ICS - Information Security Systems Lecture 2: Security Formalism

2025-2026

Outline

Security

IND-CPA security

Negligible Functions

Reduction Proof

Different Adversaries

Security Assumptions

Red phone

The One-Time Pad

Inputs/Outputs:

- Message $m \in \{0,1\}^{\ell}$ (plaintext), message space : $\mathcal{M} = \{0,1\}^{\ell}$
- Key $k \in \{0,1\}^{\ell}$, key space : $\mathcal{K} = \{0,1\}^{\ell}$
- Ciphertext $c \in \{0,1\}^{\ell}$, ciphertext space : $C = \{0,1\}^{\ell}$

Algorithms:

- Encryption : $Enc_k(m) = m \oplus k$
- Decryption : $Dec_k(c) = c \oplus k$
- Correctness : $Dec_k(Enc_k(m)) = (m \oplus k) \oplus k = m$

Advantages:

- Used during the Cold War
- Suitable for short messages/secrets
- Perfectly secure (information-theoretic security)

Drawbacks:

- Key must be as long as the message
- Can only be used once
- Key must be uniformly random

Perfect Indistinguishability (i.e. Information-Theoretic or Unconditional Security)

Key Idea

The ciphertext provides **no additional information** about the message to an adversary.

Indistinguishability Game for an Encryption Scheme Enc:

- Adversary : chooses two messages $m_0, m_1 \in \mathcal{M}$
- Challenger: picks $k \leftarrow \$ \mathcal{K}$ and $b \leftarrow \$ \{0,1\}$, then computes $c \leftarrow Enc_k(m_b)$
- Adversary : receives c and outputs \hat{b} (attempts to guess b)

Definition: Enc is **perfectly indistinguishable** if, for any adversarial strategy:

$$\Pr[\hat{b} = b] = \frac{1}{2}$$

(probability taken over the random choices of k, b, and all randomness used by the adversary)

Proof of the Theorem

An encryption system is said to be **perfect** if the knowledge of a ciphertext gives no information about the plaintext, even to an adversary with **unlimited computational resources**.

Theorem : For the One-Time Pad, for any adversary A,

$$\Pr[\hat{b} = b] = \frac{1}{2}.$$

Proof of the Theorem

Theorem Reminder:

For any strategy of
$$A$$
, $Pr[\hat{b} = b] = \frac{1}{2}$

Proof : Lemma : Let $m \in \mathcal{M}$ and $c \in \mathcal{C}$. If $k \leftarrow \mathcal{K}$, then :

$$Pr[m \oplus k = c] = Pr[k = m \oplus c] = \frac{1}{2^{\ell}}$$

Law of Total Probability:

$$\Pr[\hat{b} = b] = \Pr[\hat{b} = 0 \mid b = 0] \Pr[b = 0] + \Pr[\hat{b} = 1 \mid b = 1] \Pr[b = 1]$$
 where $\Pr[b = 0] = \Pr[b = 1] = \frac{1}{2}$.

Suppose \mathcal{A} is deterministic : it partitions ciphertexts into two sets C_0 ($\mathcal{A} \to 0$) and C_1 ($\mathcal{A} \to 1$) depending on \mathcal{A} 's output.

$$Pr[\hat{b} = 0 \mid b = 0] = \frac{\#C_0}{2^{\ell}}, \qquad Pr[\hat{b} = 1 \mid b = 1] = \frac{\#C_1}{2^{\ell}}$$

Proof of the Theorem

Proof (Randomised Adversary):

- Suppose now that A is randomised, i.e. it uses random bits $r \in \{0, 1\}^*$.
- For each choice of r, we obtain a deterministic algorithm A_r .

$$\Pr_{k,b,r} \big[\hat{b} = b \big] = \sum_{r \in \{0,1\}^*} \Pr \big[\hat{b} = b \mid \mathcal{A} \text{ uses } r \big] \Pr \big[\mathcal{A} \text{ uses } r \big]$$

• For each fixed r, A_r is deterministic :

$$\Pr[\hat{b} = b \mid A \text{ uses } r] = \frac{1}{2}$$

hence:

$$\Pr_{k,b,r}[\hat{b} = b] = \frac{1}{2} \sum_{r \in \{0,1\}^*} \Pr[A \text{ uses } r] = \frac{1}{2}$$

Another Example of Unconditional (or Perfect) Security

A key k is drawn uniformly at random from the key space \mathcal{K} , denoted $k \stackrel{\$}{\leftarrow} \mathcal{K}$.

