect to the identity of the Payer,
PAnID, requires that Payer’s long-term identity remains unknown during the payment
from the set of parties E . We model this using the preimage resistance of the identifica-
tion relation RE

PIdt (see Definition 33).

Definition 33: Pseudonymity with respect to the identity - PAnID

Let RPIdt be an identification relation defined by an EMV payment protocol de-
scribed in EMV-L and E be a set of parties. We say the protocol attains PAnID

in front of a set E of parties if the relation RE
PIdt is preimage resistant: i.e., it is

intractable to yield ID as RE
PIdt

−1
(payE).

In Section 5.5.2 on page 120, we introduced pseudonymity with respect to Pay-
ers’ long-term card data CID, and with respect to Payers’ identity ID. In the EMV-
L language, the object C which is the output of SetupPayment(ID) is in fact a tu-
ple C = (CID, Cshort), where CID corresponds to long-term card data and Cshort to
ephemeral/one-time card data.

To introduce PAnCID , we define a relation RCIdt replacing the identity ID in the
Payer relation by the card CID, then, replacing in Definition 33 the preimage resistance
of RPIdt with the preimage resistance of RCIdt gives us what pseudonymity PAnCID with
respect to Payers’ long-term card data CID is.

Unlinkability. Unlinkability in payments refers to the capacity to ascertain whether
two payments originate from the same Payer. It is based on the class hiding property
of RE

Payms.

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 145

Definition 34: Unlinkability - Unlnk

Let RPayms be a payments relation defined by a EMV protocol and E be a set of
parties. We say that the protocol attains unlinkability Unlnk for a set E of parties
if RE

Payms is class hiding.

Merchant Pseudonymity. Merchant pseudonymity is defined similarly to the Payer’s
pseudonymity PAn. It is also based on the preimage resistance, but, this time, of a Mer-
chant relation RMIdt.

Definition 35: Merchant Pseudonymity - MAn

Let RMIdt be a Merchant relation defined by a payment protocol and E be a set of
parties. We say that the protocol attains Merchant pseudonymity MAn for a set E
of parties if the relation RE

MIdt is preimage resistant.

We note that MAn can also recast into partial Merchants’ pseudonymity Mpart
An ,

whereby partial preimaging of RE
MIdt is possible. That leads to saying that a Merchant

is with subset of the domain of RMIdt, i.e., it is a Merchant with a MCC and ML shared
by several.

5.11.5 Provable Anonymity in PrivBank and PrivProxy

Next, we state and prove our properties PAn, MAn, and Unlnk for PrivBank and
PrivProxy.

As per our threat model, all observer between the Payer and the Merchant is at most
as strong as a corrupt Merchant. Similarly, someone who breaks the back-end channel
between the Merchant and the Issuer is at most as strong as a corrupt Issuer. So, we
state our results below only with respect to corrupt parties.

We start with the pseudonymity of the Payer, which differs in our constructions.
Indeed, a KYC procedure is required in PrivProxy, where the pseudonymity-friendly
Issuer provides a one-time identity for the Payer to present to the Payment Proxy in
PrivBank. This KYC-based difference indirectly leads to:

Property 8: PrivBank – PAnID and PAnCID

Consider an arbitrarily picked honest Payer with identifier ID, and PrivBank in
the threat model given, where Issuers which gives service to Payer ID is being
honest. Then, PrivBank attains PAnID and PAnCID in front of the Proxy and the
Merchant.

Property 9: PrivProxy – PAnID and PAnCID

Consider an arbitrarily picked honest Payer with identifier ID, and PrivProxy in
the threat model given, where the Issuers and Proxies which give joint service to
Payer ID are being honest. Then, PrivProxy attains PAnID and PAnCID in front
of the Merchant.

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 146

We move to the attainment of payments’ unlinkability. In PrivProxy, the Proxy can
link payments by the virtue of the fact that it is controlling all sides of identifiers of the
payers. In PrivBank, even if the Proxy does not know the Payer’s IDA, the Proxy can
link their payments by using the Android/Apple account in the phone of the Payer for
which is receives requests. We change this with respect to the app (especially since it is
provisioned by the Issuer). However this would complicate the resolution/authorisation
of payments by the Proxy towards the Issuer. This leads us to the result below.

Property 10: PrivBank and PrivProxy– Unlnk

Consider an arbitrarily picked honest Payer with identifier ID, and PrivBank and
PrivProxy in the threat model given, where the Issuers and Proxies which give
joint service to Payer ID are not corrupt. Then, PrivBank and PrivProxy attain
Unlnk in front of the Merchant.

We move to merchants’ pseudonymity. Our result is:

Property 11: PrivBank and PrivProxy– MAn

Consider an arbitrarily picked honest Merchant with identifier M , and PrivBank

and PrivProxy in the threat model given, where the Proxies and Payers which
jointly pays to Merchant M are being honest. Then, PrivBank and PrivProxy

attainMAn in front of the Issuer.

For the benefit of the Payer, the Merchant’s pseudonymity is guaranteed in both
our schemes against corrupt Issuers. AML regulations still require the identity of the
Merchant to be known to at least one party for full auditability purposes. As the
Payment Proxy provides the means of payment, it is contacted by the Merchant via
the EMV-compliant payment validation process and knows its identity. Thereforce, the
Payment Proxy knows the link between the payment and the Merchant.

All proofs are provided in Section 5.12.

5.12 Proofs for Our Main Results in Section 5.11.5

In this section, we give proofs of the privacy preserving properties, given in Section 5.11.5
on the preceding page, and achieved by our two constructions PrivBank and PrivProxy.
These properties are also summarised in Table 5.2 on page 122.

Our properties consist of straightforward characteristics that can be elucidated through
a high-level description, as provided in Section 5.10 on page 131. In our designs, we avoid
delving into the cryptographic intricacies within the protocols. Instead, we treat them
as black boxes, particularly in the payment and clearing processes. The payment mech-
anisms in our proposals remain unaltered compared to the extensively analyzed EMV
payment procedures between the card-issuing entity (which is the Proxy in our cases),
a merchant’s PoS and a Payer with its card (see Section 5.3 on page 117 for related
protocol analysis). Furthermore, the backend infrastructure lies outside the public spec-
ification of EMV standards and varies among different entities. As the emphasis is on
the non-disclosure of certain identity-related information, we trated them as black box

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 147

only formulating a few direct hypotheses in our Threat Model (see Section 5.11.3 on
page 142).

While our proofs may appear somewhat high-level to formal-methods experts, they
demonstrate our pseudonymity properties of our protocols within the current EMV
norms, regulations and under realistic security assumptions for EMV. Indeed, they pri-
marily consist of simple arguments under already taken EMV security assumptions.
These arguments can be thought of as "a piece of information x is not available to the
adversary, and it will not be able to recover it from other parts of the transcript, hence
it will not be able to learn x." For a more in-depth discussion and the parallel with a
game-based formalism, please refer to Section 5.13 on page 149.

Given by the EMV-L description of PrivBank and PrivProxy, we need to show: for
Property 1 and Property 2 – that RPIdt and RCIdt are preimage resistant; for Property 3
– to show that RPayms is class hiding; Property 4 – that RMIdt is preimage resistant.

Proof of Property 8, PrivBank PAn . We show the payer pseudonimity PAn for PrivBank
as stated in Property 8 on page 145. We need to show that RPIdt and RCIdt given by
the EMV-L description of PrivBank are preimage resistant.

For our analysis, we refer to Figure 5.4 on page 133, which provides a graphical
description of PrivBank identity information exchanges.

Payer/Card Pseudonymity with respect to the Proxy. Messages sent to the
Payment Proxy contain an application registration and the identity IDX obtained from
the Issuer. By assumption in the proposition, the Issuers which interact with Payer ID
are not corrupt. So, the IDX is generated indeed as a unique identity independent of
IDA and hiding IDA. Also, our threat model guarantees that the app is uncorrupted,
so data on it, including IDX and IDA, is correctly separated between parties.

So, the payment Payment Proxy has no advantage in reversing the RPAY payment
relationship even if it has observed the payments executed based on credentials it has
provided. The same is true of CIDX and CIDA .

Payer/Card Pseudonymity with respect to the Merchant. The Issuer is not
corrupted. So, the Issuer does not give IDA (resp. CIDA for card pseudonymity). As
before, by assumption in the proposition, the Issuers which interact with Payer ID are
not corrupt. So, the IDX is also generated indeed as a unique identity independent of
IDA and hiding IDA. So, all is left is for the Merchant to guess IDA (resp. CIDA for
card pseudonymity) on the basis of a payment derived solely from identity IDY and
card CIDY both provided by the Payment Proxy. Consequently, the Merchant is unable
to retrieve the Payer’s identities if the Payment Proxy is unable to do so.

Both corrupted entities receive only transaction information TPP from the Issuer
which are unlinked to the Payer’s identity IDA, when executed under identity IDX (by
construction). IDA is also not encoded in details in the payments’ date or value (by the
threat model on the payer).

The impossibility of reversing the RPcor

PAY payment relationship and then PAnID and
PAnCID pseudonymity stems from all the above.

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 148

Proof of Property 9, PrivProxy PAn . We show the payer pseudonimity PAn for our
second protocol PrivProxy as stated in Property 9 on page 145.

We need to show thatRPIdt andRCIdt given by the EMV-L description of PrivProxy
are preimage resistant.

For our analysis, we refer to Figure 5.5 on page 137, which provides a graphical
description of PrivProxy identity information exchanges.

Payer/Card Pseudonymity with respect to the Merchant. The Merchant first
receives a payment based on IDX and CIDX . In this construction, both IDA and CIDA
are sent to the Payment Proxy, the entity by the Issuer. But, by as per assumption in
the proposition, the Issuers and Proxies which give joint service to Payer ID are not
corrupt, and the app is not corrupt, so then IDX and CIDX are generated by the Proxy
and remain independent of and not linked to the Payer long-term information IDA and
CIDA .

The Merchant also receives TM as the final payment for the purchase, which is also
not linked to long-term identity or card data (by the threat model on the Payer not
encoding his ID in the values/dates of the payments).

So, given all this independence of data from IDA and CIDA , the impossibility of
reversing the payment relationship RPcor

PAY and then PAnID and PAnCID pseudonymity
follows.

Thus, pseudonymity properties PAnID and PAnCID are achieved for PrivProxy.

Proof of Property 10, PrivBank and PrivProxy Unlnk . We treat both proposal in the
same time and show the payer unlinkability Unlnk for PrivBank and PrivProxy as
stated in Property 10 on page 146.

We need to prove that RPayms given by the EMV-L description of our proposals is
class hiding.

We treat both PrivBank and PrivProxy at once.

Unlinkability with respect to Merchant. First, the Merchant gets a payment
based on a single use identity and card IDX/CIDX or, respectively, IDY /CIDY inde-
pendent of the original identity IDA or on a long-term card CIDA . This independence
is ensured by the way we have chosen to generate the one-time identities and by the fact
that the threat model guarantees that the app is uncorrupted, so data on it is correctly
separated between parties

The second interaction which goes to the Merchant corresponds to the fund transfer
carried out by the Payment Proxy and is also independent of the Payer’s identity (by
assumption).

So, RPayms given by the EMV-L description of our proposals is class hiding with
respect to the Merchant and Unlnk unlinkability is therefore achieved.

Proof of Property 11, PrivBank and PrivProxyMAn . We treat both proposal in the
same time and show the merchant anonymity MAn for PrivBank and PrivProxy as
stated in Property 11 on page 146.

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 149

First, we notice that no direct contact occurs between the Merchant and the Issuer.
Also, the only message coming from the Merchant and later going to the Issuer appends
with the payment validation (only in PrivBank) and the clearing (in both protocols).

Considering that the Payment Proxy sanitizes the Merchant identity by removing
any Merchant dependent information and replace it with its identity, as we took as a
hypothesis that Proxies which jointly pay the Merchant M are not corrupt. It should
be noted that our protocols provide for an alternative procedure where the Payment
Proxy provides partial information such as MCC and ML to the Issuer. This alternative
procedure will achieve MAn with respect to Merchants who share the same MCC and
ML data. We now conclude our proof, which continues in the same way in both cases,
but which results in different pseudonymity properties.

From the honest Payment Proxy’s sanitization, we have that no Merchant’s identify-
ing information (or partial but not identifying) is passed on from the Payment Proxy to
the Issuer. Hence, the adversary is left trying to find a preimage for the relation RE

Payms,
only based on data unrelated to the merchant identity. This allows us to conclude that
RE

Payms is preimage resistance, hence, PrivBank and PrivProxy achieves MAn in the
current corruption setting.

5.13 Game Based Formalisation

Below, we recast our security definitions in the widely-accepted game-based paradigm.
These definitions demonstrate the security of our proposal in the cryptographic game
based standard. Multiple formalisations for game-based properties, with varying degrees
of strength are possible. The game based definitions which the first definition is for
Payer’s pseudonymity and unlinkability and the second for Merchant’s pseudonymity
are directly implied by the security introduced through relations in Section 5.11 on
page 140. De facto showing that our protocols matches the security defined in this
section.

We have chosen to present only one game for the Payer’s privacy preserving prop-
erties, as in general unlinkability Unlnk imply pseudonymity PAn (i.e., Unlnk =⇒
PAn). In all the upcoming games, an EMV compatible payment procedure is formalised
through our EMV language (see Definition 29 on page 141) and executed by a challenger
following the games against an adversary A. This adversary is assumed to corrupt and
execute entities participating in the protocols in the experiments following the threat
model of Section 5.11.3 on page 142. All corrupted entities are encompassed in a set
called Pcor.

