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Abstract

Computer networks generally operate using a single routing protocol. However, there are situations where the
routing protocol has to be changed (e.g., because an update of the routing protocol is available, or because
an external event has triggered a change in the traffic type with different quality of service requirements). In
this paper, we show that an uncontrolled transition of the routing protocol might yield to routing loops (even
if the involved routing protocols are loop-free). We show that it is possible to achieve a loop-free transition
for a single destination, using a mechanism based on several steps. However, reducing the number of steps
is NP-hard. We propose an O(n4) centralized heuristic (for a network of n nodes), to achieve the transition
in few steps in a large variety of scenarios. We also propose a distributed protocol to achieve the same goal
with a limited overhead.

Keywords: Routing protocols, routing protocol transition, transient routing loops.

1. Introduction

Computer networks generally operate a single routing protocol which determines which route packets have
to follow in order to reach a destination. However, some situations require to change the current routing
protocol. For example, this change might be triggered by the availability of a major update of the protocol
(or the correction of a security issue). Another example concerns monitoring applications in wireless sensor
networks, where the detection of a critical event might trigger the transition from an energy-efficient routing
protocol to a delay-sensitive routing protocol [1]. Another last example focuses on the changes in routing
decisions caused by major modifications of the topology (due to link or node failures, or due to significant
changes in routing metrics) [2, 3, 4].

If nodes are accurately synchronized, they can perform the transition simultaneously from the current
routing protocol R1 to the new routing protocol R2. However, this solution is often difficult to implement in
practice. Indeed, the cost of an accurate synchronization might be prohibitive, or nodes might be operated
by different network administrators, leading to different plannings for the transition. We assume in the
following that nodes cannot be synchronized in such a precise manner.

If nodes are not synchronized and if nodes perform the transition arbitrarily, transient routing loops
might occur, even if the routing protocols are loop-free when considered independently. Figure 1 shows such
an example. Initially, all packets towards d are routed according to routing protocol R1, and R1 is loop-free
(see Figure 1(a)). If nodes are arbitrarily requested to perform the transition to another protocol R2 (shown
on Figure 1(b)), it is possible that c performs the transition first, resulting into the routing depicted on
Figure 1(c). In this case, a routing loop occurs between nodes b and c.

Routing loops reduce network performance as they can cause node inaccessibility issues or overload the
network. Even if the routing loops caused by the transitions are transient (because all nodes will eventually
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Figure 1: Uncontrolled transitions might yield to routing loops. (a) The initial routing protocol R1 is loop-free for destination
d. (b) The new routing protocol R2 is also loop-free. (c) A loop occurs between nodes b and c, if a and b route according to
R1 and c routes according to R2, a loop occurs between nodes b and c.

perform the transition to the new, loop-free routing protocol), our aim is to completely avoid them, as they
might have a significant impact for the applications.

In this paper, we show that the transition from a routing protocol R1 to another routing protocol R2

can be performed in sequential steps, where all nodes of the same step can perform the transition arbitrarily
without causing loops. We propose two mechanisms to perform the transition. They both assume that each
routing protocol is loop-free, computes routes for a single destination, and that the routing decisions are
static (that is, the next-hop of a node for a given protocol remains the same during the transition). Our
two mechanisms aim to reduce the overall number of steps, in order to reduce the transition duration. Our
first mechanism is a centralized heuristic based on the computation of strongly connected components. Our
second mechanism is a distributed protocol based on neighbor monitoring.

The remainder of the paper is organized as follows. Section 2 formalizes the loop-free transition problem,
and shows that reducing the number of steps of a transition is an NP-hard problem. Then, it presents our
two mechanisms: a centralized heuristic based on a global knowledge of the topology, and a distributed
protocol based on a local knowledge of the state of neighbors. It also starts a brief discussion on routing
protocols for several destinations. Section 3 evaluates the performance of our two mechanisms for a several
routing protocols. Section 4 describes relevant research works of the literature. Finally, Section 5 concludes
this work and gives perspectives.

2. Proposed mechanisms for loop-free transitions

In this section, we present two mechanisms for loop-free transitions. Subsection 2.1 formalizes the problem
of loop-free routing protocol transition, as well as the requirements on the steps to perform the transition.
Subsection 2.2 shows that building a large first step is NP-hard. Subsection 2.3 presents our centralized
heuristic based on strongly connected components. Subsection 2.4 presents our distributed protocol based
on neighbor monitoring. Finally, Subsection 2.5 discusses briefly the transition of routing protocols for
several destinations.

2.1. Problem formulation

Let V be a set of nodes and d ∈ V a destination. Let us consider two routing protocols for destination
d: R1 is the routing protocol initially used by nodes, and R2 is the new protocol to use. For all i ∈ {1, 2}
and for all n ∈ V , we denote by Ri(n) ∈ V the next-hop of n towards d according to Ri. Given a partition
(V1, V2) of V (i.e., V1 ∪ V2 = V and V1 ∩ V2 = ∅), we denote by RV1,V2

the routing protocol defined in the
following way: for all n ∈ V1, RV1,V2

(n) = R1(n), and for all n ∈ V2, RV1,V2
(n) = R2(n). In other words,

nodes of V1 route according to R1, and nodes of V2 route according to R2. The set of routing decisions of
R1 and R2 form the set E of the edges of the graph G = (V,E).

