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The One-Time Pad

Inputs/Outputs :
* Message m € {071}3 (plaintext), message space : M = {0, 1}5
* Key k € {0,1}6, key space : K = {0, 1}2
« Ciphertext c € {0, 1 }Z, ciphertext space : C = {0, 1 }’Z
Algorithms :
» Encryption : Enck(m) = me k
» Decryption : Decy(c) =c@® k

« Correctness : Deck(Enck(m)) = (me& k)® k=m
Advantages :

» Used during the Cold War
« Suitable for short messages/secrets

» Key must be as long as the message

» Can only be used once
 Perfectly secure

: . » Key must be uniformly random
(information-theoretic security) Y Y 4



Perfect Indistinguishability (i.e. Information-Theoretic or Unconditional Se-
curity)

The ciphertext provides no additional information about the message to an
adversary.

Indistinguishability Game for an Encryption Scheme Enc :

» Adversary : chooses two messages mg, m; € M
» Challenger : picks k «$ K and b «$ {0, 1}, then computes ¢ « Encx(my)
» Adversary : receives ¢ and outputs b (attempts to guess b)

Definition : Enc is perfectly indistinguishable if, for any adversarial strategy :
Pb=b]=1

(probability taken over the random choices of k, b, and all randomness used by
the adversary) 2



Proof of the Theorem

An encryption system is said to be perfect if the knowledge of a ciphertext gives
no information about the plaintext, even to an adversary with unlimited
computational resources.

For the One-Time Pad, for any adversary A,

Pr{b=b]=3.



Proof of the Theorem

For any strategy of A, Pr[b=b]=1
Proof : Lemma:lLetme MandceC. If k « K, then:
Pr[mEBk=C]= Pr[k=m€BC] 3 =
Law of Total Probability :
Pr[b=b]=Pr[b=0]|b= O]Pr[b 0]+Pr[b=1|b=1]Pr[b=1]
where Pr[b=0]=Pr[b=1] =5

Suppose A is deterministic : it partitions ciphertexts into two sets Cy (A — 0) and
Cy (A — 1) depending on A’s output.

#Co #C1
Pb=0lb=01=22  pib=1|p=11-L2 ;

d I N N



Proof of the Theorem

Proof (Randomised Adversary) :

« Suppose now that A is randomised, i.e. it uses random bits r € {0,1}".
+ For each choice of r, we obtain a deterministic algorithm A,.
Prib=b]= ) Prb=b]|Ausesr]Pr[Ausesr]
k,b,r
re{0,1}*
» For each fixed r, A, is deterministic :
- 1

Prlb=b| Ausesr]= 5

hence :

Prib=b]=5 ) Pr[Ausesr]=%
re{0,1}*



Another Example of Unconditional (or Perfect) Security

A key k is drawn uniformly at random from the key space K, denoted k & K.
Given an encryption function Enc, a decryption function Dec, and a message m.

An encryption scheme is secure if, for all (mg, my) € M
Pr[Enck(mg) = c] = Pr[Ency(my) = ]
If the message space M is the same as K, we can encrypt1 with :

Enckeme-m-k

-1
Decy:c—c-k

1. usable once per key



Perfect Indistinguishability Implies No Information Leakage

Examples : Given ¢ «— Enck(m), an adversary cannot learn :

* the least significant bit m[0] of m
« the parity @, o mlilof m
» whether m contains more 1s than Os

* efc.

Equivalent Definition : The distribution of m does not depend on c.

Vm* € M,Vc" € Csuch that Pric = c¢*] > 0, Prm = m*|c=c"]= Prk[m m*
m, m,c

10



Limits of Perfect Indistinguishability : Shannon’s Theorem

: A perfectly indistinguishable encryption scheme must satisfy :

1. #K = #M
2. If #K = #M, then k must be uniformly chosen in K

Proof of (i) :

» Suppose #K < #M and construct an adversary A such that Pr[f) =b] > %
 For each c € C, define M, = {m e M | 3k, Deck(c) = m}. Since Dec is
deterministic, # M < #K < #M
Pick ¢c* € C with M # @ and mg ¢ M
Define A(c) as :

« 0if ¢ = ¢* (certain that m # m)

» arandom bit otherwise

Then Pr[b = b] > 1/2, contradiction.