Payer’s Payments Privacy: Pseudonymity + Unlinkability Payer Pseudonymity
models that entities does not retrieve the Payer’s long-term card data (card number,
expiry date, CVV, etc.) nor its identity during the execution of payments. Payments’
unlinkability models a stronger requirement against an adversary trying to match pay-
ments by distinguishing between cases where they were made by the same entity or
not.

Below, we present an experiment encompassing both notions of pseudonymity and
unlinkability. The adversary has access to a payment oracle and a clearing oracle which

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 150

allows him on one side to link the payment under consideration or to infer the identity
of the Payer based on the other executions it sees. Another mean of attack would be
to only base itself on the payment in consideration. The latter relates to pseudonymity,
while the first refer to the unlinkability property. Before introducing the experiment,
let us set up the oracles in full details.

Payment. The oracle Payment((·, C·), ·), is queried by an adversary to the challenger on
the basis of a Payer identity ID and a Merchant identity M . The identity of the
Payer must have been initialised prior to this call, meaning that: the SetupID(ID)

and SetupPayment(ID) protocols, which returned a CID card, have been executed.
It executes the protocol Payment((ID,CID),M) with the adversary in the corrup-
tion frame under consideration.

Clearing. The oracle Clearing(·), is queried by an adversary for a payment pay. The
payment pay must have been previously produced on the basis of the Payment

oracle. It executes the Clearing(pay) protocol with the adversary in the corruption
frame under consideration.

Definition 36: Game Based Unlinkability with Pseudonymity

Consider a security parameter for the payment protocol. Consider the set of oracles
O = (Payment((·, C·),M),Clearing(·,M, pay)), each of them operating as defined
above. Consider a PPT adversary A participating in all executed protocols under
the role of the corrupted entities Pcor against a challenger executing the actions
prescribed by ExpPRIV for uncorrupted entities.

ExpPRIV
Pcor

1 : {IDi}ni=1,M ← A

2 : Let T = ∅ the set of initialised cards.

3 : for i ∈ {1, . . . , n},

4 : λi ← SetupID(IDi)

5 : Ci ← SetupPayment(IDi)

6 : T ← T ∪ {IDi, Ci}

7 : Sample an identity with the associated card (ID,C)
$←− T

8 : pay← Payment((ID,C),M)

9 : f ← Clearing(pay)

10 : return ID∗ ← AO

We say that a payment scheme has game based unlinkability with pseudonymity
for a set of corrupted entities Pcor if for adversaries A controlling entities in Pcor,

|Pr[ExpPRIV
Pcor

(A) = ID]− 1

n
| ≤ ϵ,

for an negligible ϵ in the security parameter of the EMV system.

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 151

An alternative definition would require ExpPRIV to return a long term card. This
definition is analogue but apply for Pseudonymity with respect to long-term card
PAnCID ⊂ CARD×PAY and requires the opponent to return the Payer’s long-term
card CID instead of the Payer’s identity ID. We call this experiment ExpPRIV-CID ,
it is associated with the same winning probability.

Theorem 3

Assuming that the relation RPcor

PAY ⊊ ID × PAY is preimage resistant and that the
relation RPcor

Unlnk ⊊ PAY×PAY is class hiding for a payment protocol described by an
EMV language and for a set of corrupted entities, Pcor then game base unlinkability
is achieved for Pcor.

Proof. Let A be an adversary executing the corrupted entities from Pcor against the
challenger of the experiment ExpPRIV

Pcor
.

A has access to oracles Payment((ID,C),M) and Clearing(ID,M, pay) for all regis-
tered entities and for the identities it has chosen.

The execution scenario defined by the adversary’s calls to the oracles and the pre-
scribed execution of SetupID, SetupPayment, Payment and Clearing define a Payment
Relation RPAY and a linkability relation RUnlnk. For both relation, the adversary’s
against these relations are its restricted counterpart: RPcor

PAY and RPcor
Unlnk.

In the experiment, the adversary has two ways of guessing the Payer’s identity. It can
either try to retrieve the identity ID from its view of the payment transcript associated to
pay, or try to deduce it on the basis of any links it might find with the other executions
called through the oracles and then infer the identity based on the knowledge of the
inputted identities. As A chooses the identity ID for its calls to the oracles, the relation
between the transcript it sees and the Payer’s identities is not hidden from it.

The first case refers to an adversary recovering the identity from the payment pay:

Consider an adversaryA executing entities in Pcor and interacting with the challenger
of ExpPRIV. A has access to oracles Payment((ID,C),M) and Clearing(ID,M, pay) in
addition to the view it gets from the executions of SetupID, SetupPayment, Payment

and Clearing. Based on the above algorithms, two sets can be populated: ID and PAY.
The link between the elements of these sets, obtained based on the challenger’s view
of the execution allows defining the associated payment relation RPAY. Based on the
corruption set Pcor and the relation, the restricted relationRPcor

PAY ⊊ ID×PAYPcor is defined
for the adversary’s execution scenario.

Assume A returns a response ID∗ for its view RPcor

PAY of the relation RPAY and has
probability significantly different from 1/n to win the experiment. When the adversary
wins the experiment and returns the right answer A(ExpPRIV)→ ID∗ for the execution
scenario, this means that (ID∗, pay) ∈ RPAY. As this is assumed to be with non-
negligible probability, hence we invert RPcor

PAY with non-negligible probability.

If the adversary provides a correct ID∗, for the payment pay, we can build a simulator
algorithm based on the adversary to break the preimage resistance of RPAY. This lead
to a contradiction under the assumption that the relation RPcor

PAY is difficult to inverse.

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 152

We may now consider the second case: assume that A made a link between pay and
one of the payment it has sees during it call to the oracles. As the adversary knows the
link between the second payment and the Payer making it, this lead to a link between
pay and the identity ID∗. If the adversary provides a correct ID∗, which is the input
of a Payment oracle query or a Clearing oracle query, we can build a simulator based
on A breaking the class hiding property Unlnk. This also leads to a contradiction, as
we have assumed RPcor

Unlnk to be class hiding resistant.
Both potential attacks are covered, hence, under preimage resistance of RPcor

PAY ⊊
ID×PAY and class hiding resistance ofRPcor

Unlnk ⊊ PAY×PAY then game based unlinkability
is achieved.

Remarks on the Proof. One can view this proof as a game hop. First, a random
permutation is introduced over the identities that A queries to the oracle, while still
expecting the original identity as a response. This constitutes the first step of the proof,
where we reduce security to pseudonymity PAn. The second part of the proof involves
a direct reduction from the modified experiment to unlinkability Unlnk.

Long-term card data PAnCID . A similar theorem and proof apply for Pseudonymity
with respect to long-term card data associated to the experiment ExpPRIV-CID by requir-
ing the opponent to return a long-term card instead of an identity. In this latter case, the
same implication holds and the security based on the basic game model is also ensured
for our two protocols under the associated corruption sets Pcor.

Merchant Pseudonymity (MAn). Merchant pseudonymity guarantees the Payers
that the identity of the Merchant they are paying is not disclosed to other entities during
the payment or its clearing. First, let us set up the oracles useful for our definition.

SetupID. The oracle SetupID(·) is queried by an adversary from the challenger on
the basis of the identity of a Payer ID. The challenger executes the protocol
SetupID(ID) interacting with the adversary in the considered corruption frame.

SetupPayment. The oracle SetupPayment(·), is queried by an adversary from the chal-
lenger on the basis of an identity Payer’s identity ID which should have been ini-
tialised based on SetupID. The challenger executes the protocol, SetupID(ID)

interacting with the adversary in the considered corruption frame.

Payment & Clearing. These oracles are the same as before.

Definition 37: Game Based Merchant Pseudonymity

Let Pcor be a set of identities describing the corruption setup and consider the
set of oracles OMAn = (SetupID(·),SetupPayment(·),Payment((·, C),M),Clearing(·,
M, ·)), each of them operating as defined above. Consider a PPT adversary A
participating in all executed protocols under the role of the corrupted entities Pcor

against a challenger executing the actions prescribed by ExpMAn for uncorrupted
entities.

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 153

ExpMAn
Pcor

1 : ID,M0,M1 ← A

2 : λ← SetupID(ID)

3 : C ← SetupPayment(ID)

4 : b
$←− {0, 1}

5 : pay← Payment((ID,C),Mb)

6 : f ← Clearing(ID,Mb, pay)

7 : return M∗ ← AOMAn

A payment scheme has game Merchant pseudonymity for a corruption set Pcor if
for any adversaries A executing entities in Pcor,

|Pr[ExpMAn
Pcor

(A) =Mb]−
1

2
| ≤ ϵ,

for an negligible ϵ in the security parameter of the EMV system.

The experiment works as follows: attacker participate in the protocol for which it
controls at least one entity involved, there are two Merchants, one gets paid with an
associated transcript pay. The clearing is executed for the payment and finally the
attacker guess the chosen Merchants based on its view.

Theorem 4

Assuming that the relation RPcor

MAn ⊊M× PAY is preimage resistant for a payment
system and for a set of entities Pcor then GameMAn is achieved for the corrupted
set Pcor.

Proof. This proof is essentially the same as the first part of the proof of Theorem 3 on
page 151.

Assume for contradiction that an adversary A can break ExpMAn
Pcor

for a corruption set
Pcor while the relationRPcor

MAn still achieves preimage resistance. Under these assumptions,
the protocol in use achieves Pseudonymity but not Game Based Merchant Pseudonymity.
Based on the adversary’s interactions and its calls to the available oracles, two set
M = {M0,M1} and PAYPcor can be defined, as well as a relation RPcor

MAn ⊊M× PAYPcor .

In order to win against the game based Merchant pseudonymity, the adversary A
returns the identity Mb of a payment payb. When A’s answer is correct, assumed with
non negligible probability, we have found a preimage for one of the elements in RPcor

MAn.
Hence, based on this the adversarial algorithm we can construct a sequence of execution
determining a relation RPcor

MAn for which it is possible to recover the Merchant’s identity.
This contradicts our hypothesis and shows that preimage resistance of RPcor

MAn implies
security against ExpMAn

Pcor
.

With this proof, we have reduced our mathematical relationship-based model to the
game-based model presented above. This gives us two formalisms for the security of our
proposals. In addition, because we have reduced the security of our relational model to

Chapter 5. EMV-compliant and Usable Anonymity for Contactless Payments 154

this model and prove the security of our proposals for the relationship-based model, our
protocols meet the security requirements of both models.

5.14 Conclusion of the Chapter

The global EMV payment system is being modernised, and card usage is increasingly
important in the global payment landscape. Consequently, cash payments are declining,
and with it the privacy regarding most of our expenses is vanishing. Based on thor-
ough investigations, we observed that most traditional payment methods lack measures
of privacy for Payers and Merchants and their transactions. We have also discussed
the predominant factors contributing to the privacy limitations in these methods, the
most useful regulations on payment systems such as AML, KYC, PSD2 and SCA. We
have formalised specific properties tailored for card payment scenarios. We introduced
PrivBank and PrivProxy: two practical, law-abiding and fully EMV-compliant propos-
als designed to achieve payment pseudonymity, payment unlinkability, and Merchant
pseudonymity against the relevant entities in the network. We have formalised these
three properties and proved them for PrivBank and PrivProxy, on a new mathematical
model for payments’ privacy, as well as in the more traditional one.

Chapter 6

Conclusion

In this thesis, we have examined digital signatures and the EMV card payment protocol
architecture to enhance anonymity in all these specific use cases. Nevertheless, we have
concentrated on properties that implement only partial concepts of anonymity and this
for practical aspects. Throughout our discussions, anonymity took on different meanings
depending on the context. For linkable ring signatures, we were seeking non-disclosure
of the identity of the signer, even though all the signer’s signatures could be linked
together. We thoroughly examined this property. To provide even greater privacy for
the signer, who in this case acts as a proxy for another party, we explored k-Times
Full Traceable Proxy Signatures. This scheme conceals the proxy’s identity and ensures
unlinkability of the proxy’s signatures. However, to enable accountability in case of
flooding, this anonymity is revoked if more than k signatures are produced. Building
on this, we developed k-Times Full Traceable Sanitizable Signatures, which offer slight
modifications. The anonymity properties remain the same, but the proxy is now only
permitted to sanitize already signed messages, i.e., modify parts of the message and
update the signature accordingly.

Our third contribution, moves out from anonymous signature to focus on an already
deployed standard, the ubiquitous EMV card payment protocol. We started by examin-
ing whether it was possible to transfer the cryptographic property of anonymity to this
system, which is subject to numerous laws and regulations. There, we demonstrated that
it is indeed law abbiding to obtain architectures providing weaker forms of anonymity
and proposed two solutions. In these solution, anonymity took again another mean-
ing, closer to the decentralisation of identity knowledge than cryptographic anonymity
as ussally considered. Indeed, the bank and the payment proxy needed to be able to
cooperate at any time to be able to recover full knowledge of the identity.

Throughout this work, we have considered anonymity from different viewpoints and
reachs. Before us, (full) anonymity has been discussed extensively in the literature
for years (e.g., [Cha83a], and various schemes, such as ring signatures [RST01] with
no anonymity constraints, and anonymous proxy signatures [FP08], have been designed.
However, we opted to temper this strong notion of anonymity, focusing instead on partial
forms, as they can be usefull in certain practical cryptographic designs. Furthermore,
as observed for EMV [emv22a], regulations and existing standards sometimes impose
restrictions, as auditability and full awareness of user behaviour are often required.