Given an encryption function Enc, a decryption function Dec, and a message m.

An encryption scheme is secure if, for all $(m_0, m_1) \in \mathcal{M}^2$:

$$Pr[Enc_k(m_0) = c] = Pr[Enc_k(m_1) = c]$$

If the message space $\mathcal M$ is the same as $\mathcal K$, we can encrypt 1 with :

$$Enc_k: m \mapsto m \cdot k$$

$$Dec_k: c \mapsto c \cdot k^{-1}$$

^{1.} usable once per key

Perfect Indistinguishability Implies No Information Leakage

Examples: Given $c \leftarrow \operatorname{Enc}_k(m)$, an adversary cannot learn:

- the least significant bit m[0] of m
- the parity $\bigoplus_{i=0}^{\ell-1} m[i]$ of m
- whether m contains more 1s than 0s
- etc.

Equivalent Definition: The distribution of m does not depend on c.

$$\forall m^* \in \mathcal{M}, \forall c^* \in \mathcal{C} \text{ such that } \Pr[c = c^*] > 0, \qquad \Pr_{m,k}[m = m^* \mid c = c^*] = \Pr_{m,c,k}[m = m^*]$$

Limits of Perfect Indistinguishability: Shannon's Theorem

Theorem: A perfectly indistinguishable encryption scheme must satisfy:

- 1. $\#\mathcal{K} \geq \#\mathcal{M}$
- 2. If $\#\mathcal{K} = \#\mathcal{M}$, then k must be uniformly chosen in \mathcal{K}

Proof of (i):

- Suppose $\#\mathcal{K} < \#\mathcal{M}$ and construct an adversary \mathcal{A} such that $\Pr[\hat{b} = b] > \frac{1}{2}$
- For each $c \in \mathcal{C}$, define $\mathcal{M}_c = \{m \in \mathcal{M} \mid \exists k, \ \mathsf{Dec}_k(c) = m\}$. Since Dec is deterministic, $\#\mathcal{M}_c \leq \#\mathcal{K} < \#\mathcal{M}$
- Pick $c^* \in \mathcal{C}$ with $\mathcal{M}_{c^*} \neq \emptyset$ and $m_0 \notin \mathcal{M}_{c^*}$
- Define A(c) as :
 - 0 if $c = c^*$ (certain that $m \neq m_0$)
 - · a random bit otherwise
- Then $Pr[\hat{b} = b] > 1/2$, contradiction.

Conclusion on Vernam Encryption (OTP)

- One-Time Pad: perfectly indistinguishable but...
- ... perfect indistinguishability is impossible with a short key

Relaxing the Notion of Security:

- Allow some information leakage
- · Limit the adversary's computational power

statistical security

computational security

Another Issue: malleability

$$c = m \oplus k \implies c \oplus m' = (m \oplus m') \oplus k$$

The adversary can modify any message.

Outline

Security

IND-CPA security

Negligible Functions

Reduction Proof

Different Adversaries

Security Assumptions

What is Encryption?

Definition (Asymmetric Encryption)

An asymmetric encryption scheme \mathcal{E} is a set of probabilistic polynomial-time (PPT) algorithms consisting of :

KeyGen(1 $^{\lambda}$): a PPT algorithm that takes as input a security parameter λ , and outputs a key pair (pk, sk).

Enc(pk, m): a PPT algorithm that computes and returns a *ciphertext c* of the message m using the public key pk.