Definition 1 (Loop-free step). Let (V1, V2) be a partition of nodes, and S ⊂ V1 a set of nodes called step.
Step S is said to be loop-free if and only if for all S′ ⊂ S, the routing protocol RV1\S′,V2∪S′ is loop-free.

Definition 1 states that a step S is loop-free if and only if all the possible intermediate sub-steps S′ ⊂ S
correspond to a loop-free routing protocol. In this way, we can guarantee that the nodes of S can perform
the transition of their routing protocol arbitrarily without causing loops.
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Definition 2 (Loop-free sequence). Let S = (S1, . . . , Sm) be a sequence of steps. Sequence S is said to be
loop-free if and only if both conditions apply:

• S1 ∪ . . . ∪ Sm = V ,

• for all i ∈ [1;m], Si is a loop-free step on partition (V i
1 , V

i
2 ), with V i

2 = S1∪ . . . ∪Si−1 and V i
1 = V \V i

2 .

Definition 2 states that a sequence S = (S1, . . . , Sm) is loop-free if and only if each step Si is loop-free,
and after step Sm, all nodes belong to V m

2 ∪ Sm = V (that is, they have performed the transition to the
target routing protocol R2). Note that the set of nodes running R2, which is V i

2 , increases as the sequence
progresses.

Figure 2 shows an example of loop-free sequence S = ({a, b, d}, {c}). Figure 2(a) shows the initial routing
protocol R1. Figure 2(b) shows both R1 and R2 for nodes of the first step {a, b, d}, to indicate that these
nodes might route according to R1 (if they have not performed the transition to the routing protocol yet)
or R2 (if they have already perform the transition of the routing protocol). It can be seen that for any
routing protocol used by the nodes of the first step, no loop occurs. Figure 2(c) shows R2 for nodes that
have performed the transition of their routing protocol on the previous step, and shows both R1 and R2 for
the node of the second step. On a side note, it can be noticed that S is a loop-free sequence with a minimum
number of steps, as it is not possible to have both b and c in the same loop-free step.
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Figure 2: An example of loop-free sequence S = ({a, b, d}, {c}). (a) Initially, all nodes route according to R1. (b) During the
first step, nodes from {a, b, d} might route according to R1 or R2 without causing loops. (c) During the second step, node c

routes according to R1 or R2, while all nodes from {a, b, d} route according to R2. At the end of the second step, all nodes
route according to R2.

Theorem 1. Let G, V1, V2, R1 and R2 be defined as previously. Let G′ = (V,E′) with E′ ⊂ E, such that
for all x ∈ V1, (x,R1(x)) ∈ E′ and (x,R2(x)) ∈ E′, and for all x ∈ V2, (x,R2(x)) ∈ E′. Let C = {Ci}i be
the set of all strongly connected components of G′. For all i, let us denote by C′i ⊂ Ci a set of nodes that
verifies the following properties:

• C′i ⊂ V1,

• G′
i = (V,E′

i) does not contain any loop, with E′
i defined as follows:

– if x ∈ C′i then (x,R1(x)) ∈ E′
i and (x,R2(x)) ∈ E′

i,

– if x ∈ V1\C′i then (x,R1(x)) ∈ E′
i,

– if x ∈ V2 then (x,R2(x)) ∈ E′
i.

Then, S = ∪iC′i is a valid step.

Proof. Let us assume that {C′i}i verifies the properties. We have to show that S = ∪iC′i is a valid step, that
is, for every S′ ⊂ S, RV1\S′,V2∪S′ is loop-free and leads to destination d. Let S′ be an arbitrary subset of S,
and let us build RV1\S′,V2∪S′ .

Let us first show that RV1\S′,V2∪S′ is loop-free. By contradiction, let us suppose that there is a loop
(x0, x1, . . . , xn) in RV1\S′,V2∪S′ , with xn = x0.
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• Suppose here that this loop spans a single strongly connected component Ci. For all k, we have
(xk, xk+1) ∈ ES′ . (i) If xk ∈ S′, then xk+1 = R2(xk) by construction of ES′ (since S′ ⊂ S ⊂ C′i).
Because of the properties of C′i, we have (xk,R2(xk)) ∈ E′

i. (ii) If xk /∈ S′ and xk ∈ V1, then
xk+1 = R1(xk) by construction of ES′ . We have to consider the two following sub-cases: xk ∈ C′i
and xk /∈ C′i. If xk ∈ C

′
i, then (xk,R1(xk)) ∈ E′

i (as well as the edge on R2). If xk /∈ C′i, then
(xk,R1(xk)) ∈ E′

i. (iii) If xk /∈ S′ and xk ∈ V2, then xk+1 = R2(xk) by construction of ES′ , and
xk /∈ C′i. Thus, (xk,R2(xk)) ∈ E′

i. To summarize these three cases, all the arcs of the loop on ES′ are
also included in the arcs of E′

i, thus G
′
i contains a loop. However, this is impossible by construction of

C′i. Thus, by contradiction, there is no loop on GS′ .

