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The One-Time Pad

Inputs/Outputs :

• Message m ∈ {0,1}ℓ (plaintext), message space : M = {0,1}ℓ

• Key k ∈ {0,1}ℓ, key space : K = {0,1}ℓ

• Ciphertext c ∈ {0,1}ℓ, ciphertext space : C = {0,1}ℓ

Algorithms :

• Encryption : Enck(m) = m ⊕ k
• Decryption : Deck(c) = c ⊕ k
• Correctness : Deck(Enck(m)) = (m ⊕ k)⊕ k = m

Advantages :

• Used during the Cold War

• Suitable for short messages/secrets

• Perfectly secure
(information-theoretic security)

Drawbacks :

• Key must be as long as the message

• Can only be used once

• Key must be uniformly random 4



Perfect Indistinguishability (i.e. Information-Theoretic or Unconditional Se-
curity)

Key Idea
The ciphertext provides no additional information about the message to an
adversary.

Indistinguishability Game for an Encryption Scheme Enc :

• Adversary : chooses two messages m0,m1 ∈ M
• Challenger : picks k ←$ K and b ←$ {0,1}, then computes c ← Enck(mb)
• Adversary : receives c and outputs b̂ (attempts to guess b)

Definition : Enc is perfectly indistinguishable if, for any adversarial strategy :

Pr[ b̂ = b ] = 1
2

(probability taken over the random choices of k , b, and all randomness used by
the adversary)

Theorem : The One-Time Pad is perfectly indistinguishable.

5



Proof of the Theorem

An encryption system is said to be perfect if the knowledge of a ciphertext gives
no information about the plaintext, even to an adversary with unlimited
computational resources.

Theorem : For the One-Time Pad, for any adversary A,

Pr[ b̂ = b ] = 1
2 .
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Proof of the Theorem

Theorem Reminder :

For any strategy of A, Pr[b̂ = b] = 1
2

Proof : Lemma : Let m ∈ M and c ∈ C. If k ← K, then :

Pr[m ⊕ k = c] = Pr[k = m ⊕ c] = 1
2ℓ

Law of Total Probability :

Pr[b̂ = b] = Pr[b̂ = 0 ∣ b = 0]Pr[b = 0] + Pr[b̂ = 1 ∣ b = 1]Pr[b = 1]
where Pr[b = 0] = Pr[b = 1] = 1

2 .

Suppose A is deterministic : it partitions ciphertexts into two sets C0 (A → 0) and
C1 (A → 1) depending on A’s output.

Pr[b̂ = 0 ∣ b = 0] = #C0

2ℓ
, Pr[b̂ = 1 ∣ b = 1] = #C1

2ℓ

⇒ Pr[b̂ = b] = 1
2
#C0 +#C1

2ℓ
=

1
2
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Proof of the Theorem

Proof (Randomised Adversary) :

• Suppose now that A is randomised, i.e. it uses random bits r ∈ {0,1}∗.
• For each choice of r , we obtain a deterministic algorithm Ar .

Pr
k ,b,r

[b̂ = b] = ∑
r∈{0,1}∗

Pr[b̂ = b ∣ A uses r]Pr[A uses r]

• For each fixed r , Ar is deterministic :

Pr[b̂ = b ∣ A uses r] = 1
2

hence :
Pr

k ,b,r
[b̂ = b] = 1

2
∑

r∈{0,1}∗
Pr[A uses r] = 1

2
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Another Example of Unconditional (or Perfect) Security

A key k is drawn uniformly at random from the key space K, denoted k
$
←− K.

Given an encryption function Enc, a decryption function Dec, and a message m.

An encryption scheme is secure if, for all (m0,m1) ∈ M2 :

Pr[Enck(m0) = c] = Pr[Enck(m1) = c]

If the message space M is the same as K, we can encrypt 1 with :

Enck ∶m ↦ m ⋅ k

Deck ∶ c ↦ c ⋅ k−1

1. usable once per key
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Perfect Indistinguishability Implies No Information Leakage

Examples : Given c ← Enck(m), an adversary cannot learn :

• the least significant bit m[0] of m

• the parity ⨁ℓ−1
i=0 m[i] of m

• whether m contains more 1s than 0s

• etc.

Equivalent Definition : The distribution of m does not depend on c.