Dec(sk, c): a deterministic polynomial-time algorithm that takes as input a secret key sk and a ciphertext c, and returns the plaintext message m.

We require that $\mathcal E$ satisfies ...

How Do We Know if It's Secure?

How can we define the confidentiality of an encryption scheme?

How Do We Know if It's Secure?

How can we define the confidentiality of an encryption scheme?

It must be difficult for an attacker (**what kind of attacker?**) to gain information (**what kind of information?**) from a ciphertext.

Adversary Model

Characteristics of the adversary:

- Clever & capable : Can perform any operation they wish.
- Time-limited :
 - Limited to fewer than 2¹²⁸ computations, for instance.
 - Otherwise, a brute-force attack by enumeration is always possible.

Model used : Any Turing Machine.

- Represents all possible algorithms.
- Probabilistic : the adversary can generate keys, random numbers, etc.

Principles of Modern Cryptography

Formal Definitions

- What does it mean for an encryption scheme to be secure?
 (good definition) Whatever information an adversary already has about the message, the encryption gives them only very little additional information.
- What is an adversary?
 - Ciphertext-only attack (COA)
 - Known-plaintext attack (KPA)
 - Chosen-plaintext attack (CPA)
 - Chosen-ciphertext attack (CCA)

Specific Assumptions

- Adversary's computational power (complexity theory)
- Validity and comparison of assumptions, and which ones are necessary

Provable Security Proving that a protocol satisfies a **security definition**, under given **assumptions**.

Recap: Perfect Indistinguishability

Reminder: perfect indistinguishability for Enc using a game

Adversary : chooses two messages $m_0, m_1 \in \mathcal{M}$

Challenge : samples $k \stackrel{\$}{\leftarrow} \mathcal{K}, b \stackrel{\$}{\leftarrow} \{0,1\}$ and computes $c \leftarrow \operatorname{Enc}_k(m_b)$

Adversary: outputs a bit \hat{b} (tries to guess b)

Enc is perfectly indistinguishable if $Pr[\hat{b} = b] = \frac{1}{2}$

Characteristics

- Weak adversary model:
 - The adversary only sees the ciphertext c
 - Even with access to many ciphertexts, no difference!
 - But not KPA \Rightarrow a single pair $(m, \text{Enc}_k(m))$ reveals k (one-time pad)
- Strong guarantees : no matter how powerful the adversary, they learn nothing

⇒ Need for a stronger adversary model.

IND-CPA: Indistinguishability under Chosen-Plaintext Attack

IND-CPA Game for Encryption

Setup : sample $k \stackrel{\$}{\leftarrow} \mathcal{K}$

Adversary : has oracle access : for each query x_i , it receives $c_i \leftarrow \text{Enc}_k(x_i)$

Adversary : chooses two messages $m_0, m_1 \in \mathcal{M}$ of equal length

Challenge: samples $b \stackrel{\$}{\leftarrow} \{0,1\}$ and computes $c \leftarrow \operatorname{Enc}_k(m_b)$

Adversary : outputs a bit \hat{b} (tries to guess b)

Remarks

- The adversary can query $\operatorname{Enc}_k(m_0)$ and $\operatorname{Enc}_k(m_1)$
 - $\operatorname{Enc}_k(\cdot)$ must therefore be **randomised**
- The messages must have the same length
 - IND-CPA encryption may reveal message length
 - Generally necessary for efficiency
 - Ad-hoc solutions exist if length is sensitive information

Relaxing Guarantees : IND-CPA Advantage

What is the **advantage** of an adversary A compared to random guessing of \hat{b} ?

Adversary's Advantage $\mathcal A$

$$Adv_{Enc}^{IND-CPA}(A) = 2 \left| Pr \left[A^{Enc_k} \rightarrow b \right] - \frac{1}{2} \right|$$

Remarks

- The advantage is between 0 (perfectly indistinguishable) and 1
- $Adv_{Enc}^{IND-CPA}(A) = \left| Pr\left[A^{Enc_k} \rightarrow 1 \mid b = 1 \right] Pr\left[A^{Enc_k} \rightarrow 1 \mid b = 0 \right] \right|$

IND-CPA Security

An adversary with **bounded resources** has a **negligible advantage**.

