
Abstract. Private permissioned blockchains are becoming gradually more sought-after. Such systems
are reachable by authorized users, and tend to be completely transparent to whoever interacts with the
blockchain. In this paper, we mitigate the latter. Authorized users can now stay unlinked to the trans-
action they propose in the blockchain while being authenticated before being allowed to interact. As a
first contribution, we developed a consensus algorithm for private permissioned blockchains based on
Hyperledger Fabric and the Practical Byzantine Fault Tolerance consensus. Building on this blockchain,
five additional variations achieving various client-wise privacy preserving levels are proposed. These dif-
ferent protocols allow for different use cases and levels of privacy control and sometimes its revocation
by an authority. All our protocols guarantee the unlinkability of transactions to their issuers achiev-
ing anonymity or pseudonymity. Miners can also inherit some of the above privacy preserving setting.
Naturally, we maintain liveness and safety of the system and its data.

Keywords: Privacy, Byzantine Fault, Blockchain, Signature.

1 Introduction

Blockchains are replicated synchronized databases shared across a trustless network. They started with
Bitcoin’s Nakamoto consensus style [31], meaning having miners compete to create the next block with a
longest-chain-win rule1. Anonymity in Bitcoin can be quite contentious [35], which led to more anonymous
open blockchains such as Zcash [25] and Monero (based on Cryptonote [40]). Bitcoin was, and to some extent
still is, open to all users and all miners. However, blockchains are undergoing an evolutionary shift towards
private and permissioned architecture, and implementing BFT consensus instead of Nakamoto consensus2.
This shift mainly aims to regulate access to sensitive information and to gain in scalability.

Distributed ledger privacy. Danezis and Gürses [16] divided privacy into confidentiality and control (over
personal data). With distributed ledgers, control level depends on the openness and configuration of the
ledger. Since control includes the right to erasure, and in a distributed setting there is no way to make
sure that some data has indeed been deleted, then control is somewhat out of our reach. Confidentiality
refers to the difficulty of extracting knowledge from data. With blockchains, the data is an operation, and
it must have a specified format and must meet certain requirements. These requirements usually include
a signature by its issuer. The two relevant ends of the identity confidentiality spectrum are pseudonymity
and anonymity. Pseudonymity is having entities identified by pseudonyms, but not necessarily being able to
link the pseudonyms to the identities behind them. A good example of pseudonymity is Bitcoin [31], where
users are identified by their public keys, and it is generally infeasible to trace the public key to a real world
identity. Note that in bitcoin a user can create as many pseudonyms as they wish. Anonymity, on another
hand, is when it is infeasible to link anything. One such example is Monero’s usage of ring signatures [36] in
order to anonymize the sender’s identity that is blended with a set of other identities.

Private (respectively permissioned) distributed ledgers must naturally restrict their usage (respectively
their mining) to legitimate entities only. These restrictions seem, at first, incompatible with privacy, giving
rise to a dilemma: how to restrict private (respectively permissioned) distributed ledgers usage (respectively
mining) while ensuring user (respectively miner) privacy? Note that this apparent dilemma is applicable to
virtually any type of private or permissioned distributed ledger, whether it be relying on Proof-of-Work,
Proof-of-Stake, Byzantine Fault Tolerance (BFT) protocols or any other type of consensus mechanism.

Contributions. In this article, we propose a new BFT consensus blockchain, SignCons, modelled after Hyper-
ledger Fabric [1,18], with several constructions to gain in privacy. The blockchain itself makes a distinction
between two categories of miners: endorsers who verify transactions, and orderers who order valid trans-
actions in blocks. This grants us an execute-order-validate architecture. Orderers reach consensus using a

1 Length here does not necessarily mean number of blocks (as it did it at Bitcoin’s conception). Length can for example
denote difficulty in the current Bitcoin protocol, or weight in Ethereum’s GHOST algorithm implementation [38].

2 Note that some intermediate options exist, such as Proof-of-Stake blockchain, which is in the Nakamoto consensus
style as well as being public and permissioned.

1

modified version of the Practical Fault Tolerance [13], yielding safety and liveness under very moderate
assumptions. As for our main contributions, firstly we give three similar yet distinct ways to acquire user
anonymity, then we give another two ways to acquire user pseudonymity, and finally we propose two construc-
tions to gain endorser and/or orderer pseudonymity. Constructions aimed at users, endorsers and orderers
are composable. All constructions (anonymous and pseudonymous) share a birthplace, however they differ
in their applications and use cases. The first of the user-related anonymous constructions is BlindCons. It
relies on having an authority, and uses blind signatures. The user authenticates themself to the authority,
and if the user is part of the corresponding authorized set, then the authority blind signs their operation.
And the data must be deemed valid by the miners if it is signed by the authority. The second construction is
GroupCons, and it also relies on an authority but uses group signatures. The authority plays the role of the
group manager, with the set of authorized users forming the signing group. The operation is group-signed
by its issuer. Group-signed data must be deemed valid by miners. In this scenario, the authority can revoke
the anonymity of the issuer. The third construction, RingCons does not rely on an authority, and uses ring
signatures. The operation is ring-signed by its issuer, forming a ring with as many of the authorized users
as the issuer wants. The ring must not include any user not member of the authorized set. Ring-signed
operations in this manner must be deemed valid by miners. As for the two pseudonymous constructions for
users, LinkGroupCons and LinkRingCons, they require respectively linkable group signatures and linkable ring
signatures. Similarly, endorsers benefit of EndGroupCons and EndRingCons, while orderers have OrdGroupCons
and OrdRingCons. Furthermore, the underlying blockchain, thanks to the PBFT structure, guarantees safety
and liveness with whatever overlaid privacy construction. The different privacy constructions have different
efficiencies, although all can be implemented without much added overhead computation (compared to the
underlying blockchain). For a recap of the blockchain’s properties refer to Tables 1 and 2. Note that these
constructions could very easily be applied on top of any blockchain without inducing much latency into the
system, though we do it here for a Hyperledger-like blockchain for which we prove the privacy properties

Related Work. Most known privacy works on blockchains aim at anonymizing cryptocurrencies. Monero
(built on Cryptonote [40]) relies on ring signatures [5] and ring confidential transactions [33,39]. Zerocoin [30]
introduced zero knowledge proofs (ZKPs) of set membership (which are quite onerous). Zcash [25] (resembling
Zerocoin) relies on zk-SNARKs [3] which are much more effficient.

Blockchain privacy has been addressed quite extensively, but rarely has the identity confidentiality of
private or permissioned distributed ledgers been addressed. One way to solve the issue is by using identity
providers [23]: one permissions issuer and one or more permissions verifiers. The permissions issuer is in
charge of verifying a user’s identity and issuing them keying material; while the permissions verifier is in
charge of verifying that an entity has valid keying material and issuing them a special key allowing them
to transact. For the latter verification, the verifier permissions need not know the user’s identity, but only
verify the keying material.

Another way to ensure privacy on a private network uses puzzle-solving mechanism [15] and is dedicated
to IoT networks. They propose to have two blockchains: a public one and a private one. To be allowed
to transact on the private chain, users must solve a puzzle on the public chain inside a specific time-lapse.
Legitimate users should be able to solve the puzzle within the time-lapse while non-legitimate users should not
be able to do it. Other papers consider blockchain privacy from a network level perspective [24]. Some propose
privacy-preserving private cryptocurrencies [26]. Even a dedicated survey of privacy-preserving solutions for
blockchains [6] barely mentions privacy on private or permissioned blockchains. It mentions a blockchain
architecture relying on blind signature that achieves trustless privacy-preserving reputation system [37].

Outline. In Section 2, we start by going over Fabric, PBFT and the cryptographic tools. In Section 3 we
showcase our blockchain SignCons, before outlining the many privacy preserving constructions in Section 4.
Subsequently we discuss the security and privacy properties in Section 5, the complexities in Section 6 and
we conclude in Section 7.

2

Revoke Authority Privacy
User No Inactive Level

BlindCons Ano.

GroupCons Ano.

RingCons Ano.

LinkGroupCons Pseu.

LinkRingCons Pseu.

Table 1: Users’ Privacy Preserving Protocols.
Ano. : Anonymous; Pseu. : Pseudonymous.

Revoke Authority Privacy
Endorser Not Needed Level

(Ord) EndGroupCons Pseu.

(Ord) EndRingCons Pseu.

Table 2: Orderers’ and Endorsers’ Protocols.

2 Background

SignCons uses an instantiation of Fabric and a PBFT consensus.

– Practical Byzantine Fault Tolerance (PBFT) [13] which is a Replicated State Machine protocol. For f
faulty (byzantine) nodes, it permits a network of 3f + 1 nodes to reach consensus.

– Hyperledger Fabric [1,18] is a blockchain framework. Is is a highly tweakable permissioned blockchain
framework.

2.1 Practical Byzantine Fault Tolerance (PBFT)

Practical Byzantine Fault Tolerance (PBFT) [13] is designed for systems of at least 3f +1 nodes where f is
the number of faulty (byzantine) nodes. The protocol allows for a very powerful adversary that can coordinate
faulty nodes, delay communication, or delay correct nodes. However, it is assumed that the adversary cannot
delay correct nodes indefinitely. The adversary is also assumed to be a Probabilistic Polynomial Time (PPT)
algorithm. The nodes are called replicas and form the set R. Each replica is identified using an integer in
{0, 1, . . . , |R|− 1}. One replica is the primary, and the rest are backups. A view is a configuration of replicas
that determines the primary. For a view number v, the primary is p = v mod |R|. The algorithm comprises
three stages: pre-prepare, prepare and commit. When a client c wishes to do an operation on the State Machine
Replication [27], they send m = (REQUEST, o, t, c)σc

to who the client c believes is the primary. In that
message m, o is the operation and t is the timestamp. If the client does not receive replies soon enough, it
broadcasts the request to all replicas: this takes care of the client’s possible erroneous view and the primary’s
possible faultiness. Upon receiving a request, the primary p multicast a pre-prepare message to all replicas.
That pre-prepare message is ((PRE−PREPARE, v, n, d)σp

,m) where v is the current view, n is a sequence
number assigned by p and d is m’s digest. When a backup receives the pre-prepare message, it checks if the
signatures in the request and the pre-prepare message are correct and if d is m’s digest; it checks if it is in
v; it checks if it has not accepted a pre-prepare message for view v with the same sequence number n and a
different digest d; and it checks if the sequence number h < n < H with h,H low and high watermarks. If the
pre-prepare message passes all thoses tests, the backup i accepts it and multicast (PREPARE, v, n, d, i)σi

.
Otherwise, it does nothing. Upon receiving a prepare message, a replica accepts it and appends it to its log
if the signatures check out and if d corresponds to its view and if h < n < H. When replica i has accepted
2f nonconflicting prepare messages, it then multicast a commit message (COMMIT, v, n,D(m), i)σi where
D(m) is the digest of m. A replica accepts and appends a commit message to its log if the signature, the
view number check out and if h < n < H. As soon as a replica i accepted f + 1 nonconflicting commit
messages, it executes the operation o on its state machine replication and sends a reply message to the client
(REPLY, v, t, c, i, r)σi

where r is the result of executing o.