∀m∗
∈ M,∀c∗ ∈ C such that Pr[c = c∗] > 0, Pr

m,k
[m = m∗ ∣ c = c∗] = Pr

m,c,k
[m = m∗]
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Limits of Perfect Indistinguishability : Shannon’s Theorem

Theorem : A perfectly indistinguishable encryption scheme must satisfy :

1. #K ≥ #M
2. If #K = #M, then k must be uniformly chosen in K

Proof of (i) :

• Suppose #K < #M and construct an adversary A such that Pr[b̂ = b] > 1
2

• For each c ∈ C, define Mc = {m ∈ M ∣ ∃k , Deck(c) = m}. Since Dec is
deterministic, #Mc ≤ #K < #M

• Pick c∗ ∈ C with Mc∗ ≠ ∅ and m0 ∉ Mc∗

• Define A(c) as :
• 0 if c = c∗ (certain that m ≠ m0)
• a random bit otherwise

• Then Pr[b̂ = b] > 1/2, contradiction.
11



Conclusion on Vernam Encryption (OTP)

• One-Time Pad : perfectly indistinguishable but. . .

• . . . perfect indistinguishability is impossible with a short key

Relaxing the Notion of Security :

• Allow some information leakage statistical security

• Limit the adversary’s computational power computational security

Another Issue : malleability

c = m ⊕ k ⇒ c ⊕m′
= (m ⊕m′)⊕ k

The adversary can modify any message.
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What is Encryption?

Definition (Asymmetric Encryption)
An asymmetric encryption scheme E is a set of probabilistic polynomial-time
(PPT) algorithms consisting of :

KeyGen(1λ) : a PPT algorithm that takes as input a security parameter λ, and
outputs a key pair (pk, sk).

Enc(pk,m) : a PPT algorithm that computes and returns a ciphertext c of the
message m using the public key pk.

Dec(sk, c) : a deterministic polynomial-time algorithm that takes as input a secret
key sk and a ciphertext c, and returns the plaintext message m.

We require that E satisfies ...
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How Do We Know if It’s Secure?

How can we define the confidentiality of an encryption scheme?

It must be difficult for an attacker (what kind of attacker?) to gain information
(what kind of information?) from a ciphertext.
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Adversary Model

Characteristics of the adversary :

• Clever & capable : Can perform any operation they wish.
• Time-limited :

• Limited to fewer than 2128 computations, for instance.
• Otherwise, a brute-force attack by enumeration is always possible.

Model used : Any Turing Machine.

• Represents all possible algorithms.

• Probabilistic : the adversary can generate keys, random numbers, etc.

16



Principles of Modern Cryptography

Formal Definitions

• What does it mean for an encryption scheme to be secure?
(good definition) Whatever information an adversary already has about the message,

the encryption gives them only very little additional information.
• What is an adversary?

• Ciphertext-only attack (COA)
• Known-plaintext attack (KPA)
• Chosen-plaintext attack (CPA)
• Chosen-ciphertext attack (CCA)

Specific Assumptions
• Adversary’s computational power (complexity theory)
• Validity and comparison of assumptions, and which ones are necessary

Provable Security Proving that a protocol satisfies a security definition, under
given assumptions. 17



Recap : Perfect Indistinguishability

Reminder : perfect indistinguishability for Enc using a game

Adversary : chooses two messages m0,m1 ∈ M
Challenge : samples k

$
←− K, b

$
←− {0,1} and computes c ← Enck(mb)

Adversary : outputs a bit b̂ (tries to guess b)

Enc is perfectly indistinguishable if Pr[b̂ = b] = 1
2

Characteristics

• Weak adversary model :
• The adversary only sees the ciphertext c
• Even with access to many ciphertexts, no difference !
• But not KPA ⇒ a single pair (m,Enck(m)) reveals k (one-time pad)

• Strong guarantees : no matter how powerful the adversary, they learn nothing

⟹ Need for a stronger adversary model. 18



IND-CPA : Indistinguishability under Chosen-Plaintext Attack

IND-CPA Game for Encryption

Setup : sample k
$
←− K

Adversary : has oracle access : for each query xi , it receives ci ← Enck(xi)
Adversary : chooses two messages m0,m1 ∈ M of equal length

Challenge : samples b
$
←− {0,1} and computes c ← Enck(mb)

Adversary : outputs a bit b̂ (tries to guess b)

Remarks

• The adversary can query Enck(m0) and Enck(m1)
• Enck(⋅) must therefore be randomised

• The messages must have the same length
• IND-CPA encryption may reveal message length
• Generally necessary for efficiency
• Ad-hoc solutions exist if length is sensitive information 19



Relaxing Guarantees : IND-CPA Advantage

What is the advantage of an adversary A compared to random guessing of b̂ ?