Asymptotic Security

definition from complexity theory

- Fix a security parameter n
- Bounded resources : probabilistic polynomial-time adversaries $\mathcal A$ in n
- Negligible advantage : if $< \frac{1}{\rho(n)}$ for any polynomial ρ

Concrete Security

used in this course

- Advantage function : $Adv_{Enc}^{IND-CPA}(q,t) = \max_{\mathcal{A}_{q,t}} Adv_{Enc}^{IND-CPA}(\mathcal{A}_{q,t})$ where $\mathcal{A}_{q,t}$ ranges over all probabilistic algorithms running in time $\leq t$ and making $\leq q$ queries
- No formal definition of bounded resources or negligible :

Orders of Magnitude (Time)

Computation Time

- $t \simeq 2^{40}$: ~ 1 day on my laptop
- $t \simeq 2^{60}$: feasible on a large CPU/GPU cluster
- $t \simeq 2^{80}$: feasible with an ASIC cluster
- $t \simeq 2^{128}$: seems sufficiently hard

Example : performing 2^{128} operations in 34 years ($\simeq 2^{30}$ seconds)

- Assumptions :
 - Hardware at 2⁵⁰ ops/s
 - Highly parallelisable
 - 1000 W per device
- Results:
 - Requires $\simeq \frac{2^{128}}{2^{50} \cdot 2^{30}} = 2^{48}$ machines
 - Requires ~ 280,000 TW

> 280 · 10¹²

reasonable

not always true

auite fast

academic research

Bitcoin mining

> 1.7 · 10⁹ nuclear power plants

Orders of Magnitude (Probabilities)

Probabilities

- $p = \frac{1}{2}$: getting heads with a fair coin
- $p = \frac{1}{6}$: rolling a 6 with a fair die
- $p \simeq 2^{-24}$: probability of winning the French national lottery
- $p \simeq 2^{-72}$: probability of winning the French lottery three times in a row

Example:

- An attack taking 1 second and succeeding with probability 2⁻⁶⁰ would have been expected to succeed fewer than once since the Big Bang
- CPU errors due to cosmic rays occur with far higher probability!

Combining Orders of Magnitude. If $Adv_{Enc}^{IND-CPA}(2^{128}) < 2^{-60}$, then the encryption can be considered (IND-CPA) secure.

Outline

Security

IND-CPA security

Negligible Functions

Reduction Proof

Different Adversaries

Security Assumptions

Fonction négligeable

A fonction $\epsilon : \mathbb{N} \to \mathbb{R}^+$ is *negligible*, if

$$\forall c>0, \exists k_0\in\mathbb{N}, \forall k>k_0, |\epsilon(k)|<\frac{1}{|k^c|}.$$

Properties

Let f and g be two negligible functions, then

- 1. f.g is negligible.
- 2. For any k > 0, f^k is negligible.
- 3. For any λ , μ in \mathbb{R} , $\lambda . f + \mu . g$ is negligible.

Exercise: Proofs

Noticeable Functions

Instead of "there exists an N such that for all n > N " we will in the following often say "for all sufficiently large n".

We call a function $\nu : \mathbb{N} \to \mathbb{R}$ noticeable if there exists a positive polynomial p such that for all sufficiently large n, we have :

$$\nu(n) > \frac{1}{p(n)}$$

Note: A function can be neither noticeable nor negligible.

Exercises

Prove or disprove the following statements:

- 1. If both $f, g \ge 0$ are noticeable, then f g and f + g are noticeable.
- 2. If both $f, g \ge 0$ are not noticeable, then f g is not noticeable.
- 3. If both $f, g \ge 0$ are not noticeable, then f + g is not noticeable.
- 4. If $f \ge 0$ is noticeable, and $g \ge 0$ is negligible, then f.g is negligible.
- 5. If both f, g > 0 are negligible, then f/g is noticeable.