155

Chapter 6. Conclusion 156

Outcomes and Future Pathways. To discuss these topics, we began by introducing
the subject at a high level. Chapter 1 outlined the motivations for our work and provided
an overview of related general research. Following this, in Chapter 2, we presented the
cryptographic foundations necessary for defining security models and constructing new
cryptographic primitives. This structured approach enabled us to explore the three
contributions of this manuscript and draw conclusions independently.

In Chapter 3, we explored anonymity models for linkable ring signatures and revealed
a critical discrepancy between theoretical models and practical expectations. The origi-
nal and most used models failed to guarantee the anonymity of users. This demonstrates
that formalising the security model of even not so complex cryptographic primitives, is
not an easy task. Our research demonstrated this by exhibiting counter-examples that
leaked the identities of the signers despite achieving proven security. However, the model
we identified as more accurate for formalising the property of anonymity had already
been introduced but has not been reflected in subsequent work. While significant, un-
considered vulnerabilities in the use of these signatures may still be discovered, we ruled
out the possibility of global insecurity in existing schemes by closely examining the struc-
ture of their proofs. In fact, our investigation has led us to identify a pattern, suggesting
that hybrid arguments could potentially be applied to prove anonymity from already
proven one-time anonymity. This raises open questions as to whether the weaker notion,
one-time anonymity, could be generically strengthened into anonymity by considering
an additional structural property of these signatures.

In Chapter 4, we explored the practical application of anonymous delegations for up
to k instances using specific signature schemes. We introduced the concept of k-times
fully traceable anonymity for both proxy signatures and sanitizable signatures, defining
it within a newly proposed security model tailored to each case, instantiated by efficient
schemes (with key and signature sizes logarithmic in k). Their security model was
derived from both existing k-times fully traceable signatures, merged with models from
proxy and sanitizable signature. Their security has been proven under the said model.
In our considerations, we left has further work to consider if a generic instantiation for
k-times fully traceable anonymity could potentially stem from our constructions.

In Chapter 5, we addressed some privacy concerns in EMV payments. EMV pay-
ments are currently trackable, by EMV readers, observers etc., based on identifying
metadata transmitted to all entities in the system. We identified significant gaps in user
anonymity and payment unlinkability that could be closed by proxying transactions.
Current systems, constrained by AML, KYC, and SCA regulations, always compro-
mised privacy, as demonstrated by a survey of existing payment means. Our proposed
protocols, two new payment architectures, PrivBank and PrivProxy, directly build up
based on the EMV protocol, offer privacy-enhancing solutions. The thorough evaluation
of these protocols demonstrated their feasibility and effectiveness in enhancing privacy
without conflicting with regulatory requirements or existing norms. The advantages
of these constructions are twofold: on the one hand, they demonstrate the feasibility
of anonymous payment and, on the other, they highlight practical ways of obtaining
it. Valuable consideration would be to look at other ways of improving anonymity by
modifying the current standard in order to strengthen privacy protection in future revi-

Chapter 6. Conclusion 157

sions, particularly when payment systems protocols will be revised to take into account
post-quantum security.

Opening Discussion. All these works have considered anonymity from a crypto-
graphic point of view in the computational model. The formalisation of privacy in our
payment protocols also makes the link between the high-level definition of anonymity
and cryptographic security experiments. Thus, by demonstrating the former, we were
able to conclude that our work was secure in the latter. A number of related research
avenues have emerged.

The complexity of formalising a security experience that corresponds to simple but
general privacy expectations has been shown from Chapter 3. And in Chapter 4, for-
malising multiple properties, including k-times full traceability for proxy and sanitizable
signature, have appear to be a non-trivial task. Formulating security is a complex task,
which is why providing proof against specific and wide ranges of attacks remains a
challenging. Based on these observations, one may wish to provide, if possible, a more
user-friendly framework for the computational model to better formalise security and
improve the confidence in the security guarantees of new primitives.

Furthermore, while Chapters 3 and 4 only address the cryptographic point of view
of the three primitives. By the works of Chapter 5, we have seen the realist difference
between idealised anonymity for cryptographic primitives and anonymity not being put
in used, and confronted against laws, regulations and norms. Anonymity is not always
a goal when building up new protocols e.g., EMVCo has introduced the PAR to vanish
any unlinkability in its protocols1. Indeed here it is a threshold of lobbies that some-
time prevents from introducting improved privacy preserving properties. In the end,
anonymity realisation (or non-realisation) seems to depends more on metadata thant
cryptography when it has already been taken into account before. To elaborate a bit
more, many cryptographic protocol can be made fully anonymous while some metadata
may be lightly added to the protocol and remove some if not all of it. There is also the
question of whether it is legal to deploy, under the current laws, other large-scale mea-
sures to preserve anonymity, such as in the TLS protocol or its equivalents. Advancing
anonymity or privacy features without sacrificing functionality remains a challenging
task, but it must continue to be pursued in order to ensure robust protection in all
aspects.

1https://www.securetechalliance.org/wp-content/uploads/EMVCo-PAR-WP-FINAL-April-2018.
pdf

https://www.securetechalliance.org/wp-content/uploads/EMVCo-PAR-WP-FINAL-April-2018.pdf
https://www.securetechalliance.org/wp-content/uploads/EMVCo-PAR-WP-FINAL-April-2018.pdf

158

Bibliography

[ACDMT05] Giuseppe Ateniese, Daniel H Chou, Breno De Medeiros, and Gene Tsudik.
Sanitizable signatures. In Computer Security–ESORICS 2005: 10th Eu-
ropean Symposium on Research in Computer Security, 2005.

[Acta] UK Public General Acts. The money laundering and terrorist financ-
ing (amendment) regulations 2019. https://www.legislation.gov.uk/
uksi/2019/1511/contents/made, Last accessed on 08-30-24.

[Actb] UK Public General Acts. Proceeds of crime act 2002. https://www.

legislation.gov.uk/ukpga/2002/29/contents, Last accessed on 08-
30-24.

[AHAN+22] Diego F Aranha, Mathias Hall-Andersen, Anca Nitulescu, Elena Pagnin,
and Sophia Yakoubov. Count me in! extendability for threshold ring sig-
natures. In IACR International Conference on Public-Key Cryptography,
2022.

[AHKLOA23] Frederic A. Hayek, Mirko Koscina, Pascal Lafourcade, and Charles
Olivier-Anclin. Generic privacy preserving private permissioned
blockchains. In Proceedings of the 38th ACM/SIGAPP Symposium on
Applied Computing, 2023.

[Ama23] Amazon. Shop with amazon pay, 2023. https://pay.amazon.co.uk/

using-amazon-pay, Last accessed on 11-16-23.

[App23] Apple. Set up apple pay, 2023. https://support.apple.com/en-us/

HT204506, Last accessed on 11-16-23.

[ASY06] Man Ho Au, Willy Susilo, and Siu-Ming Yiu. Event-oriented k-times
revocable-iff-linked group signatures. In ACISP 2006, 2006.

[AT17] Nicholas Akinyokun and Vanessa Teague. Security and privacy impli-
cations of nfc-enabled contactless payment systems. In Proceedings of
the 12th international conference on availability, reliability and security,
2017.

[ATSS+18] Wilson Abel Alberto Torres, Ron Steinfeld, Amin Sakzad, Joseph K Liu,
Veronika Kuchta, Nandita Bhattacharjee, Man Ho Au, and Jacob Cheng.
Post-quantum one-time linkable ring signature and application to ring

159

https://www.legislation.gov.uk/uksi/2019/1511/contents/made
https://www.legislation.gov.uk/uksi/2019/1511/contents/made
https://www.legislation.gov.uk/ukpga/2002/29/contents
https://www.legislation.gov.uk/ukpga/2002/29/contents
https://pay.amazon.co.uk/using-amazon-pay
https://pay.amazon.co.uk/using-amazon-pay
https://support.apple.com/en-us/HT204506
https://support.apple.com/en-us/HT204506

Bibliography 160

confidential transactions in blockchain (lattice ringct v1. 0). In Informa-
tion Security and Privacy: 23rd Australasian Conference, ACISP, 2018.

[Aut] Financial Conduct Authority. Financial crime guide:a firm’s guide to-
countering financialcrime risks (fcg). https://www.handbook.fca.org.
uk/handbook/FCG.pdf, Last accessed on 09-02-24.

[Ban21] European Central Bank. Central Bank Digital Currency: functional
scope, pricing and controls, 2021. https://www.ecb.europa.eu/pub/

pdf/scpops/ecb.op286~9d472374ea.en.pdf, Last accessed on 11-16-
23.

[BB21] Angèle Bossuat and Xavier Bultel. Unlinkable and invisible γ-sanitizable
signatures. In International Conference on Applied Cryptography and
Network Security, 2021.

[BBC+23] Rohann Bella, Xavier Bultel, Céline Chevalier, Pascal Lafourcade, and
Charles Olivier-Anclin. Practical construction for secure trick-taking
games even with cards set aside. In International Conference on Fi-
nancial Cryptography and Data Security, 2023.

[BBG+22] Danai Balla, Pourandokht Behrouz, Panagiotis Grontas, Aris Pagourtzis,
Marianna Spyrakou, and Giannis Vrettos. Designated-verifier linkable
ring signatures with unconditional anonymity. In International Confer-
ence on Algebraic Informatics, 2022.

[BBW+23] Ksenia Budykho, Ioana Boureanu, Stephan Wesemeyer, Daniel Romero,
Matt Lewis, Yogaratnam Rahulan, Fortunat Rajaona, and Steve Schnei-
der. Fine-grained trackability in protocol executions. In 30th Annual
Network and Distributed System Security Symposium, NDSS 2023, San
Diego, California, USA, February 27 - March 3, 2023. The Internet So-
ciety, 2023.

[BCC+24] Ioana Boureanu, Liqun Chen, Tom Chothia, Pascal Lafourcade, Chris
Newton, and Charles Olivier-Anclin. Emv-compliant & usable anonymity
for contactless payments. In Under submission, 2024.

[BCDD20] Ioana Boureanu, Tom Chothia, Alexandre Debant, and Stéphanie De-
laune. Security analysis and implementation of relay-resistant contact-
less payments. In Proceedings of the 2020 ACM SIGSAC conference on
computer and communications security, 2020.

[BCI20] Ioana Boureanu, Liqun Chen, and Sam Ivey. Provable-security model
for strong proximity-based attacks: With application to contactless pay-
ments. In Proceedings of the 15th ACM Asia Conference on Computer
and Communications Security, 2020.

[BCM+14] Mike Bond, Omar Choudary, Steven J Murdoch, Sergei Skorobogatov,
and Ross Anderson. Chip and skim: cloning emv cards with the pre-play
attack. In 2014 IEEE Symposium on Security and Privacy. IEEE, 2014.

https://www.handbook.fca.org.uk/handbook/FCG.pdf
https://www.handbook.fca.org.uk/handbook/FCG.pdf
https://www.ecb.europa.eu/pub/pdf/scpops/ecb.op286~9d472374ea.en.pdf
https://www.ecb.europa.eu/pub/pdf/scpops/ecb.op286~9d472374ea.en.pdf

Bibliography 161

[BDGS16] Jeffrey Burdges, Florian Dold, Christian Grothoff, and Marcello Stanisci.
Enabling secure web payments with gnu taler. In Security, Privacy,
and Applied Cryptography Engineering: 6th International Conference,
SPACE 2016, Hyderabad, India, December 14-18, 2016, Proceedings 6.
Springer, 2016.

[BDH+19] Michael Backes, Nico Döttling, Lucjan Hanzlik, Kamil Kluczniak, and
Jonas Schneider. Ring signatures: logarithmic-size, no setup—from
standard assumptions. In Advances in Cryptology–EUROCRYPT 2019:
38th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Darmstadt, Germany, May 19–23, 2019,
Proceedings, Part III 38, pages 281–311. Springer, 2019.

[BDK+18] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. Crystals-kyber: a cca-secure module-lattice-based kem. In 2018
IEEE European Symposium on Security and Privacy, 2018.

[BDK24] Jan Bobolz, Jesus Diaz, and Markulf Kohlweiss. Foundations of anony-
mous signatures: Formal definitions, simplified requirements, and a con-
struction based on general assumptions. Cryptology ePrint Archive, 2024.

[BEHM22] Jonathan Bootle, Kaoutar Elkhiyaoui, Julia Hesse, and Yacov Manevich.
Dualdory: Logarithmic-verifier linkable ring signatures through prepro-
cessing. In European Symposium on Research in Computer Security, 2022.

[BFF+09] Christina Brzuska, Marc Fischlin, Tobias Freudenreich, Anja Lehmann,
Marcus xpage, Jakob Schelbert, Dominique Schröder, and Florian Volk.
Security of sanitizable signatures revisited. In Public Key Cryptography–
PKC 2009: 12th International Conference on Practice and Theory in
Public Key Cryptography, 2009.

[BFLS10] Christina Brzuska, Marc Fischlin, Anja Lehmann, and Dominique
Schröder. Unlinkability of sanitizable signatures. In PKC 2010, 2010.

[BH18] Xavier Boyen and Thomas Haines. Forward-secure linkable ring signa-
tures. In Information Security and Privacy: 23rd Australasian Confer-
ence, ACISP, 2018.

[BHMY23] Sergiu Bursuc, Ross Horne, Sjouke Mauw, and Semen Yurkov. Provably
unlinkable smart card-based payments. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security, 2023.

[BKM06] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures:
Stronger definitions, and constructions without random oracles. In The-
ory of Cryptography Conference, 2006.

[BKP20] Ward Beullens, Shuichi Katsumata, and Federico Pintore. Calamari and
falafl: logarithmic (linkable) ring signatures from isogenies and lattices.