Adversary’s Advantage A

AdvIND-CPA
Enc (A) = 2

»»»»»»»
Pr [AEnck → b] − 1

2
»»»»»»»

Remarks

• The advantage is between 0 (perfectly indistinguishable) and 1

• AdvIND-CPA
Enc (A) = »»»»»Pr [A

Enck → 1 ∣ b = 1] − Pr [AEnck → 1 ∣ b = 0]»»»»»

20



IND-CPA Security

An adversary with bounded resources has a negligible advantage.

Asymptotic Security definition from complexity theory

• Fix a security parameter n
• Bounded resources : probabilistic polynomial-time adversaries A in n
• Negligible advantage : if < 1

p(n) for any polynomial p

Concrete Security used in this course

• Advantage function : AdvIND-CPA
Enc (q, t) = maxAq,t AdvIND-CPA

Enc (Aq,t) where Aq,t

ranges over all probabilistic algorithms running in time ≤ t and making ≤ q
queries

• No formal definition of bounded resources or negligible :

21



Orders of Magnitude (Time)

Computation Time

• t ≃ 240 : ∼ 1 day on my laptop
• t ≃ 260 : feasible on a large CPU/GPU cluster academic research
• t ≃ 280 : feasible with an ASIC cluster Bitcoin mining
• t ≃ 2128 : seems sufficiently hard

Example : performing 2128 operations in 34 years (≃ 230 seconds)

• Assumptions :
• Hardware at 250 ops/s quite fast
• Highly parallelisable not always true
• 1000 W per device reasonable

• Results :
• Requires ≃

2128

250⋅230 = 248 machines > 280 ⋅ 1012

• Requires ∼ 280,000 TW > 1.7 ⋅ 109 nuclear power plants
22



Orders of Magnitude (Probabilities)

Probabilities

• p =
1
2 : getting heads with a fair coin

• p =
1
6 : rolling a 6 with a fair die

• p ≃ 2−24 : probability of winning the French national lottery
• p ≃ 2−72 : probability of winning the French lottery three times in a row

Example :

• An attack taking 1 second and succeeding with probability 2−60 would have
been expected to succeed fewer than once since the Big Bang

• CPU errors due to cosmic rays occur with far higher probability !

Combining Orders of Magnitude. If AdvIND-CPA
Enc (2128) < 2−60, then the encryption

can be considered (IND-CPA) secure.

23
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Fonction négligeable

A fonction ϵ∶N −→ R
+ is negligible, if

∀c > 0,∃k0 ∈ N,∀k > k0, ∣ϵ(k)∣ <
1

∣kc∣ .

Properties
Let f and g be two negligible functions, then

1. f .g is negligible.

2. For any k > 0, f k is negligible.

3. For any λ, µ in R, λ.f + µ.g is negligible.

Exercise : Proofs

25



Noticeable Functions

Instead of "there exists an N such that for all n > N " we will in the following often
say "for all sufficiently large n".
We call a function ν ∶ N → R noticeable if there exists a positive polynomial p such
that for all sufficiently large n, we have :

ν(n) > 1
p(n)

Note : A function can be neither noticeable nor negligible.

26



Exercises

Prove or disprove the following statements :

1. If both f ,g ≥ 0 are noticeable, then f − g and f + g are noticeable.

2. If both f ,g ≥ 0 are not noticeable, then f − g is not noticeable.

3. If both f ,g ≥ 0 are not noticeable, then f + g is not noticeable.

4. If f ≥ 0 is noticeable, and g ≥ 0 is negligible, then f .g is negligible.

5. If both f ,g > 0 are negligible, then f/g is noticeable.

27



Exercise : Prove or disprove :

• The function f (n) ∶= (1
2)

n is negligible.

• The function f (n) ∶= 2−
√

n is negligible.

• The function f (n) ∶= n−log(n) is negligible.

28
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How to prove the security?

Theorem
A cryptosystem C has a security property P under a hypothesis H

H ⇒ C has P

(A ⇒ B) ⇔ (¬B ⇒ ¬A)
[H ⇒ C has P] ⇔ [¬(C has P) ⇒ ¬H]

Proof by Reduction

1. Assume that there exists an adversary A that breaks the security property of
C.

2. Construct an adversary B that uses A to breaks the hypothesis H in a
polynomial time. 30



Modelling an Adversary

Let A be an algorithm that attempts to decrypt encrypted messages using
randomly generated keys, i.e.,

(pk, sk) ← KeyGen(λ).

An encryption algorithm E = (KeyGen,Enc) is said to be
practically/computationally secure if, for any A capable of decrypting a message,
its success probability is negligible in the key size λ.

Formally : Let AdvA(E , λ) denote the probability of obtaining information about a
message. We have :

AdvE,A(λ) ≤ ϵ(λ).

