

Network security (second session)

Allowed: handwritten documents, printed course notes from the website, paper dictionaries. **Forbidden:** books, mobile phones, calculators, electronic translators. **Duration:** 2 hours

1. Differential cryptanalysis of DES (5 points)

Figure 1 shows the S-box 5 of DES. It can be seen that $S_5(110110)=5_{10}$ (because line is 1----0 and column is -1011-).

S_5	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
00	2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
01	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
10	4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
11	11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3

Figure 1: The S-box 5 of DES.

Question 1.1 (0.5 point): What is the value of *S*₅(*110111*) in decimal?

Question 1.2 (0.5 point): How many possible inputs are there for S_5 ?

Question 1.3 (4 points): Let us write $O_1 = S_5(I_1)$ and $O_2 = S_5(I_2)$. Let us assume that $I_1 \oplus I_2 = 100000$ (where \oplus denotes the XOR operation), and that $O_1 \oplus O_2 = 1110$. We assume that I_1 is between 0 and 15_{10} (in order to reduce the amount of values to verify). What are the possible values for I_1 (out of these 16 values)?

2. Elliptic curve cryptography (5 points)

Let us consider the elliptic curve $E = \{(x,y) | y^2 = x^3 + x + 6 \mod 11\}$.

Question 2.1 (1 point) : Fill the following table.

у	0	1	2	3	4	5	6	7	8	9	10
<i>y</i> ² <i>mod</i> 11											

Question 2.2 (1 point) : What are the possible values for *y*, when $y^2=3$? What are the possible values for *y*, when $y^2=8$?

Question 2.3 (1 point) : Compute the thirteen points of *E*, with $0 \le x < 11$. Do not forget the point $O = (+\infty, +\infty)$. Note that $5^3 \mod 11 = 4$, $6^3 \mod 11 = 7$, $7^3 \mod 11 = 2$, $8^3 \mod 11 = 6$, $9^3 \mod 11 = 3$, and $10^3 \mod 11 = 10$.

For the next two questions, you can base your intuition on the geometrical approach for the elliptic curve $\{(x,y)|$ $y^2 = x^3 + x + 6\}$ (although *E* does not contain all the points).

Question 2.4 (1 point): What is the value of (2,7)+(2,4)?

Question 2.5 (1 point): What is the value of (3,5)+O?

3. Factorization attacks on RSA (10 points)

Most attacks on the cryptographic algorithm RSA are based on the factorization of n from the public key (e,n).

Question 3.1 (0.5 point): Explain why the factorization of *n* can be used to cryptanalyze RSA.

Question 3.2 (0.5 point): Why is it important to use large factors for *n*?

A simple factorization attack is based on identifying a small number *b* such that $a^2-b^2=n$, with a=ceil(sqrt(n)).

Question 3.3 (0.5 point): Show that in this case, n=(a-b)(a+b).

Question 3.4 (1 point): Given the fact that *ceil(sqrt(4891))=70*, find a factorization of 4891.

Question 3.5 (0.5 point): Why does this method work only when both factors of *n* are close to the square root of *n*?

Some sophisticated attacks have been developed for small d. They are based on the identification of weak values of e that make the factorization of n simple.

Question 3.6 (1 point): If e=k.q, with $1 \le k \le p$, then n=p.q can be factorized easily.

- Prove this property.
- How many values of *e* are weak, using this property?

Question 3.7 (1 point): Wiener [2] showed that from any public exponent *e* that corresponds to a secret exponent *d* with $d \le (1/3)n^{1/4}$, *n* can be factorized in time polynomial in log(n).

- If *n* has a size of 1024 bits, how many values of *e* are weak, using this property?
- Does this make a large amount of weak keys?

Question 3.8 (1 point): Howgrave-Graham [3] showed that the knowledge of e=kq+r, with $r \le n^{1/4}$, allows to find the factorization of *n*. How many values of *e* are weak in this case? You can assume that both factors of *n* are close to sqrt(n).

Blömer and May attack [1] states that if e.x+y=k.phi(n), with k an integer, $0 \le x \le (1/3)n^{1/4}$ and $|y|=O(n^{-3/4}.e.x)$, then n can be factorized. They use the fact that the keys in this case are such that $e^{-1}=d=-x/y$ [phi(n)].

Question 3.9 (1.5 point): Show that this attack generalizes the Wiener's attack for a given value of *x* and of *y*.

Question 3.10 (1 point): Show that *x* and *y* are small.

Question 3.11 (1.5 points): Note that *d* and *e* are not necessarily small. Explain why it might be difficult for an user to identify such values of *e* as weak keys.

4. References

[1] J. Blömer, A. May. "A generalized Wiener attack on RSA", in Proceedings of Public Key Cryptography, 2004.

[2] M. Wiener. "Cryptanalysis of short RSA secret exponents", IEEE Transactions on Information Theory, vol. 36, pp. 553—558, 1998.

[3] N. Howgrave-Graham. "Approximate integer common divisors", Cryptography and Lattices, Lecture Notes in Computer Science, vol. 2146, Springer-Verlag, 2001.