
Lab # 3 Monte Carlo Simulation & Confidence Intervals  
 
For the questions of lab n°3 under Linux, even if it is simpler to use rand() for a first test (or more precisely 
(double) rand() / (double) RAND_MAX using stdlib), you now know that for scientific applications the 
default system random number generators are often very old and statistically weak. Such generators have 
to be banned for modern scientific programming. It is far better to use a generator such as Mersenne 
Twister proposed by Matsumoto and discovered in lab 2. For a quick start work in a single file, then, if you 
can, prefer using separate compiling with the Matsumoto source code on the one side, and on the other side 
your simulation code with the main program (only one main of course). Respect the original MT initialization 
and use the function proposed to draw pseudo-random numbers between 0 and 1 (included). 
Implementations for this lab should be in C.  
 

1) Propose a function simPi to Compute  with the Monte Carlo method. This function will accept in input 
the number of points used for the estimation. Test your code with 1 000 points, 1 000 000 points and lastly 
1 000 000 000 points. Each point in R2 needs two random numbers : (xr, yr). For this case study let see how 
many drawings you may need to get a precision below 10-2 (at least 3.14), below 10-3 and then below 10-4 
(at least 3.1415). Remember that the convergence rate of this method is very slow : sqrt(of the total 
numbers of points drawn);but like a peasant tractor this method “goes everywhere”. In this question, 
you do not have to make replicates (independent experiments) – this comes in the next question. 
 

2) Computing independent experiments and obtaining the mean. Launching – ie drawing the “dice” many 
times, means calling many times the function which estimates PI (and this function needs many drawings). 
When simulating a dice rolling, we needed only one random number for an experiment. When we loop on 
the dice rolling, we have many simulations (independent experiments). When we estimate PI we launch the 

simPi function (with a specified number of points: nbPoints, and each point needs two random numbers). 
In order to compute ‘n’ independent experiments (replicates) of this simulation, first initialize the random 
number generator, then propose a loop, which will call ‘n’ times the estimation of PI with “nbPoints”. The 
independence is simply achieved if we do not reinitialize the pseudo-random number generator between 
two experiments (replicates). This can be done by keeping the proper and original initialization found in 
Makoto’s web site. When we run the loop calling the PI simulation function, we can store all the results of 
the ‘n’ experiments (replicates) in an array (of numbers in double precision). We can then propose the mean 
of all the ‘estimated PIs’ (arithmetic mean). Run 10 to 40 experiments with: 1 000, 1000 000 and 
1 000 000 000 points, compute the difference between you meanPI and M_PI as an absolute error. If you 
divide by M_PI you will also obtain the relative error. The M_PI constant should be taken directly from the 
<math.h> include file.  
 

3) Computing of confidence intervals around the simulated mean. The user inputs the number of 

replicates (experiments) he wants to perform before computing a confidence interval at 95% (to 
do so use the technique & table given in the appendix of this lab. See whether the number of replicates 
improves your results and decreases the confidence radius (comparison with M_PI). The number of random 
drawings (sampling) for each individual replicate (each experiment) is a sensitive parameter. Be careful when 
you do this comparison. We have very few significant numbers in a float variable (only 7 significant decimal 
digits for floats), use double instead. It is preferred for scientific computing. When you have an estimation 
of the standard deviation, you can also see how to compute the ‘standard error’ of the sample mean.  
 

The Monte Carlo method needs a lot of random sampling to increase its precision (remember the slow 
convergence rate – square root of the number of points). However, the Monte Carlo method is the only 
method to compute hyper-volumes in hyper-spaces or to achieve evenly distributed space filling in large 
dimensions where accurate mathematical methods are often intractable or non-existing. Uniformity is 
guaranteed up to 623 dimensions for the Mersenne Twister, this is particularly useful when exploring the 
hyperspace of parameters for sensitivity analysis (100 parameters = 100 dimensions to explore).  
 



Appendix: Computing confidence Intervals for a sample of results (we don’t have the full population) 
 

Introduction: If X is a simulation result,  (X1 , ... , Xn) is the set obtained with n independent replications 
(experiments) of this stochastic simulation. This means that each independent stochastic simulation 
experiment is run (under the same conditions) but with a different (and independent) random stream. 
Usually the computing of confidence intervals is achieved on the observed arithmetical means. 
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The computing of a confidence interval is simple when we consider that the Xi variables (simulation results) 
have identical independent Gaussian distributions. 
 

Principle: The confidence interval is centered on the arithmetical mean, so we just compute what is called 
the confidence radius (error margin). Here is the theoretical statistical hypothesis that is used to obtain this 

radius. If Xi have identical independent Gaussian distributions with a theoretical mean  and a variance of 

2, then the following random variable :  
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is distributed according to a Student law with n-1 degrees of liberty.  

 

 

1

)(

)( 1

2

2









n

nXX

nS

n

i

i

 

S2(n) is an estimate without bias of the 2 variance. Since we don’t know the theoretical standard deviation 

, we estimate the variance with the results we have and thus use this approximation. We compute S2(n) 

and use it in the following formula below to obtain the confidence radius (error margin) at the 1- level : 
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William Sealy Gosset introduced the Student to correct the fact that we only use an estimate of  and not 

its true value. The table below give the values t
n 1 1

2
,   for a student law with .  

If , the confidence interval is said at 95%. The computing of R gives the following interval

 X R X R , , with a 1- confidence (95%).  

 

Table 1: Values of t
n 1 1

2
,   of a Student law starting with depending on n experiments. 

1n10 t
n 1 1

2
,   11n20 t

n 1 1
2

,   21n30 t
n 1 1

2
,   n>30 t

n 1 1
2

,   

1 12.706 11 2.201 21 2.080 40 2.021 
2 4.303 12 2.179 22 2.074 80 2.000 
3 3.182 13 2.160 23 2.069 120 1.980 
4 2.776 14 2.145 24 2.064 + 1.960 

5 2.571 15 2.131 25 2.060   
6 2.447 16 2.120 26 2.056   
7 2.365 17 2.110 27 2.052   
8 2.308 18 2.101 28 2.048   
9 2.262 19 2.093 29 2.045   

10 2.228 20 2.086 30 2.042   

 
The Central Limit Theorem (CLT) says that for non-normal data, the distribution of the sample means has an 
approximate normal distribution, no matter what the distribution of the original data looks like, as long as 
the sample size is large enough (usually at least 30) and all samples have the same size. This is true not only 

for the sample mean but also for other sample statistics. Advanced students will also study = 0.01. 