• Suppose now that this loop spans several strongly connected components, including Ci and Cj , with
i 6= j. For all node xm of the loop (with (xm, xm+1) ∈ ES′), let us show that (xm, xm+1) ∈ E′. (i) If
xm ∈ S′, then xm+1 = R2(xm), and xm ∈ C′i, which means that xm ∈ V1. Thus, (xm,R2(xm)) ∈ E′ by
construction of E′. (ii) If xm /∈ S′ and xm ∈ V1, then xm+1 = R1(xm). Thus, (xm, xm+1) ∈ E′. (iii) If
xm /∈ S′ and xm ∈ V2, then xm+1 = R2(xm). Thus, (xm, xm+1) ∈ E′. To summarize these three cases,
for all xm of the loop, (xm, xm+1) ∈ E′, so there exists a loop in G′ between a node of Ci and a node
of Cj , which means that Ci and Cj are the same strongly connected component, which is impossible.

Let us show now that for any node x, d is reachable from x in GS′ . By contradiction, let us suppose that
there is a node x from which d is not reachable. Let us consider the path starting from x in GS′ . Either
there exists a node on the path that has no next-hop on GS′ , or the path has a loop. We just proved that
there is no loop in GS′ , so there has to be a node y without a next-hop. By construction of GS′ , we can see
that all nodes y ∈ S′ ∪ (V1\S′) ∪ V2 = V have a next-hop, so d is reachable from any node x in GS′ . This
completes the proof.

Figure 3 shows an example on a graph of nine nodes, where destination is node f . The routing protocols
R1 and R2 are shown on Figure 3(a). To build the first valid step, all routing arcs are considered. The
strongly connected components of the resulting graph are the following: C1 = {f}, C2 = {b, c} and C3 =
{a, d, e, g, h, i}. The following sets verify the property of the theorem: C′1 = {f}, C′2 = {b} and C′3 =
{d, g, h, i}. Indeed, it can be verified that none of the graphs G′

i (for i ∈ {1, 2, 3}) has a loop (this can also be
seen on the graph shown on Figure 3(b)). Thus, the step S1 = {b, d, f, g, h, i} is a valid first step. To build
the second valid step, the strongly connected components of the graph shown on Figure 3(b) are computed.
They are the following: C1 = {a}, C2 = {b}, . . . , C9 = {i}. The following sets verify the property of the
theorem: C′1 = {a}, C′3 = {c}, C′5 = {e}, and C′i = ∅ otherwise. The second step is S2 = {a, c, e}, and the
resulting graph is shown on Figure 3(c). After this step, all nodes route according to R2. Thus, S = (S1, S2)
is a loop-free sequence.
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Figure 3: Sequence based on strongly connected components. (a) The graph has three strongly connected components C1 = {f},
C2 = {b, c}, C3 = {a, d, e, g, h, i}. (b) The first step is S1 = {b, d, f, g, h, i}, and only the nodes of S1 can route according to R1

or R2. (c) The second step is S2 = {a, c, e}, and only the nodes of S2 can route according to R1 or R2.
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2.2. Building large steps is NP-hard

In the following, we show that building a sequence with a large first step is NP-hard, by reduction of the
feedback vertex set problem.

Definition 3 (Feedback vertex set). The feedback vertex set (FVS) problem takes as input a graph G =
(V,E) and an integer k. It consists in determining whether there exists X ⊂ V such that |X | ≤ k
and G − X is acyclic (that is, GX = (VX , EX) is loop-free, with VX = V \X and EX = {(x, y) ∈
E such that both x ∈ VX and y ∈ VX}). FVS is known to be NP-complete in both undirected and directed
graphs [5].

Definition 4 (Large valid first step). The large valid first step (LVFS) problem takes as input a graph
G = (V,E), a destination d, two routing protocols R1 and R2, and an integer k. It consists in determining
whether there exists a valid step S with V1 = V and V2 = ∅ such that |S| ≥ k.

Theorem 2. LVFS is an NP-complete problem.

Proof of Theorem 2. To prove Theorem 2, we use a polynomial reduction of FVS. The proof starts by showing
that LVFS is in NP, shows how FVS can be reduced into LVFS, and shows that this reduction is polynomial.

Let us first show that LVFS is in NP, that is, let us show that a solution of LVFS can be verified in
polynomial time. To check that a solution of LVFS is valid, we have to determine whether step S is valid,
that is, whether there are routing loops when all nodes of V \S use R1 and nodes of S use R1 or R2. To
verify this, we build the graph Gs = (V,Es), where Es contains (i) for all n ∈ V \S, (n,R1(n)), and (ii)
for all n ∈ S, (n,R1(n)) and (n,R2(n)). If there is no loop in Gs, LVFS is valid. The loop verification
can be performed by counting the number of strongly connected components of Gs using Tarjan’s strongly
connected components algorithm [6]: if the number of strongly connected components is different from |V |,
there is a loop (or, alternatively, if there is a strongly connected component with two or more nodes). This
can be done in O(|V |+ |Es|), which is polynomial.

Let us now show how FVS can be reduced into LVFS.