3

View Change Each replica has a timer that counts down to zero. It runs when the replica received a valid
request and has not executed it, and pauses otherwise. When the countdown reaches zero, the replica stops
accepting new messages and initiates a view change. This is done by multicasting a view change message.
When the primary of view v+1 has received more than 2f , it multicasts a new view message, and undertakes
its role as primary.

Properties Some details have been purposely omitted. We only want to encapsulate the gist of PBFT, since
we use a modified version of it for consensus. PBFT relies on the assumption that for |R| replicas, at most⌊
|R|−1

3

⌋
are faulty and the rather weak syncrony assumption that basically the delay time of communication

of honest nodes is less than a given upper bound. With this, it is shown in [12] that PBFT achieves safety
and liveness.

2.2 Hyperledger Fabric

Hyperledger Fabric [1,18] is a permissioned blockchain framework. It divides miners into two sets: on the one
hand they have endorsers who check transactions, and on the other they have orderers who order transactions
into blocks. When a client wishes to transact on the blockchain, the client sends the transaction to a set of
endorsers who are accredited to endorse it. If deemed valid, the endorsers sign it as a sign of endorsement
and send it back to the client. When the client collects enough endorsements, the client sends them to the
orderers who then work on incorporating said transaction in a block. The structure of Fabric is modulable,
in the sense that it is possible to define different endorsement policies for different types of transactions, and
it is possible to choose whatever consensus mechanism for the orderers. For example, for a given type of
transaction, there must be unanimous endorsement of a given transaction for it to be considered valid; and
the orderers compete doing a Proof-of-Work for creating the next block. Fabric does not follow the regular
order-execute, but rather the execute-order-validate. Order-execute blockchains have many limitations, such
as sequential execution on all peers, non-deterministic code, and confidentiality of execution. Fabric does
provide some privacy, for instance through the use of different channels. Indeed, users only have access to
their subset of channels. Another facet of privacy is through the execute-order-validate architecture and the
endorsement policies. Only a subset of endorsers have to execute the transaction, and only the state after
execution is ultimately written into the blockchain, so those who have access to the channel can see the
resulting state but cannot necessarily know what the operation was. However, endorsers have full knowledge
of users and their operations.

2.3 Cryptographic Tools

Signatures schemes. Here we present digital signatures which are at the foundation of our constructions.
A signature scheme guaranties integrity, authentication and non-repudiation of digital transmissions. A
Signature schemes S is a tuple of algorithms composed of a key generation algorithm KeyGen(1K) :] returning
a key pair (pk, sk). The latest is used to sign through algorithm Sign(sk,m) : producing a signature σ on a
message m. This signature being verified by Verif(pk,m, σ) : returning a bit b. It must achieve EUF-CMA
(Existential Unforgeability under Chosen Message Attack) [34].

Our transformations are based on three extensions of digital signatures: blind signatures [34] BS =
(KeyGenblind,BlindSign⟨·, ·⟩,VerifyBS), producing signatures to someone else on messages unknown by the
signer. Group signatures [14] GS = (KeyGengroup,GroupSign,Verifygroup,OpenGroupSign) where users can out-
put signatures, where the said signature is not linkable to them but to the group. This works under supervision
of a group authority. Ring signatures [36] RS = (KeyGenring,RingSign,Verifyring) work similarly, but this time
on a decentralized base. Refinements of group and ring signatures called linkable group signatures and link-
able ring signatures allow achieving pseudonymity instead of anonymity. The formers rely on an additional
Link algorithm to provide a link between the signatures. Here give their security properties:
Blind Signature. EUF-CMA and blindness
Ring Signature. EUF-CMA and anonymity
Group Signature. EUF-CMA, anonymity and traceability.

4

Algorithm 1 TxProp(obc,Payload, skcbc)

1 (verDep, stateUpdate)←− EXEC(obc,Payload)
2 transprop ← pkcbc ||Payload||verDep||stateUpdate
3 σ ← Sign(transprop, skcbc)
4 return (transprop, σ)

Authentication Channel. These processes mainly rely on digital signature schemes. It can also be achieved
through other means among which we can cite message authentication codes. Authenticated channel allows
authenticated communications with a third party. Public key infrastructure or certificates are among the
most used solutions. They do not directly address confidentiality of the transmitted information, but most
protocols guaranteeing authentications also address this issue through a key exchange mechanism at the
beginning of the communication. This is not a hypothesis we need to make here in order to guarantee the
security of our blockchains. In our protocols, we assume that the administrator of the blockchain (when it
exists) has knowledge of all the entities’ identities that are allowed to transact on or mine the blockchain. And
when a key is used to interact through our protocol, it should have been registered before by the authority
after potential verifications. The authority’s public key pkauth is considered as a global parameter and is not
stated into the inputs of the algorithms.

While using blind signatures any peer has to authenticate themselves before the authority blind signs
their message. In the upcoming algorithms we put together both the authentication process and the blind
signature protocol and call it BlindSign. This aggregation is denoted by BlindSign⟨U(M, pkS , skU),S(skS)⟩
for two polynomial time algorithms U and S.

3 Our Blockchain SignCons

Our generic SignCons blockchain is highly inspired by Hyperledger Fabric’s modular blockchain frame-
work [1,18]. It comprises: (1) a finite set Clients of authorized entities, (2) a finite set Miners of authorized
miners divided into two categories: (2a) a set Endor of entities who endorse transactions of cardinal TotEnd
and (2b) a set Order of entities who achieve consensus of cardinality TotOrd. The process is outlined in
Figure 1 and goes as follows:
1. Transaction Proposal. The user signs their operation and sends it to the endorsers.
2. Transaction Endorsement. Each endorser peer verifies the transaction, and if valid, signs it (as a sign

of endorsement) and sends it back to the user.
3. Broadcasting to Consensus. The client collects the endorsements and when enough are received,

sends them to the orderers.
4. Block Proposal. The orderer leader, upon receiving enough endorsed transactions, creates a block and

proposes it to the other orderers.
5. Block Preparation . The other orderers, upon receiving the block from the leader, check it, and validate

it by signing and broadcasting it to the other orderers.
6. Appending Block to Blockchain. Finally, when each orderer receives more than 2TotOrd

3 block valida-
tions, then each orderer appends the new block to their local version of the blockchain, and broadcasts
the new block to users.

Each step is detailed into a corresponding algorithm. Steps 1, 2 and 3 are about gathering enough endorse-
ments, and steps 3, 4, 5 and 6 are about incorporating the transaction in a block and reaching consensus:
this is done in a very similar way to how PBFT works. We go thoroughly through each step of our protocol:

Transaction Proposal. User client cbc of public key pkbc ∈ Clients and secret key skbc applies Algorithm 1
where obc denotes the operation with payload Payload. EXEC takes in the operation and its payload, simulates
the execution, outputs verDep and stateUpdate that refer respectively to the set of variables invoked by the
operation, and to the result of the simulation (these are later used to prevent respectively double spending
and non-deterministic execution). At the end of Algorithm 1, cbc finds themself with transprop and its signature
σ, which they send to the endorsement peers.

5

T
im

el
in
e

TxProp (1)

Client

Endorser 1

Endorser n

2

2

TxEndors (2)

Orderers Leader

3

3

TxComOrd (4)

Orderer 1 Orderer m

TxBrodOrd (3)

4

Prepare (5)

Orderer Leader Orderer 1 Orderer m

BlockCom (6)

5

Orderer Leader Orderer 1 Orderer m

6

Write in local blockchains

NewBlock

Fig. 1: Transaction Flow of our BFT Consensus.

Algorithm 2 TxEndors(transprop, σ, SecPolicies, pkcbc , skep)

1 if Verifypkcbc
(transprop, σ) = 0 or pkcbc ̸∈ Clients :

2 return ⊥
3 (verDepver, stateUpdatever)

← EXEC(transprop.obc, transprop.Payload)
4 if transprop.verDep ̸= verDepver or SecPolicies = invalid or transprop.stateUpdate ̸= stateUpdatever :
5 return ⊥
6 σver ← Signskep(transprop)
7 return σver

Transaction Endorsement. Each endorsement peer epbc of public key pkep ∈ Endor and of secret key skep,
upon receiving the transaction proposal transprop and its signature σ, initiates Algorithm 2. The endorsement
peer simulates the execution of the operation. If it yields different outputs as the one sent over (by checking
verDep and stateUpdate), the algorithm outputs ⊥. SecPolicies is an algorithm returning valid or invalid based
on the blockchain endorsement policy and the current state of knowledge of the entity. If all checks out, the
algorithm outputs a signature of the operation. Known optimization are possible using aggregation [10] or
threshold [17] signatures to fasten the endorsement.

Broadcasting to Consensus. As user client cbc collects a new endorsement of their operation, it applies
Algorithm 3 until it has enough endorsements to actually send them to the orderers as a message blob =
(transprop,{σver,i}1≤i≤l).

Block Proposal. The orderer leader, using Algorithm 4, verifies the endorsements and checks SecPolicies: here
this algorithm behaves such that it verifies that the verDep of blob.transprop does not collide with the verDep of
a transaction already added to the current block (this prevents any potential conflict among transactions). If
all the verifications check out, then either the leader creates a block or waits for the next endorsed transaction.