Exercise: Prove or disprove:

- The function $f(n) := (\frac{1}{2})^n$ is negligible.
- The function $f(n) := 2^{-\sqrt{n}}$ is negligible.
- The function $f(n) := n^{-log(n)}$ is negligible.

Outline

Security

IND-CPA security

Negligible Functions

Reduction Proof

Different Adversaries

Security Assumptions

How to prove the security?

Theorem

A cryptosystem C has a security property P under a hypothesis H

$$H \Rightarrow C \text{ has } P$$

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$
$$[H \Rightarrow C \text{ has } P] \Leftrightarrow [\neg(C \text{ has } P) \Rightarrow \neg H]$$

Proof by Reduction

- Assume that there exists an adversary A that breaks the security property of C.
- 2. Construct an adversary *B* that uses *A* to breaks the hypothesis *H* in a polynomial time.

Modelling an Adversary

Let \mathcal{A} be an algorithm that attempts to decrypt encrypted messages using randomly generated keys, *i.e.*,

$$(pk, sk) \leftarrow KeyGen(\lambda).$$

An encryption algorithm $\mathcal{E} = (\text{KeyGen}, \text{Enc})$ is said to be practically/computationally secure if, for any \mathcal{A} capable of decrypting a message, its success probability is negligible in the key size λ .

Formally : Let $Adv_{\mathcal{A}}(\mathcal{E},\lambda)$ denote the probability of obtaining information about a message. We have :

$$\mathsf{Adv}_{\mathcal{E},\mathcal{A}}(\lambda) \leq \epsilon(\lambda).$$

Outline

Security

IND-CPA security

Negligible Functions

Reduction Proof

Different Adversaries

Security Assumptions

Adversary Models

The adversary is given access to oracles:

- → encryption of all messages of his choice
- → decryption of all messages of his choice

Three classical security levels:

- Chosen-Plain-text Attacks (CPA)
- Non adaptive Chosen-Cipher-text Attacks (CCA1)
 Decryption oracle only before the challenge
- Adaptive Chosen-Cipher-text Attacks (CCA2) unlimited access to the decryption oracle (except for the challenge)

Other Attack Scenarios: Attacker's Goal

Non-Malleability (NM): It is impossible to transform a ciphertext of a
message m into a ciphertext of a related message f(m) for some known
function f.

Other Attack Scenarios : Attacker's Goal

- Non-Malleability (NM): It is impossible to transform a ciphertext of a
 message m into a ciphertext of a related message f(m) for some known
 function f.
- Indistinguishability (IND): It is impossible to distinguish a ciphertext of a
 message m from a ciphertext of another message m'.

Other Attack Scenarios: Attacker's Goal

- Non-Malleability (NM): It is impossible to transform a ciphertext of a
 message m into a ciphertext of a related message f(m) for some known
 function f.
- Indistinguishability (IND): It is impossible to distinguish a ciphertext of a
 message m from a ciphertext of another message m'.
- One-Way (OW): It is impossible to recover the encrypted message.

Is OW Insufficient?

"One-wayness" means that the attacker cannot recover the entire message. But they might still recover half of it!

Is OW Insufficient?

"One-wayness" means that the attacker cannot recover the entire message. But they might still recover half of it!

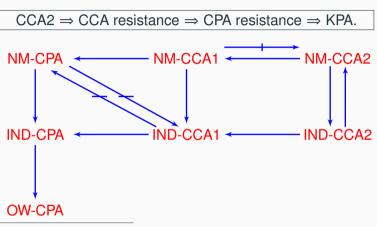
Let's take a concrete example :

The message can no longer be read (one-wayness).

However, one can still tell whether the paper is white, red, green, etc.

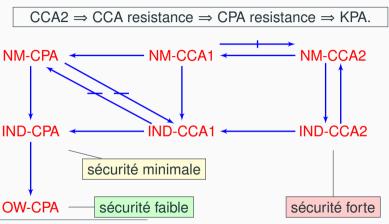
We gain one bit of information about the paper — and maybe that information is crucial!

