Network security (second session)

Allowed: handwritten documents, printed course notes from the website, paper dictionaries.
Forbidden: books, mobile phones, calculators, electronic translators.
Duration: 2 hours

1. Differential cryptanalysis of DES (5 points)

Figure 1 shows the S-box 5 of DES. It can be seen that $S_{5}(110110)=5_{10}$ (because line is $1---0$ and column is -1011-).

$\boldsymbol{S}_{\mathbf{5}}$	$\mathbf{0 0 0 0}$	$\mathbf{0 0 0 1}$	$\mathbf{0 0 1 0}$	$\mathbf{0 0 1 1}$	$\mathbf{0 1 0 0}$	$\mathbf{0 1 0 1}$	$\mathbf{0 1 1 0}$	$\mathbf{0 1 1 1}$	$\mathbf{1 0 0 0}$	$\mathbf{1 0 0 1}$	$\mathbf{1 0 1 0}$	$\mathbf{1 0 1 1}$	$\mathbf{1 1 0 0}$	$\mathbf{1 1 0 1}$	$\mathbf{1 1 1 0}$	$\mathbf{1 1 1 1}$
$\mathbf{0 0}$	2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
$\mathbf{0 1}$	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
$\mathbf{1 0}$	4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
$\mathbf{1 1}$	11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3

Figure 1: The S-box 5 of DES.
Question 1.1 (0.5 point): What is the value of S_{5} (110111) in decimal?
Question 1.2 (0.5 point): How many possible inputs are there for S_{5} ?
Question 1.3 (4 points): Let us write $O_{1}=S_{5}\left(I_{1}\right)$ and $O_{2}=S_{5}\left(I_{2}\right)$. Let us assume that $I_{1} \oplus I_{2}=100000$ (where \oplus denotes the XOR operation), and that $O_{1} \oplus O_{2}=1110$. We assume that I_{1} is between 0 and 15_{10} (in order to reduce the amount of values to verify). What are the possible values for I_{1} (out of these 16 values)?

2. Elliptic curve cryptography (5 points)

Let us consider the elliptic curve $E=\left\{(x, y) \mid y^{2}=x^{3}+x+6 \bmod 11\right\}$.
Question 2.1 (1 point) : Fill the following table.

\boldsymbol{y}	0	1	2	3	4	5	6	7	8	9	10
$\boldsymbol{y}^{2} \bmod 11$											

Question 2.2 (1 point) : What are the possible values for y, when $y^{2}=3$? What are the possible values for y, when $y^{2}=8$?
Question 2.3 (1 point) : Compute the thirteen points of E, with $0 \leq x<11$. Do not forget the point $O=(+\infty,+\infty)$. Note that $5^{3} \bmod 11=4,6^{3} \bmod 11=7,7^{3} \bmod 11=2,8^{3} \bmod 11=6,9^{3} \bmod 11=3$, and $10^{3} \bmod 11=10$.

For the next two questions, you can base your intuition on the geometrical approach for the elliptic curve $\{(x, y) \mid$ $\left.y^{2}=x^{3}+x+6\right\}$ (although E does not contain all the points).
Question 2.4 (1 point): What is the value of $(2,7)+(2,4)$?
Question 2.5 (1 point): What is the value of $(3,5)+O$?

3. Factorization attacks on RSA (10 points)

Most attacks on the cryptographic algorithm RSA are based on the factorization of n from the public key (e,n).
Question 3.1 (0.5 point): Explain why the factorization of n can be used to cryptanalyze RSA.
Question 3.2 (0.5 point): Why is it important to use large factors for n ?

A simple factorization attack is based on identifying a small number b such that $a^{2}-b^{2}=n$, with $a=\operatorname{ceil}(\operatorname{sqrt}(n))$.
Question 3.3 (0.5 point): Show that in this case, $n=(a-b)(a+b)$.
Question 3.4 (1 point): Given the fact that $\operatorname{ceil(sqrt(4891))=70,~find~a~factorization~of~} 4891$.
Question 3.5 (0.5 point): Why does this method work only when both factors of n are close to the square root of n ?

Some sophisticated attacks have been developed for small d. They are based on the identification of weak values of e that make the factorization of n simple.
Question 3.6 (1 point): If $e=k . q$, with $1<k<p$, then $n=p . q$ can be factorized easily.

- Prove this property.
- How many values of e are weak, using this property?

Question 3.7 (1 point): Wiener [2] showed that from any public exponent e that corresponds to a secret exponent d with $d \leq(1 / 3) n^{1 / 4}, n$ can be factorized in time polynomial in $\log (n)$.

- If n has a size of 1024 bits, how many values of e are weak, using this property?
- Does this make a large amount of weak keys?

Question 3.8 (1 point): Howgrave-Graham [3] showed that the knowledge of $e=k q+r$, with $r \leq n^{1 / 4}$, allows to find the factorization of n. How many values of e are weak in this case? You can assume that both factors of n are close to $\operatorname{sqrt}(n)$.

Blömer and May attack [1] states that if $e . x+y=k . p h i(n)$, with k an integer, $0<x \leq(1 / 3) n^{1 / 4}$ and $|y|=$ $O\left(n^{-3 / 4} . e . x\right)$, then n can be factorized. They use the fact that the keys in this case are such that $e^{-1}=d=-x / y$ [phi(n)].
Question 3.9 (1.5 point): Show that this attack generalizes the Wiener's attack for a given value of x and of y.
Question 3.10 (1 point): Show that x and y are small.
Question 3.11 (1.5 points): Note that d and e are not necessarily small. Explain why it might be difficult for an user to identify such values of e as weak keys.

4. References

[1] J. Blömer, A. May. "A generalized Wiener attack on RSA", in Proceedings of Public Key Cryptography, 2004.
[2] M. Wiener. "Cryptanalysis of short RSA secret exponents", IEEE Transactions on Information Theory, vol. 36, pp. 553-558, 1998.
[3] N. Howgrave-Graham. "Approximate integer common divisors", Cryptography and Lattices, Lecture Notes in Computer Science, vol. 2146, Springer-Verlag, 2001.