31
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Adversary Models

The adversary is given access to oracles :

→ encryption of all messages of his choice
→ decryption of all messages of his choice

Three classical security levels :

• Chosen-Plain-text Attacks (CPA)

• Non adaptive Chosen-Cipher-text Attacks (CCA1)
Decryption oracle only before the challenge

• Adaptive Chosen-Cipher-text Attacks (CCA2)
unlimited access to the decryption oracle (except for the challenge)

33



Other Attack Scenarios : Attacker’s Goal

• Non-Malleability (NM) : It is impossible to transform a ciphertext of a
message m into a ciphertext of a related message f (m) for some known
function f .

• Indistinguishability (IND) : It is impossible to distinguish a ciphertext of a
message m from a ciphertext of another message m′.

• One-Way (OW) : It is impossible to recover the encrypted message.

34
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Is OW Insufficient?

“One-wayness” means that the attacker cannot recover the entire message. But
they might still recover half of it !

Let’s take a concrete example :

The message can no longer be read (one-wayness).

However, one can still tell whether the paper is white, red, green, etc.

We gain one bit of information about the paper — and maybe that information is
crucial !

35
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Relations

CCA2 ⇒ CCA resistance ⇒ CPA resistance ⇒ KPA.

NM-CPA NM-CCA1 NM-CCA2

IND-CCA2IND-CPA IND-CCA1

OW-CPA
. “Relations Among Notions of Security for Public-Key Encryption Schemes”, Crypto’98, by Mihir
Bellare, Anand Desai, David Pointcheval and Phillip Rogaway
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CCA2 ⇒ CCA resistance ⇒ CPA resistance ⇒ KPA.

sécurité forte

sécurité minimale

sécurité faible
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The Diffie-Hellman protocol

g,p are public parameters.

• Diffie chooses x and computes gx
mod p

• Diffie sends gx
mod p

• Hellman chooses y and computes gy
mod p

• Hellman sends gx
mod p

Shared key : (gx)y
= gxy

= (gy)x

Basic Diffie-Hellman key-exchange : initiator I and responder R exchange public
“half-keys” to arrive at mutual session key k = gxy

mod p.
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Hard Problems

Most cryptographic constructions are based on hard problems. Their security is
proved by reduction to these problems :

• RSA-OAEP. Given N = pq and e ∈ Z∗φ(N), compute the inverse of e modulo
φ(N) = (p − 1)(q − 1). Factorization

• Discrete Logarithm problem, DL. Given a group ⟨g⟩ and gx , compute x .

• Computational Diffie-Hellman, CDH Given a group ⟨g⟩, gx and gy , compute
gxy .

• Decisional Diffie-Hellman, DDH Given a group ⟨g⟩, distinguish between the
distributions (gx

,gy
,gxy) and (gx

,gy
,gr).
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The Discrete Logarithm (DL)

Let G = (⟨g⟩,∗) be any finite cyclic group of prime order.

Idea : it is hard for any adversary to produce x if he only knows gx .
For any adversary A,

AdvDL(A) = Pr[A(gx) → x
»»»»»»x

R
← [1,q]]

is negligible.
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Computational Diffie-Hellman (CDH)

Idea : it is hard for any adversary to produce gxy if he only knows gx and gy .
For any adversary A,

AdvCDH(A) = Pr[A(gx
,gy) → gxy »»»»»»x , y

R
← [1,q]]

is negligible.
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Decisional Diffie-Hellman (DDH)

Idea : Knowing gx and gy , it should be hard for any adversary to distinguish
between gxy and gr for some random value r .
For any adversary A, the advantage of A

AdvDDH(A) = Pr[A(gx
,gy

,gxy) → 1
»»»»»»x , y

R
← [1,q]]

−Pr[A(gx
,gy

,gr) → 1
»»»»»»x , y , r

R
← [1,q]]

is negligible.

This means that an adversary cannot extract a single bit of information on gxy from
gx and gy .
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Relation between the problems

Proposition
Solve DL ⇒ Solve CDH ⇒ Solve DDH. (Exercise)

Moaurer & Wolf
For many groups, DL ⇔ CDH

Joux & Wolf
There are groups for which DDH is easier than CDH.
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Conclusion

One-Time Pad

• First example of an encryption scheme
• Very strong security. . . but in a very weak model !
• Practically unusable

Computational Security

• Game + advantage → notion of security
• Various security models depending on the experiment

• Define the goals and the capabilities

What’s Next?

• Symmetric and public-key encryption
• Authentication and integrity
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