Relations



^{. &}quot;Relations Among Notions of Security for Public-Key Encryption Schemes", **Crypto'98**, by Mihir Bellare, Anand Desai, David Pointcheval and Phillip Rogaway

Relations



. "Relations Among Notions of Security for Public-Key Encryption Schemes", **Crypto'98**, by Mihir Bellare, Anand Desai, David Pointcheval and Phillip Rogaway

Outline

Security

IND-CPA security

Negligible Functions

Reduction Proof

Different Adversaries

Security Assumptions

The Diffie-Hellman protocol

g, p are public parameters.

- Diffie chooses x and computes $g^x \mod p$
- Diffie sends $g^x \mod p$
- Hellman chooses y and computes g^y mod p
- Hellman sends $g^x \mod p$

Shared key :
$$(g^{x})^{y} = g^{xy} = (g^{y})^{x}$$

Basic Diffie-Hellman key-exchange: initiator I and responder R exchange public "half-keys" to arrive at mutual session key $k = g^{xy} \mod p$.

Hard Problems

Most cryptographic constructions are based on *hard problems*. Their security is proved by reduction to these problems :

- **RSA-OAEP**. Given N = pq and $e \in \mathbb{Z}_{\varphi(N)}^*$, compute the inverse of e modulo $\varphi(N) = (p-1)(q-1)$. **Factorization**
- **Discrete Logarithm** problem, **DL**. Given a group $\langle g \rangle$ and g^x , compute x.
- Computational Diffie-Hellman, CDH Given a group $\langle g \rangle$, g^x and g^y , compute g^{xy} .
- **Decisional Diffie-Hellman, DDH** Given a group $\langle g \rangle$, distinguish between the distributions (g^x, g^y, g^{xy}) and (g^x, g^y, g^r) .

The Discrete Logarithm (DL)

Let $G = (\langle g \rangle, *)$ be any finite cyclic group of prime order.

Idea : it is hard for any adversary to produce x if he only knows g^x . For any adversary A,

$$Adv^{DL}(A) = Pr\Big[A(g^{X}) \to X \middle| X \stackrel{R}{\leftarrow} [1, q]\Big]$$

is negligible.

Computational Diffie-Hellman (CDH)

Idea : it is hard for any adversary to produce g^{xy} if he only knows g^x and g^y . For any adversary A,

$$Adv^{CDH}(A) = Pr\Big[A(g^x, g^y) \to g^{xy} \Big| x, y \xleftarrow{R} [1, q]\Big]$$

is negligible.

Decisional Diffie-Hellman (DDH)

Idea : Knowing g^x and g^y , it should be hard for any adversary to distinguish between g^{xy} and g^r for some random value r.

For any adversary A, the advantage of A

$$\mathbf{Adv}^{DDH}(A) = Pr\Big[A(g^{x}, g^{y}, g^{xy}) \to 1 \,\Big| \, x, y \overset{R}{\leftarrow} [1, q]\Big]$$
$$-Pr\Big[A(g^{x}, g^{y}, g^{r}) \to 1 \,\Big| \, x, y, r \overset{R}{\leftarrow} [1, q]\Big]$$

is negligible.

This means that an adversary cannot extract a single bit of information on g^{xy} from g^x and g^y .

Relation between the problems

Proposition

Solve $DL \Rightarrow$ Solve $CDH \Rightarrow$ Solve DDH. (Exercise)

Moaurer & Wolf

For many groups, $DL \Leftrightarrow CDH$

Joux & Wolf

There are groups for which DDH is easier than CDH.

Conclusion

One-Time Pad

- · First example of an encryption scheme
- Very strong security... but in a very weak model!
- Practically unusable

Computational Security

- Game + advantage → notion of security
- Various security models depending on the experiment
 - Define the goals and the capabilities

What's Next?

- Symmetric and public-key encryption
- Authentication and integrity