ISS
2026/2027

C. Olivier-Anclin

Session 5

Exercise 1 (TLS not unique)

A certain network protocol authenticates every packet of 384 bits using a MAC (that always maps a given
pair (k,m) to the same tag t) that has tags of bitlength 96. For every session of the protocol (what a
session is is not important here, but in a typical day one expects much more than 240 sessions to be created
worldwide), an identifier that is expected to uniquely identify the session among all possible sessions (past
and future) is taken to be the 96-bit tag of a designated packet that is part of the session.

1. Identify a problem in the above process.
2. Propose a simple solution to fix it.

Exercise 2 (Bad authenticated encryption)
We consider a symmetric encryption scheme Enc and a deterministic MAC.

1. Show that Enc| MAC : (ko, k,m) — Enc(ko,m) || MAC(k, m) has weak security w.r.t. the IND-CPA
definition, regardless of the IND-CPA security of Enc.

2. Propose an alternative way of combining Enc with a MAC in order to get an “authenticated” encryption
scheme, and informally justify its IND-CPA security and provides authenticity.

Exercise 3 (Understanding the Cryptography Behind the Signal App)
Signal is a secure messaging protocol that protects conversations even if attackers intercept messages or
temporarily compromise a device. This exercise introduces the key cryptographic ideas behind the protocol.

1. Basic Confidentiality. A user Alice wants to send a secret message m to Bob using a symmetric
key k (previously generated based on a Diffie-Hellman key exchange). Explain why encrypting m as
¢ = Enc(k, m) does not protect Bob’s past or future messages if the key k is ever stolen.

2. Key Exchange and Fresh Keys. Suppose Alice and Bob can agree on a fresh secret key sDH each
time they start a new session (e.g., using a Diffie-Hellman exchange). Explain intuitively why using
a new key for each session already improves security.

Post-Compromise Security (PCS). PCS means that even if an attacker learns some keys at time ¢,
future messages will eventually become secure again (thanks to key updates).

For session ¢, Alice and Bob compute a fresh Diffie-Hellman shared secret sDH;. This value is then fed
into a key-derivation function KDF(sDH;) — RK;, which behaves like a random function and is hard to
invert (you may think of it as similar in spirit to a MAC or a hash). The newly derived key RK; is then
used, while previous secrets are deleted.

3. Does this process provide post-compromise security if we use the keys RK; to encrypt messages ?

4. Give one practical reason why PCS matters for messaging applications.

In Signal, whenever the sending direction changes, the sender generates a fresh DH key pair and includes
the new public key in the message. The receiver then uses this new DH value to update the root key via a
KDF, after which both parties delete their old DH keys and continue with freshly derived keys.

Forward Secrecy (FS). Forward secrecy means that even if an attacker learns the current keys, past
messages remain safe.

4. FS. Consider that Alice and Bob derive a new key ki from kg, then ks from ki, and so on for each
new message in a session (for example based on a hash function):

KDF(-) KDF(+) KDF(-) KDF(+)

ko k1 ko ks kq---

Suppose an attacker learns k3. Can the attacker recover k47 And k1?7 Explain why this property gives
forward secrecy and the implication on the message secrecy ?

Assembling the Signal protocol. Signal additionally rely on a messaging server. From the keys ideas
exposed above you will now derive a signal-like messageing protocol.

5. Authenticated Diffie-Hellman. Assume Alice and Bob each possess a signature public/private
key pair (pk,sk) certified by the signal server via its keys (pkg,sks). How can they securly execue a
Diffie-Hellman key exchange to obtain sDH 7

6. Using the mechanisms introduced above, describe how to construct a messaging protocol that provides
PCS and FS.

Exercise 4 (AND/OR composition of Schnorr zero-knowledge proofs)

Let G = Zq4 be a cyclic group of prime order ¢ with generator g. A Schnorr proof of knowledge shows
knowledge of x such that X = ¢g* without revealing z. We use the following standard Sigma-style Schnorr
protocol (commit—challenge-response):

Prover: r i Zgq,R=g", send R

Verifier: ¢ € Z,

Prover: a =r —c-x, send a

Verifier: checks R ~ g® - X°.

Simulation of a Schnorr proof (useful for OR-proofs). A simulator that does not know z can
produce a transcript (R,c,a) distributed identically to a real execution by sampling ¢, a & Z4 uniformly
and computing R = ¢ - X¢. This triple passes the verifier check by construction.

AND composition. Alice wants to prove knowledge of both z; and s for X; = ¢ and X5 = ¢g*2.

1. Describe the AND-composition protocol using Schnorr proofs and explain why it is zero-knowledge
and sound.

OR composition. Bob wants to prove that he knows either z; or zo (for X; = g™ or Xy = ¢*2)
without revealing which one.

2. Using the Schnorr simulator above, show how Bob can simulate a proof for the branch whose secret
he does not know.

3. Give the complete OR-proof which the verification is the : how to form commitments, how to compute
challenges that add up to the verifier’s challenge, and how to produce responses. Hint: consider a
single value ¢ send by the challenger that you can split ¢ = ¢; + ca.

4. Briefly justify why the OR-proof is zero-knowledge and sound.