Preparing Block. Upon receiving a block proposal, the orderer verifies the validity of the block proposed by
the leader, see Algorithm 5. Sanity checks are conducted: verifying the authenticity of the newly proposed

6

Algorithm 3 TxBrodOrd(transprop, {σver,i, pki}1≤i≤l)

1 endorsements←⊥
2 for all 1 ≤ i ≤ k do
3 if Verifypki(transprop, σver,i) = 1 and pkσ ∈ Endor :
4 endorsements← endorsements ∪ {σver,i}
5 if |endorsements| ≥ ⌊TotEnd

2
⌋+ 1:

6 blob← (transprop, endorsements)
7 return blob
8 return ⊥

Algorithm 4 TxComOrd(NewBlock, blob,SecPolicies, {pkep,i}1≤i≤TotEnd, skordlead
)

1 σ ← blob.transprop.σ
2 counter = 0
3 for all σ ∈ blob.endorsements and pkep,i associated and not already used do
4 if Verifypkσ (transprop, σ) = 1 and pkep,i ∈ Endor :
5 counter = counter + 1
6 if counter < ⌊TotEnd

2
⌋+ 1 or SecPolicies = invalid :

7 return ⊥
8 else if NewBlock.length = Blocksize :
9 σordlead ← Signskordlead

(NewBlock||SecPolicies)
10 return NewBlock||σordlead

11 else
12 return NewBlock← NewBlock||blob

block, checking the validity of the transactions’ approvals (i.e., the signatures of the endorsers) and if the
absolute majority of endorsement is reached. If none of the blockchain policies have been violated, the block
is approved by broadcasting (NewBlock, σord).

Add Block to Blockchain. When enough valid prepare messages (NewBlock, σord) have been received by an
orderer from its peers, it commits the changes to its local version of the blockchain. It sends a message
approval to the group as detailed in Algorithm 6.

The orderers’ consensus is highly inspired from PBFT [13], to which we have added endorsers and modified
the messages’ contents. The orderers mimic the protocol described in [13] for orderer leader’s update in order
to ensure safety and liveness. Note that what we call leader, they call primary. To quickly summarize the
view change: if the leader is inactive or misbehaving, then another orderer can initiate a view change; it
stops confirming new blocks, and proposes to the set of orderers to change leaders (as per a predetermined
schedule). When enough of orderers reply positively, the view change happens.

Algorithm 5 Prepare(Blocksize,NewBlock, σordlead
,SecPolicies, {pkep,i}1≤i≤TotEnd, skord)

1 if Verifypkleader
(NewBlock||SecPolicies, σordlead) ̸= 1:

2 return ⊥
3 Set counter = 0 and parse NewBlock = {blobi}1≤i≤Blocksize

4 for all 1 ≤ i ≤ Blocksize do
5 for all σ ∈ blobi.endorsements and pkep,i associated and not already used do
6 if Verifypkσ (blobi.transprop,σ) = 1 and pkep,i ∈ Endor :
7 counter = counter + 1
8 if (SecPolicies = invalid) :
9 return ⊥

10 if counter < ⌊TotEnd
2
⌋+ 1:

11 return ⊥
12 σord ← Signskord(NewBlock||SecPolicies)
13 return (NewBlock, σord)

7

Algorithm 6 BlockCom(NewBlock, {pkordi
, σordi}1≤i≤l,SecPolicies, skord)

1 if NewBlock.length ̸= Blocksize or l ≤ ⌊TotOrd
3
⌋ :

2 return ⊥
3 for all 1 ≤ i ≤ l do
4 if Verifypkordi

(NewBlock||SecPolicies, σordi) ̸= 1:

5 return ⊥
6 σBlockCom ← Signskord(NewBlock)
7 return NewBlock||σBlockCom

Algorithm 7 TxProp(obc,Payload, skcbc)

1 (verDep, stateUpdate)←− EXEC(obc,Payload)

2 crandbc
$←− N

3 transprop ← crandbc||obc||Payload||verDep||stateUpdate
4 σ ← BlindSign⟨U(transprop, pkauth, skcbc),A(skauth)⟩
5 return (transprop, σ)

Network Model We assume an asynchronous distributed system where nodes are connected by a network
who may fail to deliver messages, delay them, duplicate them or deliver them out of order. We allow for the
adversary to coordinate faulty nodes, delay communication, or delay correct nodes but not indefinitely.

4 Privacy Preserving Blockchains

In Section 3 we introduced a blockchain based on PBFT and requiring a signature scheme. Our construction
can be extended in order to allow multiples privacy preserving settings. We can bring anonymity for the issuers
and pseudonymity for issuers, endorsers and/or orderers through the use of privacy preserving signatures.
In particular, we use blind signatures, group signatures and ring signatures. All these privacy preserving
settings can be achieved independently for any of the defined roles. In Section 5, we show that composing
any of these settings gives a secure blockchain.

4.1 User’s Anonymity

Based on Blind Signatures Considering the permissioned BFT-based consensus protocol introduced in Sec-
tion 3, users sign their transactions with own key. This causes a strong linkability issue between the users
and the transactions, affecting the privacy level of the blockchain network. In order to overcome this issue,
we propose to hide the users’ identities by using blind signatures with a trusted entity. Thus, the protocol
follows the following steps:

1. The client cbc authenticates themselves with their registered keys (pkcbc , skcbc) to one of the membership
authorities A,

2. Once the authentication succeeds (i.e., pkcbc ∈ Clients), the client initiates a blind signature process with
A,

3. The client derives a signature σ for its transaction request,
4. We apply the consensus protocol introduced in Section 2.1 on the client’s blindly signed transaction. The

blind signature authorize the client to transact on the blockchain.

Aiming to keep the same structure as the original construction, we replace the user’s ID with a random
value crand. Now, to address the issue related to the digital signature, linking the client to a transaction,
we replace it with a blind signature scheme. TxProp defined in Algorithm 7 is the modified version of the
original TxProp of Algorithm 1. To maintain consistency and liveness, we keep the rest of the transactional
flow unchanged. However, some steps are modified to accept the blind signature scheme to authenticate the
clients and the peers. This variant of SignCons is called BlindCons.

8

Based on Group Signatures In the previously presented transaction mechanism, every transaction must first
go through the authority to be blind signed before anything else can be done with it. Using a group signature
there is a way to obtain a decentralized transaction proposal mechanism. Let GS = (KeyGengroup,GroupSign,
Verifygroup,OpenGroupSign) be a group signature scheme with its usual security requirements (outlined in
Section 2.3), this next variant of our scheme enables any registered user to sign hiding amongst the group
of authorized users. We assume that authorized users are registered with the authority and that a public
record of all of them is available. Hence, all keys are generated through a protocol with the authority and
registered in the Clients record.

We call GroupCons the variant of SignCons adopting group signatures. This version is instantiated by
replacing the signature in Algorithm 1 (as well as the signature verifications) with a group signature where
the group consists of all the people having rights to write in the blockchain. By using group signatures
instead of blind signatures, we can make the protocol less relying on the authority while simultaneously
giving the authority power to reveal a message’s signer if need be. This revealing can be done using the
OpenGroupSign algorithm. Compared to the blind signature construction, group signatures also limit the
computational load on the authority as it no longer needs to execute its part of the blind signature protocol
for each new transaction.

Based on Ring Signatures This version is instantiated by replacing the signatures in Algorithm 1 (as well as
the signature’s verifications in Algorithm 2) with a ring signature where the ring consists of (potentially all
the) authorized users. We call this variant RingCons. We thus come up with a private blockchain architecture
with no authority where transactions are unlinkable to their issuers. Let U = u1, . . . , un be the set of
authorized users. Suppose u1 wants to make a transaction. In the regular SignCons protocol, u1 would
sign its transaction using a regular signature protocol (Algorithm 1), and then send it for endorsement
(Algorithm 2). To anonymize the user’s identity we change the type of signature: u1 signs the transaction
using a ring signature in the name of U (or in the name of a subset of U if U is too big). That way the
endorsers verifies the ring signature in Algorithm 2, and can thus know that it was indeed someone of S that
produced the signature without being able to know which member it was (since it is a ring signature). The
rest of the protocol remains unchanged.

4.2 User’s Pseudonymity

Let GSlink be a linkable group signature and let RSlink be a linkable ring signature. We keep on relying on the
same idea and operate these two types of signatures. In this modified version of our blockchain, the signature
in the anonymized version of TxProp (Algorithm 1) is replaced by one of these linkable signatures, again
the verification in Algorithm 2 is modified adequately. We call the version using linkable group signature
LinkRingCons and the other version using linkable ring signature LinkGroupCons. These two primitives retain
the properties of being unlinkable to the signature issuer, however they allow for linking the transaction
to other transactions signed by the same secret key using the Link algorithm (see Section 2.3). As such,
signers remain unknown, but one can track all the transactions created by the same entity. We emphasize in
Section 5 why this achieves pseudonymity, it is straight forward to see that it does not achieve anonymity due
to the linkability of the signatures. LinkGroupCons being based on a group signature requires an authority to
be implemented, and gives it the power to revoke the privacy of the signer. On the other hand, LinkRingCons
requires no authority and naturally is not revocable.

4.3 Endorser and Orderer Pseudonymity

In the current scheme, the endorsers and orderers are respectively linked to the transactions they endorse
and to the blocks they commit. Enabling endorsers and orderers to use group or ring signature would not
be fruitful, since it enables each entity to produce an unlimited number of different signatures without
being detected, which is problematic since we need to count the number of approvals. Using linkable group
signatures and linkable ring signatures does help us keep the endorsers’ and the orderers’ privacy, while at the
same time restricting just enough of the excessive anonymity that is brought by group and ring signatures.

9

Thus, taking the same perspective on this as in Section 4.2, we can use linkable group signatures and link-
able ring signatures in Algorithm 2 for the endorsers and call it respectively EndGroupCons and EndRingCons.
The same modification is possible in Algorithms 5 and 6 for orderers, we call these protocols OrdGroupCons
and OrdRingCons. Note that an extra step needs to be added after verifying the signature (with Verifygroup
and Verifyring): the verifier must also check if this signature can be linked to another signature of the same
content (transaction or block) before taking it into account. For endorsers’ pseudonymity, this extra veri-
fication is done in Algorithms 3 (executed by the orderer leader) and 4 (executed by the orderers). As for
orderers, this is done in Algorithm 6. Note also that the orderer leader cannot use a pseudonym with these
constructions, since the other orderer peers must be able to check that the leader’s status and that this
allows block proposal.

We claim, and later prove (in Section 5), that it is impossible to link the endorsers (respectively orderers)
to their transaction endorsement (respectively block generation), while concurrently not allowing them to
produce multiple acceptable signatures for the same transaction endorsement (respectively block generation).

All the presented layers of constructions maintain a Byzantine Fault Tolerant blockchain. They all allow
some privacy for entities of various roles. In fact, it is possible to combine any construction for users (from
Sections 4.1 and 4.2) with any of the constructions for endorsers and orderers from the current Section.