Bibliography 162

In International Conference on the Theory and Application of Cryptology
and Information Security, pages 464–492. Springer, 2020.

[BL16] Xavier Bultel and Pascal Lafourcade. k-times full traceable ring signature.
In 2016 11th International Conference on Availability, Reliability and
Security (ARES), 2016.

[BLL+19] Xavier Bultel, Pascal Lafourcade, Russell WF Lai, Giulio Malavolta, Do-
minique Schröder, and Sri Aravinda Krishnan Thyagarajan. Efficient
invisible and unlinkable sanitizable signatures. In 22nd IACR Interna-
tional Conference on Practice and Theory of Public-Key Cryptography,
2019.

[BLO18] Carsten Baum, Huang Lin, and Sabine Oechsner. Towards practical
lattice-based one-time linkable ring signatures. In International Con-
ference on Information and Communications Security, pages 303–322.
Springer, 2018.

[BLOR21] Xavier Bultel, Pascal Lafourcade, Charles Olivier-Anclin, and Léo
Robert. Generic construction for identity-based proxy blind signature.
In 14th International Symposium In Foundations and Practice of Secu-
rity, 2021.

[BM18] Pedro Branco and Paulo Mateus. A code-based linkable ring signature
scheme. In Provable Security: 12th International Conference, ProvSec
2018, 2018.

[BMW03] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations
of group signatures: Formal definitions, simplified requirements, and a
construction based on general assumptions. In Advances in Cryptol-
ogy—EUROCRYPT 2003: International Conference on the Theory and
Applications of Cryptographic Techniques, 2003.

[BOA24a] Xavier Bultel and Charles Olivier-Anclin. On the anonymity of linkable
ring signatures. In Proceedings of the 23rd International Conference on
Cryptology And Network Security, 2024.

[BOA24b] Xavier Bultel and Charles Olivier-Anclin. Taming delegations in anony-
mous signatures: k-times anonymity for proxy and sanitizable signature.
In Proceedings of the 23rd International Conference on Cryptology And
Network Security, 2024.

[BPS14] Christina Brzuska, Henrich C Pöhls, and Kai Samelin. Efficient and
perfectly unlinkable sanitizable signatures without group signatures. In
Public Key Infrastructures, Services and Applications: 10th European
Workshop, 2014.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Proceedings of the 1st ACM

Bibliography 163

Conference on Computer and Communications Security, pages 62–73,
1993.

[BSTP21] David Basin, Ralf Sasse, and Jorge Toro-Pozo. The emv standard: Break,
fix, verify. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE,
2021.

[BSWW13] Christina Brzuska, Nigel P Smart, Bogdan Warinschi, and Gaven J Wat-
son. An analysis of the emv channel establishment protocol. In Proceed-
ings of the 2013 ACM SIGSAC conference on Computer & communica-
tions security, 2013.

[CDK+17] Jan Camenisch, David Derler, Stephan Krenn, Henrich C. Pöhls, Kai
Samelin, and Daniel Slamanig. Chameleon-hashes with ephemeral trap-
doors. In PKC 2017, 2017.

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of
partial knowledge and simplified design of witness hiding protocols. In
CRYPTO ’94, 1994.

[CFF+17] Véronique Cortier, Alicia Filipiak, Jan Florent, Said Gharout, and
Jacques Traoré. Designing and proving an emv-compliant payment pro-
tocol for mobile devices. In 2017 IEEE European Symposium on Security
and Privacy (EuroS&P). IEEE, 2017.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle
methodology, revisited. Journal of the ACM (JACM), 51(4):557–594,
2004.

[CH91] David Chaum and Eugène van Heyst. Group signatures. In Workshop
on the Theory and Application of Cryptographic Techniques, 1991.

[Cha83a] David Chaum. Blind signatures for untraceable payments. In Advances
in Cryptology: Proceedings of Crypto 82, 1983.

[Cha83b] David Chaum. Blind signatures for untraceable payments. In David
Chaum, Ronald L. Rivest, and Alan T. Sherman, editors, Advances in
Cryptology, Boston, MA, 1983. Springer US.

[CJ10] Sébastien Canard and Amandine Jambert. On extended sanitizable sig-
nature schemes. In Cryptographers’ Track at the RSA Conference, 2010.

[Cou17] Geoffroy Couteau. Zero-knowledge proofs for secure computation. PhD
thesis, Université Paris sciences et lettres, 2017.

[CP93] David Chaum and Torben Pryds Pedersen. Wallet databases with ob-
servers. In Advances in Cryptology — CRYPTO’ 92, 1993.

[CS97a] Jan Camenisch and Markus Stadler. Efficient group signature schemes
for large groups. In Advances in Cryptology — CRYPTO, 1997.

Bibliography 164

[CS97b] Jan Camenisch and Markus Stadler. Efficient group signature schemes
for large groups. In Advances in Cryptology — CRYPTO ’97, 1997.

[Cur23] Curve. Curve: Rule your money, 2023. https://www.curve.com/

en-gb/, Last accessed on 11-16-23.

[Dam87] Ivan Bjerre Damgård. Collision free hash functions and public key signa-
ture schemes. In Workshop on the Theory and Application of of Crypto-
graphic Techniques, pages 203–216. Springer, 1987.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Trans. Inf. Theory, 1976.

[DL21] Jesus Diaz and Anja Lehmann. Group signatures with user-controlled
and sequential linkability. In IACR International Conference on Public-
Key Cryptography, 2021.

[Dol19] Florian Dold. The GNU Taler system: practical and provably secure
electronic payments. PhD thesis, Université Rennes 1, 2019.

[DRP12] Joeri De Ruiter and Erik Poll. Formal analysis of the emv protocol suite.
In Theory of Security and Applications: Joint Workshop, TOSCA 2011,
Saarbrücken, Germany, March 31-April 1, 2011, Revised Selected Papers.
Springer, 2012.

[DY83] Danny Dolev and Andrew Yao. On the security of public key protocols.
IEEE Transactions on information theory, 1983.

[eBa23] eBay. ebay payment terms of use, 2023. https://pages.ebay.co.uk/

payment/2.0/terms.html, Last accessed on 11-16-23.

[eca22] The ECASH Act, 2022. https://ecashact.us/, Last accessed on 11-
16-23.

[Ede23] Edenred, 2023. https://www.edenred.fr/ticket-restaurant, Last
accessed on 02-24-24.

[EKCGD14] Ali El Kaafarani, Liqun Chen, Essam Ghadafi, and James Davenport.
Attribute-based signatures with user-controlled linkability. In Cryptology
and Network Security: 13th International Conference, CANS 2014, 2014.

[EKG17] Ali El Kaafarani and Essam Ghadafi. Attribute-based signatures with
user-controlled linkability without random oracles. In Cryptography and
Coding: 16th IMA International Conference, IMACC 2017, 2017.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE transactions on information theory, 1985.

[EMV11] LLC EMVCo. Emv integrated circuit card specifications for payment sys-
tems, book 2, security and key management, version 4.3, 2011.

https://www.curve.com/en-gb/
https://www.curve.com/en-gb/
https://pages.ebay.co.uk/payment/2.0/terms.html
https://pages.ebay.co.uk/payment/2.0/terms.html
https://ecashact.us/
https://www.edenred.fr/ticket-restaurant

Bibliography 165

[EMV14] LLC EMVCo. Emv next generation. next generation kernel system ar-
chitecture overview., 2014.

[EMV21] LLC EMVCo. Emv payment tokenisation specification – technical frame-
work. EMVCo: Foster City, CA, USA, 2021.

[emv22a] Overview of EMVCo, 2022. https://www.emvco.com/about/

overview/, Last accessed on 11-16-23.

[EMV22b] LLC EMVCo. Emv payment tokenisation frequently asked ques-
tions (faq) — general. https://www.emvco.com/specifications/

emv-payment-tokenisation-faqs/, 2022.

[EMV22c] LLC EMVCo. Emv payment tokenisation specification technical frame-
work v2.3. EMVCo: Foster City, CA, USA, 2022.

[EMV23a] LLC EMVCo. Emv annual report 2023: Enhancing emv technologies to
supporting emerging payments. EMVCo: Foster City, CA, USA, 2023.

[EMV23b] LLC EMVCo. Emv payment tokenisation – a guide to use cases. EMVCo:
Foster City, CA, USA, 2023.

[EU16] EUR-Lex European Union. Regulation on the protection of natural per-
sons with regard to the processing of personal data and on the free move-
ment of such data. https://eur-lex.europa.eu/legal-content/EN/

TXT/?uri=CELEX%3A32016R0679, Last accessed on 05-30-24, 2016.

[EU18] EUR-Lex European Union. Regulatory technical standards for strong
customer authentication (sca) and common and secure open standards
of communication. https://eur-lex.europa.eu/legal-content/EN/

TXT/?uri=CELEX%3A02018R0389-20230912, Last accessed on 02-21-24,
2018.

[EU21a] EUR-Lex European Union. Directive on payment services in the internal
market. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=

CELEX%3A02015L2366-20151223, Last accessed on 02-21-24, 2021.

[EU21b] EUR-Lex European Union. Directive on the prevention of the use of
the financial system for the purposes of money laundering or terrorist fi-
nancing. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=

CELEX%3A02015L0849-20210630, Last accessed on 02-21-24, 2021.

[FGK+22] Dario Fiore, Lydia Garms, Dimitris Kolonelos, Claudio Soriente, and Ida
Tucker. Ring signatures with user-controlled linkability. In European
Symposium on Research in Computer Security, 2022.

[FGL21] Ashley Fraser, Lydia Garms, and Anja Lehmann. Selectively linkable
group signatures—stronger security and preserved verifiability. In Inter-
national Conference on Cryptology and Network Security, 2021.

https://www.emvco.com/about/overview/
https://www.emvco.com/about/overview/
https://www.emvco.com/specifications/emv-payment-tokenisation-faqs/
https://www.emvco.com/specifications/emv-payment-tokenisation-faqs/
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02018R0389-20230912
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02018R0389-20230912
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02015L2366-20151223
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02015L2366-20151223
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02015L0849-20210630
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02015L0849-20210630

Bibliography 166

[FHS19] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Structure-
preserving signatures on equivalence classes and constant-size anonymous
credentials. Journal of Cryptology, 2019.

[FKM+16] Nils Fleischhacker, Johannes Krupp, Giulio Malavolta, Jonas Schneider,
Dominique Schröder, and Mark Simkin. Efficient unlinkable sanitizable
signatures from signatures with re-randomizable keys. In 19th IACR
International Conference on Practice and Theory in Public-Key Cryptog-
raphy, 2016.

[FKP16] Manuel Fersch, Eike Kiltz, and Bertram Poettering. On the provable secu-
rity of (ec) dsa signatures. In Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security, pages 1651–1662,
2016.

[FM21] Marc Fischlin and Arno Mittelbach. An overview of the hybrid argument.
Cryptology ePrint Archive, 2021.

[FP08] Georg Fuchsbauer and David Pointcheval. Anonymous proxy signatures.
In Security and Cryptography for Networks: 6th International Confer-
ence, 2008.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Advances in Cryptology —
CRYPTO, 1987.

[FS07a] Eiichiro Fujisaki and Koutarou Suzuki. Traceable ring signature. In
International Workshop on Public Key Cryptography, 2007.

[FS07b] Eiichiro Fujisaki and Koutarou Suzuki. Traceable ring signature. In
Public Key Cryptography – PKC 2007, 2007.

[GL19] Lydia Garms and Anja Lehmann. Group signatures with selective linka-
bility. In Public-Key Cryptography–PKC 2019: 22nd IACR International
Conference on Practice and Theory of Public-Key Cryptography, 2019.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of
Computer and System Sciences, 1984.

[GM17] Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of
knowledge from simulation-extractable snarks. In Annual International
Cryptology Conference, 2017.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof systems. SIAM Journal on computing,
1989.

[GMR19] Shafi Goldwasser, Silvio Micali, and Chales Rackoff. The knowledge com-
plexity of interactive proof-systems. In Providing sound foundations for
cryptography: On the work of shafi goldwasser and silvio micali, pages
203–225. 2019.

Bibliography 167

[gnu22] Cental bank accounts are dangerous and unnecessary, a critique of two pa-
pers, 2022. https://taler.net/papers/accounts-dangerous-2022.

pdf, Last accessed on 11-16-23.

[Gol01] Oded Goldreich. Foundations of Cryptography, Volume 1. Cambridge
university press Cambridge, 2001.

[GR04] Craig Gentry and Zulfikar Ramzan. Eliminating random permutation
oracles in the even-mansour cipher. In International Conference on the
Theory and Application of Cryptology and Information Security, pages
32–47. Springer, 2004.

[GY19] L.-A. Galloway and T. Yunusov. First contact: New vulnerabilities in
contactless payments. In Black Hat Europe, 2019.

[Han11] Jocelyn Hanamirian. The right to remain anonymous: Anonymous speak-
ers, confidential sources and the public good. Colum. JL & Arts, 35:119,
2011.

[HC24] Xiangyu Hui and Sid Chi-Kin Chau. Llring: Logarithmic linkable ring
signatures with transparent setup. In Joaquin Garcia-Alfaro, Rafał Kozik,
Michał Choraś, and Sokratis Katsikas, editors, Computer Security – ES-
ORICS 2024. Springer Nature Switzerland, 2024.

[HMY22] Ross Horne, Sjouke Mauw, and Semen Yurkov. Unlinkability of an im-
proved key agreement protocol for emv 2nd gen payments. In 2022 IEEE
35th Computer Security Foundations Symposium (CSF). IEEE, 2022.