• Let (G = (V,E), k) be an instance of FVS, and let us build a corresponding instance (G′, z,R1,R2, |V |−
k) for LVFS, where z is the destination of R1 and R2. Let us denote by δ(n) the outgoing degree of n
in G. Each node n of G is transformed into δ(n) + 1 nodes in G′, denoted by ni, with i ∈ [1; δ(n) + 1].
For each node n of G, there is an arc (n1, n2) in G′ labeled with R2. For each arc (n,m) in G, with m
being the j-th neighbor of n in G, there is an arc (nj ,m1) in G′ labeled with R1. Then, an extra node
z is added into G′, and is considered the destination of R1 and R2 of LVFS. Finally, for every node
ni of G

′ that has only one arc labeled with R1, an arc (ni, z) labeled with R2 is added, and for every
node ni of G

′ that has only one arc labeled with R2, an arc (ni, z) labeled with R1 is added. Figure 4
shows the transformation of an instance of FVS into the corresponding instance of LVFS (without the
node z for clarity). It can be noticed that both R1 and R2 in the new instance of LVFS do not cause
loops and lead to z.

• Let us assume that FVS has a solution X of size k. We have to show that LVFS has a solution S of
size |V |−k. Let us build step S in the following way: S = V \X . By contradiction, let us suppose that
step S is not valid, that is, there is a loop in RV \S,S . By construction of G′, the loop has to involve
at least two nodes n1 and m1 of S. Thus, there is a path from n1 to m1 and from m1 to n1 in G′ that
involves nodes of S. In other words, there is a path from n to m and from m to n in G that does not
involve nodes of X . Thus, there is a loop in G−X , which is impossible by construction of X . Thus,
S is a valid step.

• Let us assume that FVS has no solution of size k. We have to show that LVFS has no solution of size
|V | − k. Thus, for any step S (for LVFS) of size at most |V | − k, there exists a loop l that involves
nodes of S. This loop also involves edges of R2, as R1 does not cause loops when considered alone.
Let us build S′ ⊂ S such that S′ contains all nodes of the loop l whose next-hop follows R2. This set
S′ violates Definition 1, thus S is not a valid step.
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The reduction is polynomial. Indeed, the construction of the instance of LVFS from the instance of FVS
is polynomial: if we write G = (V,E) and G′ = (V ′, E′), then |V ′| = 1 + |V |+ |E| and |E′| = 2|V ′|.
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Figure 4: Transformation of an instance of FVS into the corresponding instance of LVFS (destination node z is not shown).

2.3. Centralized heuristic for loop-free sequence

In this subsection, we describe our Centralized Heuristic for loop-free Sequence (CHS). We assume that
a centralized entity knows the whole network topology, as well as R1 and R2 (that is, R1(n) and R2(n) is
known, for each node n).

CHS is based on Algorithm 1. First, the set of strongly connected components of the graph is built. Then,
each strongly connected component Ci is considered individually, and nodes are distributed into several steps
according to Algorithm 2. We use a greedy approach: for each step Sj , we add nodes one by one into a set
C′i,j , until it is not possible to add more nodes without violating the constraints of Theorem 1. Then, we
move to the next step, until all nodes of Ci are in a step.

Algorithm 1 Main algorithm for CHS.

Require: G = (V,E) a graph, d ∈ V a destination, R1 and R2 two routing protocols for d
Ensure: S is a valid sequence
C ← strongly connected components of G (with arcs resulting of R1 and R2)
for Ci ∈ C do

if |Ci| = 1 then

the single node of Ci is in the first step S1

else

j ← 1
while there are nodes of Ci that are not in a step yet do
find a suitable set C′i,j ⊂ Ci (see Algorithm 2)
add nodes of C′i,j to step Sj

j ← j + 1
end while

end if

end for

return S = (S1, . . . , Sj−1)

The worst-case complexity of CHS is O(|V |4). Indeed, the strongly connected components of a graph can
be computed in O(|V |+ |E|) with Tarjan’s algorithm [6]. Note that in our graphs, |E| ≤ 2|V | as each node
has at most two outgoing arcs (one with R1 and one with R2). For each strongly connected component Ci,
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Algorithm 2 Computation of one step for Ci in CHS

Require: Ci a strongly connected component (with at least two nodes), list of previous steps
Ensure: C′i,j satisfies the property of Theorem 1
C′i,j ← ∅
end← false
while not end do

end← true
for node n in Ci do
if n is not already in a step and n /∈ C′i,j then

build G′ with the nodes of G and no edges
for each node m that has been added in a previous step, add arc (m,R2(m)) to G′

for each node m ∈ C′i,j ∪ {n}, add arcs (m,R1(m)) and (m,R2(m)) to G′

for each other node m 6= d, add arc (m,R1(m)) to G′

if G′ does not contain a loop then

C′i,j ← C
′
i,j ∪ {n}

end← false
end if

end if

end for

return C′i,j
end while

there are at most |Ci| resulting steps (as there is at least one node per step). Computing the set C′i,j requires

examining at most |Ci|2 combinations of nodes, and each examination requires building G′ and determining
if it has a loop, which can be done in O(|Ci|). As the set of strongly connected components partitions the
graph, we obtain the overall complexity of O(|V |4).

2.4. Distributed protocol for loop-free sequence

In this subsection, we describe our Distributed Protocol for loop-free Sequence (DPS). We assume that
each routing protocol has a protocol ID. This ID is used to differentiate protocols R1 and R2. DPS works
as follows:

• Initially, all nodes route according to R1.

• A control message is sent to each node (in arbitrary order and at arbitrary time); upon receiving this
message, each node configures the new routing protocolR2, but continues to forward packets according
to R1. The routing protocol R2 is said to be pending for this node.