5 Protocol Properties

Under two hypotheses, our constructions satisfy Safety, Liveness, Unforgeability of a block and some privacy
preserving settings, namely, Anonymity or Pseudonymity. The latter can be obtained for any of the three
existing roles: issuers, endorsers and orderers and in any possible settings. For example, it is proven that
composing anonymity of the clients with pseudonymity for the endorsers is still secure. Safety and Liveness are
both inherited from PBFT, leading to the first hypothesis being that the adversary cannot delay correct nodes
indefinitely. We model and prove the other security properties using game based formalism and reductions.
In general, we consider a security experiment where a PPT challenger C interacts with a PPT adversary
A. The adversary simulates the behaviour of a malicious entity, while the challenger runs the rest of the
system honestly. Based on these, we show that the full security of our protocols also depends on the secure
primitives used for instantiating it. Any secure signature could instantiate ours blockchains.

Safety A protocol is said to be consistent if it ensures that a transaction generated by a valid user stays
immutable in the blockchain. Our blockchains are based on PBFT which leads a consensus for each of the
deciding steps of our blockchain.

Definition 1 (Safety). A protocol BC is T -safe if a transaction tx generated by an honest client ccb to
execute a valid operation obc, is confirmed and stays immutable in the blockchain after T -round of new
blocks.

Theorem 1. Our new protocols based on PBFT are 1-safe if at most ⌊n−1
3 ⌋ out of total n orderer peers are

malicious.

Proof (Proof sketch). The described protocols are BFT based consensus. Safety is achieved by agreeing with
the validity of the transaction through a byzantine agreement process. Hence, for a transaction tx that has
reached a majority of valid endorsement for an operation obc, the probability of not settling it in a new block
and having forks in the chain is neglected if we have at most ⌊n−1

3 ⌋ malicious orderers, out of total n orderers
as it has been shown in [11,13]. It is 1-consistent because we do not have any fork; hence only one block is
needed to wait to have a transaction validated.

Liveness The liveness property means that a consensus protocol ensures that if an honest client submits a
valid transaction, a new block is later appended to the chain with the transaction in it. Hence, the protocol
must ensure that the blockchain grows if valid clients generate valid transactions.

Definition 2 (Liveness). A consensus protocol BC ensures liveness for a blockchain C if BC ensures that
after a period of time t, the new version of the blockchain C ′ verifies C ′ > C, if a valid client cibc has
broadcasted a valid transaction txi during the time t.

10

Theorem 2. Our protocols satisfy liveness when at most ⌊TotEnd−1
2 ⌋ out of a total of TotEnd endorsers and

⌊TotOrd−1
3 ⌋ out of total TotOrd orderers are malicious.

Proof (Proof sketch). Our protocols are BFT-based consensus protocol. Thus, liveness is achieved if after the
transaction endorsement process, the ordering services propose a new block NewBlock with the transactions
broadcast by the clients during a period of time t. Hence, for valid transactions txi (i.e., accepted by the
endorsers), where i ∈ N, issued by valid a client during a period of time t, the probability that C ′ = C
is neglected if we have at most ⌊n−1

3 ⌋ out of total n malicious orderers. A detailed proof for the type of
consensus we are using can be found in [12].

Unforgeability An adversary against the unforgeability of a protocol tries to overstep the validation process
of a transaction in order to engrave a transaction in the blockchain without obtaining the full transaction
acceptance from the endorsers and the orderers. Our blockchain composes a validation procedure conducted
by the Issuer with the endorser and a consensus agreement made by the orderers. This property ensures that
these compositions retains security i.e., no adversary could possibly overstep the validation procedure nor the
consensus to engrave a block in the blockchain. The security model is defined in Appendix B: unforgeability is
defined in Definition 6 through Experiment 2 and security is stated and proven in Appendix C in Theorem 4

Theorem 3 (informal). Consider a blockchain BC defined by one of the above settings, i.e.,instantiated
with some of the above described signatures. For any security parameters K, BC is unforgeable.

The proof of this property, relies on the unforgeability of the signatures used in BC. While the versions using
linkable group (resp. ring) signature for the endorsers also depend on the traceability (resp. linkability) of
the signatures. Otherwise, it would be possible for a single node to output multiple signatures. Hence, it is
infeasible to append an invalid transaction to the existing blockchain without being given the endorsers and
orderers agreement.

Pseudonymity A entity E and a witness w are said to be linked in a group G’s perspective, if it is possible
for G to infer that E produced w based on the available information to G. Pseudonymity of an entity holds
when E cannot be linked to the witnesses w1, . . . , wk it has produced, but this property does not prevent
from linking the witnesses one to each other. When linking wi and wj is hard for all 1 ≤ i < j ≤ k, it is
considered as a stronger privacy preserving property called anonymity. We split the actors of our blockchain
into two groups, on one side the users and on the other side the endorsers and orderers to consider their
pseudonymity.

Users. Let A be an attacker against an user pseudonymity. Its goal is to link it to a transaction tx it has
produced. Nevertheless, we assume that it is only possible to link tx to the client using information from the
blockchain. As a consequence, we assume that it would be hard to identify the provenance of a transaction
due to the redundancy of the sent communications as upon receiving a message each entity broadcasts it
to all its peers (gossip). This is a classical assumption in blockchain. In order fulfil pseudonymity, obc and
Payload should not leak information on the transaction requester. A public transaction always reveals a
certain amount of information as this information is publicly enclosed, here we show that no additional
information is revealed throughout the protocol.

Theorem 6 (informal). Consider secure BS a blind signature, GS a (linkable) group signature and RS
a (linkable) ring signature. Assume that an adversary A is unable to identify a user at the origin of a
transaction based on obc and Payload. Then the consensus presented in Section 4.2, instantiated with these
signatures is pseudonymous.

Users sign their transaction with a signature mechanism and sends it to the nodes. Once this is executed,
they are no longer involved in the process. Hence, what they output should be unlinkable to them. This
result relies directly on the anonymity properties of the signatures considered in the article.

Endorsers and Orderers. Endorsers and orderers can be unlinked from transactions and blocks they
validated through the use of linkable ring or group signatures. The linking algorithm Link allows this feature,
hence, enabling detection of nodes producing multiple validations. The signature anonymity requirement
prevents from recovering the identity of the executant.

11

Theorem 7. Base on a secure linkable group (resp. ring) signature the EndGroupCons, (resp.EndRingCons)
protocol is pseudonymous for the endorsers. Under the same conditions, the protocols OrdGroupCons and
OrdRingCons are pseudonymous for the orderers (excluding the orderer leader).

Arguments supporting these properties are the same the ones evoked before for the users. Once again,
these properties are defined in Appendix B: pseudonymity is defined in Definitions 7 and 8. The associated
security is proven in Appendix C in Theorem 5 and 7

Anonymity of the users As stated before, anonymity is defined by two requirements: (i) there should be no
link between the clients and the transactions they produced, (ii) transaction of the same user should not be
linkable. We yet know that BlindCons, RingCons, GroupCons securely realize user’s pseudonymity, statement
(i). In fact, it is also possible to show that (ii) holds, as it appears that the output transaction are in these
cases unlinkable one to each other.

Theorem 8. Given that the client proceeds to a secure blind, ring or group signature to authenticate its
transaction as defined in Section 4, anonymity of the client holds.

This theorem relies on the unkinkability of the signatures produced by a user. A proof of this theorem is
provided in Appendix C.4.

6 Complexity

Our approach is generic, hence allows to instantiate the protocol with the most efficient signature schemes
in the literature. In order to provide a theoretical evaluation that can benefits from further works on these
primitives, we evaluate the number of executions of each algorithm for the various entities in the blockchain.
Let SC be the signature used by the clients, SE the signature used by the endorsers and SO used by the
orderers. These signatures can refer to any of the signature schemes used in our blockchains as specified
through Section 3 and 4 due to modularity of our proposed constructions. In order to obtain a validated
transaction, a client needs to execute SC once and verify ⌊TotEnd/2⌋+1 signatures SE . In the meantime, an
endorser needs to verify a signature from SC once and produce one signature SE . Now, in order to validate
a block, the orderer leader needs to verify Blocksize signatures SC , Blocksize · (⌊TotEnd/2⌋+ 1) signatures SE
and later 2(⌊2TotOrd/3⌋ + 1) signatures SO. It also needs to produce two regular signatures. The orderer
verifies these signatures and Blocksize ·(⌊TotEnd/2⌋+1) signatures from the endorsers and 2(⌊2TotOrd/3⌋+1)
signatures from other orderers. An orderer also produces two signatures SO.

State-of-the-art blind, group or ring signature are known to be less efficient than regular signature
schemes. All still achieve constant execution time [20,29,9]. Also their longer computation time must be
put into perspective with the time needed for the numerous communications require by a blockchain. As
the order of magnitude of a signature execution does not generally exceed the order of magnitude of a RTT
(Round-Trip Time), the overhead brought by bringing anonymity to our blockchain seems acceptable. Blind
signature usually requires 2 (at best) or 3 additional communication yielding as much aditional communi-
cations. Again this does not increase much the number of communications of the blockchain, hence has low
impact on the performance. On another hand group and ring signatures requires to obtain the keys of the
members of a ring. In the case of group signatures, we can assume that they are all provided by the regis-
tration authority on demand. This considered, for an equivalent level of security, our protocol is expected
to be less efficient than a blockchain without any anonymity, as a counterpart it brings more security for its
peers as their identity is not publicly disclosed.

7 Conclusion

In this paper we bring forth a blockchain solution to the apparent dilemma of combining private permissioned
blockchains with privacy. We divide the miners into endorsers and orderers. And we propose different con-
structions for different entities privacy (user, endorser or orderer). The different constructions use different

12

building blocks and have different use cases. Some yield anonymity and others pseudonymity, some rely on
an authority, some propose privacy revocation rights, some require less computation than others. We showed
using game-based proofs the security of our constructions. As future works, we envision extending our results
in the UC model, by considering the ideal functionality presented in [22].

References

1. Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis, Angelo De Caro,
David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich, et al. Hyperledger fabric: A distributed
operating system for permissioned blockchains. arXiv preprint arXiv:1801.10228, 2018.

2. Man Ho Au, Sherman S. M. Chow, Willy Susilo, and Patrick P. Tsang. Short linkable ring signatures revisited.
In Andrea S. Atzeni and Antonio Lioy, editors, Public Key Infrastructure. Springer Berlin Heidelberg, 2006.

3. Aritra Banerjee, Michael Clear, and Hitesh Tewari. Demystifying the role of zk-snarks in zcash. In 2020 IEEE
conference on application, information and network security (AINS). IEEE, 2020.

4. Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group signatures: Formal definitions,
simplified requirements, and a construction based on general assumptions. In International conference on the
theory and applications of cryptographic techniques. Springer, 2003.

5. Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures: Stronger definitions, and constructions
without random oracles. Journal of Cryptology, 2009.

6. Jorge Bernal Bernabe, Jose Luis Canovas, Jose L Hernandez-Ramos, Rafael Torres Moreno, and Antonio
Skarmeta. Privacy-preserving solutions for blockchain: Review and challenges. IEEE Access, 2019.

7. David Bernhard, Georg Fuchsbauer, Essam Ghadafi, Nigel P Smart, and Bogdan Warinschi. Anonymous attes-
tation with user-controlled linkability. International Journal of Information Security, 2013.

8. Olivier Blazy., Brouilhet Laura., Céline Chevalier., and Neals Fournaise. Round-optimal constant-size blind
signatures. In Proceedings of the 17th International Joint Conference on e-Business and Telecommunications
SECRYPT,. SciTePress, 2020.

9. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matt Franklin, editor, Advances in
Cryptology – CRYPTO 2004, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

10. Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted signatures from
bilinear maps. In International conference on the theory and applications of cryptographic techniques. Springer,
2003.

11. Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols. Journal of the ACM (JACM),
1985.

12. Miguel Castro, Barbara Liskov, et al. A correctness proof for a practical byzantine-fault-tolerant replication
algorithm. Technical report, Technical Memo MIT/LCS/TM-590, MIT Laboratory for Computer Science, 1999.

13. Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI, 1999.
14. David Chaum and Eugène van Heyst. Group signatures. In Workshop on the Theory and Application of Cryp-

tographic Techniques. Springer, 1991.
15. Jollen Chen. Hybrid blockchain and pseudonymous authentication for secure and trusted iot networks. ACM

SIGBED Review, 2018.
16. George Danezis and Seda Gürses. A critical review of 10 years of privacy technology. Proceedings of surveillance

cultures: a global surveillance society, 2010.
17. Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Conference on the Theory and Application of

Cryptology. Springer, 1989.
18. Linux Foundation. Hyperledger. https://www.hyperledger.org/, 2019.
19. Ashley Fraser, Lydia Garms, and Anja Lehmann. Selectively linkable group signatures - stronger security and

preserved verifiability. Cryptology ePrint Archive, Paper 2021/1312, 2021.
20. Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Practical round-optimal blind signatures in the

standard model. In CRYPTO. Springer, 2015.
21. Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin. Blind schnorr signatures and signed elgamal encryption

in the algebraic group model. In Advances in Cryptology — EUROCRYPT 2020. Springer, 2020.
22. Mike Graf, Daniel Rausch, Viktoria Ronge, Christoph Egger, Ralf Küsters, and Dominique Schröder. A security

framework for distributed ledgers. In ACM SIGSAC, 2021.
23. Thomas Hardjono, Ned Smith, and Alex Sandy Pentland. Anonymous identities for permissioned blockchains,

2014.

13

https://www.hyperledger.org/

24. Ryan Henry, Amir Herzberg, and Aniket Kate. Blockchain access privacy: Challenges and directions. IEEE
Security & Privacy, 2018.

25. Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash protocol specification. GitHub: San
Francisco, CA, USA, 2016.

26. Aram Jivanyan. Lelantus: Towards confidentiality and anonymity of blockchain transactions from standard
assumptions. IACR Cryptol. ePrint Arch., 2019.

27. Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. In Concurrency: the Works of
Leslie Lamport. 2019.

28. Joseph K Liu and Duncan S Wong. Linkable ring signatures: Security models and new schemes. In International
Conference on Computational Science and Its Applications. Springer, 2005.

29. Giulio Malavolta and Dominique Schröder. Efficient ring signatures in the standard model. In International
Conference on the Theory and Application of Cryptology and Information Security. Springer, 2017.

30. Ian Miers, Christina Garman, Matthew Green, and Aviel D Rubin. Zerocoin: Anonymous distributed e-cash from
bitcoin. In 2013 IEEE Symposium on Security and Privacy. IEEE, 2013.

31. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. self-published paper, 2008.
32. Toru Nakanishi, Toru Fujiwara, and Hajime Watanabe. A linkable group signature and its application to secret

voting. Trans. of Information Processing Society of Japan, 1999.
33. Shen Noether, Adam Mackenzie, et al. Ring confidential transactions. Ledger, 2016.
34. David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind signatures. J. Cryptol.,

2000.
35. Fergal Reid and Martin Harrigan. An analysis of anonymity in the bitcoin system. In Security and privacy in

social networks. Springer, 2013.
36. Ronald L Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In International conference on the theory

and application of cryptology and information security. Springer, 2001.
37. Alexander Schaub, Rémi Bazin, Omar Hasan, and Lionel Brunie. A trustless privacy-preserving reputation

system. In IFIP International Conference on ICT Systems Security and Privacy Protection. Springer, 2016.
38. Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in bitcoin. In International

Conference on Financial Cryptography and Data Security. Springer, 2015.
39. Shi-Feng Sun, Man Ho Au, Joseph K Liu, and Tsz Hon Yuen. Ringct 2.0: A compact accumulator-based (linkable

ring signature) protocol for blockchain cryptocurrency monero. In European Symposium on Research in Computer
Security. Springer, 2017.

40. Nicolas Van Saberhagen. Cryptonote v 2.0. 2013.

A Digital Signatures

In this section we formally define the signatures used in the article. First their description is given, then the
associated security requirements.

Blind Signatures are schemes allowing one to obtain someone else’s signature on an undisclosed message.
It finds utility when one wants to be unlikable to some signed data they produce. For example, during an
enrollment process, the authority in charge could affix its signature onto the user’s message without the latter
ever revealing it. Hence, implying no direct linkability between the user and the signed message it obtains.
For example, digital cash frequently use blind signature schemes to protect the anonymity of senders and
receivers while still making sure the transaction is valid. Let m ∈ M be a message in an arbitrary message
space. Take U a user holding this message and let S be the signing entity.

Definition 3 (Blind Signature [34]). A blind signature scheme BS consists of the following algorithms/protocols:
KeyGen(1K) returns a key pair (pk, sk) for a security parameter K.
BlindSign⟨U(m, pk),S(sk)⟩ is a protocol run between a user U inputting a message m and a public key pk,

while a signer S uses their private key sk. Outputs are either the signature σ for the user, or ⊥ if the
protocol ended unsuccessfully.

VerifyBSpk(m,σ) is a deterministic algorithm taking a public key pk, a message m and a signature σ as input,
and returning 1 if σ is a valid signature on m under pk and 0 otherwise.

A blind signature should achieve the properties of Correctness, EUF-CMA and Blindness described below.

14

Three security properties need to be achieved by a blind signature.
- Correctness. A blind signature scheme has correctness if for a message spaceM, it verifies:

∀m ∈M,∀(sk, pk) ∈ [KeyGen()],

∀σ ∈ [BlindSign⟨U(pk,m),A(sk)⟩],VerifyBSpk(m,σ) = 1.

- EUF-CMA. An adversary U∗, attacking unforgeability, tries to generate qs + 1 valid signatures after
at most qs complete interactions with the honest signer S. A blind signature scheme BS is unforgeable
if for an honest signer S and for any polynomial time adversary U∗, the probability AdvufBS,U∗(K) =

Pr[ExpufBS,U∗(K) = 1] is negligible, where ExpufBS,U∗(K) is defined in Experiment 1a, adversary U∗ has

access to qs queries to a blind signature oracle Oblind
sk (m) −→ (σ, T) returning the signature (if produced)

and in any case the transcript of the protocol.
- Blindness. The adversary is a malicious signer S∗ with polynomial capability and two honest user in-
stances are simulated by a challenger C within Experiment 1b. A blind signature scheme BS achieves
blindness if for some security parameter K ∈ N, for all PPT adversary S∗, there is a negligible function
ϵ(·) such that AdvblBS,S∗(K) = |1/2− Pr[ExpblBS,S∗(K) = 1]| < ϵ(K).

ExpufBS,A(K) :

1. params←− Setup(1K)
2. (pk, sk)←− KeyGen(params)

4. (mi, σi)1≤i≤qs+1 ←− AOblind
sk (m)(pk)

5. If ∃i ̸= j ∈ [1, qs + 1],mi = mj or
∃i ∈ [1, qs + 1],VerifyBSpk(mi, σi) = 0:
Return 0

6. Else Return 1

(a) Unforgeability of a Blind Signature.

ExpblBS,A(K) :

1. params←− Setup(1K)
2. (pk,m0,m1)←− A(params)

3. b
$←− {0, 1}

4. σb ←− BlindSign⟨U(pk,mb),A⟩
5. σ1−b ←− BlindSign⟨U(pk,m1−b),A⟩
6. b∗ ←− A((m0, σ0), (m1, σ1))
7. Return b∗ = b

(b) Blindness of a Blind Signature.

Experiment 1: Blind Signatures’ Security Experiements

Many recent constructions for blind signature schemes satisfy these properties, such as [8,21,34] among
others.

Group Signatures It allows members of a group to sign messages anonymously. Group signatures include a
group manager, which is an entity that can: (i) add members to the group, and (ii) reveal the original signer
(in the event of disputes for example). Later this role is played by the authority of the private blockchain.

Definition 4 ((Linkable) Group Signature [14]). A group signature scheme consists of four algorithms
organised as follows:
KeyGengroup(1

K, N) takes as input a security parameter K and the group size N , it returns a vector (gpk, gmsk,
gsk1, . . . , gskN) composed of a group public key gpk, a group manager secret key gmsk, and group secret
keys gski for the members.

GroupSigngsk(m, gpk) outputs a group signature σ, on the message m.
Verifygroupgpk(m,σ, gpk) outputs a bit b representing the validity of the signature.

OpenGroupSigngmsk(m,σ) returns the identity of the member who produced σ.
A Linkable Group Signature has one additional algorithm:
Link(L1, σ1, σ2,m1,m2) checks if two pairs (m1, σ1), (m2, σ2) come from the same signing key, in this case

it returns 1, otherwise 0.
A group signature has Correctness, Unforgeability, Anonymity and Traceability. In the case of linkable group
signatures an additional requirement of Linkability.

An informal description of the security requirements for this type of signature is given below. These defini-
tions are formalised for properties used in our security proofs. Please refer to [4,14,32] for a full formalisation
of these requirements.