11



Conclusion on Vernam Encryption (OTP)

» One-Time Pad : perfectly indistinguishable but. . .
* ... perfect indistinguishability is impossible with a short key

* Allow some information leakage statistical security
+ Limit the adversary’s computational power computational security

Another Issue : malleability
c=moek = com=(meoem)ek

The adversary can modify any message.

12



IND-CPA security
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What is Encryption ?

An asymmetric encryption scheme & is a set of probabilistic polynomial-time
(PPT) algorithms consisting of :

KeyGen(1 A) : a PPT algorithm that takes as input a security parameter A, and
outputs a key pair (pk, sk).

Enc(pk, m) : a PPT algorithm that computes and returns a ciphertext c of the
message m using the public key pk.

Dec(sk, ¢) : a deterministic polynomial-time algorithm that takes as input a secret
key sk and a ciphertext ¢, and returns the plaintext message m.

We require that £ satisfies ...



How Do We Know if It’s Secure ?

How can we define the confidentiality of an encryption scheme ?

15



How Do We Know if It’s Secure ?

How can we define the confidentiality of an encryption scheme ?

It must be difficult for an attacker (what kind of attacker ?) to gain information
(what kind of information ?) from a ciphertext.

15



Adversary Model

Characteristics of the adversary :

» Clever & capable : Can perform any operation they wish.
* Time-limited :
+ Limited to fewer than 2'°° computations, for instance.
+ Otherwise, a brute-force attack by enumeration is always possible.

128

Model used : Any Turing Machine.

* Represents all possible algorithms.
+ Probabilistic : the adversary can generate keys, random numbers, etc.

16



Principles of Modern Cryptography

Formal Definitions

» What does it mean for an encryption scheme to be secure ?
(good definition) Whatever information an adversary already has about the message,

the encryption gives them only very little additional information.
* What is an adversary ?

+ Ciphertext-only-attack(COA)
» Known-plaintext-attack-(KPA)
» Chosen-plaintext attack (CPA)
» Chosen-ciphertext attack (CCA)
Specific Assumptions
» Adversary’s computational power (complexity theory)
+ Validity and comparison of assumptions, and which ones are necessary

Provable Security Proving that a protocol satisfies a security definition, under
given assumptions. 7



Recap : Perfect Indistinguishability

Reminder :

Adversary :

Challenge :
Adversary :

perfect indistinguishability for Enc using a game

chooses two messages mgy, my € M
samples k & K, b 2 {0,1} and computes ¢ « Enck(my)
outputs a bit b (tries to guess b)

Enc is perfectly indistinguishable if Pr[b = b] = %

Characteristics

» Weak adversary model :
» The adversary only sees the ciphertext ¢
» Even with access to many ciphertexts, no difference !
« But not KPA = a single pair (m, Enc,(m)) reveals k (one-time pad)

» Strong guarantees : no matter how powerful the adversary, they learn nothing

— Need for a stronger adversary model. 18



IND-CPA : Indistinguishability under Chosen-Plaintext Attack

IND-CPA Game for Encryption

Setup : sample k 2 K

Adversary :
Adversary :

Challenge :
Adversary :

Remarks

has oracle access : for each query x;, it receives ¢; « Enck(x;)
chooses two messages my, my € M of equal length

samples b 2 {0,1} and computes ¢ « Enc,(my)

outputs a bit b (tries to guess b)

» The adversary can query Enc,(mg) and Encg(my)
* Enck(-) must therefore be randomised
* The messages must have the same length
» IND-CPA encryption may reveal message length
» Generally necessary for efficiency
» Ad-hoc solutions exist if length is sensitive information 19



Relaxing Guarantees : IND-CPA Advantage

What is the advantage of an adversary .4 compared to random guessing of b?

Adversary’s Advantage A

Advine “T(A) = 2 ‘Pr [A5" > b] - %

Remarks

» The advantage is between 0 (perfectly indistinguishable) and 1
* Advgne C(A) = [Pr[ AT 5 1 | b=1]-Pr[AT 5 1| b=0]|

20



IND-CPA Security

An adversary with bounded resources has a negligible advantage.