• Destination d is allowed to perform the transition to R2 as soon as R2 is pending.

• Regularly, a node n 6= d that has a pending routing protocol sends a control message to its neighbor
R2(n) to request for its protocol ID. The neighbor replies with a control message indicating whether
it uses R1 or R2 (by including in the reply the protocol ID).

• When a node n 6= d receives from its neighbor R2(n) a reply containing the protocol ID of R2, n is
allowed to perform the transition to R2. To do this, n starts forwarding packets according to R2, and
can remove R1 from memory.

Proposition 1. DPS achieves a loop-free sequence.

Proof. Let us denote by S the order in which nodes perform the transition fromR1 to R2 in DPS. We assume
here that each step of S contains a single node, as it is not possible for two different events to occur at the
same time. In the following, we show that S contains all the nodes of V and that S is a loop-free sequence.
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Let us show that S contains all nodes of V . Since all nodes will eventually receive the configuration
message, we have to show that it is not possible for a node to have R2 pending indefinitely. By contradiction,
let us assume that n has R2 pending indefinitely, and let us build the path p = (n0, n1, n2, . . .) where n0 = n
and for all i, ni+1 = R2(ni). If there exists i such that ni has R2 pending indefinitely, then ni+1 also has
R2 pending indefinitely (according to the protocol description). Thus, by induction on i, all nodes of p have
R2 pending indefinitely. Since p eventually reaches d (R2 is a loop-free routing protocol to d), d has to
be pending indefinitely, which is not possible. Thus, we have a contradiction, and we can conclude that S

contains all nodes of V .
Let us show that S = (S1, S2, . . . , S|V |) is a loop-free sequence. We have to show that for all i ∈ [1; |V |],

Si is a loop-free step on partition (V i
1 , V

i
2 ), with V i

2 = S1 ∪ . . . ∪ Si−1 and V i
1 = V \V i

2 . Let us show this by
induction on i.

• Let us show that S1 is a loop-free step. Since d is the first node that can perform the transition to
R2, S1 = {d}. Moreover, since d is the destination, RV,∅ = RV \{d},{d}. We know that RV,∅ = R1 is
loop-free. Then, for all S′ ⊂ {d}, RV \S′,∅∪S′ is loop-free.

• Let us assume that Si is a loop-free step, and let us show that Si+1 is a loop-free step. Let us
denote by ni+1 the node such that Si+1 = Si ∪ {ni+1}. We have to show that for all S′ ⊂ {ni+1},
RV i

1
\S′,V i

2
∪S′ is loop-free. This is true for S′ = ∅, since Si is a valid step. Let us now consider the case

where S′ = {ni+1}, and let us show that RV i

1
∪{ni+1},V i

2
\{ni+1} is loop-free. Let n be any node of the

network, and let us build the path p = (n0, n1, n2, . . .) with n0 = n, nj+1 = R1(nj) if nj ∈ V i+1
1 and

nj+1 = R2(nj) otherwise. By contradiction, let us assume that p has loops. Then, p has to go through
ni+1 since Si is loop-free. By construction of S, the path from ni+1 follows only nodes of R2 (since a
node performs the transition to R2 only after its next-hop on R2 has performed the transition to R2

too). Thus, the path from p reaches d as R2 is loop-free. The path from n to p follows only nodes of
R1, and cannot have loop either. Thus, p is loop-free. By contradiction, we have shown that Si+1 is a
loop-free step.

In DPS, nodes perform the transition independently, based only on the routing protocol used by the
next-hop on R2. If the decision to perform the transition takes the same time for all nodes, we can also
consider that nodes perform the transition according to their distance to the destination: nodes at one hop
of the destination can perform the transition together, then nodes at two hops of the destination can perform
the transition together, etc. In the following, we consider that nodes of DPS perform the transition by steps,
where each step contains all the nodes at the same distance to the destination. We also consider that the
destination is in the same step as the nodes that are one hop away from the destination, as the destination
cannot cause loops while performing the transition.

2.5. Changing routing protocols for several destinations

When there are several destinations for the routing protocols, it might not be possible to change the
routing protocol for all destinations simultaneously. Figure 5 provides such an example on a topology of six
nodes with two destinations c and d. Figure 5(a) shows the routing protocols Rc

1 and Rc
2 for destination c,

and Figure 5(b) shows the routing protocols Rd
1 and Rd

2 for destination d. If node a switches to Rc
2 and to

Rd
2 simultaneously, a loop occurs between a and b for packets going to either c and d. If node b switches to
R2 for both destinations, a loop between b and d occurs for packets going to c, and a loop between a and b
occurs for packets going to d. If node c switches to R2 for both destinations, a loop between a and c occurs
for packets going to d. Similarly, a loop occurs if nodes d, e or f perform the transition of their routing
protocol to R2.

To handle several destinations, it is possible to apply our mechanisms for each destination independently,
until nodes have performed the transition of their routing protocol for every destination. We leave this as
future work, and focus in this paper on a single destination.
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Figure 5: With these two routing protocols R1 and R2 for the two destinations c (shown on the left) and d (shown on the
right), it is not possible to change the routing protocol for the two destinations simultaneously without causing loops.