15

– Correctness. Execution of the algorithm must lead to a valid signature.
– Unforgeability. This ensures that no entity outside the group should be able to produce valid group

signatures.
– Anonymity. A given message-signature pair does not leak any information about the member of the

group that made it.
An adversary A plays the experiment Expf−anon

S,B (K) for a security parameter K in two stages: choose
and guess. During the first phase, A receives a group member’s secret key gsk for a chosen index along
with the group members’ public key {gpk}i=1,...,N . During this phase it can query the opening oracle
OpenGroupSign(gmsk, ·) on group signatures. A is required to output two identities 1 ≤ id0, id1 ≤ N
and a message m. The adversary is allowed to keep some state information for the second stage. This
ends the first phase. Starting the choose phase, A receives its status information and a signature on m
produced with the secret key of id0 or id1 chosen at random. The adversary can still query the opening
oracle on other signatures and is meant to return a bit b∗. The experiment outputs 1 if this value is the
index of the identity chosen to sign the message. Then, Advf−anon

S,B (K) = |1/2−Pr[Expf−anon
GS,A (K) = 1]| is

negligible.
– Traceability. The group manager should always be able to identify the user behind a signature provided

knowledge of the message-group signature pair. This property means that there exists an extractor
algorithm Extract that on inputs a group of user, the group manager secret key and a signature returns
the identity of the group member which produced it.

– Linkability (only for linkable group signatures). Informally, it captures the ability of the adversary to
outputs two signature of the same entity returning 0 for the Link algorithm.
An extended line of research avoids the trust in an entity for opening and supports pseudonymous group

signatures where each member of the group can choose to sign either with a fresh and unlinkable pseudonym
or re-use one that was established. Making all signatures under the same pseudonym linkable for all [7,19].

Ring Signatures , mostly similar to group signatures, avoid the need to rely on a trusted entity. Any user
U can sign a message in the name of any set of users to without setup. In a ring the anonymity cannot
be revoked, still it can be crucial in some settings to be protected against multiple signatures of the same
message coming from the same entity. Just like in the previous scheme, linkable ring signatures have been
introduced to solve this issue. Anyone can identify signatures coming from the same entity but still is not
able to recover its identity.

Definition 5 ((Linkable) Ring Signature [28]). A ring signature scheme consists of three algorithms
organised as follows:
KeyGenring(1

K) generating a pair (pk, sk) for an entity.
RingSignsk0(m, pk1, . . . , pkN) outputs a ring signature σ for the set of the entities L.
Verifyring{pki}i∈L

(m,σ) returns 1 for a valid σ, 0 for an invalid.

A linkable ring signature has an additional algorithm:
Link(L1, L2, σ1, σ2,m1,m2) checks if pairs (m1, σ1), (m2, σ2) were made from the same signing key. If it is

the case it returns 1, otherwise 0.
Security of ring signatures is based on Correctness, Unforgeability, Anonymity. Additionally, linkable ring
signatures have linkability and sometimes its stronger version Linkability w.r.t. adversarially-chosen keys.

A ring signature has several properties to reach in order to be consider secure. These properties are
described in []. Please refer to [2,5] for a formalisation of the security requirements. Here, we give some
insights about these properties and formalise the needed ones for our latter proofs.
– Correctness. It checks that the verification algorithm is consistent with its inputs. A valid message-

signature pair should be accepted if it has been generated rightfully, otherwise the verification algorithm
should reject the signature.

– Unforgeability. It states that no polynomial time adversary should be able to output a valid signature
after only polynomial many calls to a ring signature oracle outputting valid signature for the messages
provided by the adversary.

16

– Anonymity. An adversary should not be able to identify the actual user outputting a signature within a
group of n entities with probability greater than 1/n. If the adversary is part of the group and controls t
entities, the probability increase to 1/(n− t). The formalisation of this property is similar to the one in
the context of group signatures. Still the adversary does not have access to an open algorithm as none
does exist for ring signatures.

– Linkability (only for linkable ring signatures). Captures the impossibility of an adversary controlling a
group member trying to (i) generate two signatures that cannot be linked using the Link algorithm. This
property also captures abuses of an adversary trying to (ii) generate a signature such that algorithm
Link links the outputted Signature to another entity. The second layer of security is sometimes called
slanderability.
Linkability is described through two experiments. In any case it starts by generating keys for all au-
thorized members and providing the adversary A with a set of public keys, the cardinal of the set of
authorized entities and the security parameter. (i) A is also provided with a signature oracle SO(·, ·, R),
where R is a subring of the existing entities and a corruption oracle CO. A record of the corrupted users
is kept in C. It must answer by sending a corrupted user index and ((Li, ni,mi, σi)1≤i≤2) such that Li

is a subring composed by ni entities, both message signature pair are valid, were not query to the oracle
and cannot be linked: Link(L1, L2, σ1, σ2,m1,m2) = 0. Moreover, there must only be one entity in the
set |(L1 ∪ L2) ∩ C| ≤ 1. In such a case the experiment return 1, otherwise 0.
The second experiment starts just the same way, then (ii) A again being provided with a signature oracle
has to return (L, n, π1,m1) such that π ∈ L, |L| = n and L a subring of the entities. The challenger
produces a signature σ1 on m1 using π1’s key. The answers of the adversary should be a player index
π2 ∈ L \ {pi1} and after receiving its secret key a valid message signature pair (m2, σ2) linking to the
first one.

B Security Model

In conducting their attack, the adversary has access to a registration oracle Oregister(pk).

B.1 Unforgeability

Definition 6 (Unforgeability). Let BC be an instantiation of our blockchain protocols and k ∈ N be a
security parameter. The adversary A controls a subset of the participants of the blockchain: a coalition of
n entities among which, one is a user of the BC scheme, nep is the number of corrupt endorsers and nor

is the number of corrupt orderers. We consider unforgeability to hold if for any PPT adversary algorithm
A the advantage AdvunfBC,A(K,SecPolicies,TotEnd,TotOrd) = Pr[ExpunfBC,A(·) = 1] is negligible for any given

parameters. A can register new users through a registration oracle Oregister(pk) in order to be able to create
new users.

B.2 Pseudonymity

Pseudonymity of a user

Definition 7 (Clients’ Pseudonymity). Consider the experiment Expps defined in Experiment 3. A con-
sensus BC is pseudonymous for the clients if for any params = (K, {obc,i,Payloadi}i∈{0,1}), a PPT adversary
A playing the pseudonymous experiment has a negligible advantage AdvpsBC,A(params,K) = |ExppsBC,A(params)−
1/2|.

Pseudonymity of the Endorsers and the Orderers

Definition 8 (Endorsers’ and Orderers’ Pseudonymity). A protocol BC is said to be pseudonymous
for the endorsers (resp. orderers) if for all parameters params = (K, obc,Payload,SecPolicies), for all PPT ad-

versary A, the following advantage is negligible AdvpsBC,A(params,K) = |Exp(·)BC,A(params)−1/2|, for ExppsEndor

based on Experiment 4 (resp. ExppsOrd from Experiment 5).

17

Expunf
BC,A(K,SecPolicies,TotEnd,TotOrd) :

1. nep, nord ← A(K,SecPolicies,TotEnd,TotOrd)
2. if TotEnd ≤ 2nep − 1 or TotOrd ≤ 3nord − 1: Return 0
3. (pk, sk), (pkep, skep), {pkord,i, skord,i}nord≤i≤TotOrd

← KeyGen(K)
4. blob, {pkep,i}1≤i≤nep , {pkord,i}1≤i≤nord

← A(pk, pkep{pkord,i}nord≤i≤TotOrd)
5. For all 1 ≤ i ̸= j ≤ nep : if pkep,i = pkep,j : , Return 0
6. if TxEndors(blob.transprop,SecPolicies, pk, skep) ̸=⊥ :
Return 0
7. (NewBlock||σordlead)← A(),
8. if blob /∈ NewBlock : Return 0
9. for (nord < i ≤ TotOrd) :
10. messagePrepare,i ← Prepare(Blocksize,NewBlock,

σordlead , SecPolicies, {pkord,i}1≤i≤TotEnd, skord,i)
11.{messagePrepare,i}1≤i≤nord

← A({messagePrepare,i}nord<i≤TotOrd)
12. if |{messagePrepare,i : 1 ≤ i ≤ TotOrd,messagePrepare,i ̸=⊥}|

< ⌊2 · TotEnd/3⌋+ 1: Return 0
13. while (|NewBlock| < Blocksize) :
14. Fill the block with valid random transactions
15. if BlockCom(NewBlock, SecPolicies, skord) ̸=⊥ :
16. Return 1
17. Return 0

Experiment 2: Unforgeability Experiment

ExppsBC,A(K, {obc,i,Payloadi}i∈{0,1}) :

1. (pkc0 , skc0), (pkc1 , skc1)← KeyGen(K)
2. TotEnd,TotOrd← A(K)
3. {pkep,i}1≤i≤TotEnd, {pkord,i}1≤i≤TotOrd ← A(pkc0 , pkc1)
4. b

$←− {0, 1}
5. (transprop,b, σb)← TxProp(obc,b,Payloadb, skcb)
6. {transprop,b||σep,i}1≤i≤l ← A(transprop,b, σb)
7. if l < ⌊2 · TotEnd/3⌋+ 1: b∗ ← A()
8. Return b = b∗

9. blob← TxBrodOrd(transprop,b, {σep, pkep,i}1≤i≤l)
10. b∗ ← A(blob)
11. Return b = b∗

Experiment 3: Experiment for the Pseudonymity of the Client

ExppsEndor
BC,A (K, obc,Payload, SecPolicies) :

1. (pk0, sk0), (pk1, sk1)← KeyGen(K)
2. (transprop, σ), pkcbc ← A(K, pk0, pk1,SecPolicies)
3. b

$←− {0, 1}
4. messageverif ← TxEndors(transprop, σ,

SecPolicies, pkcbc , skb)
5. if messageverif =⊥ : Return 0
6. b∗ ← A(messageverif)
7. Return b = b∗

Experiment 4: Experiment for the Pseudonymity of the Endorsers

18

ExppsOrd
BC,A (K, obc,Payload,SecPolicies) :

1. TotEnd,TotOrd← A(K)
2. (pk0, sk0), (pk1, sk1)← KeyGen(K)
3. pkclient, {pkep,i, skep,i}1≤i≤TotEnd, {pkor,i, skor,i}2≤i≤TotOrd

← A(pk0, pk1)
4. NewBlock, σordlead ← A(obc,Payload, SecPolicies)
5. b

$←− {0, 1}
6. messagePrep ← Prepare(Blocksize,NewBlock,

σordlead , SecPolicies, {pkep,i}1≤i≤TotEnd, skb)
7. if messagePrep =⊥ : Return b
8. {NewBlock, σor,i}1≤i≤l ← A(messagePrep)
9. if l < ⌊2 · TotEnd/3⌋+ 1: Return b
10. Block← BlockCom(NewBlock, {pkordbc,i , σordbc,i}1≤i≤l,

SecPolicies, skb)
11. if Block =⊥ : Return b
12. b∗ ← A(Block)
13. Return b = b∗

Experiment 5: Experiment for the Pseudonymity of an Orderer.
n: index of the orderer leader.