[HVDH21] David Harvey and Joris Van Der Hoeven. Integer multiplication in time
o(n log(n)). Annals of Mathematics, 193(2):563–617, 2021.

[Inc23] Mastercard Inc. Mastercard prepaid | just load and pay, 2023.
https://www.mastercard.co.uk/en-gb/personal/find-a-card/

general-prepaid-mastercard.html, Last accessed on 11-16-23.

[Inc24] Mastercard Inc. Mastercard payment account refer-
ence inquiry, 2024. https://developer.mastercard.com/

payment-account-reference-inquiry/documentation/, Last ac-
cessed on 08-29-24.

[KL06] Marek Klonowski and Anna Lauks. Extended sanitizable signatures. In
Proceedings of the 9th International Conference on Information Security
and Cryptology, ICISC’06, 2006.

[KLM+22] Mirko Koscina, Pascal Lafourcade, Gaël Marcadet, Charles Olivier-
Anclin, and Léo Robert. A survey on identity-based blind signature. In
15th International Symposium In Foundations and Practice of Security,
2022.

[KM15] Neal Koblitz and Alfred J Menezes. The random oracle model: a twenty-
year retrospective. Designs, Codes and Cryptography, 77:587–610, 2015.

https://taler.net/papers/accounts-dangerous-2022.pdf
https://taler.net/papers/accounts-dangerous-2022.pdf
https://www.mastercard.co.uk/en-gb/personal/find-a-card/general-prepaid-mastercard.html
https://www.mastercard.co.uk/en-gb/personal/find-a-card/general-prepaid-mastercard.html
https://developer.mastercard.com/payment-account-reference-inquiry/documentation/
https://developer.mastercard.com/payment-account-reference-inquiry/documentation/

Bibliography 168

[KSS15] Stephan Krenn, Kai Samelin, and Dieter Sommer. Stronger security
for sanitizable signatures. In International Workshop on Data Privacy
Management, 2015.

[LASZ13] Joseph K Liu, Man Ho Au, Willy Susilo, and Jianying Zhou. Link-
able ring signature with unconditional anonymity. IEEE Transactions
on Knowledge and Data Engineering, 2013.

[LAZ19] Xingye Lu, Man Ho Au, and Zhenfei Zhang. Raptor: a practical lattice-
based (linkable) ring signature. In Applied Cryptography and Network
Security: 17th International Conference, ACNS 2019, Bogota, Colombia,
June 5–7, 2019, Proceedings 17, pages 110–130. Springer, 2019.

[leg11] legislation.gov.uk. The electronic money regulations 2011, 2011. https:
//www.legislation.gov.uk/uksi/2011/99/2016-03-01, Last accessed
on 11-16-23.

[LMMOA24] Pascal Lafourcade, Dhekra Mahmoud, Gael Marcadet, and Charles
Olivier-Anclin. Transferable, auditable and anonymous ticketing pro-
tocol. In Proceedings of the 19th ACM ASIA Conference on Computer
and Communications Security, 2024.

[LMOAR24] Pascal Lafourcade, Lola-Baie Mallordy, Charles Olivier-Anclin, and Léo
Robert. Secure keyless multi-party storage scheme. In Proceedings of the
29th European Symposium on Research in Computer Security, 2024.

[LNY+19] Zhen Liu, Khoa Nguyen, Guomin Yang, Huaxiong Wang, and Duncan S
Wong. A lattice-based linkable ring signature supporting stealth ad-
dresses. In Computer Security–ESORICS 2019: 24th European Sym-
posium on Research in Computer Security, 2019.

[LW05] Joseph K Liu and Duncan S Wong. Linkable ring signatures: Security
models and new schemes. In International Conference on Computational
Science and Its Applications–ICCSA 2005, 2005.

[LWW04] Joseph K Liu, Victor K Wei, and Duncan S Wong. Linkable spontaneous
anonymous group signature for ad hoc groups. In Information Security
and Privacy: 9th Australasian Conference, ACISP, 2004.

[Lyf23] Lyf, 2023. https://www.lyf.eu/en/, Last accessed on 02-23-24.

[LYMW13] Weiwei Liu, Guomin Yang, Yi Mu, and Jiannan Wei. k-time proxy signa-
ture: Formal definition and efficient construction. In Provable Security:
7th International Conference, ProvSec 2013, Melaka, Malaysia, October
23-25, 2013. Proceedings 7, 2013.

[Mau05] Ueli Maurer. Abstract models of computation in cryptography. In Cryp-
tography and Coding: 10th IMA International Conference, Cirencester,
UK, December 19-21, 2005. Proceedings 10, pages 1–12. Springer, 2005.

https://www.legislation.gov.uk/uksi/2011/99/2016-03-01
https://www.legislation.gov.uk/uksi/2011/99/2016-03-01
https://www.lyf.eu/en/

Bibliography 169

[MDAB10] Steven J Murdoch, Saar Drimer, Ross Anderson, and Mike Bond. Chip
and pin is broken. In 2010 IEEE Symposium on Security and Privacy.
IEEE, 2010.

[MUO96] Masahiro Mambo, Keisuke Usuda, and Eiji Okamoto. Proxy signatures
for delegating signing operation. In Proceedings of the 3rd ACM Confer-
ence on Computer and Communications Security, CCS ’96, 1996.

[NB08] Satoshi Nakamoto and A Bitcoin. A peer-to-peer electronic cash system.
Bitcoin.–URL: https://bitcoin. org/bitcoin. pdf, 2008.

[Pay22] PayPal. Paypal: Account limits, 2022. https://www.paypal.com/uk/

smarthelp/article/faq1253, Last accessed on 17-05-22.

[Pay23] Google Pay. Google pay help: United kingdom: Supported payment
methods, 2023. https://support.google.com/pay/answer/7351534,
Last accessed on 11-16-23.

[Ped91] Torben Pryds Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In Annual international cryptology conference,
1991.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital
signatures and blind signatures. Journal of cryptology, 2000.

[PS19] Sunoo Park and Adam Sealfon. It wasn’t me! In Annual International
Cryptology Conference, 2019.

[Raz02] Rosehaslina Razali. Overview of e-cash: Implementation and se-
curity issues, 2002. https://www.giac.org/paper/gsec/1799/

overview-e-cash-implementation-security-issues/103204, Last
accessed on 11-16-23.

[RCN+22] Andreea-Ina Radu, Tom Chothia, CJ Newton, Ioana Boureanu, and
Liqun Chen. Practical emv relay protection. In Proc. 43rd IEEE Symp.
Security Privacy, 2022.

[Rev23] Revolut. Spend safely online with single-use cards, 2023. https://www.
revolut.com/cards, Last accessed on 11-16-23.

[RSA78] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for ob-
taining digital signatures and public-key cryptosystems. Communications
of the ACM, 21(2):120–126, 1978.

[RST01] Ronald L Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In
International conference on the theory and application of cryptology and
information security, 2001.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Jour-
nal of cryptology, 1991.

https://www.paypal.com/uk/smarthelp/article/faq1253
https://www.paypal.com/uk/smarthelp/article/faq1253
https://support.google.com/pay/answer/7351534
https://www.giac.org/paper/gsec/1799/overview-e-cash-implementation-security-issues/103204
https://www.giac.org/paper/gsec/1799/overview-e-cash-implementation-security-issues/103204
https://www.revolut.com/cards
https://www.revolut.com/cards

Bibliography 170

[Sch24] Sven Schäge. New limits of provable security and applications to elga-
mal encryption. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 255–285. Springer, 2024.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 1979.

[Sho04] Victor Shoup. Sequences of games: a tool for taming complexity in
security proofs. Cryptology ePrint Archive, Report 2004/332, 2004.
https://eprint.iacr.org/2004/332.

[SLZ20] Eva-Maria Schomakers, Chantal Lidynia, and Martina Ziefle. All of me?
users’ preferences for privacy-preserving data markets and the importance
of anonymity. Electronic Markets, 30, 02 2020.

[Swi23] Swidch. Otac: A new paradigm for user authentication and device au-
thentication, 2023. https://www.swidch.com/technology/otac, Last
accessed on 11-16-23.

[Tak24] Takepayments. Takepayments: What are contact-
less payments and how do they work?, 2024. https:

//www.takepayments.com/blog/product-information/

what-are-contactless-payments-and-how-do-they-work/, Last
accessed on 08-29-24.

[TFS04] Isamu Teranishi, Jun Furukawa, and Kazue Sako. k-times anonymous
authentication (extended abstract). In ASIACRYPT 2004, 2004.

[TW05] Patrick P Tsang and Victor K Wei. Short linkable ring signatures for
e-voting, e-cash and attestation. In International Conference on Infor-
mation Security Practice and Experience, 2005.

[TWC+05] Patrick P Tsang, Victor K Wei, Tony K Chan, Man Ho Au, Joseph K
Liu, and Duncan S Wong. Separable linkable threshold ring signatures. In
Progress in Cryptology-INDOCRYPT 2004: 5th International Conference
on Cryptology in India, 2005.

[TY21] Aleksei Stennikov Timur Yunusov, Artem Ivachev. New vulnerabilities in
public transport schemes for apple pay, samsung pay, gpay. White Paper,
2021.

[UO23] Up-One, 2023. https://up-one.up.coop, Last accessed on 02-24-24.

[Val24] Valimised. Internet voting in estonia, 2024. https://www.valimised.

ee/en/internet-voting-estonia, last access 06/19/2024.

[Vis21] Visa. Minimum data requirements for merchants,
2021. https://www.elavon.ie/content/dam/elavon/

en-gb/documents/customer-centre/customer-news/

merchant-best-practice-infographic.pdf, Last accessed on 02-
21-24.

https://eprint.iacr.org/2004/332
https://www.swidch.com/technology/otac
https://www.takepayments.com/blog/product-information/what-are-contactless-payments-and-how-do-they-work/
https://www.takepayments.com/blog/product-information/what-are-contactless-payments-and-how-do-they-work/
https://www.takepayments.com/blog/product-information/what-are-contactless-payments-and-how-do-they-work/
https://up-one.up.coop
https://www.valimised.ee/en/internet-voting-estonia
https://www.valimised.ee/en/internet-voting-estonia
https://www.elavon.ie/content/dam/elavon/en-gb/documents/customer-centre/customer-news/merchant-best-practice-infographic.pdf
https://www.elavon.ie/content/dam/elavon/en-gb/documents/customer-centre/customer-news/merchant-best-practice-infographic.pdf
https://www.elavon.ie/content/dam/elavon/en-gb/documents/customer-centre/customer-news/merchant-best-practice-infographic.pdf

Bibliography 171

[Vis22] Visa. Visa prepaid reloadable personal cards, 2022. https://www.visa.
co.uk/content/VISA/usa/englishlanguagemaster/en_US/home/

pay-with-visa/cards/prepaid-cards/all-purpose-reloadable.

html, Last accessed on 01-06-22.

[Vis24] Visa. Visa scan to pay, 2024. https://developer.visa.com/

innovation-corner/example-projects/scan-and-pay, Last accessed
on 02-27-24.

[VS13] Nicolas Van Saberhagen. Cryptonote v 2.0. 2013.

[WSI02] Yodai Watanabe, Junji Shikata, and Hideki Imai. Equivalence between
semantic security and indistinguishability against chosen ciphertext at-
tacks. In Public Key Cryptography—PKC 2003: 6th International Work-
shop on Practice and Theory in Public Key Cryptography Miami, FL,
USA, January 6–8, 2003 Proceedings 6, pages 71–84. Springer, 2002.

[WYM14] Jiannan Wei, Guomin Yang, and Yi Mu. Anonymous proxy signature
with restricted traceability. In 2014 IEEE 13th International Conference
on Trust, Security and Privacy in Computing and Communications, 2014.

[WYML15] Jiannan Wei, Guomin Yang, Yi Mu, and Kaitai Liang. Anonymous Proxy
Signature with Hierarchical Traceability. The Computer Journal, 2015.

[XLAZ24] Yuxi Xue, Xingye Lu, Man Ho Au, and Chengru Zhang. Efficient link-
able ring signatures: New framework and post-quantum instantiations.
In Joaquin Garcia-Alfaro, Rafał Kozik, Michał Choraś, and Sokratis Kat-
sikas, editors, Computer Security – ESORICS 2024. Springer Nature
Switzerland, 2024.

[YLA+13] Tsz Hon Yuen, Joseph K Liu, Man Ho Au, Willy Susilo, and Jianying
Zhou. Efficient linkable and/or threshold ring signature without random
oracles. The Computer Journal, 2013.

[Yun21] Timur Yunusov. Hand in your pocket without you noticing: Current
state of mobile wallet security. Black Hat Europe, 2021.

[ZLL+19] Lingyue Zhang, Huilin Li, Yannan Li, Yong Yu, Man Ho Au, and Baocang
Wang. An efficient linkable group signature for payer tracing in anony-
mous cryptocurrencies. Future Generation Computer Systems, 2019.