3. Performance evaluation

In this section, we compare CHS and DPS through simulations and experiments. First, we quantify the
probability of loop occurrences when using arbitrary routing protocols, with arbitrarily transitions (that is,
without any mechanism to avoid transient loops). Then, we compute by simulation the number of steps
required to perform the transition, for our CHS and DPS. Finally, we evaluate the time required by our
implementation of CHS and DPS on motes to perform the transition.

3.1. Simulation on loop occurrences with arbitrary transitions

We consider that a loop occurs on a given topology if a packet can enter a routing loop when nodes on
the path decide arbitrarily to route according to R1 or R2. For instance, we consider that there is a loop
in the topology shown on Figure 1, because b might route according to R1 while c routes according to R2.
Notice that even if there is a loop occurrence in a topology, some nodes might be able to send packets to the
destination without loops. Thus, our metric refers to the risk of a possible loop.

We generated random graphs, and we used routing protocols based on shortest paths (for various weights
on links, as described later). Each graph is generated by deploying nodes uniformly at random in an area
of 100m×100m, and by ensuring that the deployment is connected (with a given communication range). All
results are averaged over 1000 simulations.

Figure 6 shows the percentage of loop occurrences as a function of the node number, for two communi-
cation ranges (20m and 30m). The routing protocol R1 is a shortest path protocol based on the number
of hops to reach the destination. The routing protocol R2 is a shortest path protocol based on a random
weight on each link, chosen uniformly in [1; 100]. We use this random weight to model link metrics such as
loss. The percentage of loop occurrences increases with the number of nodes. Even when the number of
nodes is small (for instance, 50), the percentage of loop occurrences is above 50%, which means that loops
are likely to occur. This comes from the fact that the two protocols build uncorrelated paths due to the
random weight of R2.

Figure 7 shows the percentage of loop occurrences as a function of the node number, for two commu-
nication ranges. Both routing protocols R1 and R2 are shortest path protocols based on a random weight
on each link, chosen uniformly in [1; 100]. We use this random weight to model two independent metrics,
such as loss for R1 and delay for R2, when nodes have independent wake-up schedules. The percentage of
loop occurrences is about 100% for all topologies. This is due to the fact that R1 and R2 yield to different
routing decisions, thus paths have a very low correlation.

Figure 8 shows the percentage of loop occurrences as a function of the node number, for two communica-
tion ranges. The routing protocol R1 is based on a random weight on each link, chosen uniformly in [1; 100].
The routing protocol R2 uses a correlated weight: if w is the weight of the link in R1, the weight of the same
link in R2 is chosen uniformly in [w − 5;w + 5]. Thus, R1 and R2 are highly correlated. This reduces the
overall percentage of loops, for both communication ranges, especially for small number of nodes. When the
communication range is larger or when the number of nodes is larger, the network density increases. When
the density is high, the two routing protocols have many choices to compute the paths, and the resulting
shortest paths exhibit low correlations (even if the weights are correlated).
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Figure 6: When R1 is based on a hop-count metric and R2 is based on a random metric, the percentage of loop occurrences is
high, due to the low correlation of the metrics of R1 and R2.
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Figure 7: When R1 and R2 are both based on a random metric, the percentage of loop occurrences is very high, again due to
the very low correlation of the metrics of R1 and R2.
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Figure 8: When R1 is based on a random metric and R2 is based on a 5%-deviation of the metric of R1, the percentage of
loop occurrences is high for topologies with a large number of nodes, despite the high correlation of the metrics.
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3.2. Simulations on number of steps with CHS and DPS

We consider now the case where R2 is based on a 5%-deviation of R1 (as shown on Figure 8), which is
the most realistic case in our opinion.

We compute the number of steps for CHS and DPS for 1000 repetitions. In repetitions without loop
occurrences, CHS is able to perform the transition in a single step. However, DPS still requires several steps,
as the number of steps of DPS depends on the maximum distance of nodes to the destination.

Figure 9 shows the average number of steps for both protocols, for a communication range of 20m (on the
left) and of 30m (on the right). The figure also depicts the minimum and maximum number of steps obtained
during the 1000 repetitions. The average number of steps for CHS increases slightly with the number of
nodes, and is about 2 steps for all repetitions, which indicates that CHS is able to solve most loops efficiently,
with only a single extra step. The average number of steps for DPS is larger than with CHS because the
number of steps with DPS is the maximum depth of the network. However, our simulation results show that
the average number of steps with DPS is only about three times larger than with CHS, although DPS is
fully distributed.
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Figure 9: CHS is able to perform the transition in about two steps on average, when the communication range is 20m (on the
left) or 30m (on the right). DPS requires about three times more steps to perform the transition.

3.3. Experiments on transition duration with CHS and DPS

In this subsection, we evaluate our protocols using a real testbed of TelosB motes. We implemented the
centralized heuristic, CHS, and the distributed protocol, DPS, using NesC/TinyOS. In the following, we first
describe the implementation of these two protocols. Then, we describe the experimental results.

3.3.1. Details on protocol implementation

CHS is implemented as follows. The destination knows in advance the network topology, and is able to
compute all the steps before starting the transition process. The destination initiates the transition process
by sending a SWITCH message with the list of nodes that have to perform the transition at the first step.
Each node n receiving this message broadcasts it, and performs the transition immediately to R2 if n is in
the list. When a node has perform the transition to R2, it sends a CONFIRM message to the destination in
unicast, according to R2. To avoid collisions, both SWITCH and CONFIRM messages are sent with a random
delay. When the destination receives all the expected confirmations for a given step, it starts the next step
by sending a new SWITCH message with the new step number and the corresponding list of nodes. If the
destination has not received all the confirmations after a given delay, it rebroadcasts the SWITCH message
with the address of the remaining nodes of the current step.