ExpAnony
BC,A (K, {obc,i,Payloadi}i∈{0,1}, obc

′,Payload′) :

1. SecPolicies,TotEnd,TotOrd← A(K)
2. if TotEnd,TotOrd ≤ 0:

3. Return b∗
$←− {0, 1}

4. (pk0, sk0), (pk1, sk1)← KeyGen(K)
5. {pkep,i}1≤i≤TotEnd, {pkord,i}1≤i≤TotOrd ← A(pk0, pk1)
6. (transprop,0, σ0)← TxProp(obc,0,Payload0, sk0)
7. (transprop,1, σ0)← TxProp(obc,1,Payload1, sk1)

8. b
$←− {0, 1}

9. (transprop
′, σ′)← TxProp(o′bc,Payload

′, skb)
10. b∗ ← A((transprop,0, σ0), (transprop,1, σ1), (transprop

′, σ′))
11. Return b = b∗

Experiment 6: Anonymity of the transactions in our Protocols.

19

B.3 Anonymity of the users

Definition 9 (Anonymity). A consensus protocol is Anonymous if for any params = (K, {obc,i,Payloadi}i∈{0,1},
obc

′,Payload′), all PPT algorithm A have a negligible advantage AdvanonyBC,A (params,K) = |ExpanonyBC,A (params)−
1/2| . ExpanonyBC,A is defined in Experiment 6.

C Security Proofs

C.1 Security Proof of Unforgeability

We recall Theorem 4 and prove it through this section.

Theorem 4. Let BC be one of the above defined protocols. For any (K,SecPolicies, (sk, pk),TotEnd,TotOrd)
inputted in the unforgeability experiment, given a version of our blockchain BC instantiated with an EUF-
CMA signature (signature, blind/(linkable) group/(linkable) ring signature) then BC is unforgeable. The
versions using linkable group signature (resp. linkable ring signature) for the endorsers respectively need
traceability (resp. linkability) to guarantee the security of the schemes.

Proof. We prove the unforgeability theorem by using a disjunction of cases.
Unforgeablility of SignCons
Let BC be the SignCons blockchain and S a secure signature scheme. The proof of unforgeability is divided

into two main steps. At first, we introduce a failure event failing if one of the endorser’s signature is not seen
in the transaction validation. A second step consists of a reduction on the unforgeability of the signature
scheme. After this step it is impossible for an attacker to bypass the verifications of the endorsers and to
engrave an invalid transaction in the blockchain without being authorized by a substantial amount of corrupt
endorsers or being able to forge valid signatures.

Game 0. Let Game 0 be the original experiment ExpunfBC,A.

Game 1. A pool of TotEnd endorsers is set before the experiment, among them nep < ⌊TotEnd/2⌋ + 1 are
corrupt by A. We randomly pick one endorser at the beginning of the game, if this one get corrupted by A
abort the game. The picked honest endorser is called EBC . Game 1 is based on Game 0, with the described
added condition. We obtain AdvG0

BC,A ≤ (TotEnd− nep)/TotEndAdv
G1

BC,A.

Game 2. If the signature of the picked endorser does not appear in the transaction approval message blob,
the experiment fails and return 0. This additional condition defines Game 2. As the adversary needs at least
⌊TotEnd/2⌋+ 1 approval for the transaction to be accepted. And that ⌊TotEnd/2⌋+ 1 > nep we are assured
that at least some honest endorser has their signature engraved in the transaction acceptance vector. Hence,
the picked endorser has at least probability (⌊TotEnd/2⌋+1−nep)/TotEnd to be involved in the transaction.
Then,

AdvG1

BC,A ≤ (⌊TotEnd/2⌋+ 1− nep)/TotEnd · AdvG2

BC,A.

From the previous failure cases, we are ensuring that a signature associated to EBC ’s public key has
validated the transaction and was later engraved in the current block. We are going to show that in this case
we have an adversary A breaking the current game, then we can construct from it an adversary D breaking
the unforgeability of the signature scheme.

Let OutEBC,i+1
be the set of all message-signature pairs (m,σ) associated to pkEBC

. If A was able to
engrave a valid signature for EBC in the new block, it has produced a forgery of EBC ’s signature, as its
entity does not appear in the experiment. As we have assumed the unforgeability of this scheme we can
directly conclude that the SignCons scheme is unforgeable for any number of corrupted user ned and ncs.
We are now providing a reduction in order to show that this property is rightfully given. Let us consider
an adversary A capable of outputting a forgery for the BC scheme. Using a successful A, we are going to
construct a polynomial time algorithm D able to break the unforgeability property of the signature scheme
S with non-negligible probability 1.

20

D starts by receiving the public key for the EUF-CMA’s game for the signature scheme and is given
access to a signature oracle for this key. Then D simulates the SignCons protocol playing the roles usually
played by the challenger. First D generates the other necessary keys and has to register a key given by A.
The challenger’s key pk is used as EBC ’s public key. The simulation starts according to the experiment of
Experiment 2 by sending the elements K,SecPolicies, pk these elements are taken according to the signature
scheme security parameter. Being given the previous element, A returns TotEnd and TotOrd, the lower bound
on these values is checked by D. After this step we are receiving the keys from A. These keys are registered
by the authority simulated by D. Then A has to produce a consensus array blob that is checked with the
TxComOrd algorithm by the challenger. The first clause of verification of TxComOrd is to verify all the
signatures that are provided in the array blob. If it does not contain enough signatures, the experiment stops
and A was not successful. Otherwise, there exist at least ⌊TotEnd/2⌋+1 signatures with the associated public
keys of one new user each time.

As we assume that A has non-negligible chances of success, there exist some cases where the verification
and the preparation of the block have been successfully executed. If the procedure went through, D extracts
the entire set of signatures and their associated messages from the block NewBlock. Assuming that A
succeeded in its forgery of a block, there must exist at least one signature for one of the honest users. We
know from the failure event of the beginning that EBC is involved in the block. Hence, a message-signature
pair has been returned for its public key pkEBC

. As no signature has ever been queried to C we can directly
return the obtained signature to C resulting in a valid forgery as the signature has been verified in the Prepare
algorithm.

The following upper bound is obtained on the adversary’s advantage: AdvunfBC,A ≤ (TotEnd − nep) ·
(⌊TotEnd/2⌋+ 1− nep)/TotEnd

2 · AdvEUF−CMA
S,D .

Unforgeablility of BlindCons, GroupCons, RingCons,
LinkGroupCons and LinkRingCons

The way the client commits to a transaction does not influence the steps of the previous reduction.
Hence, the proof also apply if the transaction is proposed with a blind, group or ring signature ensuring
its authenticity, this cases are already covered. Hence, our constructions BlindCons, GroupCons, RingCons,
LinkGroupCons and LinkRingCons are unforgeable.

Unforgeablility of EndGroupCons
Let LSgroup be the SignCons protocol with the additional layer of pseudonymity for the endorsers and for

the orderers as they are signing their validation messages with a linkable group signature GS. Additional steps
need to be carried out in order to prove the security while opting for linkable signatures for the endorsers
and/or the orderers validations. This time our proof relies on the unforgeability and on the linkability of the
linkable group signature scheme.

Game 0 is the original experiment ExpunfLSgroup,A.

Game 1. At some point in ExpunfLSgroup,A, A has to output a new block proposal NewBlock with the transaction

blob embedded in it. blobmust contain l ≥ ⌊TotEnd/2⌋+1 > nep linkable signatures’. Game 1 is a modification
of Game 0 where for each of these signatures, the challenger uses knowledge of the group manager to extract
the identity of each of the signer from the signature through the extraction algorithm Extract. If any of the
identities appear more than once, the game is aborted. This leads to the following advantage:

AdvG0

LSgroup,A ≤ (⌊TotEnd/2⌋+ 1) · AdvtraceGS,A + AdvG1

LSgroup,A.

These steps remove all possible double approbation by a corrupted endorser. Hence, A has outputted l
linkable group signatures in blob while it is only allowed to corrupt nep < l endorsers (i.e., group members).
Assume that A wins with non-negligible probability. We can directly build a simulator D by forwarding all
of A’s requests during the setup of the LSgroup key generation to the challenger of the EUF-CMA security
property of the linkable group signature. This concludes our proof as it is in contradiction with the assumed
security of the linkable group signature. We obtain the upper bound:

AdvunfLSgroup,A ≤ (⌊TotEnd/2⌋+ 1) · AdvtraceGS,A + AdvEUF−CMA
GS,A .

21

Unforgeablility of EndRingCons
Let LSring be the SignCons protocol with the additional layer of pseudonymity for the endorsers and

for the orderers as they are signing their validation messages with a linkable ring signature RS. A stronger
requirement is needed here: RS must be linkable w.r.t. adversarially-chosen keys as we let A produce his own
keys for the endorsers and the orderers.

Game 0 is the original experiment ExpunfLSring,A.

Game 1 is a modified version of Game 0, the challenger is now extracting the identities behind each of the
signature provided by A in blob using the extraction algorithm Extract. If it appears that two signatures come
from the same entity, the game fails. As we are already checking the redundancy of the signature using Link
in the Prepare algorithm. If the game fails it would mean that A was able to output two signatures from the
same entity such that Link returns 0, this would lead to an attack again the linkability w.r.t. adversarially-
chosen keys of RS. But this was one of our hypothesis, thus: AdvG0

LSring,A ≤ 1/2 · ((⌊TotEnd⌋ + 1)TotEnd)

Advlink−adv
RS,A + AdvG1

LSring,A.
Now, we are assured that A has outputted l linkable ring signatures in blob while it is only allowed

to corrupt nep < l endorsers. Assume that A wins with non-negligible probability. We can directly build
a simulator D by forwarding all of A’s requests during the setup of the LSring key generation to the
challenger of the EUF-CMA security property of the linkable ring signature. This concludes our proof as it
is in contradiction with the assumed security of the linkable group signature. We obtain the upper bound:
AdvunfLSring,A ≤ 1/2 · ((⌊TotEnd⌋+ 1)TotEnd)Advlink−adv

RS,A + AdvEUF−CMA
RS,A .