[ZLS+20] Xinyu Zhang, Joseph K Liu, Ron Steinfeld, Veronika Kuchta, and Jiang-
shan Yu. Revocable and linkable ring signature. In Information Security
and Cryptology: 15th International Conference, Inscrypt 2019, 2020.

https://www.visa.co.uk/content/VISA/usa/englishlanguagemaster/en_US/home/pay-with-visa/cards/prepaid-cards/all-purpose-reloadable.html
https://www.visa.co.uk/content/VISA/usa/englishlanguagemaster/en_US/home/pay-with-visa/cards/prepaid-cards/all-purpose-reloadable.html
https://www.visa.co.uk/content/VISA/usa/englishlanguagemaster/en_US/home/pay-with-visa/cards/prepaid-cards/all-purpose-reloadable.html
https://www.visa.co.uk/content/VISA/usa/englishlanguagemaster/en_US/home/pay-with-visa/cards/prepaid-cards/all-purpose-reloadable.html
https://developer.visa.com/innovation-corner/example-projects/scan-and-pay
https://developer.visa.com/innovation-corner/example-projects/scan-and-pay

172

Appendix A
Résumé Long

Avec l’avènement de la cryptographie à clef publique et son évolution, la notion cryp-
tographique de privacy1 a pris des sens multiples. Il ne s’agit plus comme dans un
premier temps de garantir uniquement la confidentialité des messages, i.e., la non-
divulgation des messages claire. La non divulgation de l’identité des utilisateurs ou
des dispositifs destinataires i.e., le respect de la vie privé s’est aussi retrouvé au centre
de l’attention.

Pour s’assurer de l’identité d’une entité numérique, un mécanisme cryptographique
permettant l’authentification a été développé: la signature électronique. Le premier
schéma de signature électronique, assurant l’authenticité et l’intégrité des échanges fût
introduite par Rivest, Shamir et Adelman [RSA78]. Ce méchanisme est basé sur une
paire de clefs, et est le pendant direct des signatures manuscrites que nous connaissons
tous. Pour fournir plus d’intuition sur le concept, nous l’illustrons dans la Figure A.1 en
représentant la signature comme un sceau (apposé sur une lettre), qui fût une ancienne
manière de singer. Le point rouge représente la signature associé à une clef publique
qui donne des signatures “rouges”. Cette couleur est considérées comme uniques, i.e.,
toute autre clef publique donnerait une signature d’une couleur différente. Les signatures
électroniques peuvent être utilisées pour vérifier l’authenticité et l’intégrité des messages
ou documents digitales, garantissant que l’identité de l’expéditeur est confirmée et que
le contenu n’a pas été altéré pendant la transmission ou le stockage. Elles doivent être
infalsifiables, i.e., elles ne peuvent pas être produites facilement sans connaître la clef
secrète liée à la clef publique.

Signataire

Figure A.1: Sceau d’une signature électronique2.

Aujourd’hui, les signatures électroniques jouent un rôle crucial dans la protection
contre les fraudes, les falsifications et les violations de données. Elles permettent égale-
ment d’authentifier le propriétaire d’une clef publique sous certaines hypothèses de con-
fiance, déportant ainsi notre confiance a un faible nombre d’entités. Elle permet donc
des comuncation authentifiés plus faciles et plus sûres.

1Les traductions françaises seraientt dans ce contexte confidentialité ou vie privé. Elles donnent la
part belle à cette multiplicité de senses.

2Ces représentations schématiques et celles à venir sont inspirées de la présentation de [AHAN+22]
par Elena Pagnin lors de PKC ’22.

173

Appendix A. Résumé Long 174

Cependant, la mise en œuvre de mécanismes d’authentification soulève d’importantes
questions de confidentialité des échanges. En effet, les identités sont aujourd’hui con-
sidérées comme des informations sensibles. Leur usage c’est répendu malgré ce fait
que dans de nombreux cas d’applications, il ne soit pas nécessaire d’authentifier un
utilisateur spécifique. Prenons l’exemple d’un document en lecture seule partagé par
plusieurs personnes et stocké sur un serveur. Est-il nécessaire d’authentifier la personne
accédant au document, ou est-il suffisant d’empêcher tout accès non autorisé ? Dans
de nombreux cas, le document n’est pas sensible, empêcher l’accès non autorisé peut
donc suffire. Dans ces circonstances, il est suffisant de prouver le droit d’accès au doc-
ument, sans pour autant révéler l’identité de l’utilisateur. Bien que cela puisse sembler
surprenant, cela peut être réalisé grâce à l’utilisation de techniques cryptographiques
classiques comme des schémas de signatures électronique.

Ce type de mécanisme d’authentification préservant la privacy est précisément ce
que nous explorons dans cette thèse. Ils relèvent du domaine des primitives cryp-
tographiques asymétriques modernes et nous nous concentrons spécifiquement sur l’
anonymat des entités. Nos principaux objectifs et contributions impliquent l’étude des
méthodes d’authentification basées sur les signatures, la formalisation de leur sécurité
et le développement de moyens pratiques et efficaces pour protéger l’identité des per-
sonnes. Pour garantir l’applicabilité et la praticité de nos primitives, nous prenons en
compte la nécessité de limiter l’anonymat dans de nombreux des domaines d’application.
L’anonymat total, peut conduire à des fraudes ou à des comportements répréhensibles
qui restent impunis. Par conséquent, nous considérons la nécessité d’exiger la liabilité
des signatures électronique, la traçabilité de l’utilisateur en cas de fraude ou même dans
certains cas l’auditabilité complète du système, entre autres.

A.1 Modèle d’Anonymat pour les Signature d’Anneaux

Liables

Groupe de n entités

Figure A.2: Sceau d’une signature en anneau [RST01].

Introduites par Rivest, Shamir et Tauman [RST01] en 1986, les signatures d’anneaux
sont des signatures électroniques qui permettent à une entité de signer au nom d’un
groupe ad hoc tout en cachant son identité au vérificateur. Nous avons schématiquement
décrit le sceau de ce type schéma de signature dans la Figure A.2, où plusieurs points
représentent plusieurs entités à l’intérieur de l’anneau, mais le cercle les comprenant
est en pointillé car l’anneau dans ce type de signature est ad hoc, c’est-à-dire qu’il est
généré par le signataire au moment de la signature et n’a pas nécessité d’acceptation

Appendix A. Résumé Long 175

de la part des autres membres inclus dans l’anneau (en dehors de la génération de leurs
clefs publiques). Cela signifie qu’un seul des n signataires (dans la Figure A.2, n = 6)
a effectivement signé le message, le sceau des autres membres du groupe ayant été en
quelque sorte imité par le signataire. Les signatures d’anneaux partagent les mêmes
propriétés que les signatures électroniques : elles doivent être difficiles à contrefaire
pour une personne ne possédant pas la clef secrète. De plus, toute signature produite
par un signataire est indistinguable de celles générées par d’autres membres du groupe,
garantissant ainsi l’anonymat des signataires au sein du groupe. Nous avons examiné
une primitive appelée signatures d’anneaux liables. Les signatures d’anneaux liables
atténuent la propriété d’anonymat des signatures d’anneaux en liant les signatures émises
par le même signataire. Il est attendu que deux signatures provenant de la même entité
soient toujours liables, tandis que les signatures de différentes entités doivent rester
non liées. Ces propriétés de la signature en anneaux liables sont complétées par celles
des signatures d’anneaux. La propriété de liabilité est visuellement décrite dans la
Figure A.3. Intuitivement cela equivaux à ce que chaque signataire laisse son empreinte
digitale lors de la signature. Les empreinte digitale n’évoluant pas dans le temps, elles
sont identiques lors de la signature de deux messages différents, mais diffèrent lorsque
deux entités signent. Ici, nous avons simplement utilisé la couleur pour distinguer les
empreintes digitales ; il n’y a aucun lien avec le signataire potentiel derrière la signature.
Cette propriété trouve des cas d’applications pratiques, par exemple lorsque nous voulons
déterminer si des demandes proviennent de la même entité et ce sans avoir besoin de
connaître son identité.

Lié Non lié

Figure A.3: Sceau d’une signature en anneaux liables et leur liabilité [RST01].

Dans des travaux récents tels que [BEHM22] et dans tous les a autres schémas de
signature d’anneaux liables existant (voir Figure A.3 et à l’exception de deux d’entre
eux: [ATSS+18] et [BKP20]), l’Anonymat (ano) est informellement caractérisé par l’énoncé
suivant:

“Anonymity, demands that an adversary cannot tell which of a ring’s secret
keys was used to produce a signature.3”

Malgré cette description informelle précise, nous avons montré dans cette thèse que les
définitions de tous les schémas listés dans le Tableau A.1a formalisent essentiellement
ce même concept de la manière suivante :

L’anonymat exige qu’un adversaire ne puisse pas identifier quelle clef se-
crète de l’anneau a été utilisée pour produire la première signature d’une
entité.

3Traduction : « L’anonymat exige qu’un adversaire ne puisse pas déterminer laquelle des clefs
secrètes de l’anneau a été utilisée pour produire une signature. »

Appendix A. Résumé Long 176

Référence Hypothèse Modèle
Liu et al. [LWW04] Liée à DL ROM

Tsang et al. [TWC+05] RSA Fort & DDH ROM
Liu et Wong [LW05] Liée à DL ROM
Tsang et Wei [TW05] Liée à DL ROM
Liu et al. [LASZ13] Liée à DL ROM

Yuen et al. [YLA+13] Liée à DL Standard
Boyen et Haines [BH18] CDL ROM

Branco et Mateus [BM18] GSDD ROM
Baum et al. [BLO18] SIS, LWE ROM

Lu et al. [LAZ19] SIS ROM
Liu et al. [LNY+19] M-SIS, D-MLWE ROM

Zhang et al. [ZLS+20] Liée à DL ROM
Balla et al. [BBG+22] Liée à DL ROM

Bootle et al. [BEHM22] Liée à DL ROM
Xiangyu et al. [HC24] Liée à DL ROM
Xue et al. [XLAZ24] Construction générique ROM

(a) Signatures en anneaux liables existantes prouvées sécurisées sous le modèle pour
l’anonymat à usage unique 1-ano.

Référence Hypothèse Modèle
Alberto et al. [ATSS+18] R-SIS ROM

(b) Signatures en anneaux liables à usage unique existantes.
Référence Hypothèse Modèle

Backes et al. [BDH+19] Construction générique Standard
Beullens et al. [BKP20] SIDH, M-LWE ROM

(c) Signatures en anneaux liables existantes avec anonymat prouvé ano.

Table A.1: Signatures en anneaux liables existantes.

Nous voyons une implication directe du deuxième énoncé par le premier. Nous ferons
référence à la deuxième citation et à cette notion plus faible sous le terme anonymat
unique (1-ano).

Dans la pratique, ces deux énoncés ont des formulations relativement similaires, mais
ils diffèrent grandement dans les garanties aux signatures qui les utilisent pour prouver
leur sécurité.

Contributions

Ansi, nous avons démontré que la modélisation de l’expérience d’anonymat pour les
signatures d’anneaux liables ne correspond pas aux attentes de sécurité formalisées par
16 des 18 schémas existants.

Le modèle de sécurité que nous avons nommé anonymat unique (1-ano), décrit dans
la Figure A.4a, reste largement similaire dans tous les travaux existants. Il ne donne
accès qu’à une seul signature produite par un signataire dont l’adversaire doit retrou-
ver l’identité. Ainsi, cette formalisation ne garantie pas l’anonymat pour la deuxième
signature produite à partir d’une paire de clefs et cela ne correspond pas aux attentes
informelles décrites dans tous ces travaux. Notre contribution principale est de mettre
en évidence l’absence de l’adoption d’un formalisme approprié pour l’anonymat, même
dans certaines des recherches les plus récentes.

Appendix A. Résumé Long 177

En effet, un autre modèle existe dans la littérature mais n’a été utilisé que pour
2 des 18 schémas existants [ATSS+18, BKP20]. Ce modèle prend mieux en compte
l’anonymat attendu des signatures d’anneaux liables. Il est illustré dans la Figure A.4a.
Nous montrons, par la contruction d’un schéma de signatures d’anneaux liables, que la
propriété d’anonymat ano est strictement plus forte que la propriété d’anonymat unique
1-ano. Ce schéma contre-exemple se base sur un schéma de partage secret [Sha79] com-
posé des algorithmes Split et Recover et n’importe quel schéma de signatures d’anneaux
liables LRS existant. Le contre-exemple est comme suite:

CeLRS.SetupLRS(1
λ): correspond à l’exécution de LRS.SetupLRS(1

λ).

CeLRS.GenLRS(1
λ): exécute (skLRS, pkLRS)← LRS.GenLRS(1

λ) et s1, s2 ← Split(pkLRS, 2).
Définit et renvoie sk = (skLRS, s1, s2), pk = pkLRS.

CeLRS.SignLRS(ski,m, {pkj}j∈R): décompose ski en (skLRS, s1, s2), tire aléatoirement b $←−
{1, 2} et renvoie σLRS ← LRS.SignLRS(skLRS,m∥sb, {pkj}j∈R) et sb comme σ.

CeLRS.VerifLRS(m,σ, {pkj}j∈R): décompose σ en σLRS et s. Exécute LRS.VerifLRS(m∥s,
σLRS, {pkj}j∈R) et renvoie le résultat.

CeLRS.LinkLRS(σ, σ
′): décompose σ en σLRS et s, et σ′ en σ′

LRS et s′. Exécute et renvoie
le résultat de LRS.LinkLRS(σLRS, σ

′
LRS).

D’autres contre-exemple se basant sur la littérature existante sont aussi présen-
tés [BL16, ATSS+18]. Nous argumentons donc en faveur de la notion la plus forte:
l’anonymat ano.

De plus, les signatures d’anneaux liables admettent deux modèles de corruption :

Le modèle des clefs honnêtes : un scénario d’attaque où toutes les clefs de signature
doivent avoir été générées honnêtement par le challenger dans l’expérience.

Le modèle des clefs choisies par l’adversaire : un scénario d’attaque où les clefs
de signature peuvent avoir été générées de manière malveillante par l’adversaire.