Asymptotic Security definition from complexity theory

 Fix a security parameter n
» Bounded resources : probabilistic polynomial-time adversaries A in n
1

* Negligible advantage : if < FG) for any polynomial p

Concrete Security used in this course

« Advantage function : AdvE\LEC)'CPA(q, t) = maxu,, AdvE\:EJ'CPA(AqJ) where Ag ¢

ranges over all probabilistic algorithms running in time < t and making < q
queries
» No formal definition of bounded resources or negligible :

21



Orders of Magnitude (Time)

Computation Time

e t=2%0: 4 day on my laptop

. t=~2%:feasible on a large CPU/GPU cluster academic research
. t =~ 2% : feasible with an ASIC cluster Bitcoin mining
. t=~2'"%:seems sufficiently hard

Example : performing 2128 operations in 34 years (=~ 230 seconds)
» Assumptions :

« Hardware at 2*° ops/s quite fast
* Highly parallelisable not always true
* 1000 W per device reasonable
* Results :
R : _ 2® 48 . 12
* Requires = o5 =2 machines >280-10
* Requires ~ 280,000 TW > 1.7 -10° nuclear power plants

22



Orders of Magnitude (Probabilities)

Probabilities
» p = 3 : getting heads with a fair coin
*p= % : rolling a 6 with a fair die

e p= o34 probability of winning the French national lottery
e p= o772 probability of winning the French lottery three times in a row

Example :

* An attack taking 1 second and succeeding with probability 27% would have
been expected to succeed fewer than once since the Big Bang

« CPU errors due to cosmic rays occur with far higher probability !

Combining Orders of Magnitude. If Adv”\:}EC)'CPA(st) <27 then the encryption
E

can be considered (IND-CPA) secure.

23



Negligible Functions

24



Fonction négligeable

A fonction e: N — R is negligible, if

1
Ve >0,3dkg € N,Vk > kg, |e(k)| < TR

Let f and g be two negligible functions, then

1. f.g is negligible.
2. Forany k > 0, f*is negligible.
3. Forany A\, uin R, \.f + u.g is negligible.

Exercise : Proofs

25



Noticeable Functions

Instead of "there exists an N such that for all n > N " we will in the following often

say "for all sufficiently large n".
We call a function v : N — R noticeable if there exists a positive polynomial p such

that for all sufficiently large n, we have :
1
v(n) > —
"> oy

Note : A function can be neither noticeable nor negligible.

26



Prove or disprove the following statements :

If both f, g = 0 are noticeable, then f — g and f + g are noticeable.
If both f, g = 0 are not noticeable, then f — g is not noticeable.

If both f, g = 0 are not noticeable, then f + g is not noticeable.

If f = 0 is noticeable, and g = 0 is negligible, then f.g is negligible.
If both f, g > 0 are negligible, then f/g is noticeable.

ok w0 pnp -

27



Exercise : Prove or disprove :
» The function f(n) := (3)" is negligible.
 The function f(n) := 2 VMg negligible.

- The function f(n) := n~"°9("

is negligible.

28



Reduction Proof

29



How to prove the security ?

A cryptosystem C has a security property P under a hypothesis H

H= Chas P

(A= B) & (=B = -A)
[H= Chas P] & [-(C has P) = -H]

1. Assume that there exists an adversary A that breaks the security property of
C.

2. Construct an adversary B that uses A to breaks the hypothesis H in a
polynomial time. 30



Modelling an Adversary

Let A be an algorithm that attempts to decrypt encrypted messages using
randomly generated keys, i.e.,

(pk, sk) « KeyGen(\).

An encryption algorithm £ = (KeyGen, Enc) is said to be
practically/computationally secure if, for any .A capable of decrypting a message,
its success probability is negligible in the key size .

Formally : Let Adv 4(&, \) denote the probability of obtaining information about a
message. We have :
Adve 4(N) < €(N).

31



Different Adversaries

32



Adversary Models

The adversary is given access to oracles :
— encryption of all messages of his choice
— decryption of all messages of his choice

Three classical security levels :

» Chosen-Plain-text Attacks (CPA)

* Non adaptive Chosen-Cipher-text Attacks (CCA1)
Decryption oracle only before the challenge
» Adaptive Chosen-Cipher-text Attacks (CCA2)
unlimited access to the decryption oracle (except for the challenge)

33



Other Attack Scenarios : Attacker’s Goal

* Non-Malleability (NM) : It is impossible to transform a ciphertext of a
message m into a ciphertext of a related message f(m) for some known
function f.

34



Other Attack Scenarios : Attacker’s Goal

* Non-Malleability (NM) : It is impossible to transform a ciphertext of a
message m into a ciphertext of a related message f(m) for some known
function f.