The modification for orderers’ pseudonymity falls within the proof of unforgeability for SignCons as they
do not interact in the transaction validation. Hence, unforgeability of OrdGroupCons and OrdRingCons holds
from the previous arguments. We now know that all the 9 protocols are unforgeable on their own and
that OrdGroupCons and OrdRingCons are unforgeable being composed with any of the user’s pseudonymity
protocols. As the two last arguments do not consider which signature is used for the transaction proposal
TxProp, the proofs also covers the EndGroupCons and the EndRingCons being composed with the 4 variations
of user’s pseudonymity. We have shown that all possible compositions achieve unforgeability.

C.2 Security Proof of the Pseudonymity of a User

We recall Theorem 5 and prove it in this section.

Theorem 5. Let BS be a blind signature, GS be a (linkable) group signature with anonymity and RS a
(linkable) ring signature with anonymity. Assume that an adversary A is unable to identify a user at the
origin of a transaction based on the elements obc and Payload. Then the consensus presented in Section 4.2,
instantiated with these signatures is pseudonymous.

Proof. Pseudonymity of BlindCons

Game 0. Let Game 0 be the original Experiment 3.

Game 1. We start by a bridging step. We define Game 1 by asking A to send back a unique binary value
b∗ on its third round of answers and then the experiment returns the value of b = b∗ directly after that.
The challenger’s execution of TxBrodOrd involves no additional data that were not already known by A, is
a simple rearrangement of the data that C received. Hence, a bridging step involving no differences in the
advantages.

Game 2. We want to show that no adversary is able to distinguish whether the messages obc,0 and Payload0
was used by the experiment to create the transcript T1 or T2. For that, we define Game 2 that is the
same as Game 1, except that the elements obc,0 and Payload0 are permuted with the elements obc,1 and
Payload1. During the experiment, A has two views of the protocols TxProp. We call these transcripts T1 and
T2, representing respectively the first and the second execution. If BS is a blind signature, then no PPT

22

adversary can distinguish these two executions as it has blindness by hypothesis, we obtain AdvG0

BC,A(K) =

AdvG2

BS,S∗(K) + AdvblBS,S∗ . We can see that Game 2 is the same as Game 1 except that the bit b is flipped in
these two games.

Game 3. This done we can invert the modification introduced in Game 1 and instantiate it as Game 3. Then
Game 3 is the same as Game 0 but with the bit b flipped in these two games. This concludes our proof.

Pseudonymity of GroupCons
We are considering the GroupCons version of our protocol instantiated with a group signature GS.

Pseudonymity has been defined in Definition 9. We recall that in the current context the action σ ←
Sign(transprop, skcbc) of the TxProp algorithm has been replaced by σ ← GroupSigngskcbc

(M, gpk).

Game 0. Let Game 0 be the Experiment 3.

Game 1. This new game is the same bridging step as for the first part. We ask the adversary to send back a
bit b∗ after receiving transpropb and the challenger returns the value of b = b∗ directly after that. The same
argument as in previous part of the proof can be applied, the forthcoming actions had no influence on the
adversary’s knowledge. They do not contain more information than already known by the adversary hence
this change does not modify the probability of the game.

This step describes the reduction of the pseudonymity of our protocol to the anonymity of the group
signature. Take A a successful adversary against the pseudonymity of our protocol, we show how to construct
D, an adversary against the group signature that can break the anonymity of the group signature.
D starts the anonymity’s experiment of the group signature scheme and gain access to its oracles after

generation of the group manager public key gpk with the group members public keys. Among them D draws
two keys randomly and set this keys for pk0 and pk1. It sends gpk, pk0, pk1 and the security parameter
to A who’s answers is the set of public keys for the endorsers and the orderers. D produce the elements

{obc,b,Payloadb}b∈{0,1}. It executes the TxProp algorithm for (obc,b,Payloadb) after drawing b
$←− {0, 1} ran-

domly. The result of the algorithm is (transprop,σ) and sends it to the adversary. A’s answers is a vector
{transprop,b||σep,i}1≤i≤l, D checks if l < ⌊2 · TotEnd/3⌋ + 1 if so it transfers A guess b∗ to its challenger,
otherwise D executes the TxBrodOrd algorithm, sends blob to A and forward the adversary’s guess b∗ to its
challenger. Hence, D has the same probability of winning against the anonymity of the signature as does have
A of winning against pseudonymity. Finally, if A has a non-negligible advantage so does D, this concludes
the proof with the following: AdvpseudoBC,A (K) = Advf−anon

GS,D (K).
Pseudonymity of RingCons, LinkGroupCons

and LinkRingCons
The proof is similar to the case of group signatures. Here we rely on anonymity of the ring signature

instead of the anonymity of the group signature. Which is fairly similar.
The above arguments show security of the protocols even if instead of group or ring signature their

linkable versions are used. Hence, we have already covered the proofs for LinkGroupCons and LinkRingCons,
and thus the five cases.

C.3 Security Proof of the Pseudonymity of the endorsers and the Orderers

In this section we prove Theorem 7.

Theorem 7. Base on a secure linkable group (resp. ring) signature the EndGroupCons, (resp.EndRingCons)
protocol is pseudonymous for the endorsers. Under the same conditions, the protocols OrdGroupCons and
OrdRingCons are pseudonymous for the orderers (excluding the orderer leader).

Proof. We devide this proof into two steps.
Pseudonymity of EndGroupCons and EndRingCons
We must prove that it is impossible for an adversary to win Experiment 4 with non-negligible probability

for EndGroupCons instantiated with a secure linkable group signature. As the full-anonymity property is the
same so is the reduction for EndRingCons with has a linkable ring signature instead.

23

Let Game 0 be the previously mentioned experiment. Assume there exists an adversary A able to establish
with non-negligible probability an execution of Game 0 with b = 0 and b = 1. We are building a distinguisher
D simulating Game 0 with the adversary A and thus solving the anonymity of the linkable group signature
GS with comparable probability that A has to win this game. This would be in direct contradiction with
assumed anonymity of our linkable group signature GS, hence showing that we achieve the claimed security.

Assuming that A has a non-negligible advantage against Game 0. D starts the anonymity experiment of
the signature scheme and gain access to its oracles after generation of the group manager public key gpk.
D generates the elements obc,Payload,SecPolicies. D pick two public keys pk0 and pk1 associated to two
group members’ index i0 and i1. While it sends this two index to its challenger, it also sends the two public
keys alongside the SecPolicies to A. The adversary answers with (transprop, σ), pkcbc . D executes the TxEndors
algorithm with these values and by asking its challenger to obtain the signatures it requires on transprop.
It sends the result of the execution to A who answers by a bit b∗. D forward it to the fully-anonymity’s
challenger.

If A has non-negligible chances to distinguish Game 0 this allows distinguishing between the two players
of the full-anonymity experiment of the linkable group signature. We conclude that, AdvpseudoEndor

BC,A (K) ≤
Advf−anon

GS,D (K).
The reduction for the linkable ring signature is similar and leads to the same bound on the adversary’s

advantage.
Pseudonymity of OrdGroupCons and OrdRingCons

Game 0 is the Experiment 5. In this experiment after the generation of the keys, A should generate, approve
and send a commitment message following the template given to the orderers leader. Then the challenger
is simulating for one out of two users the preparation and validation of the block. And latter broadcast of
the block commitment after receiving the validation of the block from a majority of the orderers. Finally, A
must guess the orderer that was involved in the transaction (i.e., its public key).

Game 1. The secret key sk(1−b) is used to prepare the block (i.e., execute the Prepare algorithm) instead
of the prescribed key skb. The Prepare algorithm consist of four steps of verifications before producing a
signature on the NewBlock if all of them passed. This signature in our case is a linkable group/ring signature
LS, and we have taken as granted its anonymity. It must be impossible to distinguish the signer who
produced the signature. This step introduced only a negligible difference with the previous one: AdvG0

BC,A(K) ≤
Advf−anon

LS,D (K) + AdvG1

BC,A(K), where D is the distinguisher in the reduction.
We were able to change the value of b used in the game to (1− b) with only a negligible chance that A

could notice it. Thus, unlinkability of the orderer holds.

C.4 Security Proof of the Anonymity of the users

We now prove Theorem 8.

Theorem 8. Given that the client proceeds to a secure blind, ring or group signature to authenticate its
transaction as defined in Section 4, anonymity of the client holds.

Proof. The experiment ExpAnony
BC,A models the anonymity of a user against an adversary A describes a chal-

lenger simulating two transaction with different Payload and then a third one linked to one of the first
transactions. If the adversary can infer a link between two transaction, it retrieves the value b. Otherwise, if
A can produce a link between a transaction tx and the associated client identify by its public key pk, then it
can also find out the value b. Thus, it covers the two requirements for anonymity. This experiment actually
models the execution of a client, even if the challenger is not executing the TxBrodOrd algorithm. The latest
only invokes public keys or data coming from the corrupted endorser controlled by A. Hence, the adversary
is capable to fully simulate these executions of TxBrodOrd that C could have made.

We have elaborated why our definition covers anonymity of our protocol, we can now show that for all
probabilistic polynomial time adversary A can break this property without a negligible advantage. Consider
the experiment ExpAnony

BC,A as Game 0.

24

For the following we need to assume that the elements obc and Payload does not leak information on
the authors of the transactions. Then assuming that A has a non-negligible advantage against Game 0, we
build upon it an adversary B breaking the anonymity of the signature. B starts the anonymity experiment
of the signature scheme and gain access to its oracles after generation of the group manager public key
gpk. B produces the elements {o′bc,b,Payload

′
b}b∈{0,1}. It executes the TxProp algorithm for each of them

and generates two elements transprop,0 and transprop,1. For each of them it calls the signing oracle respective
identities id0 and id1 picked randomly out of the group of participants G. Once it has received the signatures it
finishes the execution of the TxProp algorithm for both and sends the result to A. Using TxProp, B produce a
new transprop′ for freshly generated obc

′,Payload′ and sends (transprop′ , id0, id1) to its challenger which returns
a signature σ′. B finishes the generation of the new transaction with it and sends it to A which send back a
bit b directly forwarded by B to the challenger. AdvanonyBC,A (K) = Advf−anon

S,B (K).

25