DPS is implemented as follows. Each node broadcasts a HELLO message to its neighbors within a random
period. This message contains the number of the routing protocol used (that is, 1 for R1 and 2 for R2).
The destination initiates the transition process by changing to R2 silently. When a node n receives a HELLO

message from its neighbor R2(n), n performs the transition to R2 only if R2(n) has already performed the
transition to R2.
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3.3.2. Experimental results

We used five topologies of ten nodes, depicted on Figure 10. For all these topologies, the next-hop accord-
ing to R1 (represented with solid lines) and R2 (represented with dashed lines) has been statically defined
in each node. Recall that the destination is denoted by a double circle. Figure 10(a) shows a linear topol-
ogy. It corresponds to a worst-case transition: both protocols generate the following sequence of nine steps
S = ({a, f}, {g}, {h}, {i}, {j}, {e}, {d}, {c}, {b}). Figure 10(b) shows a tree topology. Both protocols gener-
ate the following sequence of two steps: S = ({a, d, g, h, i, j}, {b, c, e, f}). Figure 10(c) shows a grid topology.
It corresponds to a best-case transition for CHS, as all nodes can perform the transition in one step, without
causing loops. DPS generates the following sequence of five steps: S = ({i, j}, {f, h}, {c, e, g}, {b, d}, {a}).
Figure 10(d) shows a mesh topology with two arbitrary routing protocols. CHS generates the following se-
quence of four steps: S = ({a, b, e, g, h, j}, {d, i}, {f}, {c}). DPS generates the following sequence of six steps:
S = ({g, j}, {i}, {e, f}, {b, c, h}, {a}, {d}). Figure 10(e) shows another mesh topology with two arbitrary rout-
ing protocols. CHS generates the following sequence of three steps: S = ({a, g, i, j}, {b, d, f}, {c, e, h}). DPS
generates the following sequence of eight steps: S = ({g, j}, {d}, {h}, {i}, {f}, {c, e}, {a}, {b}).
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Figure 10: Five topologies for the experimental testbed.

We used the following protocol settings. For CHS, the random delay (in seconds) for both SWITCH and
CONFIRM messages is chosen within a period of [0.5; 1]. The delay before the retransmission of a SWITCH

message (when some CONFIRM messages are lost) is set to 8 s. For DPS, HELLO messages are sent randomly
within a period of [5.5; 6.5] (in seconds). These settings were chosen so that both protocols take a similar
time for the transition on the topologies illustrated on Figure 10(a) and Figure 10(b), as both protocols
generate the same steps for these two topologies.

Table 1 shows the experimental results, averaged over 10 repetitions. The granularity of the results
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is 1 s, and the standard deviation of experimental transition duration is also shown. For the topology of
Figure 10(a), nine steps are required for both protocols. The two protocols perform the transition in about
26 s. Indeed, the expected duration in DPS for a step (between the changing of a node and the sending of
the HELLO) is half the average HELLO period, that is 3 s. As there are nine steps, the expected transition
duration is about 27 s. For the topology of Figure 10(b), two steps are required for both protocols. They
perform the transition in about 8 s, and the expected transition duration is about 6 s. For the topology
of Figure 10(c), CHS achieves the transition in only 2 s, as all nodes can perform the transition during the
first step. Note that for this topology, the transition duration does not take into account the possible loss
of CONFIRM messages, as the destination does not need to wait for the confirmations to start another step.
DPS shows a larger transition duration due to a larger number of steps. For the topology of Figure 10(d),
CHS achieves a delay of about 28 s. We noticed in a few repetitions that some CONFIRM messages were lost
by the destination during the first step. This increases latency because the destination has to retransmit a
SWITCH message with the same step number. This is probably caused by the large number of nodes in the
first step, generating collisions of the CONFIRM messages. This phenomenon impacts the standard deviation
of the results. For the topology of Figure 10(e), both protocols have the same average transition duration.
The relatively large transition duration for CHS is due to the relatively large number of nodes per step (recall
that the CONFIRM messages are sent in unicast according to R2, and thus have to be retransmitted several
times).

Topology Fig. 10(a) Fig. 10(b) Fig. 10(c) Fig. 10(d) Fig. 10(e)
Average time 25.0 s 9.2 s 2.0 s 28.0 s 15.9 s

CHS Standard dev. 0 s 0.42 s 0 s 4.18 s 0.31 s
Number of steps 9 2 1 4 3
Average time 26.2 s 7.6 s 12.8 s 22.2 s 16.0 s

DPS Standard dev. 4.89 s 0.96 s 2.04 s 3.08 s 3.94 s
Number of steps 9 2 5 6 8

Table 1: Experimental transition durations on motes.

4. Related work

In this section, we first describe architectures where routing loops might occur. Then, we present some
solutions from the literature to avoid routing loops occurring during the transition from one protocol to
another.