Notre contribution s’étend à une classification complète des propriétés d’anonymat
dans les deux modèles de corruption pour les signatures d’anneaux liables. Pour cela, un
second contre-exemple est nécessaire pour démontrer la différence stricte entre les deux
modèles de corruption. Nous le construisons sur la base d’un schéma de chiffrement
IND-CPA et de l’un des schémas de signature en anneaux liables de la littérature.

Ensuite, nous passons en revue tous les travaux existants initialement basés sur la
notion plus faible d’anonymat unique 1-ano. En s’intéressant aux preuves de schémas
existants, nous avons observé que beaucoup suivent un schéma de preuve qui pour-
raient potentiellement être étendu par de simples arguments hybrides. Cependant, deux
schéma existent déjà dans le modèle le plus fort [ATSS+18, BKP20]. Nous n’avons donc
pas essayé de démontrer la sécurité des autres signatures existantes.

Appendix A. Résumé Long 178

A(pk0, pk1)

b
$←− {0, 1}

Si i /∈ {0, 1},
SignLRS(ski,m, {pkj}j∈R)

SignLRS(skb, ·, ·)

b∗
?
= b

σ
b∗

SO(R,m, i)
σ

(a) Anonymat Unique 1-ano des signatures d’anneaux liables.

A(pk0, pk1)

b
$←− {0, 1}

SignLRS(ski,m, {pkj}j∈R)

Gauche : SignLRS(skb,m, {pkj}j∈R)
Droite : SignLRS(sk1−b,m, {pkj}j∈R)

b∗
?
= b

LoR(Gauche/Droite,m)

σ
b∗

SO(R,m, i)
σ

(b) Anonymat ano des signatures d’anneaux liables.

Figure A.4: Comparaison schématique des expériences d’anonymat pour les signatures
d’anneaux liables. (Les modèles de corruption ne sont pas spécifiés.)

A.2 Signature Délégables et Assainissable k-fois par-

faitement traçable

Introduites par Mambo, Usuda et Okamoto [MUO96] en 1996, les signatures par délégué
permettent à une entité, le signataire, parfois appelé le signataire original, de déléguer
ses droits de signature à une entité, appelée proxy, qui peut alors signer des documents
en leur nom. Le raison d’être de cette primitive est de facilité la délégation sécurisée
de signatures électroniques, comme par exemple pour donner une procuration pour une
élection. Dans la Figure A.5, nous pouvons voir le sceau du signataire rouge donnant
la délégation au signataire orange qui appose son propre sceau, la partie rouge agissant
comme un certificat, une preuve de la délégation donnée. Le concept original a ensuite
été étendu de différentes manières. Notre intérêt se concentre principalement sur la
primitive introduite par Fuchsbauer et Pointcheval [FP08] appelée signatures par délégué
anonyme. Ces signatures offrent l’anonymat au délégué tout en maintenant l’intégrité
et l’authenticité du message signé. Ainsi, seul le nom du signataire original est divulgué.

Délégateur Proxy

Délégation des droits de signature

Figure A.5: Sceau des signatures par délégué.

Appendix A. Résumé Long 179

DélégataireSignataire Proxy Anonyme
σ1

σk

Délégataire Signataire Proxy
σ1

σk

σk+1

Lié

Révélé

Dépasse k signatures

(a) k-times Signature Proxy Anonyme Complètement Traçable.

Signataire m1, σ1

mk, σk

Assainisseur Anonyme
m′

1, σ1

m′
k, σk

Signataire m1, σ1

mk, σk

Assainisseur
m′

1, σ1

m′
k, σk

m′
k+1, σk+1

Lié

Révélé

Dépasse k signatures

(b) Signature Délégable et Assainissable k-fois Parfaitement traçable.

Figure A.6: Signature Proxy et Sanitizable Anonyme Complètement Traçable k-times.

Contributions

Pour limiter l’anonymat complet des signatures par délégué anonyme face au vérifi-
cateurs de signatures, nous avons introduit un nouveau type de schéma de signature
anonymes avec délégations : les signature délégable k-fois parfaitement traçable. Dans
ce type de signature, le délégué est anonyme, i.e., il ne révèle pas son identité à moins
qu’il n’émette plus de k signatures. Si la limite est dépassée, son identité est révélée et
peut alors être liée à toutes les signatures qu’il a émises. Nous avons représenté visuelle-
ment ces signatures dans la Figure A.6a. Dans cette figure, nous voyons une délégation
établie par le sceau rouge à une entité inconnue autorisée à émettre jusqu’à k signatures
différentes. Si cette entité dépasse les k signatures autorisées en produisant une k+1ème

signature, alors sa clef publique, associée à la couleur orange, est révélée et toutes les
signatures produites sont liées. Ces signatures doivent atteindre trois propriétés en plus
de la infalsifiabilité. Ces propriétés sont:

Anonymat : les signatures sont anonymes tant que le délégué ne dépasse pas la limite
de k signatures. En particulier, elles ne peuvent pas être liées entre elles.

Traçabilité : si le délégué dépasse la limite de k signatures, il ne pourra pas empêcher
que toutes ses signatures soient liées entre elles et que son identité soit retrouvée.

Innocuité : un délégué ne peut pas produire une signature qui pourrait être attribuée
à une autre entité.

Ces propriétés ont été formalisés dans un modèle calculatoire.

Appendix A. Résumé Long 180

La contruction de notre signature délégable k-fois parfaitement traçable nécessitent
deux preuves à divulgation nulle de connaissance.

La preuve Π<k garantit que le délégué ne peut pas produire plus de k signatures.
En pratique, elle assure que le prouveur connaît un élément s et un entier η tels que (i)

ỹi = ysi,j et p̃ki = pksi,j sont bien formés selon s, un entier η de l bits (avec l = log2(k))
et les valeurs publiques yi,j et ppki,j , pour i ∈ {0, . . . , k− 1} et j ∈ {0, 1}. Et (ii) η < k.

Prouver (i) revient à prouver (g̃1 = gs1 ∧ ỹi = ysi,0 ∧ p̃ki = pksi,0) ou (g̃1 = gs1 ∧ ỹi =
ysi,1 ∧ p̃ki = pksi,1) pour tout i ∈ J0, lK. Formulé avec la notation de Camenisch et
Stadler [CS97a], cela donne :

ZK

s :
l∧
i=0

1∨
j=0

(
g̃1 = gs1 ∧ ỹi = ysi,j ∧ p̃ki = pksi,j

) .

La transcription de cette preuve est linéaire en l. D’autre part, prouver (ii) consiste
à prouver η < k, où chaque bit η[i] de η est engagé dans l’égalité ỹi = ysi,η[i]. Ainsi,
pour prouver que η est plus petit que k, nous devons comparer k et η en tant que mots
binaires à travers les engagements ỹi, en parcourant les bits du plus significatif au moins
significatif.

D’autre part, une seconde preuve à divulgation nulle de connaissance, appelée πσ, est
aussi utilisée pour lier tous les éléments de traçabilité et prouver la bonne connaissance
du secret. Elle utilise des bases de construction similaires à celles de Π<k et est inspirée
par la construction signature d’anneaux k-fois parfaitement traçable de [BL16]. Ici nous
décrivons la preuve que nous avons utilisé avec des notations génériques (où pour tout
entier i, chaque gi, γi, et hi est un élément d’un groupe Gi d’un même ordre premier
p). La preuve πσ est la suivante :

πσ ← ZK

{
x, y, z :

h1 = g1
x ∧ h2 = g2

y ∧ h3 = g3
x ∧ h4 = g4

z

h5 = g5
x · γy5 ∧ h6 = g6

x · γy6 ∧ h7 = g7
y

}
.

Notre construction exige que ces deux preuves à divulgation nulle de connaissance
soient consistantes, robustes, ne divulges aucune information et sont extractibles. Nous
nous sommes aussi basé sur une signature sur classes d’équivalence qui est infalsifiable,
cachant les classes, et adaptable [FHS19], sur une fonction de hachage résistante aux
collisions. A l’aide de tous ces éléments nous avons démontre que le schéma de signa-
ture délégable k-fois parfaitement traçable possède l’ensemble des propriétés de sécurité
décrites plus haut sous l’hypothèse Décisionnelle de Diffie-Hellman DDH.

À partir de nos signature delegable k-fois parfaitement traçable, nous avons pu dériver
une signature assainissable k-fois parfaitement traçable. Les signatures assainissable
agissent d’une manière relativement similaire aux signatures par délégué, ajoutant le fait
que les messages sont partiellement prescrits par le délégataire. Nous avons également
représenté visuellement ces signatures, cette fois dans la Figure A.6b et introduisons le
premier schéma de signature assainissable k-fois parfaitement traçable.

En plus des propriété d’infalsifiabilité, d’anonymat, de traçabilité et d’innocuité. Les
propriétés de sécurité sont assurés par les propriétés de sécurité découlants des signatures
assainissable :

Appendix A. Résumé Long 181

Immutabilité : il n’est pas possible de modifier des parties des messages qui ne doivent
pas être modifiées.

Transparence : il n’est pas possible de deviner si une signature a été assainie ou non.
Cette propriété implique une autre propriété existante appelée vie privée : il n’est
pas possible de déterminer des informations sur le message original.

Non-liabilité : il n’est pas possible de lier une signature assainie à la signature origi-
nale, ou de lier des signatures assainies provenant de la même signature originale.
Quelques schémas tels que [FKM+16] atteignent cette propriété. Notez que la
non-liabilité diffère de l’anonymat, qui garantit qu’il n’est pas possible de lier des
signatures provenant du même utilisateur.

Invisibilité : il n’est pas possible d’identifier quelle partie du message est modifiable.
Notez que concevoir des schémas qui sont à la fois non-lienables et invisibles est
un défi, et il n’existe que deux schémas dans la littérature qui combinent ces
propriétés [BLL+19, BB21].

Découlant de notre signature delegable k-fois parfaitement traçable, notre signature
assainissable k-fois parfaitement traçable s’appuis sur les preuves à divulgation nulle
de connaissance Π<k et πσ afin d’instancier des signatures par la connaissance [GM17]
ce qui est possible grace à l’heuristique de Fiat-Shamir [CS97b]. Les signatures par
la connaissance ainsi obtenus obtiennent les propriétés de consistantes, robustes, ne
divulges aucune information et sont extractibles. Encore une fois, nous nous sommes
aussi basé sur une signature sur classes d’équivalence qui est infalsifiable, cachant les
classes, et adaptable [FHS19], sur une fonction de hachage résistante aux collisions. A
l’aide de tous ces éléments nous avons démontre que le schéma de signature assainissable
k-fois parfaitement traçable possède l’ensemble des propriétés de sécurité décrites plus
haut sous l’hypothèse Décisionnelle de Diffie-Hellman DDH.

A.3 Anonymat utilisable en conformité avec la norme

EMV pour les paiements sans contact

Dans les contributions précédentes nous avons discuté de l’anonymat de signatures elec-
troniques d’un point de vue cryptographique. Les systèmes numériques et de communi-
cation ont été normé depuis leur première apparition, et de nombreuses réglementations
ont été introduites. Ces systèmes initialement conçus de toutes pièces suivent désor-
mais des cadres largement adoptés. L’introduction de modifications nécessite le respect
des aspects légaux et des normes existantes et doit offrir des améliorations par rap-
port aux systèmes existants pour être standardisé et, par la suite, être déployés. En
soi, concevoir un nouveau protocole avec des fonctionnalités améliorées est un défi, mais
lorsqu’il s’agit de l’adoption de normes et de déploiement, c’est presque impossible. Nous
nous somme intéressé à un standard parmis d’autres: le standard de paiement par carte
bancaire EMV (pour Europay Mastercard Visa). Le deuxième standard mondial pour
les systèmes de paiement, visant à améliorer considérablement l’efficacité du protocoles
actuels et à prévenir de nombreuses attaques, a été introduit en 2013. À l’heure actuelle,
11 ans plus tard, il n’a toujours pas remplacé la première version du protocole existant

Appendix A. Résumé Long 182

depuis 1996, ce qui montre le temps et la volonté considérables nécessaires pour modifier
des systèmes établis à grande échelle.

Alors que cette nouvelle norme attend son déploiement, diverses propositions [HMY22,
BHMY23] ont été faites pour l’améliorer, anticipant ainsi des changements par rapport
à ce qui a été proposé. Les autheurs de ces articles notent que l’anonymat a été nég-
ligé dans la norme de service de paiement actuellement utilisée et dans sa deuxième
version. Ainsi dans les protocole actuel et le potentiel future protocole : toutes les
informations liées à l’identité sont entièrement diffusées à toutes les entités participant
au paiement, ou même à une entité qui écouterais les communications. Les auteurs
de [HMY22, BHMY23] ont tenté d’aborder la non liabilité et l’anonymat face des en-
tités qui écouteraient les communications entre la carte et le terminal de paiement. Ces
propriété constituent un pas vers plus de confidentialité des paiements. Cependant, nous
notons qu’il n’est pas nécessaire que toutes les informations soient connues de tous les
partis lorsqu’un paiement est effectué ; comme le montrent les transactions en espèces.

L’absence d’anonymat pour les clients vis-à-vis des entités impliquées dans le sys-
tème souligne la nécessité de poursuivre la recherche et les améliorations en matière de
confidentialité des clients. Surtout alors que les préoccupations en matière de vie privé
s’intensifient et que les droits à la vie privé deviennent plus formalisés. Il est donc crucial
de veiller à ce que les futurs systèmes de paiements protègent efficacement l’anonymat
des utilisateurs tout en répondant également aux exigences de détection de fraude.