* Indistinguishability (IND) : It is impossible to distinguish a ciphertext of a
message m from a ciphertext of another message m'.
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Other Attack Scenarios : Attacker’s Goal

* Non-Malleability (NM) : It is impossible to transform a ciphertext of a
message m into a ciphertext of a related message f(m) for some known
function f.

* Indistinguishability (IND) : It is impossible to distinguish a ciphertext of a
message m from a ciphertext of another message m'.

+ One-Way (OW) : It is impossible to recover the encrypted message.
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Is OW Insufficient ?

“One-wayness” means that the attacker cannot recover the entire message. But
they might still recover half of it!

35



Is OW Insufficient ?

“One-wayness” means that the attacker cannot recover the entire message. But
they might still recover half of it!

Let’s take a concrete example :

The message can no longer be read (one-wayness).
However, one can still tell whether the paper is white, red, green, etc.

We gain one bit of information about the paper — and maybe that information is
crucial! 35



| CCA2 = CCA resistance = CPA resistance = KPA. |

—_—
NM-CPA <~—— NM-CCA1 «<— NM-CCA2

IND-CPA <— IND-CCA1 «<— IND-CCA2

OW-CPA

. “Relations Among Notions of Security for Public-Key Encryption Schemes”, Crypto’98, by Mihir
Bellare, Anand Desai, David Pointcheval and Phillip Rogaway
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| CCA2 = CCA resistance = CPA resistance = KPA. |

—_—,
NM-CPA’ <—— NM-CCA1 <— NM-CCA2

IND-CPA’ <— IND-CCA1 «<— IND-CCA2

] sécurité minimale \

OW-CPA —— sécurité faible |

. “Relations Among Notions of Security for Public-Key Encryption Schemes”, Crypto’98, by Mihir
Bellare, Anand Desai, David Pointcheval and Phillip Rogaway
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Security Assumptions
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The Diffie-Hellman protocol

g, p are public parameters.
« Diffie chooses x and computes g* mod p
- Diffie sends g* mod p
« Hellman chooses y and computes g’ mod p
« Hellman sends g mod p
Shared key : () = g = (¢”)"

Basic Diffie-Hellman key-exchange : initiator | and responder R exchange public
“nalf-keys” to arrive at mutual session key k = g mod p.

38



Hard Problems

Most cryptographic constructions are based on hard problems. Their security is
proved by reduction to these problems :

* RSA-OAEP. Given N = pgand e € Z:;(N), compute the inverse of e modulo
o(N) = (p—1)(g—1). Factorization

- Discrete Logarithm problem, DL. Given a group (g) and g*, compute x.

« Computational Diffie-Hellman, CDH Given a group (g), g* and g”, compute
g7.

« Decisional Diffie-Hellman, DDH Given a group (g), distinguish between the
distributions (¢*,g”,g") and (9", 9", 9").

39



The Discrete Logarithm (DL)

Let G = ({(9), *) be any finite cyclic group of prime order.

Idea : it is hard for any adversary to produce x if he only knows g*.
For any adversary A,

Adv®(4) = P Ag") - x|x £ [1,q]]

is negligible.
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Computational Diffie-Hellman (CDH)

Idea : it is hard for any adversary to produce g if he only knows g* and ¢’
For any adversary A,

Adv(A) = Prl A(g",¢") - g7 |x.y € [1,4]]

is negligible.

41



Decisional Diffie-Hellman (DDH)

ldea : Knowing g* and ¢’ it should be hard for any adversary to distinguish
between g® and g’ for some random value r.
For any adversary A, the advantage of A

Adv(A) = Prl A0, 0", 07) > 1|x.y € [1,4]]

R
_Pr[A(gX7gy7gr) -1 ’X7y7 Ir &= [17q]]
is negligible.

This means that an adversary cannot extract a single bit of information on g’ from
g and g’.

42



Relation between the problems

Solve DL = Solve CDH = Solve DDH. (Exercise)

For many groups, DL < CDH

There are groups for which DDH is easier than CDH.
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Conclusion

One-Time Pad

« First example of an encryption scheme
» Very strong security. .. but in a very weak model !
* Practically unusable

Computational Security

+ Game + advantage — notion of security
+ Various security models depending on the experiment
 Define the goals and the capabilities

What’s Next ?

« Symmetric and public-key encryption
* Authentication and integrity
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