4.1. Networks with risk of loop occurrences

Several routing protocols that combine different routing decisions have been proposed in the literature.
In [7], the authors propose to combine a reactive routing protocol with a greedy geographical routing protocol.
When a packet has to be forwarded, the reactive protocol establishes the whole route to the destination. The
geographical protocol is used when the next-hop according to the reactive protocol becomes unreachable.
Routing loops can occur if the geographical protocol forwards packets to a node that uses the reactive
protocol. In [8], a routing protocol Rd that reduces delay is combined with a routing protocol Re that
reduces energy. Rd and Re are used depending on the traffic produced by the application: urgent packets
are forwarded according to Rd, while periodic packets are forwarded according to Re. Routing loops can
occur if an urgent packet reaches a node that has a limited energy and uses Re. In [9], packets are given
a priority based on traffic type. The next-hop of a packet is computed according to several parameters,
including packet priority, number of hops to the destination, link quality for the next-hop, residual energy
for the next-hop, load of the next-hop, etc. Routing loops can occur if the parameters used by a node n1

are different from the parameters used by another node n2 on the path to the destination.
Multi-purpose WSNs [10] have been proposed to consider a single WSN deployment to support several

applications. The main advantage of multi-purpose WSNs is that the cost of deployment is shared by all the
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applications. Several researchers have proposed protocols for multi-purpose WSNs [11, 12, 13, 14]. In such
networks, several routing protocols are used simultaneously, because the large amount of applications yield
to different requirements that cannot be met by a single routing protocol. However, dealing with several
routing protocols might cause routing loops when the choice of the routing protocol is made locally by each
node.

4.2. Avoiding routing loops

The problem of avoiding transient loop in a network has been rarely studied in the literature. We
summarize here the main works.

In [15, 16], nodes use two routing protocols R1 and R2 alternatively: a node forwards packets according
to a repetitive cycle composed of two periods p1 and p2. During p1, the node forwards packets according to
R1, and during p2, the node forwards packets according to R2. Routing loops can occur if the decision to
forward a packet according to R1 or R2 is made locally by each node. In [15], properties of pairs of routing
protocols are studied, and three categories are identified: (i) compatible routing protocols, which do not yield
to routing loops, (ii) delayable routing protocols, where nodes might avoid loops based on the knowledge of
the distance functions of the two protocols, and (iii) combined routing protocols, when the distance functions
of the two protocols are not known or hard to compute locally by the nodes. In [16], two heuristics were
proposed to avoid loops or reduce their occurrences. In the first heuristic, loops are avoided by forbidding
some nodes to forward packets during one period pi. In the second heuristic, a probabilistic approach is used
to reduce the risk of loops: nodes that could lead to potential loops choose randomly whether to forward or
to hold packets. The difference between [15, 16] and this paper is that we consider here that the transition
between R1 and R2 is final: once a node has performed the transition to R2, it does not change back to R1.
Thus, only the compatible property of [15] is applicable, and the two heuristics of [16] cannot be applied in
this context as they rely on the alternation of R1 and R2.

In [3], the authors show that most routing protocols can produce transient routing loops after a topological
change. They show that such loops can be avoided by having routers process routing updates according to a
specific order. Their mechanism is able to deal with link failures, new links, or updates on link metrics. The
differences with this paper are the following: (i) we consider arbitrary protocols for R1 and R2, while [3]
considers a single routing protocol on two similar topologies, and (ii) we reduce the number of steps required
for the transition, while [3] provides an ordering of updates that does not cause loops.

In [2, 4], the authors show that ordering the routing updates yields to additional message overhead
and increases the convergence delay. They avoid transient routing loops by exploiting the existence of one
forwarding table per interface. Messages arriving through unexpected interfaces are discarded, because they
indicate a discrepancy between the view of the router and its neighbors. Once all routers have the same
view of the topology, the protocol can converge and produce loop-free routes. The main difference with this
paper is that we do not drop packets explicitly to avoid loops.

In [17, 18], the authors show that transient routing loops that occur after topological changes can be
avoided by applying a sequence of topology updates. Between two topology updates, the same routing
protocol is used, but some link values are modified, which result into changes in routing decisions. They
propose a protocol that minimizes the number of topology updates. The difference with this paper are the
following: (i) we consider two different routing protocols on a single topology, while [17, 18] consider a single
routing protocol on a sequence of updated topologies, (ii) we consider arbitrary routing protocols, while [17]
considers changes on only one link and [18] considers changes concerning the links of a single router, and
(iii) we reduce the number of steps to perform the transition, where each step is a set of nodes and each
node appears only once overall, while [17, 18] minimizes the number of topology updates.

5. Conclusion

When a running routing protocol has to be changed, transient routing loops might occur in the network.
In this paper, we quantified the percentage of loop occurrence on several scenarios. We showed that loops
can be completely avoided by having nodes change from one protocol to another according to a sequence,

14



which depends on the topology and on the routing protocols. The sequence is a list of steps, where each step
is a set of nodes that can perform the transition in arbitrary order. We proposed a centralized heuristic that
builds such a sequence with a limited number of steps, and a distributed protocol that builds sequences with
a larger number of steps, but without requiring the knowledge of the whole network topology. Simulation
results show that the distributed protocol computes sequences that have about three times more steps than
the centralized heuristic. However, experimental results show that the actual time required by the distributed
protocol is often close to the time required by the centralized heuristic.
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