Cependant, il est difficile de concilier les exigences légales avec la vie privée des util-
isateur du système de paiements. Les régulations contre le blanchiment d’argent [EU21b]
(AML), comme le Know Your Customer (KYC) (qui requière la connaissance de l’identité
des clients par l’émetteur) et l’Authentification Forte du Client [EU18] (SCA), visent
à protéger contre la fraude mais nuisent à l’instoration d’anonymat dans les paiements
EMV, qui doivent être audités. Ainsi, un schéma de paiement respectant la vie privée
doit rester conforme aux lois et régulations qui régissent les paiements.

Contributions

Notre objectif fût de construire un systeme de payment en magasin (i.e., par carte ou
mobile) compatible avec les lois, les régulations et la norme EMV en place. Ici nous
proposons deux solutions à ce problème sous les noms de PrivBank et PrivProxy, elles
se basent toutes deux sur un tiers parti apportant de l’anonymat à l’utilisateur. Afin de
pouvoir discuter l’anonymat qu’apportent ces constructions, nous avons commencé par
proposer un ensemble de notions de confidentialité souhaitables, suffisamment générales
pour être pertinentes dans la plupart des systèmes de paiement. Ces propriétés peuvent
être considérées du point de vue des différentes entités impliquées : face à un com-
merçant, un émetteur de cartes (i.e., une banque) ou un intermédiaire. Nous proposons
un ensemble de notions de confidentialité applicables à divers systèmes de paiement, en
tenant compte des différentes entités impliquées.

Pseudonymat du Payeur (PAn). Une instance de PAn est respectée si un tiers ne
peut pas connaître l’identité du payeur ID ou son pseudonyme à long terme. Deux
variantes existent :

Appendix A. Résumé Long 183

Méthode de paiement SCA KYC Pseudonymat
Émetteur Proxy Émetteur Proxy Émetteur Commercant Proxy

1. Espèces non N.A. N.A. N.A. MAn PAn, Unlnk N.A.
2. Chèque y N.A. y N.A. ¬MAn ¬PAn,¬ Unlnk N.A.
3. E-cash y N.A. y N.A. MAn PAn, Unlnk N.A.
4. Cartes physiques y N.A. y N.A. ¬MAn ¬PAn,¬ Unlnk N.A.
5. Google, Apple Pay, etc. y N.A. y N.A. ¬MAn PAn,¬ Unlnk N.A.
6a. Cartes prépayées y N.A. y N.A. ¬MAn PAn/¬PAn,¬ Unlnk ¬PAn,¬ Unlnk,¬MAn
6b. Cartes-cadeaux non (n) n (n) MAn/¬MAn PAn, Unlnk/¬ Unlnk (¬PAn,¬ Unlnk,¬MAn)
7. Cartes virtuelles y (y) y (y) MAn/¬MAn PAn, Unlnk (¬PAn,¬ Unlnk,¬MAn)
8a. PayPal y y/non y y/non MAn PAn,¬ Unlnk ¬PAn,¬ Unlnk,¬MAn
8b. Curve y y y y ¬MAn ¬PAn,¬ Unlnk ¬PAn,¬ Unlnk,¬MAn
9. Marketplaces en ligne y non y y/non MAn PAn,¬ Unlnk ¬PAn,¬ Unlnk,¬MAn
PrivBank y non y non MAn PAn, Unlnk PAn,¬ Unlnk, ¬MAn
PrivProxy y y non y MAn PAn, Unlnk ¬PAn,¬ Unlnk,¬MAn

Table A.2: Propriétés SCA, KYC et pseudonymat des méthodes de paiement du point
de vue de l’émetteur, du commerçant et du proxy lorsque celui-ci existe. ¬PAn et

¬ Unlnk s’appliquent à tous les systèmes pour l’émetteur, et ¬MAn à tous les systèmes
pour le commercant. Des explications détaillées sont fournies dans la Section 5.6.

(Notation : N.A. signifie "non applicable", PAn pour PAnID et PAnCID , les crochets
indiquent que le proxy n’existe pas nécessairement dans tous les systèmes, et le /

signifie que le déploiement peut entraîner des propriétés différentes.)

PAnID : le commerçant ne découvre pas l’identité à long terme du payeur.

PAnCID : le commerçant ne découvre pas le numéro de carte à long terme du payeur.

Désassociabilité des Paiements (Unlnk). Une instance de Unlnk est respectée si
aucune entité ne peut lier des paiements effectués par le même payeur. Par exemple, les
paiements en espèces dans un même magasin, par une même entité, ne peuvent pas être
reliés.

Pseudonymat du Commerçant (MAn). Une instance de MAn est respectée si
une entité (comme un émetteur) ne peut pas identifier le commerçant impliqué dans
un paiement. Actuellement, des informations sur le commerçant sont transmises aux
banques, ce qui rend leur identification possible.

Nous avons commencé par examiné ce que l’on pourrait appeler les “systèmes de
paiement traditionnels” ainsi que certains systèmes modernes4, bien qu’ils soient con-
struits sur les précédents. Nous avons aussi discuté de leur adhérence aux régulations
KYC et SCA, ainsi que de leur conformité à nos exigences de confidentialité PAn, Unlnk,
et MAn. Nous avons exclu les crypto-monnaies [NB08] et les paiements basés sur des
codes QR [Lyf23]. La raison en est que leur infrastructure est totalement différente de
celle des paiements bien établis, en particulier les systèmes basés sur EMV, que nous
visons à améliorer ici. Ainsi, les systèmes d’intérêt dans notre analyse étaient : 1.
l’argent liquide, 2. le chèque, 3. l’e-cash [Cha83b], 4. les cartes bancaires physiques/-
classiques, 5. les applications mobiles [App23, Pay23], 6. les cartes rechargeables et pré-
payées [Inc23, Vis22], 7. les cartes virtuelles/à usage unique [Rev23], 8. les prestataires
de services de paiement tels que 8a. PayPal [Pay22] et 8b. Curve [Cur23], et 9. les
places de marché en ligne [Ama23, eBa23]. Nous pensons que le lecteur est familier avec
la plupart de ces systèmes au point de pouvoir juger s’ils respectaient les normes SCA,
KYC, PAn, Unlnk,MAn. Les résultats sont compilés dans le Tableau A.2.

4Les paiements en ligne sont inclus ici car ils peuvent fournir des indications sur ce qui pourrait être
possible.

Appendix A. Résumé Long 184

Issuer

Client IDA

Carte CIDA

Identité à usage unique IDX

Proxy
de

Paiement
P

Client IDX

Carte virtuelle à usage unique CIDY

Client IDY

commercant M

Acquirer 1

Acquirer 2

Identité pseudo-
commercant N en-
voyée dans le backend
de PrivBank

KYC
SCA

Accord

(a) PrivBank: Paiements conformes à l’EMV avec pseudonymat provisionné
collaborativement par un émetteur respectueux de la vie privée et un proxy tiers.

Issuer

Client IDA

Proxy
de

Paiement
P

IDX

Carte virtuelle à usage unique CIDX

Commercant M

Client IDX

Acquéreur 1 Acquéreur 2

SCA

KYC

KYC

P comme commercant,
ou MCC et ML du com-
mercant M envoyés sur le
réseau EMV

(b) PrivProxy: Paiements conformes à l’EMV avec pseudonymat provisionné par un proxy
tiers.

Figure A.7: Description graphique de nos deux propositions. (Les flèches noires
indiquent le flux d’exécution. Les flèches rouges représentent les exigences KYC et

SCA. Les flèches bleues indiquent la connaissance d’identité. Les flèches vertes
représentent les demandes de compensation.)

PrivBank et PrivProxy. Nous proposons deux constructions compatibles avec les
paiements sans contact EMV, offrant les propriétés de confidentialité PAn,MAn, Unlnk,
avec des garanties prouvables, tout en respectant les lois et régulations (SCA/PSD2,
AML, etc.).

Dans notre première construction, appelée PrivBank et illustrée schématiquement
par la Figure A.7a, une banque émettrice respectueuse de la vie privée fournit les pro-
priétés d’anonymat PAn et Unlnk à ses clients, en partenariat avec une entité Payment
Proxy qui gère les paiements et garantie la propriété d’anonymat MAn.

Dans la seconde construction, appelée PrivProxy et illustrée schématiquement par la
Figure A.7b, le rôle de la banque est remplacé par une entité Payment Proxy respectueux
du pseudonymat, qui offre les propriétés d’anonymat PAn,MAn et Unlnk, tandis que les
payeurs choisissent indépendamment leur banque. Cependant les propriétés d’anonymat
de ce système sont moins fortes.

Ces constructions composent des paiements standards, i.e., basé sur EMV et non
privés, ou leurs composants, afin d’obtenir un paiement EMV mobile sans contact,
anonyme (avec PAn, MAn, Unlnk face à une partie des entités). Nous réalisons cela
grâce à l’utilisation de proxys, sans modifier les éléments EMV des paiements originaux
ni ajouter de cryptographie. Ainsi, la cryptographie utilisée dans nos schémas et les
blocs de construction EMV sont traités comme des boîtes noires héritées d’EMV. Nos

Appendix A. Résumé Long 185

preuves pour les propriétés d’anonymats PAn,MAn, Unlnk découlent de la construction
par un intermédiaire, indépendamment des détails cryptographiques.

Afin d’étudier et d’apporter des garanties de sécurité pour les constructions proposés,
nous avons introduit un formalisme qui a permis de raisonner formellement sur nos
propositions PrivBank et PrivProxy. Nous avons aussi formalisé les notions d’anonymat
PAn, Unlnk etMAn. Ce formalisme a été conçu pour être accessible à un large public et
se basse sur des relations logiques. Par ailleurs, nous avons également fourni un modèle
cryptographique traditionnel, basé sur des experiences de sécurité, et une analyse de nos
schémas. Nous avons démontré que les définitions simplifiées que nous avons présentés
capturent pleinement les définitions cryptographiques.

A.4 Conclusion

Dans cette thèse, nous avons exploré les propriétés des signatures numériques et le pro-
tocole de paiement EMV pour améliorer l’anonymat dans des cas spécifiques. Nous nous
sommes concentrés sur des formes partielles d’anonymat pour des raisons pratiques. Par
exemple, pour les signatures en anneaux liables, nous avons étudié la non-divulgation
de l’identité du signataire tout en permettant le lien entre ses signatures. Nous avons
également proposé des signature délégables et assainissable k-fois parfaitement traçable
pour préserver l’anonymat tout en permettant une responsabilité en cas d’abus. En ce
qui concerne le protocole EMV, nous avons démontré que des formes faibles d’anonymat
peuvent être respectées malgré les contraintes réglementaires. L’anonymat, dans ce con-
texte, dépend davantage des métadonnées que de la cryptographie. Nous pouvons con-
clure que l’amélioration des fonctionnalités de confidentialité tout en maintenant la con-
formité aux régulations est un défi, mais que le développement d’outils pour l’anonymat
doit être poursuivie pour garantir une meilleure protection de la vie privée.

	Introduction
	Cryptology
	Authentication and Anonymity
	Contributions of this Thesis
	Other Published Work

	Technical Background
	Notations
	Computational Background
	Algorithms Properties
	Provable Security

	Mathematical Background
	Cryptographic Background
	Cryptographic Assumptions
	Cryptographic Models

	Cryptographic Building Blocks

	Modeling Anonymity of Linkable Ring Signatures
	Introduction to the Chapter Content
	Review of Linkable Ring Signatures Definitions
	Anonymity in the Honest-Key Model
	Anonymity of Linkable Ring Signatures
	Insecurity of the One-time Anonymity
	Toy Counter-example Scheme.
	Model of k-Times Full Traceable Ring Signatures
	Concrete Counter-example

	Review of our Counter-examples
	Literature Review
	Relationship Between the Properties
	Conclusion of the Chapter

	k-Times Full Traceable Proxy and Sanitizable Signatures
	Introduction to the Chapter Content
	Zero-knowledge Proofs as Building Blocks
	The Two Zero-knowledge Proofs
	An Example for the Proof <k
	Instantiation of the Proof

	k-Times Anonymous Proxy Signatures
	Security Model for k-Times Anonymous Proxy Signatures
	Our k-Times Anonymous Proxy Signature Scheme

	k-Times Anonymous Sanitizable Signatures
	Security Model for k-Times Anonymous Sanitizable Signatures
	k-Times Anonymous Sanitizable Signature Scheme

	Design Variants
	Conclusion of the Chapter

	EMV-compliant and Usable Anonymity for Contactless Payments
	Introduction
	Acronyms
	Related Work
	A Preamble to Our Solution
	Payments-Privacy Notions
	Entities Identification in EMV
	Our Payment-Privacy Notions

	Traditional Payment Systems and Their Privacy
	Our Main EMV Ingredients
	From Card Issuing to Payment Processing
	Mobile Payments: Tokenisation and Transaction Data

	Sample Real Card Traces
	Sample Mobile Application Traces
	Anonymous EMV In-Shop Payments
	Construction PrivBank
	Law Abiding and Norm Compliance Aspects of PrivBank
	Construction PrivProxy
	Law Abiding and Norm Compliance Aspects of PrivProxy
	Comparing PrivBank and PrivProxy

	Formal Treatment of Anonymity in PrivBank and PrivProxy
	Execution Model
	EMV-L: A Language for EMV Protocols
	Threat Model
	Formalising Payments' Privacy
	Provable Anonymity in PrivBank and PrivProxy

	Proofs for Our Main Results in Section 5.11.5
	Game Based Formalisation
	Conclusion of the Chapter

	Conclusion
	Résumé Long
	Modèle d'Anonymat pour les Signature d'Anneaux Liables
	Signature Délégables et Assainissable k-fois parfaitement traçable
	Anonymat utilisable en conformité avec la norme EMV pour les paiements sans contact
	Conclusion

